WO2013143330A1 - 用于led汽车远光灯的自由曲面光学透镜 - Google Patents

用于led汽车远光灯的自由曲面光学透镜 Download PDF

Info

Publication number
WO2013143330A1
WO2013143330A1 PCT/CN2012/086909 CN2012086909W WO2013143330A1 WO 2013143330 A1 WO2013143330 A1 WO 2013143330A1 CN 2012086909 W CN2012086909 W CN 2012086909W WO 2013143330 A1 WO2013143330 A1 WO 2013143330A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
free
axis
led
value
Prior art date
Application number
PCT/CN2012/086909
Other languages
English (en)
French (fr)
Inventor
王洪
吴衡
黄华茂
陈赞吉
杨洁
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2013143330A1 publication Critical patent/WO2013143330A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power

Definitions

  • the invention relates to the technical field of LED headlight illumination, in particular to a free-form optical lens for an LED automobile high beam.
  • LEDs Light-emitting diodes
  • LED has many advantages such as small size, low energy consumption, fast response, long life, etc., which conforms to the trend of future car development towards compactness, energy saving, safety and fashion.
  • LED applications in automotive lighting systems continue to expand, more and more problems have been overcome.
  • the application of LEDs to automotive headlamps is still challenging, that is, LEDs are different from the optical characteristics of conventional automotive light sources, and LEDs face complex optical designs when applied to headlamps.
  • the free-form lens design method can improve the utilization of LED light, effectively suppress the glare effect, and achieve the illumination requirements of far and near light.
  • the national standard GB25991-2010 has stipulated the requirements for the light distribution of automobile headlights, in order to prevent traffic headlights from interfering with the vehicles coming to the opposite side and causing traffic accidents.
  • the national standard requires a horizontal line and a 15° upward and downward cut-off line on the right side of the horizontal line, and the illuminance values of different areas on the illumination surface are also specified.
  • the high beam it is required to reach the standard in the specified area on the illumination surface 25m away from the headlight.
  • the optical design of LED automotive headlamps is available in three types: refractive, reflective and hybrid.
  • the refracting LED headlamp module is usually composed of a light source and a light distribution lens. After the light emitted from the light source passes through the light distribution lens, a predetermined light pattern is formed on the receiving screen, and the glare effect can be effectively reduced by the light distribution of the lens. , compressing the volume of the optical system, and the optical system also has a high energy utilization rate; the reflective LED headlights generally consist of a light source and a reflector, and all the light distribution tasks are performed with a single reflector, the headlights Although the utilization of light energy is high, the glare effect is difficult to control, and the design and processing requirements are extremely high.
  • the hybrid LED headlamp combines the advantages of refraction and reflection, which can form a good light effect, but the whole Complex optical system, low utilization of light energy (Yu Guiying, Jin Wei, Research on high-efficiency parabolic reflector for LED automotive headlamps. Infrared Technology, 2009, 31(6): 367-370).
  • the present invention provides a free-form optical lens for an LED automotive high beam, which has a small volume, a low glare effect, high utilization of light energy, convenient fabrication and installation, and can be produced.
  • the illuminance distribution that meets the light distribution requirements of GB25991-2010.
  • the present invention employs the following technical solutions.
  • a free-form optical lens for an LED automobile high beam lamp is made of a transparent material, the transparent material is PC or PMMA or optical glass, the lens comprises an incident surface and an exit surface, and a center of the bottom surface of the lens is provided with an LED for mounting a cavity therein, a part of the cavity wall of the cavity is a cylinder surface, the incident surface is composed of the cylinder surface and a free curved surface located at the top of the cylinder surface; the outer surface of the lens is another free surface, the top surface of the lens It is the plane, that is, the exit surface described.
  • the free-form optical lens described above for the LED high beam lamp has a free-form surface shape determined as follows:
  • the coordinate system is established with the LED light source as the coordinate origin.
  • the plane of the bottom surface of the LED is a plane.
  • the axis passing through the origin and perpendicular to the plane is 3 ⁇ 4 F.
  • the axis of the light source is divided according to the headlight of the vehicle headlight on the illumination surface.
  • the energy conservation law is used to divide the illumination area on the illumination surface into elliptical bands, and then the final free-form lens is defined by numerical calculation using the law of deflection.
  • the free curved surface on the outside of the lens and the free curved surface in the inner cavity are determined as follows:
  • the distance of the target illumination surface from the LED is d.
  • the range of the free surface of the top of the cylinder and the free surface of the outer surface of the lens is 0 ⁇ «, ⁇ - , where the value defines the size of the bottom of the lens;
  • the rectangular coordinate of the illumination surface is also divided into an elliptical annular zone, the ellipse long semi-axis ⁇ , and the short semi-axis b are respectively divided into components in the x and y directions, and the ellipse is formed. It can be expressed as:
  • y b ⁇ - sin a where the first part of the semi-axis ⁇ is divided, b, the first part of the short semi-axis b after the division, and the value of o ranges from 0 to 2r;
  • each S angle corresponds to an annular zone surrounded by a partial ellipse.
  • the total energy of the zone is:
  • E l S(k)- [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] ⁇ dxdy ,
  • sc ⁇ ', ),) ⁇ ', ))) represents the area function of the partial elliptical ring zone below the horizontal line, "representing the ellipse long semi-axis, V is the elliptical short semi-axis, and its corresponding value range For ⁇ 2 ⁇ , S(k) represents the illuminance value.
  • the illuminance value of the illumination surface area of the national standard GB25991-2010 is preset, and the function is used to control the illuminance value of the specified area on the receiving screen. Size, used to form a predetermined illuminance distribution, for different areas on the illuminated surface
  • each S-angle corresponds to a ring-shaped area surrounded by a partial ellipse, and the total energy of the ring-band area is:
  • E S(k) ⁇ " ⁇ [S(x(i + 1, j), y(i + 1, j)) -S(x(i, j), y(i, j))] ⁇ dxdy
  • u represents the ellipse long semi-axis
  • V represents the elliptical short semi-axis
  • the light emitted from the light source is all projected onto the illumination surface, and the law of energy conservation between the annular zone and the solid angle of the light source is:
  • the normal vector of the point on the surface is obtained by the law of deflection and reflection.
  • the normal plane is used to obtain the tangent plane.
  • the intersection of the tangent plane and the incident ray is used to obtain the coordinates of the point on the curve.
  • the vector form of the law of reflection and reflection is expressed as:
  • N Out -n-In
  • w the refractive index of the lens, and the total reflection occurs when the light passes through the free-form surface on the outer side of the lens. At this time, the value is 1; Refraction occurs when passing through the free surface at the top of the cylinder.
  • M depends on the lens material, which is the incident light unit vector, ⁇ is the outgoing ray unit vector, ⁇ is the unit normal vector; three initial points are determined, these initial points The position defines the size of the entire lens, and the two initial points respectively define two boundary curves, and each point on the boundary curve is an initial point to define a free surface of the inner cavity and the outer side of the lens.
  • the above-mentioned free-form optical lens for the LED high beam lamp has a parameter range of ⁇ 1 ⁇ corresponding to the partial ellipse, and the solid angle ⁇ of the light source corresponding to the free surface of the lens has a value range of 0.
  • the ellipse long semi-axis has a value range of 0 ⁇ ⁇ ⁇ 1.5 m
  • the short semi-axis has a value range of 0 ⁇ b ⁇ 1.125 m
  • the free-form surface of the outer side of the lens is the same as the definition of the free-form surface of the inner cavity, and the difference
  • the solid angle ⁇ of the light source corresponding to the free curved surface on the outer side of the lens is " ⁇
  • the long semi-axis of the ellipse ranges from 0 ⁇ a ⁇ 4 m
  • the short semi-axis ranges from 0 ⁇ b ⁇ 3 m.
  • the value defines the size of the bottom of the lens.
  • the coordinate vector corresponding to the emitted light is obtained by the energy conservation law and the law of reflection and reflection from the unit vector of the incident light and the incident light.
  • the direction vector of the outgoing light, the normal vector of the initial point is obtained by the coordinates of the initial point and the unit vector of the corresponding outgoing ray, thereby defining a tangent plane of the point, and the intersecting plane intersects the incident ray of the second point to determine Two points; the intersection of the tangent plane of the previous point and the line of the normal vector of the next point defines the next point, and the coordinates of all the points are obtained by computer iteration, thereby defining the coordinates of the free-form surface of the high-beam lens;
  • the coordinates of the points are staked and fitted, and the mirror symmetry is defined to define the final lens shape.
  • the value of the value determines the accuracy of the calculation, and the larger the value, the more accurate the final result.
  • the LED light source has high luminous efficiency and a free-form lens is used, almost all the light emitted from the light source can be collected and utilized, so the energy utilization rate is high, and the LED light source light type and the light emitting direction can be controlled.
  • a cavity for the LED is mounted in the middle of the bottom surface of the lens to make the LED light source easy to install, and the lens has a small volume, leaving a large amount of space for the installation of the heat sink.
  • the light energy emitted by the LED light source is all emitted through the free-form lens, and no other auxiliary device is required for light distribution, thereby reducing the loss of light energy of the light distribution system and improving the utilization of light energy;
  • the use of a free-form lens can effectively increase the direction of the control light, suppress the glare effect, reduce the system volume, and at the same time meet the light distribution requirements of GB25991-2010.
  • the LED and heat sink are easy to install, which helps to improve the heat dissipation efficiency of the entire lamp.
  • the LED light source adopts the chip integrated packaging technology, the occupied volume is small, and more space is reserved for the interior design of the lamp system, so that the appearance design of the entire lamp is more flexible and free, and conforms to the aesthetic and streamlined design of the modern lamp design. Claim.
  • 1 is a schematic view of light distribution through a lens in an embodiment.
  • Fig. 2 is a schematic view showing the coordinates of the ball of the LED light source in the embodiment.
  • FIG. 3 is a schematic diagram showing the division of the ring zone of the target area on the illumination surface in the embodiment.
  • Fig. 4 is a schematic plan view of a high beam lens in an embodiment.
  • Fig. 5 is a side elevational view of the high beam lens in the embodiment.
  • Fig. 6 is a front elevational view showing the high beam lens in the embodiment.
  • Fig. 7 is a perspective view showing a three-dimensional cross section of the lens in the embodiment.
  • Figure 8 is a three-dimensional bottom view of the lens in the embodiment.
  • the distance between the target illumination surface and the LED is 25m.
  • the target illumination area is set to be a partial ellipse with a long semi-axis of 4m and a short semi-axis of 3m. As shown in Figure 3, it is a high-beam target area.
  • the elliptical ring is divided into sections, wherein 301 is a semi-elliptical zone under the horizontal line, and a large number of zones form a high beam illumination zone.
  • the total luminous flux of the LED light source is 3001m, and the center intensity of the LED is 95.4930cd.
  • Figure 2 shows the spherical coordinate diagram of the LED light source in the embodiment, and divides the solid angle of the LED light source evenly according to the spherical coordinate diagram.
  • S is the angle between the projection of the outgoing ray 201 on the XOY plane and the X-axis 202, and the value ranges from 0 to ⁇ , which is the angle between the outgoing ray 201 and the positive direction of the ⁇ axis 203, and the value range for.
  • the solid angle of the light source is discretized and divided into 90 parts by an angle of 1° in the direction 0 ⁇ . For each ⁇ , the S direction is divided into 180 parts by an angle of 1° to form a series of annular zones. I got an array of sums, as shown in Figure 2.
  • i, j represents the number of parts divided, and the value of the value determines the accuracy of the calculation. In theory, the larger the value, the more accurate the final result.
  • the light emitted from the LED light source is emitted from the top of the lens through the lens with two free curved surfaces, wherein 101, 102 are respectively a free-form surface of the outer side of the lens and a two-dimensional schematic diagram of the free surface at the top.
  • the rectangular coordinate corresponding to the solid angle of the light source, the rectangular coordinate of the illumination surface is correspondingly divided into an elliptical annular zone, and the elliptical long semi-axis and the short semi-axis are respectively divided into x, y directions.
  • the resulting ellipse can be expressed as:
  • each S angle corresponds to a ring zone surrounded by a partial ellipse. As shown in Figure 3, the total energy of the zone is:
  • E l S(k)- [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] ⁇ dxdy
  • a few ', )) represent the area function of the partial elliptical ring zone below the horizontal line, "take 1.5m to represent the ellipse long half-axis, and V to take 1.125m to represent the ellipse short half-axis.
  • the corresponding value of the range is ⁇ 2 ⁇ . Indicates the illuminance value.
  • the preset illuminance E is combined with the W function to control the designated area on the receiving screen.
  • the illuminance value is used to form a predetermined illuminance distribution, so there are different areas on the illumination surface.
  • each S angle corresponds to a ring zone surrounded by a partial ellipse.
  • the total energy of the zone is:
  • E S(k) ⁇ [S (x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] ⁇ dxdy
  • u takes 4m to represent the ellipse long semi-axis
  • V takes 3m to represent the elliptical short semi-axis, corresponding to the ", the value is the same as above, and W Values need to be adjusted repeatedly in the calculation to achieve the desired result.
  • E l S(k) - [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] ⁇ dxdy
  • y(i, j) b t ⁇ sin [arc cos(x(i, )/ ⁇ 3 ⁇ 4 )]
  • the target illumination area corresponding to the free-form surface of the outer side of the lens is divided by the above method and the corresponding coordinate array is obtained.
  • the free surface of the top of the cylinder and the free surface of the outer side of the lens have their initial points: (0, 0, 0.04), (0, 0, 0.02), (0.03, 0, 0.038), the position of these initial points determines the size of the entire lens, and the two boundary points are respectively calculated from the three initial points, and then each point on the boundary curve is the initial point. Calculate the lumen And the entire freeform surface of the outer side of the lens.
  • the parameter of the corresponding partial ellipse has a value range of r ⁇ 2r, and the solid angle ⁇ of the light source corresponding to the free surface at the top of the cylinder ranges from 0 to ⁇ , and the ellipse has a half-axis value range.
  • the lens height is 0.04 m.
  • the illumination surface is divided into two according to the division of the solid angle of the light source; ⁇ , j) and j) Array.
  • the initial angle S is 0°, and the value is from ⁇ (26). It is assumed here that the boundary curve corresponds to the horizontal center line of the target plane, y is 0, and the value of c is from c (26, l).
  • the normal vector N(N X [1], N y [l], [1]) of the starting point can be obtained by the law of conservation of energy and the law of deflection, and the tangent can be obtained from the normal vector and the coordinates of the starting point.
  • z + 0.02 0
  • the two straight lines obtained by the equation intersect, and step 4 is used to find 43 ⁇ 4, z(2).
  • Each point on the boundary line is used as the starting point.
  • FIG. 4 is a top view of the high beam free-form optical lens obtained by the above scheme, wherein 402 is a lens mounting groove, 404 is a cylinder surface, 403 is a cylindrical top free surface, and 405 is a lens outer free surface.
  • Figure 5 is a side view of the lens, wherein 501 is the plane of the top of the lens;
  • Figure 6 is a front view of the lens;
  • Figure 7 is a three-dimensional cross-sectional view of the lens;
  • Figure 8 is a three-dimensional perspective view of the lens.
  • the LED light source has high luminous efficiency and a free-form lens is used, almost all the light emitted from the light source can be collected and utilized, so the energy utilization rate is high, and the LED light source light type and the light emitting direction can be controlled.
  • a cavity for the LED is mounted in the middle of the bottom surface of the lens to make the LED light source easy to install, and the lens has a small volume, leaving a large amount of space for the installation of the heat sink.

Abstract

一种用于LED汽车远光灯的自由曲面光学透镜,包括入射面及出射面(501)。透镜的底面中心设有一供LED安装于其内的空腔,空腔的一部分腔壁是柱面(404)。入射面由柱面(404)和位于柱面(404)顶部的自由曲面(403,102)构成。透镜的外侧面(405,101)为另一自由曲面,透镜的顶面是平面即出射面(501)。点亮LED光源,光线经过透镜后出射,可以得到椭圆形光型和满足中国国家标准GB25991-2010的照度分布。

Description

说 明 书 用于 LED汽车远光灯的自由曲面光学透镜 技术领域
本发明涉及 LED车灯照明技术领域,特别涉及用于 LED汽车远光灯的自由 曲面光学透镜。
背景技术
发光二极管( LED)是继白炽灯、 卤钨灯和高强度气体放电灯 (HID)之后的第 四代车用光源。 LED具有体积小、 能耗低、 响应快、 寿命长等诸多优点, 顺应了 未来汽车向紧凑、 节能、 安全、 时尚等方向发展的趋势。 近年来, 随着 LED在 汽车照明系统中的应用不断扩展, 越来越多的难题被攻克。但是 LED应用于汽车 前照灯仍然具有挑战性, 即 LED不同于传统汽车光源的光学特性, 使 LED应用于 前照灯时要面临复杂的光学设计。 为了满足汽车前照灯的配光标准, 同时利用 LED体积小的优势, 采用自由曲面透镜设计方法能提高 LED光通利用率, 有效抑 制眩光效应, 且能够达到远、 近光的照度要求。
在汽车前照灯的设计上, 国家标准 GB25991-2010对汽车前照灯的配光要求 做了规定, 目的是防止汽车前照灯干扰对面驶来车辆而造成交通事故。对于近光 灯, 国标要求在车灯前 25m远的照明面上产生一水平线和水平线右侧向上 15°的 明暗截止线,且照明面上不同区域的照度值大小也做了相应的规定。对于远光灯, 则要求在车灯前 25m远的照明面上的规定区域照度达标。
LED汽车前照灯的光学设计形式有折射式、反射式和混合式 3种。折射式 LED 前照灯模块通常由光源、配光透镜构成, 从光源发出的光线经过配光透镜后, 在 接收屏上形成预定的光型, 通过透镜的配光, 可以有效的减小眩光效应, 压縮光 学系统体积, 而且光学系统也具有较高的能量利用率; 反射式 LED前照灯一般由 光源与反射器构成,用单一的反射器完成所有的配光任务, 这种前照灯虽然光能 利用率高, 但眩光效应较难控制, 对设计、 加工过程要求极高; 混合式 LED前照 灯融折射式、 反射式优点于一体, 可以形成很好的光型效果, 但整个光学系统复 杂, 光能利用率较低 (余桂英,金骥, LED汽车前照灯高效抛物反射器的研究.红外 技术, 2009, 31(6):367-370)。
发明内容
针对 LED前照灯设计面临的主要问题,本发明提供了用于 LED汽车远光灯的 自由曲面光学透镜,该透镜体积小,眩光效应低,光能利用率高,制作安装方便, 并能产生满足国标 GB25991-2010的配光要求的照度分布。 本发明采用如下技术 方案。
一种用于 LED汽车远光灯的自由曲面光学透镜由透明材料制成,透明材料为 PC 或 PMMA或光学玻璃, 透镜包括入射面及出射面, 所述透镜的底面中心设 有一供 LED安装于其内的空腔, 空腔的一部分腔壁是柱面, 所述的入射面由所述 柱面和位于柱面顶部的自由曲面构成; 透镜的外侧面为另一自由曲面, 透镜的顶 面是平面即所述的出射面。
上述的用于 LED汽车远光灯的自由曲面光学透镜, 其自由曲面形状确定如 下:
以 LED光源为坐标原点建立坐标系, LED底面所在平面为 平面, 过原 点并与平面垂直 ¾ F的轴为 z轴, 对光源立体角进行划分, 根据汽车前照灯远 光灯在照明面上照度分布特征,运用能量守恒定律, 把照明面上的照明区域进行 椭圆形环带划分, 然后运用折反射定律通过数值计算限定最后的自由曲面透镜。
上述的用于 LED汽车远光灯的自由曲面光学透镜中,位于透镜外侧的自由曲 面和位于内腔的自由曲面的形状确定如下:
设定初始条件并对光源立体角均匀划分,
目标照明面距 LED的距离为 d, 对于远光灯, 设定其目标照明区域是椭圆 形,其长半轴为 a,短半轴为 b; LED光源的总光通量为 Q,中心光强为 = Q l 7i ', 坐标系中 S为出射光线在 XOY平面上的投影与 X轴的夹角, 为出射光线与 Z 轴正方向的夹角; 对光源的立体角进行离散化, 把 等分成 份, 对于每一个 , 都将 等分成 份, 形成一系列角度环带区域, 这样就得到了 和 的数 组;
每一份 角内的每一份 S角内光源的光通量为: =\θ{ι ϊ) \φ{ϊ) Ι0 -οθ8φ-8ΐηφ-άφάθ 确定柱面顶部的自由曲面、 透镜的外侧面的自由曲面时对应的 的取值范 围分别为 0~«, ω~- , 其中 的值限定透镜底部口径的大小;
利用能量守恒定律将目标照明区域进行环带划分,
对应于光源立体角的环带划分方式,照明面的直角坐标也相应的划分为椭圆 形环带区域, 椭圆长半轴 α, 短半轴 b分别在 x, y方向上分成 份, 形成的椭圆 可以表示为:
= a. - cos a
y = b{ - sin a 式中, 表示等分后长半轴 α的第 份, b,表示等分后短半轴 b的第 份, o 的取值范围为 0~2r ;
对于每一个 , 都将《分成 份, 在接收屏直角坐标系中得到与光源立体角 中 和 q i, j)数组——对应的 a,, b,, x(i, j)和 y (, j)数组; 对于柱面顶部的自由曲面, 在目标照明区域上, 每一份 S角所对应的是部分 椭圆围成的环带区域, 该环带区域的总能量为:
El =S(k)- [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] · dxdy , 式中, sc^', ),)^', ))表示水平线下方的部分椭圆环带区域面积函数, "表 示椭圆长半轴, V取表示椭圆短半轴, 与其对应的《的取值范围为 τ~2τ, S(k) 表示照度值, 根据国标 GB25991-2010远光灯的照明面上区域的照度值预设照度 E, 结合 ^ t)函数用来控制接收屏上指定区域的照度值大小, 用以形成预定的 照度分布, 对于照明面上的不同区域有
式中, 用于配合 形成递减分式数列, 使照度 E呈递减趋势, 其取值为 k = l,2,---,i , 即 为 1 之间的整数; 0≤ ≤2, 取值大小对照明面上指定区域 进行加强或者减弱; 对于透镜外侧面的自由曲面, 在目标照明区域上, 每一份 S角所对应的是部 分椭圆围成的环带区域, 该环带区域的总能量为:
E = S(k) ·「匚 [S(x(i + 1, j), y(i + 1, j)) -S(x(i, j), y(i, j))] · dxdy 式中, 对应的是水平线下方部分椭圆环带区域的面积函数, u 表示椭圆长半轴, V表示椭圆短半轴;
从光源发出的光全部投射到照明面上, 则环带区域与光源立体角间由能量守 恒定律:
E = E +E , 联合上述各式, 得到对应的 I)和 yG', I)数组;
由折反射定律求出所述曲面上点的法向量,利用这个法向量求得切平面, 通 过求切平面与入射光线的交点得到曲线上点的坐标,折反射定律的矢量形式表示 为:
1 + n -2-Π- (Out - In) • N = Out -n-In 其中 w为透镜折射率, 光线经过透镜外侧面的自由曲面时发生全反射, 此时 «取值为 1; 光线经过柱面顶部的自由曲面时发生折射, M的取值视透镜材料而 定, 为入射光线单位向量, ^为出射光线单位向量, ΪΫ为单位法向量; 确定三个初始点, 这些初始点的位置限定整个透镜的尺寸, 由这三个初始点 分别限定二条边界曲线,再由边界曲线的上的每一个点为初始点限定出内腔及透 镜外侧面的自由曲面。
上述的用于 LED汽车远光灯的自由曲面光学透镜, 所对应的部分椭圆的参 数《的取值范围为 π~1π,透镜顶部的自由曲面所对应的光源立体角 φ的取值范 围为 0~ , 椭圆长半轴取值范围为 0≤α≤1.5 m, 短半轴取值范围为 0<b≤1.125m; 透镜外侧面的自由曲面与内腔的自由曲面的限定一样, 不同之 处在于透镜外侧面的自由曲面所对应的光源立体角 φ的取值范围为《 ~ , 椭圆 长半轴取值范围为 0≤a≤4m,短半轴取值范围为 0≤b≤3m,其中 的值限定透 镜底部口径的大小。 上述的用于 LED汽车远光灯的自由曲面光学透镜中, 由限定的 ^和 得入 射光线的单位向量, 由能量守恒定律、折反射定律得到照明面上与出射光线对应 的坐标序列, 从而得出射光线的方向向量, 通过初始点的坐标和与其对应的出射 光线的单位向量, 得到初始点的法向向量, 从而限定该点的切平面, 该切平面与 第二点的入射光线相交确定第二点;由前一点的切平面与下一点的法向量所在的 直线相交限定出下一点,通过计算机迭代得出所有点的坐标, 由此限定了远光透 镜自由曲面的坐标; 将得到的离散点的坐标放样拟合, 进行镜像对称即限定最终 的透镜形状。
上述的用于 LED汽车远光灯的自由曲面光学透镜中, i, 取值的大小决定 了计算的精确度, 的取值越大最后的结果越精确。 采用上述技术方案后, 由于 LED光源发光效率高及采用自由曲面透镜, 从 光源射出的光线几乎可以全部被收集利用, 故能量利用率很高, 同时, LED 光 源光型, 发光方向都可以控制。 点亮 LED光源, 光线经过透镜后出射, 可以得 到椭圆形光型和满足国家标准 GB25991-2010的照度分布。 透镜的底面中部设有 一供 LED安装于其内的空腔, 使 LED光源易于安装, 透镜的体积小, 留出大量 的空间有利于散热装置的安装。
本发明的有益效果及优点: LED 光源发出的光能量全部经自由曲面透镜后 出射, 不需要其它的辅助装置进行配光, 减少了配光系统对光能的损耗, 提高了 光能利用率; 采用自由曲面透镜, 可以有效增大控制光线走向, 抑制眩光效应, 减小系统体积, 同时又能达到 GB25991-2010的配光要求。 LED和散热装置安装 方便, 有利于提高整个灯具的散热效率。 由于 LED光源采用芯片集成封装技术, 占用体积较小, 为车灯系统内部设计预留了更多空间, 使整个车灯的外观造型设 计更灵活自由, 符合现代车灯设计的美观化和流线型的要求。
附图说明
图 1为实施方式中光线经过透镜配光的示意图。
图 2为实施方式中 LED光源球坐标示意图。
图 3为实施方式中照明面上目标区域环带划分示意图。
图 4为实施方式中远光透镜的俯视示意图。 图 5为实施方式中远光透镜的侧视示意图。
图 6为实施方式中远光透镜的正视示意图。
图 7为实施方式中透镜的三维剖面立体示意图。
图 8为实施方式中透镜的三维立体仰视示意图。
具体实施方式
下面结合附图和实施例对本发明的具体实施作金一不说明,但本发明的实施 和保护不限于此。
1.设定初始条件并对光源立体角均匀划分
首先目标照明面与 LED的距离为 25m, 对于远光灯, 设定目标照明区域是 部分椭圆, 其长半轴为 4m, 短半轴为 3m, 如图 3所示, 其为远光目标区域椭圆 形环带划分图,其中 301为水平线下方的半椭圆环带区域, 大量的环带区域共同 构成远光照明形区域。 LED 光源的总光通量为 3001m, LED 中心光强为 95.4930cd。 图 2所示为实施方式中 LED光源球坐标图, 按照球坐标图示将 LED 光源立体角均匀划分。 在坐标系中, S为出射光线 201在 XOY平面上的投影与 X轴 202的夹角, 取值范围为 0 ~ ;τ, 为出射光线 201与 Ζ轴 203正方向的夹 角,取值范围为 。对光源的立体角进行离散化,在 方向 0 ~ 内按角度 1° 分别等分成 90份, 对于每一个 ^, 都将 S方向按角度 1°等分成 180份, 形成一 系列环带区域, 这样就得到了 和 的数组, 如图 2所示。 i, j表示等分 的份数, 其取值的大小决定了计算的精确度, 理论上而言, , 的取值越大最 后的结果越精确。
每一份 角内的每一份 角内光源的光通量为: θ{ι ϊ) \φ{ϊ) Ι0 - οθ8 φ - 8ΐη φ - άφάθ 这里在计算柱面的顶部的自由曲面、透镜外侧面自由曲面时对应的 的取值 范围分别为 0 ~ «, ω ~ - , ω =26° , 且 的值影响透镜底部口径的大小。 如 图 1所示, 从 LED光源出射的光线经过透镜配二个自由曲面后从透镜顶部射出, 其中 101, 102分别为透镜外侧面自由曲面、 顶部的自由曲面二维示意图。 2.利用能量守恒定律将目标照明区域进行环带划分
如图 3所示,对应于光源立体角的环带划分方式, 照明面的直角坐标也相应 的划分为椭圆形环带区域, 将椭圆长半轴、 短半轴分别在 x, y方向上分成 90 份, 形成的椭圆可以表示为:
X - . - cos a
y -b^ sin a 式中, 表示等分后长半轴 α的第 份, b,表示等分后短半轴 b的第 份, o 的取值范围为 0~2r。
对于每一组 x、 y , 都将《分成 180份, 在接收屏直角坐标系中得到与光源 立体角中 θ( )和 q i, j)数组一一对应的 a,, b,, x(i, j)和 y ( , j)数组。 对于柱面的顶部的自由曲面, 在目标照明区域上, 每一份 S角所对应的是部 分椭圆围成的环带区域, 如图 3所示, 该环带区域的总能量为:
El =S(k)- [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] · dxdy 式中, 几 ', ))表示水平线下方的部分椭圆环带区域面积函数, "取 1.5m表示椭圆长半轴, V取 1.125m表示椭圆短半轴, 与其对应的《的取值范围 为 π~2π。 表示照度值, 由于国标 GB25991-2010远光灯的照明面上区域的 照度值是由中间向两边近似逐步减小, 故预设照度 E, 结合 W函数用来控制 接收屏上指定区域的照度值大小,用以形成预定的照度分布, 因此对于照明面上 的不同区域有
式中, 用于配合 形成递减分式数列, 使照度 E呈递减趋势, 其取值为 k = l,2,-,i ; <t<2 , 这里 =1.63, 取值大小可以对照明面上指定区域进行加 强或者减弱且需在计算中反复调整以达到最优结果。
对于透镜外侧面的自由曲面,每一份 S角所对应的是部分椭圆围成的环带区 域, 该环带区域的总能量为:
E = S(k) · [S (x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] · dxdy 式中, 对应的是水平线下方部分椭圆环带区域的面积函数, u 取 4m表示椭圆长半轴, V取 3m表示椭圆短半轴, 与其对应的《、 取值同 上文所述, 且 W的值需在计算中反复调整以达到预期结果。
设计时假定从光源发出的光全部投射到照明面上, 则环带区域与光源立体角 间由能量守恒定律:
E = E + E
计算柱面的顶部的自由曲面对应的目标照明区域的横坐标数组:
El = S(k) - [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] · dxdy 对应与每一个 4 , ), 计算出目标照明区域 数组: y(i, j) = bt · sin [arc cos(x(i, )/<¾ )] 将以上各式联立建立方程组,通过计算机建立二重循环计算可以求出对应的 和)^ , )数组。
同理,运用上述方法对透镜外侧面的自由曲面所对应的目标照明区域进行环 带划分并求出对应的坐标数组。
3.由折反射定律求出所述曲面上点的法向量, 利用这个法向量求得切平面, 通过求切平面与入射光线的交点得到曲线上点的坐标,折反射定律的矢量形式可 表示为:
1 + n - 2 - Π - (Out - In) • N = Out - n - In 其中 w为透镜折射率, 光线经过透镜外侧面的自由曲面时发生全反射, 此时 «取值为 1 ;光线经过柱面顶部的自由曲面时发生折射,其取值视透镜材料而定。 为入射光线单位向量, 为出射光线单位向量, ΪΫ为单位法向量。
在计算中, 首先需要确定三个计算的初始点, 对于透镜顶部平面, 柱面的顶 部的自由曲面、 透镜外侧面的自由曲面其初始点分别为: (0, 0, 0.04), (0, 0, 0.02), (0.03, 0, 0.038), 这些初始点的位置决定整个透镜的尺寸, 由这三个初 始点分别算出两条边界曲线,再由边界曲线的上的每一个点为初始点计算出内腔 及透镜外侧面的整个自由曲面。
计算过程中,所对应的部分椭圆的参数《的取值范围为 r~2r,柱面顶部的 自由曲面所对应的光源立体角 φ的取值范围为 0 ~ ω, 椭圆长半轴取值范围为
0<fl≤1.5m, 短半轴取值范围为 0≤b≤1.125m; 透镜外侧面的自由曲面与前述 自由曲面的计算方法一样,不同之处在于它所对应的光源立体角 φ的取值范围为 ω~-, 椭圆长半轴取值范围为 0≤«≤4m, 短半轴取值范围为 0≤b≤3m, 这里
«=26° , 其中 的值影响透镜底部口径的大小。
计算过程: 由步骤 1中所确定的 和 可以求出入射光线的单位向量, 由能 量守恒定律、折反射定律可以得到照明面上与出射光线对应的坐标序列, 从而可 以得出射光线的方向向量, 通过初始点的坐标和与其对应的出射光线的单位向 量, 可以得到初始点的法向向量, 从而确定该点的切平面, 该切平面与第二点的 入射光线相交从而确定第二点。由前一点的切平面与下一点的法向量所在的直线 相交可得出下一点,通过计算机迭代可得出所有点的坐标。 由此确定了远光透镜 自由曲面的坐标。
例: 对于柱面的顶部的自由曲面, LED 汽车前照灯远光灯透镜距离照明面 的距离为 25m, 设柱面的顶部的自由曲面的边界线上起始点为 (0, 0, 0.02), 即 LED距离透镜柱面顶部自由曲面的距离为 0.02m, 透镜顶部起始点为 (0, 0,
0.04), 即透镜高度为 0.04m。 对光源的立体角进行离散化, 把 等分成 90份, 对于每一个 ^, 都将 等分成 180份, 得到 和 的数组, 对应于光源立 体角的划分将照明面划分为;^, j)和 j)数组。初始角 S为 0°, 的取值从 到 ^(26)。这里假定边界曲线对应的是目标平面的水平中心线, y为 0, c的取值 从 到 c(26,l)。 对于起始点, 通过能量守恒定律、 折反射定律可以求出起始 点的法向量 N(NX[1], Ny[l], [1]), 由法向量和起始点坐标可以求出切线为 z + 0.02 = 0,此为(1)式; 角度为 (2)的直线方程为: z = cot( (2)).;c,此为(2) 式; 由 (1), (2)式所得的两直线相交, 通过步骤 3求出 4¾, z(2)。 以此类推: 第 k点所对应的直线方程为 z
Figure imgf000012_0001
· X, 所对应的切线方程为: Nz[k - l] (x - x(k - l)) - Nx[k - l] (z - z(k - l)) = 0 通过两直线相交可以求出第 点坐标, 当 fc =26时, 即得到边界线上所有数 据点的坐标数组。
分别以边界线上的每一个点作为起始点,对于每一个起始点,其法向量已知, 故切平面可以通过 Nx (X - x。 ) + Ny (y - y。;) + N2 (z - z。 ) = 0确定,通过下一点的直 线方程 (直线方向角 —一对应起来) ^ - ^ = ^ y- ^ = ^―, 由上 sin φ · cos Θ sin · sin θ cos φ 述两方程即可确定下一点的坐标。由于入射光线,出射光线的方向向量可以求得, 故由能量守恒定律、折反射定律可以得到每个点处的法向量,以此建立二重循环, 可以得到整个自由曲面的坐标阵列。
4.利用机械仿真软件将得到的点拟合为曲面
将得到的离散点的坐标依次导入到机械建模软件,放样拟合, 进行镜像对称 即可以得到最终的远光灯透镜实体模型。图 4为通过上述方案得到的远光灯自由 曲面光学透镜俯视图, 其中 402为透镜安装槽, 404为柱面, 403为柱面顶部自 由曲面, 405为透镜外侧自由曲面。 图 5为所述透镜侧视图, 其中 501为透镜顶 部平面; 图 6为所述透镜正视图; 图 7为所述透镜的三维剖面立体示意图; 图 8 为其三维立体仰视示意图。
采用上述技术方案后, 由于 LED光源发光效率高及采用自由曲面透镜, 从 光源射出的光线几乎可以全部被收集利用, 故能量利用率很高, 同时, LED 光 源光型, 发光方向都可以控制。 点亮 LED光源, 光线经过透镜后出射, 可以得 到椭圆形光型和满足国家标准 GB25991-2010的照度分布。 透镜的底面中部设有 一供 LED安装于其内的空腔, 使 LED光源易于安装, 透镜的体积小, 留出大量 的空间有利于散热装置的安装。

Claims

权 利 要 求 书
1、 用于 LED汽车远光灯的自由曲面光学透镜, 其特征在于透镜包括入射面 及出射面, 所述透镜的底面中心设有一供 LED安装于其内的空腔, 空腔的一部分 腔壁是柱面,所述的入射面由所述柱面和位于柱面顶部的自由曲面构成; 透镜的 外侧面为另一自由曲面, 透镜的顶面是平面即所述的出射面。
2、根据权利要求 1所述的用于 LED汽车远光灯的自由曲面光学透镜, 其特征 在于透镜的自由曲面形状确定如下:
以 LED光源为坐标原点建立坐标系, LED底面所在平面为 平面, 过原 点并与平面垂直 ¾ F的轴为 z轴, 对光源立体角进行划分, 根据汽车前照灯远 光灯在照明面上照度分布特征,运用能量守恒定律, 把照明面上的照明区域进行 椭圆形环带划分, 然后运用折反射定律通过数值计算限定最后的自由曲面透镜。
3、根据权利要求 2所述的用于 LED汽车远光灯的自由曲面光学透镜, 其特征 在于位于透镜外侧的自由曲面和位于内腔的自由曲面的形状确定如下:
设定初始条件并对光源立体角均匀划分,
目标照明面距 LED的距离为 d, 对于远光灯, 设定其目标照明区域是椭圆 形,其长半轴为 a,短半轴为 b; LED光源的总光通量为 Q,中心光强为 /。 = β / τ; 坐标系中 S为出射光线在 XOY平面上的投影与 X轴的夹角, 为出射光线与 Z 轴正方向的夹角; 对光源的立体角进行离散化, 把 等分成 份, 对于每一个 , 都将 等分成 份, 形成一系列角度环带区域, 这样就得到了 ^(0和 的数 组;
每一份 角内的每一份 S角内光源的光通量为: I Γ Ι0 - οθ8 φ - 8ΐη φ - άφάθ 确定柱面顶部的自由曲面、 透镜的外侧面的自由曲面时对应的 的取值范 围分别为 0 ~ , ω ~ - , 其中 的值限定透镜底部口径的大小; 利用能量守恒定律将目标照明区域进行环带划分, 对应于光源立体角的环带划分方式,照明面的直角坐标也相应的划分为椭圆 形环带区域, 椭圆长半轴 α, 短半轴 b分别在 x, y方向上分成 份, 形成的椭圆 可以表示为:
X = a. - cos a
y = b{ - sin a 式中, α;表示等分后长半轴 α的第 份, b;表示等分后短半轴 b的第 份, o 的取值范围为 0~2r ; 对于每一个 , 都将《分成 份, 在接收屏直角坐标系中 得到与光源立体角中 θ( )和 q i, j)数组一一对应的 α;, , x(i, j)和 j)数组; 对于柱面顶部的自由曲面, 在目标照明区域上, 每一份 S角所对应的是部分 椭圆围成的环带区域, 该环带区域的总能量为:
El =S(k)- [S(x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] · dxdy , 式中, SC^' ),}^' ))表示水平线下方的部分椭圆环带区域面积函数, "表 示椭圆长半轴, V取表示椭圆短半轴, 与其对应的《的取值范围为 τ~2τ, S(k) 表示照度值, 根据国标 GB25991-2010远光灯的照明面上区域的照度值预设照度 E, 结合 ^ t)函数用来控制接收屏上指定区域的照度值大小, 用以形成预定的 照度分布, 对于照明面上的不同区域有
式中, 用于配合 形成递减分式数列, 使照度 E呈递减趋势, 其取值为 k = l,2,---,i , 即 为 1 之间的整数; 0≤ ≤2, 取值大小对照明面上指定区域 进行加强或者减弱;
对于透镜外侧面的自由曲面, 在目标照明区域上, 每一份 S角所对应的是部 分椭圆围成的环带区域, 该环带区域的总能量为:
E = S(k) · [S (x(i + 1, j), y(i + 1, j)) - S (x(i, j), y(i, j))] · dxdy 式中, 对应的是水平线下方部分椭圆环带区域的面积函数, u 表示椭圆长半轴, V表示椭圆短半轴; 恒定律:
E = E + E , 联合上述各式, 得到对应的 ^', I)和 yG', i)数组;
由折反射定律求出所述曲面上点的法向量,利用这个法向量求得切平面, 通 过求切平面与入射光线的交点得到曲线上点的坐标,折反射定律的矢量形式表示 为:
_ j_
1 + η2 - 2 · η · (Out - In) 2 - N = Out - n - In , 其中 w为透镜折射率, 光线经过透镜外侧面的自由曲面时发生全反射, 此时 «取值为 1 ; 光线经过柱面顶部的自由曲面时发生折射, M的取值视透镜材料而 定, 为入射光线单位向量, ^为出射光线单位向量, ΪΫ为单位法向量; 确定三个初始点, 这些初始点的位置限定整个透镜的尺寸, 由这三个初始点 分别限定二条边界曲线,再由边界曲线的上的每一个点为初始点限定出内腔及透 镜外侧面的自由曲面。
4、根据权利要求 2所述的用于 LED汽车远光灯的自由曲面光学透镜, 其特 征在于所对应的部分椭圆的参数《的取值范围为 π ~ 1π ,透镜顶部的自由曲面所 对应的光源立体角 φ的取值范围为 0 ~ «, 椭圆长半轴取值范围为 0≤ «≤ 1.5 m, 短半轴取值范围为 0≤b≤ 1.125 m; 透镜外侧面的自由曲面与内腔的自由曲面的 限定一样,不同之处在于透镜外侧面的自由曲面所对应的光源立体角 φ的取值范 围为《~ , 椭圆长半轴取值范围为 0≤«≤4 m, 短半轴取值范围为 0≤b≤3 m, 其中 ω的值限定透镜底部口径的大小。
5、根据权利要求 2所述的用于 LED汽车远光灯的自由曲面光学透镜, 其特 征在于由限定的 ^和 得入射光线的单位向量, 由能量守恒定律、折反射定律得 到照明面上与出射光线对应的坐标序列, 从而得出射光线的方向向量, 通过初始 点的坐标和与其对应的出射光线的单位向量,得到初始点的法向向量, 从而限定 该点的切平面, 该切平面与第二点的入射光线相交确定第二点; 由前一点的切平 面与下一点的法向量所在的直线相交限定出下一点,通过计算机迭代得出所有点 的坐标,由此限定了远光透镜自由曲面的坐标;将得到的离散点的坐标放样拟合, 进行镜像对称即限定最终的透镜形状。
6、 根据权利要求 2所述的用于 LED汽车远光灯的自由曲面光学透镜, 其特 征在于 , 取值的大小决定了计算的精确度, i, 的取值越大最后的结果越 精确。
PCT/CN2012/086909 2012-03-31 2012-12-19 用于led汽车远光灯的自由曲面光学透镜 WO2013143330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210093422.9 2012-03-31
CN201210093422.9A CN102606977B (zh) 2012-03-31 2012-03-31 用于led汽车远光灯的自由曲面光学透镜

Publications (1)

Publication Number Publication Date
WO2013143330A1 true WO2013143330A1 (zh) 2013-10-03

Family

ID=46524606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086909 WO2013143330A1 (zh) 2012-03-31 2012-12-19 用于led汽车远光灯的自由曲面光学透镜

Country Status (2)

Country Link
CN (1) CN102606977B (zh)
WO (1) WO2013143330A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154494A (zh) * 2014-07-09 2014-11-19 华南理工大学 超薄直下式led背光系统的自由曲面光学透镜
CN106051586B (zh) * 2016-08-19 2019-01-11 广东雷腾智能光电有限公司 一种前照灯

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606977B (zh) * 2012-03-31 2014-05-07 华南理工大学 用于led汽车远光灯的自由曲面光学透镜
CN102889485B (zh) * 2012-09-29 2014-12-24 杭州电子科技大学 一种led灯具
CN103629614B (zh) * 2013-11-06 2015-08-26 华南理工大学 Led汽车远光灯
CN104896425B (zh) * 2015-05-18 2018-01-16 华南理工大学 一种用于光学显微镜照明系统的led自由曲面透镜
CN104964206A (zh) * 2015-06-24 2015-10-07 深圳市锐步科技有限公司 立式跑道灯光学系统
CN105589991B (zh) * 2015-12-05 2019-06-14 中山市华南理工大学现代产业技术研究院 Led摩托车前照灯用自由曲面集成光学透镜的设计方法
CN105972538B (zh) * 2016-06-30 2018-10-23 中山市华南理工大学现代产业技术研究院 Led摩托车前照灯组合式透镜
CN108916805B (zh) * 2017-03-22 2021-03-30 堤维西交通工业股份有限公司 车灯透镜
CN107191861B (zh) * 2017-07-21 2020-01-17 中山市华南理工大学现代产业技术研究院 一种均匀色温的双自由曲面透镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201145210Y (zh) * 2008-01-07 2008-11-05 鹤山丽得电子实业有限公司 一种配光透镜
CN201487813U (zh) * 2009-08-25 2010-05-26 雷笛克光学股份有限公司 能集中光效率的led光学透镜
US20110080736A1 (en) * 2009-10-02 2011-04-07 Coast Cutlery Company Focusing lens system
CN102121665A (zh) * 2010-12-31 2011-07-13 北京航空航天大学 一种用于户外led照明的自由曲面透镜结构设计方法
CN102606977A (zh) * 2012-03-31 2012-07-25 华南理工大学 用于led汽车远光灯的自由曲面光学透镜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240886B (zh) * 2008-03-11 2010-11-10 上海理工大学 使用非成像光学系统的led矿灯
CN102012000A (zh) * 2009-09-04 2011-04-13 宁波安迪光电科技有限公司 二次光学透镜
CN102102848A (zh) * 2009-12-16 2011-06-22 富准精密工业(深圳)有限公司 透镜及应用该透镜的发光二极管模组
CN202868571U (zh) * 2012-03-31 2013-04-10 华南理工大学 一种用于led汽车前照灯照明的远光灯光学透镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201145210Y (zh) * 2008-01-07 2008-11-05 鹤山丽得电子实业有限公司 一种配光透镜
CN201487813U (zh) * 2009-08-25 2010-05-26 雷笛克光学股份有限公司 能集中光效率的led光学透镜
US20110080736A1 (en) * 2009-10-02 2011-04-07 Coast Cutlery Company Focusing lens system
CN102121665A (zh) * 2010-12-31 2011-07-13 北京航空航天大学 一种用于户外led照明的自由曲面透镜结构设计方法
CN102606977A (zh) * 2012-03-31 2012-07-25 华南理工大学 用于led汽车远光灯的自由曲面光学透镜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154494A (zh) * 2014-07-09 2014-11-19 华南理工大学 超薄直下式led背光系统的自由曲面光学透镜
CN106051586B (zh) * 2016-08-19 2019-01-11 广东雷腾智能光电有限公司 一种前照灯

Also Published As

Publication number Publication date
CN102606977B (zh) 2014-05-07
CN102606977A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2013143330A1 (zh) 用于led汽车远光灯的自由曲面光学透镜
US20110320024A1 (en) Optical element of lighting device and design method of the same
EP2484964B1 (en) Lamp unit
CN102330948A (zh) Led汽车照明用反射器及组合式前照灯
CN104296044B (zh) 一种基于衍射元件的rgb激光车灯
CN102353017B (zh) Led汽车近光灯光学透镜
JP2015531885A (ja) 非対称自由曲面数式を適用したled光拡散レンズ
CN102901043B (zh) 用于led摩托车近光灯的自由曲面光学透镜
CN101858550A (zh) 近光带有明暗截止线的汽车前照灯led光源
Wu et al. Modular design of a high-efficiency LED headlamp system based on freeform reflectors
CN103363418B (zh) Led汽车照明用的微透镜阵列型前照灯
CN103206668A (zh) 用于投射式led汽车近光灯的自由曲面透镜
CN203431672U (zh) 一种led汽车照明用的微透镜阵列型前照灯
CN203363990U (zh) 一种led汽车前照灯用的自由曲面微透镜阵列
WO2022057519A1 (zh) 一种用于车灯的双曲面准直透镜设计方法
CN102777856A (zh) 用于led摩托车远光灯的自由曲面光学透镜
CN103363444A (zh) Led汽车前照灯用的自由曲面微透镜阵列
CN202868571U (zh) 一种用于led汽车前照灯照明的远光灯光学透镜
TWM470029U (zh) Led複合式集光透鏡及其模組
CN203082793U (zh) 用于投射式led汽车近光灯的自由曲面透镜
TWI414726B (zh) 多曲率複合曲面之集光透鏡、集光模組及燈具
CN202432389U (zh) Led汽车照明用反射器及组合式前照灯
TWI418741B (zh) Lighting device
TW201432187A (zh) Led車燈之發光件及其光學透鏡
TWI491833B (zh) 車用照明裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873068

Country of ref document: EP

Kind code of ref document: A1