WO2013143282A1 - 现场工况厚壁p92管道局部热处理方法 - Google Patents

现场工况厚壁p92管道局部热处理方法 Download PDF

Info

Publication number
WO2013143282A1
WO2013143282A1 PCT/CN2012/083894 CN2012083894W WO2013143282A1 WO 2013143282 A1 WO2013143282 A1 WO 2013143282A1 CN 2012083894 W CN2012083894 W CN 2012083894W WO 2013143282 A1 WO2013143282 A1 WO 2013143282A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
temperature
heat treatment
weld
pipeline
Prior art date
Application number
PCT/CN2012/083894
Other languages
English (en)
French (fr)
Inventor
徐连勇
荆洪阳
韩永典
苗艺
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US14/376,140 priority Critical patent/US9663841B2/en
Publication of WO2013143282A1 publication Critical patent/WO2013143282A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a local heat treatment process for high-grade heat-resistant steel, and more particularly to a local heat treatment process for a large thick-walled P92 long pipe under field conditions.
  • Ultra-supercritical pressure parameters Thermal power generation is a new technology for the efficient use of energy. By increasing the pressure and temperature of the steam to a certain extent, the thermal efficiency of the unit is improved. To ensure stable operation of the unit at higher temperatures and pressures, it is necessary to use steel of higher temperature strength, otherwise the wall thickness of the components must be multiplied to meet the service requirements. At present, P92 steel allows the main steam temperature of the boiler to increase to 610 ° C, and the reheat temperature is up to 625 ° C.
  • the local heat treatment is usually used instead of the whole.
  • Heat treatment ASME only specifies that the heat dissipation width during local heat treatment is 50 mm at both ends of the maximum width of the weld (ASME Boiler and Pressure Vessel Code, Rules for Construction of Pressure Vessels: Alternative Rules, Section VID, Division 2
  • the soak band shall The minimum width of this volume is the widest width of weld plus the nominal thickness defined in paragraph 6.4.2.7 or 50 mm (2 in .), whichever is less, on each side or end of the weld.), without giving a specific formula for the heating width and the insulation width.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a local heat treatment process by combining a test and a finite element method for a special high-grade heat-resistant steel (P92 pipe) under field conditions.
  • the temperature difference between the inner and outer walls is less than 25 °C during the constant temperature process, the residual stress elimination effect after heat treatment is good, and the local heat treatment achieves good results.
  • the technical object of the present invention is achieved by the following technical solutions:
  • Step 1 Calculate the width of the heating zone and the width of the insulation zone.
  • the heating width (HB) should be selected in accordance with the following relationship. Where R is the inner diameter of the pipe (mm) and t is the wall thickness of the pipe (mm)
  • the insulation width (GCB) should be determined in accordance with the following relationship
  • Step 3 After the welding is finished, the P92 pipe is naturally cooled slowly to 120-150 ° C. According to the result calculated in step 1, the corresponding heating device, heat preservation device, and thermocouple are installed outside the P92 pipe, when the temperature drops to 80. When it is in the range of -100 ° C, it is heated to be energized, and it is kept at a temperature of 80-100 ° C for 2 h;
  • Step 4 heating at 150 ° C / h to 300 ° C; after the temperature reaches 300 ° C, the temperature is raised to 765 ° C at 80 ° C / h and heat preservation, the holding time is calculated according to the wall thickness of 5 min per mm, but The minimum cannot be lower than 4h ;
  • Step 5 control the cooling rate from 100 ° C / h to 300 ° C, then power off, naturally cool to room temperature and then remove the heater.
  • a flexible ceramic electric resistance heater for example, a WDK-6360 type flexible ceramic electric resistance heater
  • a temperature-controlled thermocouple, an insulation cotton, and a resistance heater are used to implement the temperature
  • Control of heating rate and cooling rate to meet the needs of heat treatment methods After completing the P92 pipe welding on site, the residual stress at different distances from the center of the weld is tested by X-ray method; after the local heat treatment is completed, the same method is used for the test; the comparison between the two can be analyzed to obtain the residual of the local heat treatment process.
  • Temperature-controlled thermocouples are respectively set at 1 o'clock, 11 o'clock and 6 o'clock positions on the outer wall of the center of the weld; monitoring thermocouples are set at 12 o'clock in the center of the outer wall weld, and the weld is in the outer wall direction Monitoring thermocouples are respectively arranged at the edges of 50mm, 1.5t, 2t and 3t; in the 6 o'clock direction of the outer wall, monitoring thermocouples are respectively arranged at the edges of the weld edges t, 1.5 2t, 3t; at the inner wall weld center A monitoring thermocouple is set at the 12 o'clock position, and a monitoring thermocouple is set at a position 50 mm, 2 t from the edge of the weld in the direction of the inner wall; a monitoring thermocouple is set at the center of the inner wall weld at 6 o'clock, and in the direction of the inner wall A monitoring thermocouple is placed separately from the edge of the weld be
  • the present invention sets three temperature control zones, 1#, 2#, 3# are temperature-controlled thermocouples, arranged at the center of the weld, at 1 o'clock, 11 o'clock, At 6 o'clock, the rest are monitoring thermocouples, of which 5# at 12 o'clock is located at the center of the outer wall weld, and the edges of 9#, 11#, 13#, 15# are 50mm, 1.5t, 2t, 3t, 6 respectively.
  • the rain of the hour, 12#, 14#, 16# distance weld edges are t, 1.5t, 2t, 3t (t is the pipe wall thickness, mm), 6#, 17#, 19# are placed at the inner wall at 12 o'clock
  • the clock corresponds to 5#, 9# and 13# of the outer wall
  • 4#, 18#, 20# at the 6 o'clock position of the inner wall corresponds to 3#, 10#, 14# of the outer wall
  • the above-mentioned monitoring thermocouple is used for measuring the heat treatment.
  • the axial temperature gradient distribution during the process is used for measuring the heat treatment.
  • the invention proposes a local heat treatment method for the thick-walled P92 pipeline under field conditions to achieve better results.
  • the method uses a combination of test and numerical simulation to obtain a local heat treatment process for thick-walled P92 pipes under field conditions, that is, how to determine the heating width and insulation width according to the inner diameter and wall thickness of the pipe. And obtained a better heat treatment effect (better temperature field distribution and elimination of residual stress effect).
  • the invention can effectively reduce the temperature difference between the inner and outer walls (less than 25 ° C) in the thermostatic process of the post-weld heat treatment of the P92 pipeline and the residual stress at the welded joint after the heat treatment, and ensure the use performance of the material;
  • the general specifications belonging to different thicknesses and pipe diameter specifications expand the application range of the local heat treatment process.
  • FIG. 1 Schematic diagram of the arrangement of the heating belt and the insulation layer.
  • FIG 3 Schematic diagram of the installation position and distribution of the thermocouple, in which 1#, 2#, 3# are temperature-controlled thermocouples, arranged at the center of the outer wall weld, at 1 o'clock, 11 o'clock, 6 o'clock, respectively; Thermocouple, where 5# at 12 o'clock is located at the center of the outer wall weld, 9#, 11#, 13#, 15# are 50mm, 1.5t, 2t, 3t from the outer wall weld edge respectively (t is the pipe wall thickness, mm ), at 10 o'clock, 10#, 12#, 14#, 16# are the outer wall weld edges t, 1.5t, 2t, 3t, 6#, 17#, 19# are placed on the inner wall at 12 o'clock, with the outer wall Corresponding to 5#, 9# and 13#, 4#, 18#, 20# at the 6 o'clock position on the inner wall correspond to 3#, rain, and 14# on the outer wall.
  • the X-ray method is used to test the residual stress at different distances from the center of the weld.
  • the test point spacing in the weld zone is 3 mm (three points close to the heat affected zone), thermal influence
  • the three test points in the zone are 1.5mm apart
  • the first 3 points of the base metal are 3mm (three points close to the heat affected zone)
  • the outermost one is 50mm from the fusion line, as shown in Figure 1 (both on the outer wall) ).
  • thermocouples which are arranged at the center of the outer wall weld, at 1 o'clock and 11 o'clock respectively. Clock, 6 o'clock position; the rest are monitoring thermocouples, where 5# at 12 o'clock is located at the center of the outer wall weld, and the edges of the outer wall welds of 9#, 11#, 13#, 15# are 50mm, 1.5t, 2t respectively.
  • 3t (t is the pipe wall thickness, mm), 10# at 6 o'clock, 12#, 14#, 16#
  • the distance between the outer wall welds is t, 1.5t, 2t, 3t, 6#, 17#, 19# are arranged on the inner wall at 12 o'clock, and the outer walls are 5#, 9# and 13#
  • 4#, 18#, 20# at the 6 o'clock position of the inner wall correspond to 3#, rain, 14# of the outer wall, and the above-mentioned monitoring thermocouple is used to measure the axial temperature gradient distribution during the heat treatment, as shown in FIG. Show.
  • P92 pipe is naturally slowly cooled (ie cooled at room temperature in air) to 120 °C, according to the calculation results, the corresponding heating device, heat preservation device, and thermocouple are installed outside the P92 pipe, when the temperature drops to At 80 ° C, it is heated to be energized at 80 ° C for 2 h; heated at 150 ° C / h to 300 ° C, after the temperature reaches 300 ° C, the temperature is raised to 765 ° C at 80 ° C / h, The holding time is 8 hours (the minimum can not be less than 4h according to the wall thickness of 5min per mm). Control the cooling rate from 100 °C / h to 300 ° C, power off, slowly cool to room temperature, remove the heater.
  • the X-ray method was used to test the residual stress at different distances from the center of the weld.
  • the instrument was an iXRD-portable residual stress gauge. Measure the temperature difference between the different distances from the weld and the inner wall during the constant temperature (12 o'clock position), the results are as follows
  • the P92 main steam pipe of ID538x91mm was used for welding according to the P92 steel welding process, and the monitoring thermocouple was installed on the inner wall of the pipe before welding.
  • P92 pipe is naturally slowly cooled (ie cooled at room temperature in air) to 150 °C, according to the calculation results, the corresponding heating device, heat preservation device, and thermocouple are installed outside the P92 pipe, when the temperature drops to At 100 ° C, it is heated to be energized at 100 ° C for 2 h; heated at 150 ° C / h to 300 ° C, the temperature reaches 300 ° C, and then heated to 765 ° C at 80 ° C / h, The holding time is 8 hours. Control the cooling rate from 100 °C / h to 300 ° C, power off, slowly cool to room temperature, remove the heater.
  • the X-ray method was used to test the residual stress at different distances from the center of the weld.
  • the instrument was an iXRD-portable residual stress gauge.
  • the distribution of residual stress test points was the same as in Example 1, as shown in Figure 1.
  • the same temperature control zone arrangement as shown in Fig. 3 is used to determine the axial temperature gradient distribution during the heat treatment as in the embodiment.
  • the temperature difference between the different distances from the weld and the inner wall is as follows.
  • the P92 main steam pipe of ID550x80mm was used for welding according to the P92 steel welding process, and the monitoring thermocouple was installed on the inner wall of the pipe before welding.
  • the X-ray method was used to test the residual stress at different distances from the center of the weld.
  • the instrument was an iXRD-portable residual stress gauge.
  • the distribution of residual stress test points was the same as in Example 1, as shown in Figure 1.
  • the same temperature control zone arrangement as shown in Fig. 3 is used to determine the axial temperature gradient distribution during the heat treatment as in the embodiment. Measure the temperature difference between the different distances from the weld and the inner wall during the constant temperature (12 o'clock position), the results are as follows
  • the residual stress distribution (MPa) at different positions of the weld before and after the heat treatment was measured. The results are as follows: After the heat treatment before the heat treatment
  • the P92 main steam pipe of ID433x72mm was used for welding according to the P92 steel welding process, and the monitoring thermocouple was installed on the inner wall of the pipe before welding.
  • Example 1 Control the cooling rate from 100 °C / h to 300 ° C, power off, slowly cool to room temperature, remove the heater.
  • the residual stress at different distances from the center of the weld was measured by X-ray method.
  • the instrument was an iXRD-portable residual stress meter.
  • the distribution of residual stress test points was the same as in Example 1, as shown in Figure 1.
  • the temperature control zone arrangement as shown in Fig. 3 is used to determine the axial temperature gradient distribution during the heat treatment. Measure the temperature difference between the different distances from the weld and the inner wall during the constant temperature (12 o'clock position). The results are as follows: the uniform temperature zone (50 mm from the edge of the weld) and the temperature difference between the inner wall of the weld ( )
  • the P92 main steam pipe of ID355x42mm was used for welding according to the P92 steel welding process, and the monitoring thermocouple was installed on the inner wall of the pipe before welding.
  • the residual stress distribution (MPa) at different positions of the weld before and after the heat treatment was measured. The results are as follows: After the heat treatment before the heat treatment
  • the local heat treatment method of the present invention can be widely applied to local heat treatment of P92 pipe steels with different pipe diameters and walls after welding under field conditions, and can effectively reduce axial and circumferential directions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Heat Treatment Of Articles (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种现场工况下厚壁P92管道的局部热处理工艺,首先根据实验和数据模拟相结合的方法,根据内径和壁厚计算得到相应的加热宽度和保温宽度,然后利用柔性陶瓷电阻加热器对管道进行局部加热,当温度降到80-100°C范围内时,通电进行加热恒温2h,以150°C/h加热升温至300°C,温度达到300°C后,以80°C/h升温至765°C,保温时间按壁厚每毫米5min计算最低不能低于4h,控制降温速度100°C/h至300°C,断电,缓冷至室温。该方法可有效降低P92管道焊后热处理恒温过程中的内外壁温差(小于25°C)及热处理后焊接接头处的残余应力,保证材料的使用性能。

Description

现场工况厚壁 P92管道局部热处理方法 技术领域
本发明涉及一种高等级耐热钢的局部热处理工艺, 具体地说, 是涉及一种现场工况 下大厚壁 P92长管道的局部热处理工艺。
背景技术
目前, 电力工业正面临着前所未有的巨大挑战。要加快电力发展的步伐,就面临着要 加快电力结构调整的速度。 而最现实、 最可行的途径就是加快建设超超临界机组。 超超 临界压力参数火力发电是有效利用能源的一项新技术, 通过对其蒸汽的压力和温度进行 一定程度的提高, 来提高机组热效率。 要保证机组在较高温度与压力下稳定运行, 就必 须使用更高高温强度的钢材, 否则构件的壁厚就必须成倍地增大才能满足服役要求。 目 前 P92钢允许锅炉主蒸汽温度提高到 610°C, 再热温度高达 625°C, 在 USC机组的高温 集箱和主蒸汽管道等部件得到广泛应用。 P92 钢国外无使用经验, 而在我国得到大范围 使用。 目前我国的华能玉环发电厂、 华电邹县发电厂、 上海外高桥发电厂等单机容量为 1000MW以及 600MW USC机组的主蒸汽管道的设计上均采用 P92管道。 通常在 P92钢管焊接后进行焊后热处理, 目的之一是消除焊接残余应力。 研究表明 整体热处理确实能有效地消除部分焊接残余应力。 然而, 在 P92管的实际生产运用中, 钢管长度远远长于焊接工艺评定用钢管的长度, 并且在电厂现场工况下, 不可能采用整 体热处理方法, 因此, 工程上通常采用局部热处理来代替整体热处理。 ASME仅规定局 部热处理时均热宽度为焊缝最大宽度处两端各加 50mm (ASME Boiler and Pressure Vessel Code, Rules for Construction of Pressure Vessels: Alternative Rules, Section VID, Division 2As a minimum, the soak band shall contain the weld, heat affected zone, and a portion of base metal adjacent to the weld being heat treated. The minimum width of this volume is the widest width of weld plus the nominal thickness defined in paragraph 6.4.2.7 or 50 mm (2 in.), whichever is less, on each side or end of the weld.), 而没有给出加热宽度和保温宽度的具体 公式。对于 P92钢焊后热处理的加热带宽度及保温宽度的选择公式, 国内外有多个标准。 然而, 不同标准对于 P92管道的焊后热处理加热宽度及保温宽度的规定不统一, 在现场 施工过程当中不同的施工单位选择不同的参数, 势必会对热处理的结果产生影响。 多家 公司仅针对实验室小试样确定了热处理的加热带宽度及保温宽度, 而没有考虑现场工况 下大壁厚长管道的实际情况, 因此具有局限性。 目前发现多个经过局部热处理的 P92服 役管道焊接接头处出现裂纹, 与局部热处理工艺不合适有关。 因此选择合适的局部热处 理工艺对于保障 P92管道安全运行具有十分重要的意义。 发明内容 本发明的目的在于克服现有技术的不足, 针对现场工况下的特殊高等级耐热钢(P92 管道) , 通过试验与有限元相结合的方法, 给出了局部热处理工艺, 采用该工艺, 恒温 过程中内外壁温差在 25°C以内, 热处理后残余应力消除效果好, 局部热处理取得良好的 效果。 本发明的技术目的通过下述技术方案予以实现:
现场工况厚壁 P92管道局部热处理方法, 按照下述步骤实施:
步骤 1, 计算加热区宽度和保温区宽度, 加热宽度 (HB) 的选择应符合以下关系
Figure imgf000003_0001
其中 R为管道内径 (mm) , t为管道壁厚 (mm)
保温宽度 (GCB) 的确定应符合以下关系
GC5 = 1.4 x HB + 226 步骤 2, 按照 P92钢焊接工艺对 P92管道进行焊接;
步骤 3, 待焊接结束后, P92管道自然缓慢冷却到 120— 150° C时, 根据步骤 1计算 的结果在 P92 管道外安装相应的加热装置、 保温装置, 并布置热电偶, 当温度降到 80-100° C范围内时, 通电进行加热, 使其在 80-100° C范围内恒温 2h;
步骤 4,以 150° C/h加热升温至 300° C;待温度达到 300° C后,以 80° C/h升温至 765° C 并进行保温, 保温时间按壁厚每毫米 5min计算, 但最低不能低于 4h;
步骤 5, 控制降温速度 100° C/h至 300° C, 然后断电, 自然冷却至室温后拆除加热器 即可。 在本发明的技术方案中, 采用柔性陶瓷电阻加热器 (例如 WDK-6360型柔性陶瓷电 阻加热器) 对管道钢进行加热, 并采用控温热电偶、 保温棉和电阻加热器相互配合实施 温度、 升温速度和降温速度的控制, 以满足热处理方法的需求。 在现场完成 P92管道焊接后, 采用 X射线法测试距离焊缝中心不同距离处的残余应 力; 待完成局部热处理之后, 再利用相同的办法进行测试; 两者对比即可分析得到局部 热处理工艺对残余应力的影响。 在焊缝中心的外壁圆周的 1点钟、 11点钟和 6点钟位置分别设置控温热电偶; 在外 壁焊缝中心 12点钟的位置设置监控热电偶, 并在外壁方向上距离焊缝边缘 50mm、 1.5t、 2t、 3t的位置上分别设置监控热电偶; 在外壁 6点钟方向上, 距离焊缝边缘 t、 1.5 2t、 3t的位置上分别设置监控热电偶; 在内壁焊缝中心 12点钟位置上设置监控热电偶, 并在 内壁方向上距离焊缝边缘 50mm、 2t 的位置上分别设置监控热电偶; 在内壁焊缝中心 6 点钟位置设置监控热电偶, 并在内壁方向上距离焊缝边缘^ 2t的位置上分别设置监控热 电偶。 具体来说, 在进行温度的监控时, 本发明设置三个控温区, 1#、 2#、 3#为控温热 电偶, 布置于焊缝中心, 分别位于 1点钟、 11点钟、 6点钟, 其余为监控热电偶, 其中 12点钟的 5#位于外壁焊缝中心, 9#、 11#、 13#、 15#距离焊缝边缘分别为 50mm、 1.5t、 2t、 3t, 6点钟的雨、 12#、 14#、 16#距离焊缝边缘分别为 t、 1.5t、 2t、 3t (t为管道壁厚, mm) , 6#、 17#、 19#布置于内壁 12点钟, 与外壁的 5#、 9#和 13#对应, 内壁 6点钟位 置的 4#、 18#、 20#与外壁的 3#、 10#、 14#对应, 上述监控热电偶用于测定热处理过程中 的轴向温度梯度分布。
本发明为现场工况下的厚壁 P92管道提出一种局部热处理方法, 以达到较好的效果。 为此, 本方法利用试验与数值模拟相结合的方法, 得到了针对现场工况下的厚壁 P92管 道一种局部热处理工艺, 即如何根据管道的内径和壁厚, 以确定加热宽度和保温宽度, 并得到了较好的热处理效果 (较好的温度场分布和消除残余应力效果) 。 与现有技术相 比, 本发明可达到有效降低 P92管道焊后热处理恒温过程中的内外壁温差 (小于 25°C) 及热处理后焊接接头处的残余应力, 保证材料的使用性能; 同时该方法属于不同厚度及 管径规格的通用规范, 扩大了局部热处理工艺的应用范围。
附图说明 图 1 试样的应力测点布置图,其中在焊缝区测试点间隔为 3mm (靠近热影响区的 3个点, 见 8、 9、 10、 11、 12、 13共计 6个点) , 热影响区内三个测试点间隔 1.5mm ( 5、 6、 7、 14、 15、 16共计 6个点) , 母材前 3点间隔为 3mm (靠近热影响区的三个点, 2、 3、 4、 17、 18、 19共计 6个点) , 最外面的一个点距熔合线 50mm ( 1、 20两个点) 。
图 2 加热带及保温层的布置方式图。
图 3 热电偶安装位置及分布示意图, 其中 1#、 2#、 3#为控温热电偶, 布置于外壁焊缝中 心, 分别位于 1点钟、 11点钟、 6点钟位置; 其余为监控热电偶, 其中 12点钟的 5#位于 外壁焊缝中心, 9#、 11#、 13#、 15#距离外壁焊缝边缘分别为 50mm、 1.5t、 2t、 3t (t为 管道壁厚, mm) , 6点钟的 10#、 12#、 14#、 16#距离外壁焊缝边缘分别为 t、 1.5t、 2t、 3t, 6#、 17#、 19#布置于内壁 12点钟, 与外壁的 5#、 9#和 13#对应, 内壁 6点钟位置的 4#、 18#、 20#与外壁的 3#、 雨、 14#对应。 具体实施方式 下面结合具体实施例进一步详细说明本发明的技术方案, 实施例在以本发明技术方 案为前提下进行实施, 给出了详细的实施方式和过程, 但本发明的保护范围不限于下述 的实施例。
实施例 1
首先利用 ID538 (内径) X94.5 (壁厚) mm的 P92主蒸汽管道按照 P92钢焊接工艺 进行焊接, 焊前在管道内壁安装监控热电偶。
计算加热区宽度 HB=1230mm, 保温区宽度 GCB=1950mm, 根据计算数据定制加热 器及保温棉规格 (即长度) , 选用 WDK-6360型柔性陶瓷电阻加热器。
采用 X射线法测试距离焊缝中心不同距离处的残余应力, 考虑到管接头的焊接残余 应力的分布特点, 在焊缝区测试点间隔为 3mm (靠近热影响区的 3个点) , 热影响区内 三个测试点间隔 1.5mm, 母材前 3点间隔为 3mm (靠近热影响区的三个点) , 最外面的 一个点距熔合线 50mm, 如附图 1所示 (均在外壁上) 。
在完成现场焊接之后进行残余应力测试, 再按图 2所示安装加热装置和保温装置, 以确保保温宽度和加热宽度。 在本发明的热处理过程中进行温度的监视和控制, 设置三 个控温区, 1#、 2#、 3#为控温热电偶, 布置于外壁焊缝中心, 分别位于 1点钟、 11点钟、 6点钟位置; 其余为监控热电偶, 其中 12点钟的 5#位于外壁焊缝中心, 9#、 11#、 13#、 15#距离外壁焊缝边缘分别为 50mm、 1.5t、 2t、 3t (t为管道壁厚, mm) , 6点钟的 10#、 12#、 14#、 16#距离外壁焊缝边缘分别为 t、 1.5t、 2t、 3t, 6#、 17#、 19#布置于内壁 12点 钟, 与外壁的 5#、 9#和 13#对应, 内壁 6点钟位置的 4#、 18#、 20#与外壁的 3#、 雨、 14#对应, 上述监控热电偶用于测定热处理过程中的轴向温度梯度分布, 如附图 3所示。
对钢管进行局部热处理: P92 管道自然缓慢冷却 (即在空气中室温冷却) 到 120°C 时, 根据计算结果在 P92管道外安装相应的加热装置、 保温装置, 并布置热电偶, 当温 度降到 80°C时, 通电进行加热, 使其在 80°C恒温 2h; 以 150°C/h加热升温至 300°C, 温 度达到 300°C后, 以 80°C/h升温至 765°C, 保温时间为 8小时(按壁厚每毫米 5min计算 最低不能低于 4h) 。 控制降温速度 100°C/h至 300°C, 断电, 缓冷至室温, 拆除加热器。
采用 X射线法测试距离焊缝中心不同距离处的残余应力, 仪器为 iXRD-便携式残余 应力测量仪。 测量恒温期间对距焊缝不同距离与内壁的温差 (12点钟位置) , 结果如下
Figure imgf000006_0001
测量热处理前后距离焊缝不同位置处的残余应力分布 (MPa) , 结果如下 测试位 测点 热处理前 热处理后
号 X向 (轴向) Y向 (周向) X向 (轴向) Y向 (周向)
20 112 76 74 13
19 198 191 79 10
母材
18 158 200 75 20
17 108 188 14 11
16 168 200 36 47
热影
15 139 105 -36 -14
响区
14 171 119 20 -5
焊缝 13 145 99 51 18 12 118 188 107 23
11 139 80 113 76
10 125 103 118 98
9 117 146 44 84
8 114 96 43 39
7 125 74 61 57
热影
6 129 146 72 41
响区
5 134 187 80 18
4 253 179 37 35
3 239 164 65 55
母材
2 200 124 87 68
1 144 77 62 5
实施例 2
利用 ID538x91mm的 P92主蒸汽管道按照 P92钢焊接工艺进行焊接, 焊前在管道内 壁安装监控热电偶。
计算加热区宽度 HB=1167mm, 保温区宽度 GCB=1859mm, 根据计算数据定制加热 器及保温棉规格。
对钢管进行局部热处理: P92 管道自然缓慢冷却 (即在空气中室温冷却) 到 150°C 时, 根据计算结果在 P92管道外安装相应的加热装置、 保温装置, 并布置热电偶, 当温 度降到 100°C时, 通电进行加热, 使其在 100°C恒温 2h; 以 150°C/h加热升温至 300°C, 温度达到 300°C后, 以 80°C/h升温至 765°C, 保温时间为 8小时。 控制降温速度 100°C/h 至 300°C, 断电, 缓冷至室温, 拆除加热器。
采用 X射线法测试距离焊缝中心不同距离处的残余应力, 仪器为 iXRD-便携式残余 应力测量仪, 残余应力测试点的分布与实施例 1相同, 如附图 1所示。 采用和实施例相 同, 如附图 3所示的控温区布置, 用于测定热处理过程中的轴向温度梯度分布。 测量恒温期间对距焊缝不同距离与内壁温差 (12点钟位置) , 结果如下 均温区 (距焊缝边缘 50mm)与焊缝内壁温差 ( V )
时间段
外壁 #9 内壁 #17 i 、〉x曰m左
765°C * 1小时 748 735 13
765°C *2小时 752 740 12
765°C *3小时 754 741 13
765°C *4小时 755 745 10 765°C *5小时 755 748 7
765°C *6小时 756 743 13
765°C *7小时 755 746 9
765 °C * 8小时 755 747 8
测量热处理前后距离焊缝不同位置处的残余应力分布 (MPa) , 结果如下:
Figure imgf000008_0001
实施例 3
利用 ID550x80mm的 P92主蒸汽管道按照 P92钢焊接工艺进行焊接, 焊前在管道内 壁安装监控热电偶。
计算加热区宽度 HB=944mm, 保温区宽度 GCB=1548mm,根据计算数据定制加热器 及保温棉规格。 对钢管进行局部热处理: P92管道自然缓慢冷却到 130°C 时, 根据计算结果在 P92 管道外安装相应的加热装置、 保温装置, 并布置热电偶, 当温度降到 90°C时, 通电进行 加热,使其在 90°C恒温 2h; 以 150°C/h加热升温至 300°C,温度达到 300°C后, 以 80°C/h 升温至 765°C, 保温时间为 8小时。控制降温速度 100°C/h至 300°C, 断电, 缓冷至室温, 拆除加热器。
采用 X射线法测试距离焊缝中心不同距离处的残余应力, 仪器为 iXRD-便携式残余 应力测量仪, 残余应力测试点的分布与实施例 1相同, 如附图 1所示。 采用和实施例相 同, 如附图 3所示的控温区布置, 用于测定热处理过程中的轴向温度梯度分布。 测量恒温期间对距焊缝不同距离与内壁温差 (12点钟位置) , 结果如下
Figure imgf000009_0001
测量热处理前后距离焊缝不同位置处的残余应力分布 (MPa) , 结果如下: 测试 热处理前 热处理后
测点号
X向 (轴向) Y向 (周向) X向 (轴向) Y向 (周向)
20 134 99 78 58
19 160 188 89 91
母材
18 149 178 78 120
17 114 181 81 109
16 147 204 64 149
热影
15 165 123 93 91
响区
14 178 129 99 115
焊缝 13 159 131 85 110
12 134 140 107 104
11 139 109 91 79
10 139 103 113 71
9 207 138 114 83 8 139 108 70 79
7 145 79 72 41
热影
6 137 145 78 110
响区
5 141 171 89 132
4 179 140 57 137
3 193 157 74 78
母材
2 205 131 88 81
1 167 106 95 53
实施例 4
利用 ID433x72mm的 P92主蒸汽管道按照 P92钢焊接工艺进行焊接, 焊前在管道内 壁安装监控热电偶。
计算加热区宽度 HB=843mm, 保温区宽度 GCB=1406mm,根据计算数据定制加热器 及保温棉规格。 对钢管进行局部热处理: P92 管道自然缓慢冷却 (即在空气中室温冷却) 到 140°C 时, 根据计算结果在 P92管道外安装相应的加热装置、 保温装置, 并布置热电偶, 当温 度降到 95°C时, 通电进行加热, 使其在 95°C恒温 2h; 以 150°C/h加热升温至 300°C, 温 度达到 300°C后, 以 80°C/h升温至 765°C, 保温时间为 8小时。 控制降温速度 100°C/h 至 300°C, 断电, 缓冷至室温, 拆除加热器。 采用 X射线法测试距离焊缝中心不同距离处的残余应力, 仪器为 iXRD-便携式残余 应力测量仪, 残余应力测试点的分布与实施例 1相同, 如附图 1所示。 采用和实施例相 同, 如附图 3所示的控温区布置, 用于测定热处理过程中的轴向温度梯度分布。 测量恒温期间对距焊缝不同距离与内壁温差 (12点钟位置) , 结果如下 均温区 (距焊缝边缘 50mm)与焊缝内壁温差 ( )
时间段
外壁 #9 内壁 #17 i 、〉x曰m左
765°C * 1小时 745 738 7
765°C *2小时 750 740 10
765°C *3小时 755 741 14
765°C *4小时 753 741 12
765°C *5小时 755 745 10 765°C *6小时 754 747 7
765°C *7小时 753 748 5
765 °C * 8小时 755 747 8
测量热处理前后距离焊缝不同位置处的残余应力分布 (MPa) , 结果如下:
Figure imgf000011_0001
实施例 5
利用 ID355x42mm的 P92主蒸汽管道按照 P92钢焊接工艺进行焊接, 焊前在管道内 壁安装监控热电偶。
计算加热区宽度 HB=270mm, 保温区宽度 GCB=605mm, 根据计算数据定制加热器 及保温棉规格。 对钢管进行局部热处理: P92 管道自然缓慢冷却 (即在空气中室温冷却) 到 120°C 时, 根据计算结果在 P92管道外安装相应的加热装置、 保温装置, 并布置热电偶, 当温 度降到 80°C时, 通电进行加热, 使其在 80°C恒温 2h; 以 150°C/h加热升温至 300°C, 温 度达到 300°C后, 以 80°C/h升温至 765°C, 保温时间为 8小时。 控制降温速度 100°C/h 至 300°C, 断电, 缓冷至室温, 拆除加热器。 采用 X射线法测试距离焊缝中心不同距离处的残余应力, 仪器为 iXRD-便携式残余 应力测量仪, 残余应力测试点的分布与实施例 1相同, 如附图 1所示。 采用和实施例相 同, 如附图 3所示的控温区布置, 用于测定热处理过程中的轴向温度梯度分布。 测量恒温期间对距焊缝不同距离与内壁温差 (12点钟位置) , 结果如下:
Figure imgf000012_0001
测量热处理前后距离焊缝不同位置处的残余应力分布 (MPa) , 结果如下: 测试 热处理前 热处理后
测点号
X向 (轴向) Y向 (周向) X向 (轴向) Y向 (周向)
20 139 90 80 56
19 165 173 97 96
母材
18 149 175 89 114
17 129 177 72 112
16 153 184 68 97
热影
15 165 137 99 95
响区
14 173 138 97 102
焊缝 13 164 139 89 94
12 142 143 100 90
11 143 112 89 83 10 149 119 97 80
9 187 140 111 81
8 142 134 84 74
7 140 108 79 62
热影
6 139 101 87 74
响区
5 171 169 91 98
4 187 108 67 84
3 182 153 79 97
母材
2 179 130 87 90
1 169 117 91 77
有上述实施例的测试效果可知, 本发明的局部热处理方法可以广泛适用于不同管径 和壁后的 P92管道钢在现场工况下焊接后的局部热处理, 且都能够有效降低轴向和周向 的残余应力, 并且能够在 ASME规范下实现有效降低 P92管道焊后热处理恒温过程中的 内外壁温差 (小于 25°C) 。

Claims

禾 ί! ^
1.现场工况厚壁 Ρ92管道局部热处理方法, 其特征在于, 按照下述步骤实施: 步骤 1, 计算加热区宽度和保温区宽度, 加热宽度 (ΗΒ ) 的选择应符合以下关系
Figure imgf000014_0001
其中 R为管道内径 (mm) , t为管道壁厚 (mm) 保温宽度 (GCB ) 的确定应符合以下关系 GC5 = 1.4 x HB + 226 步骤 2, 按照 P92钢焊接工艺对 P92管道进行焊接; 步骤 3, 待焊接结束后, P92管道自然缓慢冷却到 120— 150° C时, 根据步骤 1计算的 结果在 P92管道外安装相应的加热装置、保温装置,并布置热电偶,当温度降到 80- 100° C 范围内时, 通电进行加热, 使其在 80-100° C范围内恒温 2h; 步骤 4, 以 150° C/h加热升温至 300° C ;待温度达到 300° C后, 以 80° C/h升温至 765° C 并进行保温, 保温时间按壁厚每毫米 5min计算, 但最低不能低于 4h; 步骤 5, 控制降温速度 100° C/h至 300° C, 然后断电, 自然冷却至室温后拆除加热器即 可。
2.根据权利要求 1所述的现场工况厚壁 P92管道局部热处理方法, 其特征在于, 采用柔 性陶瓷电阻加热器对管道钢进行加热, 并采用控温热电偶、 保温棉和电阻加热器相互配 合实施温度、 升温速度和降温速度的控制, 以满足热处理方法的需求。
3. 根据权利要求 1所述的现场工况厚壁 P92管道局部热处理方法, 其特征在于, 利用 如下设置方法来布置热电偶, 以实现测定热处理过程中的轴向温度梯度分布, 在焊缝中 心的外壁圆周的 1点钟、 1 1点钟和 6点钟位置分别设置控温热电偶; 在外壁焊缝中心 12 点钟的位置设置监控热电偶, 并在外壁方向上距离焊缝边缘 50mm、 1.5 2t、 3t的位置 上分别设置监控热电偶; 在外壁 6点钟方向上, 距离焊缝边缘 t、 1.5 2t、 3t的位置上 分别设置监控热电偶; 在内壁焊缝中心 12点钟位置上设置监控热电偶, 并在内壁方向上 距离焊缝边缘 50mm、 2t的位置上分别设置监控热电偶; 在内壁焊缝中心 6点钟位置设 置监控热电偶, 并在内壁方向上距离焊缝边缘^ 2t的位置上分别设置监控热电偶。
PCT/CN2012/083894 2012-03-27 2012-10-31 现场工况厚壁p92管道局部热处理方法 WO2013143282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/376,140 US9663841B2 (en) 2012-03-27 2012-10-31 Site conditions thick-wall P92 pipe local heat treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100847502A CN102605158B (zh) 2012-03-27 2012-03-27 现场工况厚壁p92管道局部热处理方法
CN201210084750.2 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013143282A1 true WO2013143282A1 (zh) 2013-10-03

Family

ID=46522918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083894 WO2013143282A1 (zh) 2012-03-27 2012-10-31 现场工况厚壁p92管道局部热处理方法

Country Status (3)

Country Link
US (1) US9663841B2 (zh)
CN (1) CN102605158B (zh)
WO (1) WO2013143282A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844027A (zh) * 2016-03-28 2016-08-10 武汉工程大学 一种高温大直径厚法兰接头升温方法
CN109508513A (zh) * 2019-01-11 2019-03-22 安徽工业大学 一种管内存在强气流的Cr-Mo钢管道焊后热处理方法
CN112052612A (zh) * 2020-08-25 2020-12-08 中国石油大学(华东) 大型承压设备筋板加固刚柔协同局部热处理方法
CN113369732A (zh) * 2021-05-27 2021-09-10 河钢股份有限公司承德分公司 一种转炉炉壳的热处理焊接方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605158B (zh) 2012-03-27 2013-03-20 天津大学 现场工况厚壁p92管道局部热处理方法
CN103008855B (zh) * 2012-12-18 2014-12-24 国家电网公司 模拟产生p92钢焊缝金属微细裂纹方法
CN104212966B (zh) * 2013-05-31 2016-08-10 中国石油天然气集团公司 一种抗硫防酸长输管道热处理工艺方法
CN104148840B (zh) * 2014-08-15 2016-08-10 苏州热工研究院有限公司 一种接管座对接接头局部焊后热处理方法
CN107688700B (zh) * 2017-08-22 2020-08-11 武汉大学 一种9%Cr热强钢管道焊后热处理加热功率计算方法
NO20171746A1 (en) * 2017-11-02 2019-05-03 Norsk Hydro As Method and apparatus for Post Weld Heat Treatment of aluminium alloy components, and a welded aluminium alloy component treated according to the method
CN107723454A (zh) * 2017-11-28 2018-02-23 哈电集团(秦皇岛)重型装备有限公司 一种管板组件与下封头组件环焊缝局部热处理工艺
CN109865955B (zh) * 2019-03-05 2021-11-16 哈尔滨锅炉厂有限责任公司 G115大口径管手工钨极氩弧焊和焊条电弧焊结合的焊接方法
CN110530541B (zh) * 2019-08-29 2020-12-25 中国石油大学(华东) 一种可精确模拟大型压力容器焊后热处理温度场计算方法
CN111286597B (zh) * 2020-03-20 2021-02-26 中国石油大学(华东) 主副加热调控残余应力局部热处理方法
CN111534680B (zh) * 2020-05-18 2021-06-15 青岛科技大学 厚壁承压设备焊后局部感应热处理的加热均温方法
CN112522503B (zh) * 2020-11-16 2022-06-21 西安热工研究院有限公司 一种水冷壁上集箱焊缝分区精准控温的热处理方法
CN114480829A (zh) * 2022-01-13 2022-05-13 陕西化建工程有限责任公司 热处理试板模拟不同厚度过程设备热处理工艺的方法
CN114774667B (zh) * 2022-05-31 2023-09-08 西安热工研究院有限公司 一种防止电站集箱与接管焊口焊后热处理开裂方法
CN115505719A (zh) * 2022-08-31 2022-12-23 华能秦煤瑞金发电有限责任公司 一种大径厚壁管道焊后热处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034050C1 (ru) * 1992-07-06 1995-04-30 Выксунский металлургический завод Способ термической обработки прямошовных электросварных труб
CN1935438A (zh) * 2006-06-09 2007-03-28 浙江省火电建设公司 P92钢的焊接工艺
CN101724740A (zh) * 2008-10-16 2010-06-09 天津诚信达金属检测技术有限公司 一种p92钢热处理方法
CN102605158A (zh) * 2012-03-27 2012-07-25 天津大学 现场工况厚壁p92管道局部热处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034050C1 (ru) * 1992-07-06 1995-04-30 Выксунский металлургический завод Способ термической обработки прямошовных электросварных труб
CN1935438A (zh) * 2006-06-09 2007-03-28 浙江省火电建设公司 P92钢的焊接工艺
CN101724740A (zh) * 2008-10-16 2010-06-09 天津诚信达金属检测技术有限公司 一种p92钢热处理方法
CN102605158A (zh) * 2012-03-27 2012-07-25 天津大学 现场工况厚壁p92管道局部热处理方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAO, ZHENHUI ET AL.: "P92 and P122 Steel on-site Weld and Heat Treatment Technology in Huaneng Yuhuan Power Plant Project", ELECTRIC POWER CONSTRUCTION, vol. 28, no. 4, April 2007 (2007-04-01), pages 72 *
GAO, JIEAN ET AL.: "Experiment on Welding Heat Treatment Technique for SA335-P92 Steel Tube by Induction Heating", ELECTRIC POWER CONSTRUCTION, vol. 31, no. 10, October 2010 (2010-10-01), pages 109 - 110 *
LI, JIANLONG ET AL.: "Process application of P92 steel welding and heat treatment", MACHINIST METAL FORMING, no. 24, 2010, pages 21 - 25 *
XU, LIANYONG ET AL.: "Influence of heat treatment on residual stress of P92 steel pipe girth weld", TRANSACTIONS OF THE CHINA WELDING INSTITUTION, vol. 31, no. 3, March 2010 (2010-03-01), pages 13 - 16 *
ZHOU, YEBIN ET AL.: "Comparison and discussion of different on-site heat treatments for large caliber thick-wall P92 pipeline", WELDING TECHNOLOGY, vol. 40, September 2011 (2011-09-01), pages 8 - 13 *
ZHOU, YEBIN ET AL.: "Engineering Application of welding and heat treatment for large caliber thick-wall P92 pipeline (B)", MACHINIST METAL FORMING, no. 4, 2011, pages 61 - 64 AND 72 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844027A (zh) * 2016-03-28 2016-08-10 武汉工程大学 一种高温大直径厚法兰接头升温方法
CN109508513A (zh) * 2019-01-11 2019-03-22 安徽工业大学 一种管内存在强气流的Cr-Mo钢管道焊后热处理方法
CN109508513B (zh) * 2019-01-11 2022-09-30 安徽工业大学 一种管内存在强气流的Cr-Mo钢管道焊后热处理方法
CN112052612A (zh) * 2020-08-25 2020-12-08 中国石油大学(华东) 大型承压设备筋板加固刚柔协同局部热处理方法
CN112052612B (zh) * 2020-08-25 2022-06-07 中国石油大学(华东) 大型承压设备筋板加固刚柔协同局部热处理方法
CN113369732A (zh) * 2021-05-27 2021-09-10 河钢股份有限公司承德分公司 一种转炉炉壳的热处理焊接方法
CN113369732B (zh) * 2021-05-27 2024-02-09 河钢股份有限公司承德分公司 一种转炉炉壳的热处理焊接方法

Also Published As

Publication number Publication date
US20150122376A1 (en) 2015-05-07
US9663841B2 (en) 2017-05-30
CN102605158B (zh) 2013-03-20
CN102605158A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2013143282A1 (zh) 现场工况厚壁p92管道局部热处理方法
WO2021232618A1 (zh) 厚壁承压设备焊后局部感应热处理的加热均温方法
CN104120241A (zh) 接管座对接接头局部焊后热处理方法
JP3649223B2 (ja) 配管系の熱処理方法および熱処理装置
WO2016070301A1 (zh) 一种核电蒸汽发生器环缝热处理装置系统及其用途
WO2008010427A1 (fr) procédé de dilatation de tuyau
WO2020103452A1 (zh) 一种密炼机转子表面堆焊预热的电磁感应加热装置
CN104131148A (zh) 一种三通主管对接接头局部焊后热处理方法
CN107688700B (zh) 一种9%Cr热强钢管道焊后热处理加热功率计算方法
CN107557541B (zh) 9%~12%Cr马氏体耐热钢大径厚壁管道充氩加热保温工装及方法
CN112176160B (zh) 一种接管座现场复合热处理方法
CN105986081A (zh) 一种tp92钢热处理工艺
CN102156146B (zh) 受热钢管焊接接头裂纹检测方法
CN108723631B (zh) 基于刚性可调拘束试验的管子焊接接头开裂机理确定方法
CN103361473B (zh) 高压加热器水室防不锈钢敏化的热处理方法
CN204345080U (zh) 700℃高温管道u型管夹
CN112903827A (zh) 一种热疲劳裂纹模拟试块的制备方法
CN209545896U (zh) 一种用于管系温差应力实验的加热装置
CN106925858A (zh) 一种高频气体保护钎焊炉及其工作方法
CN106239030A (zh) 一种火力发电厂汽包下降管焊缝裂纹修补方法
CN111992855A (zh) 马氏体耐热钢g115大径厚壁管道焊接及组合热处理方法
CN219709546U (zh) 一种异型焊接接头的局部热处理装置
CN111979400A (zh) 一种高温受热面焊口及鳍片焊缝焊后热处理装置及制作方法
CN105648194A (zh) 一种合金管道返修的热处理工艺
CN104498699A (zh) 一种锅炉膜式水冷壁局部焊后热处理装置和工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872665

Country of ref document: EP

Kind code of ref document: A1