WO2013143201A1 - 液晶显示装置及其制作方法 - Google Patents

液晶显示装置及其制作方法 Download PDF

Info

Publication number
WO2013143201A1
WO2013143201A1 PCT/CN2012/074907 CN2012074907W WO2013143201A1 WO 2013143201 A1 WO2013143201 A1 WO 2013143201A1 CN 2012074907 W CN2012074907 W CN 2012074907W WO 2013143201 A1 WO2013143201 A1 WO 2013143201A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
angle
backlight module
liquid crystal
display device
Prior art date
Application number
PCT/CN2012/074907
Other languages
English (en)
French (fr)
Inventor
张光耀
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/577,909 priority Critical patent/US9140932B2/en
Publication of WO2013143201A1 publication Critical patent/WO2013143201A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects

Definitions

  • Liquid crystal display device and manufacturing method thereof
  • the present invention relates to the field of liquid crystal display technology, and in particular to a liquid crystal display device and a method of fabricating the same. Background technique
  • Liquid crystal display has the advantages of power saving, no radiation, small size, low power consumption, no space, flat right angle, high resolution and stable image quality. It has gradually replaced traditional cathode ray.
  • Cathode ray tube display is widely used in electronic products such as mobile phones, screens, digital TVs, and notebook computers.
  • the backlight module of the liquid crystal display device is divided into a side-light type backlight module and a direct-light type backlight module.
  • the side-lit light-emitting backlight module has gradually become the mainstream product in the market.
  • this type of backlight module has a congenital defect due to its light-injecting mode. As shown in FIG.
  • the light-emitting field of the light-emitting surface 101 of the light guide plate is asymmetric with respect to the normal direction A2 of the light-emitting surface 101, thus resulting in
  • the light-emitting direction A 1 corresponding to the maximum light intensity of the light-emitting surface 101 is not parallel to the normal direction A2 of the light-emitting surface 101, so that the light-emitting viewing angle e max (ie, the light-emitting direction A 1 corresponding to the maximum light intensity and the normal of the light-emitting surface 101)
  • the angle of the direction A2 is too large, affecting the corresponding liquid
  • the display quality of the crystal display device is too large, affecting the corresponding liquid.
  • the manufacturer of the liquid crystal display device generally attaches an optical film that can change the direction of the light field to the light-emitting surface side of the light guide plate, and pulls the offset light field direction back to the corresponding display panel. From the perspective.
  • the present invention provides a liquid crystal display device that reduces the asymmetry of a light field by changing the relative position of the display panel and the backlight module, and a method for fabricating the same, to solve the problem of the liquid crystal display device of the backlight module using the lateral light entrance.
  • Field asymmetry leads to technical problems with poor display quality.
  • the present invention relates to a liquid crystal display device, comprising a backlight module and a display panel, wherein a normal direction of a light-emitting surface of the backlight module has an angle ⁇ ⁇ 3 ⁇ 4 between a normal direction of a light-emitting surface of the display panel ;
  • the value of the angle ⁇ ⁇ 3 ⁇ 4 is determined according to the light-emitting viewing angle e max , wherein the light-emitting viewing angle e max is a normal direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module and a normal of the light-emitting surface of the backlight module.
  • An angle between the direction of the light emitted by the maximum light intensity of the light-emitting surface of the backlight module and the normal direction of the light-emitting surface of the display panel e mp ( e max -e pb ); e pb is not greater than the light exiting angle e max .
  • the angle e pb is equal to the output Light viewing angle e max .
  • the value of the included angle e pb is determined according to the light exit viewing angle e max and the thickness of the backlight module.
  • the backlight module further includes an optical film disposed on a light-emitting surface of the backlight module, the optical film including a diffusion sheet, a reflective brightness enhancement film, a prism film, Microlens optical film and/or prismatic optical film with rounded corners.
  • the present invention also relates to a liquid crystal display device comprising a backlight module and a display panel, the normal direction of the light- emitting surface of the backlight module and the normal direction of the light- emitting surface of the display panel having an angle ⁇ ⁇ 3 ⁇ 4 .
  • the value of the angle e pb is determined according to the light-emitting viewing angle e max , wherein the light-emitting viewing angle e max is the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module.
  • the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module and the normal direction of the light-emitting surface of the display panel
  • the angle is
  • the angle is
  • the angle is
  • the backlight module further includes an optical film disposed on a light-emitting surface of the backlight module, the optical film including a diffusion sheet, a reflective brightness enhancement film, a prism film, Microlens optical film and/or prismatic optical film with rounded corners.
  • the present invention also relates to a method of fabricating a liquid crystal display device, wherein the liquid crystal display device includes a backlight module and a display panel, and the method for fabricating the liquid crystal display device includes the steps of: A. determining the backlight module according to the light exit viewing angle e max An angle e pb between a normal direction of the light-emitting surface and a normal direction of the light-emitting surface of the display panel ; wherein the light-emitting viewing angle e max is a light-emitting direction corresponding to a maximum light intensity of the light-emitting surface of the backlight module The angle between the normal direction of the light-emitting surface of the backlight module.
  • the step A further includes the step of: determining, by the AI, the light-emitting viewing angle e max according to the light intensity of each light-emitting direction of the light-emitting surface of the backlight module.
  • the angle between the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module and the normal direction of the light-emitting surface of the display panel e mp ( e max -e
  • the included angle e pb is smaller than the exit angle of view e max .
  • the included angle e pb is equal to the light exit viewing angle e max .
  • the angle e pb is determined according to the light exit viewing angle e max and the thickness of the backlight module.
  • the liquid crystal display further includes the steps of: providing an optical film on a light-emitting surface of the backlight module; the optical film comprises a diffusion sheet, a reflective brightness enhancement film, a prism film, a microlens optical film, and/or a circle Angular prismatic optical film.
  • the liquid crystal display device and the manufacturing method thereof of the present invention have the following beneficial effects: By changing the relative positions of the display panel and the backlight module, the phenomenon of asymmetry of the light field of the liquid crystal display device using the laterally-lit backlight module is slowed down, The invention solves the technical problem that the liquid crystal display device of the existing side-lighting backlight module has poor display quality due to the asymmetry of the light field.
  • FIG. 1 is a schematic structural view of a conventional side-lit light-emitting backlight module
  • Figure 2 is a schematic view showing the structure of a first preferred embodiment of the liquid crystal display device of the present invention
  • FIG. 3 is a schematic structural view of a second preferred embodiment of a liquid crystal display device of the present invention.
  • Fig. 4 is a flow chart showing a preferred embodiment of a method of fabricating a liquid crystal display device of the present invention. detailed description
  • FIG. 2 is a schematic structural view of a first preferred embodiment of a liquid crystal display device of the present invention.
  • the liquid crystal display device includes a backlight module 201 and a display panel 202.
  • the normal direction A2 of the light-emitting surface of the backlight module 201 has an angle e pb with the normal direction A3 of the light-emitting surface of the display panel 202, and the clip
  • the light-emitting viewing angle e max is an angle between the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module 20 i and the normal direction of the
  • the maximum light intensity corresponding to the light-emitting surface of 201 corresponds to the light exiting direction A1, the normal direction of the light-emitting surface of the backlight module 201 is A2, and the normal direction of the light-emitting surface of the display panel 202 is A3, so that the gap between A1 and A2 is sandwiched.
  • the angle is e max
  • the angle between A l and A3 is e mp ,
  • the angle between A2 and A3 is e pb .
  • e max can be measured by the backlight module
  • the light intensity in each light-emitting direction of the light-emitting surface of 201 can be obtained by empirical value.
  • the present invention sets the angle ⁇ ⁇ 3 ⁇ 4 by adjusting the relative positional relationship between the backlight module 201 and the display panel 202, so that the maximum light intensity corresponding to the light-emitting surface of the backlight module 201 corresponds to the light-emitting direction A1 and the display panel 202.
  • the normal direction A3 of the illuminating surface is as uniform as possible, that is, the angle e mp is reduced as much as possible (when the angle e pb).
  • the value of angle e mp (e max -e pb), this time the direction of A l, A2 direction and the direction A3 in the same plane), so that there is not the angle e max Affecting the light output effect of the display panel 202.
  • the optical viewing angle e max is determined, as the angle e pb increases (generally does not exceed e max ), the backlight module
  • the inclination of 201 causes the thickness of the backlight module 20 1 in the normal direction of the light-emitting surface of the display panel 202 to increase, which is disadvantageous for the thickness of the liquid crystal display device. Therefore, in setting the angle e pb , the optical viewing angle e max and the thickness of the backlight module 201 should be comprehensively considered, and the included angle e mp should be reduced as much as possible within the allowable thickness range of the backlight module 201.
  • the angle e pb is preferably not greater than the exit viewing angle e max ; where possible, the included angle e pb is preferably equal to the exit viewing angle e max (when the best effect is achieved).
  • an optical film 203 is disposed on the light-emitting surface of the backlight module 201.
  • the optical film 203 can be, for example, a diffuser film (DF) or a dual brightness enhancement film (DBEF). ), a prism film, a microlens optical film (Micro Lens , ML ), a prismatic optical film with rounded corners (Lenticule , LTC ), or any combination thereof, which is disposed on the light guide plate of the backlight module 201 The surface is used to improve the optical effect of the light emitted by the backlight module 201.
  • DF diffuser film
  • DBEF dual brightness enhancement film
  • FIG. 3 is a schematic structural view of a second preferred embodiment of the liquid crystal display device of the present invention.
  • the difference between the preferred embodiment and the first preferred embodiment is that the light source setting positions in the backlight module are different, and the direction of the angle e max is different, so that the relative positional relationship between the backlight module and the display panel is set differently, but the preferred embodiment
  • the structure of the liquid crystal display device and the effect produced therein are similar or identical to those of the above-described first preferred embodiment, and thus the specific internal structure of the backlight module is not limited. The scope of protection of the present invention.
  • FIG. 4 is a flow chart showing a preferred embodiment of a method of fabricating a liquid crystal display device of the present invention, the method beginning at step 401:
  • step 401 an optical film is disposed on a light-emitting surface of the backlight module; then, in step 402, a light viewing angle e max is determined according to a light intensity of each light-emitting direction of the light-emitting surface of the backlight module, where The angle of view e max is the angle between the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module and the normal direction of the light-emitting surface of the backlight module;
  • an angle between a normal direction of the light-emitting surface of the backlight module and a normal direction of the light-emitting surface of the display panel is determined according to the light-emitting viewing angle e max and the thickness of the backlight module. ⁇ ⁇ 3 ⁇ 4 , the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module and the normal direction of the light-emitting surface of the display panel.
  • an optical film is first disposed on the light emitting surface of the backlight module, and the optical film may be, for example, a diffuser film (DF), a reflective brightness enhancing film.
  • DF diffuser film
  • DBEF Double Brightness Enhancement Film
  • prism prism
  • microlens microlens
  • lenticular optical lens Licular optical lens
  • LTC lenticular optical lens
  • step 402 measuring the light intensity of each light-emitting direction of the light-emitting surface of the backlight module (According to the empirical value), the degree of asymmetry of the light field of the backlight module is known, and the light-emitting angle of view corresponding to the maximum of all the measured light-intensities of the light-emitting directions is set as the light-emitting angle of view e max (ie The light intensity of the backlight module at the angle e max corresponding to the light exit direction is the largest, and the larger the light exit angle e max , the greater the degree of asymmetry of the light field, and the greater the influence on the display quality of the liquid crystal display. Then proceed to the next step.
  • step 403 the light emitting surface of the backlight module is adjusted by adjusting the relative position of the backlight module and the display panel (ie, the angle between the normal direction of the light emitting surface of the backlight module and the normal direction of the light emitting surface of the display panel).
  • the light-emitting direction corresponding to the maximum light intensity is as close as possible to the normal direction of the light-emitting surface of the display panel, even if the light-emitting direction corresponding to the maximum light intensity of the light-emitting surface of the backlight module is opposite to the normal direction of the light-emitting surface of the display panel.
  • the light output of the panel is (e max -e pb ) when the angle e pb and the angle of view e max are fixed), so that the presence of the angle e max does not affect the display.
  • the angle e max is determined in step 402 as the angle e pb increases (generally does not exceed e max ), the tilt of the backlight module causes the thickness of the backlight module in the normal direction of the light emitting surface of the display panel. This will increase, which is detrimental to the requirements for the thin thickness of the liquid crystal display device. Therefore, in setting the angle ⁇ ⁇ 3 ⁇ 4, the angle of view e max and the thickness of the backlight module should be comprehensively considered, and the angle e mp should be reduced as much as possible within the allowable thickness range of the backlight module.
  • the angle e pb is preferably not greater than the exit viewing angle e max ; where possible, the included angle e pb is preferably equal to the exit viewing angle e max (when the best effect is achieved).
  • Table 1 shows the light-emitting gain of the optical film before and after the use of the apparatus and method of the present invention in a backlight module using six different optical films, wherein only the DF optical film has a light-emitting viewing angle e max of 29°, The ratio of the maximum value of the light intensity of each viewing angle to the light intensity of the positive viewing angle reaches 134.5 %, so that the light gain of the optical film before setting the relative position between the backlight module and the display panel using the apparatus and method of the present invention is only 65.3 %.
  • the optical gain of the optical film rises to 87.8%, which is increased by 22.5 %, even exceeding the light output of the optical film using the normal setting of DFx2. Gain. After the setting, the increase of the light gain of the other five kinds of optical films is 5.8%, 3.9%, 2.8%, 5.8%, and 3%, respectively, which is approximately proportional to the corresponding light-emitting viewing angle e max .
  • the liquid crystal display device of the present invention and the method of fabricating the same have better improvement effect on the backlight module with a larger viewing angle e max , so that the backlight module can be deviated without using or reducing the combination of using the optical film.
  • the compensation of the light field direction greatly reduces the manufacturing cost of the backlight module.
  • the liquid crystal display device of the present invention and the manufacturing method thereof can reduce the phenomenon that the light field of the backlight module is asymmetrical by changing the relative position of the display panel and the backlight module, thereby improving the display quality of the liquid crystal display device, and the setting cost is low.
  • the technical problem of poor display quality due to the asymmetry of the light field is well solved by the liquid crystal display device of the backlight module adopting the lateral light input.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示装置及其制作方法,该液晶显示装置包括背光模块(201)以及显示面板(202),背光模块(201)的出光面的法线方向(A2)与显示面板(202)的出光面的法线方向(A3)具有夹角(θpb)。通过改变显示面板(202)和背光模块(201)的相对位置,缓解了所述液晶显示装置的光场不对称的现象。

Description

液晶显示装置及其制作方法 技术领域
本发明涉及液晶显示技术领域, 特别是涉及一种液晶显示装 置及其制作方法。 背景技术
随着科技进步, 各种电子产品已成为人们生活不可或缺的一 部分。 其中显示器为多媒体电子产品的重要组件。 而液晶显示装 置 (liquid crystal display , LCD ) 具有省电、 无辐射、 体积小、 低耗电量、 不占空间、 平面直角、 高解析度以及画质稳定等优点, 已逐渐取代传统的阴极射线管显示器 (cathode ray tube display , CRT display ) , 广泛用于手机、 屏幕、 数字电视以及笔记型计算 机等电子产品上。
目前依照光源入射位置的不同, 液晶显示装置的背光模块分 成 侧 向 式 入 光 (Side-light type) 背 光 模 块 与 直 下 式 入 光 (Direct-light type) 背光模块两种。 为了满足液晶显示装置节能与 美观 (即厚度薄、 边框窄) 的需求, 侧向式入光的背光模块逐渐 成为了市场的主流产品。 然而这种类型的背光模块因其入光方式 存在一先天的缺陷, 如图 1所示, 导光板的出光面 101 的出光光 场对于出光面 101 的法线方向 A2 呈现非对称现象, 这样导致出 光面 101 的最大光强所对应的出光方向 A 1 不平行于出光面 101 的法线方向 A2 , 使得出光视角 emax (即最大光强所对应的出光 方向 A 1 与出光面 101 的法线方向 A2的夹角) 过大, 影响相应液 晶显示装置的显示品质。
为克服上述的缺陷, 液晶显示装置的制作商一般通过在导光 板的出光面侧贴附可改变光场方向的光学膜片, 将偏移掉的光场 方向回拉至相应的显示面板的正视角上。 但是要达到较佳的补偿 效果, 则需要用到各种光学膜片的组合贴附, 这样导致背光模块 的制作成本上升。
故, 有必要提供一种液晶显示装置及其制作方法, 以解决现 有技术所存在的问题。
发明内容
本发明提供一种通过改变显示面板和背光模块的相对位置, 减缓光场不对称现象的液晶显示装置及其制作方法, 以解决现有 采用侧向式入光的背光模块的液晶显示装置由于光场不对称现象 导致显示品质较差的技术问题。
本发明涉及一种液晶显示装置, 其中包括背光模块以及显示 面板, 所述背光模块的出光面的法线方向与所述显示面板的出光 面的法线方向之间具有夹角 θρ ¾ ;所述夹角 θρ ¾的取值根据出光视 角 emax确定, 其中所述出光视角 emax为所述背光模块的出光面 的最大光强对应的出光方向与所述背光模块的出光面的法线方向 的夹角; 所述背光模块的出光面的最大光强对应的出光方向与所 述显示面板的出光面的法线方向的夹角 emp= ( emax-epb ) ; 所述夹 角 epb不大于所述出光视角 emax。 在本发明所述的液晶显示装置中, 所述夹角 epb等于所述出 光视角 emax
在本发明所述的液晶显示装置中, 所述夹角 epb的取值根据 所述出光视角 emax和所述背光模块的厚度确定。
在本发明所述的液晶显示装置中, 所述背光模块还包括设置 在所述背光模块的出光面上的光学膜片, 所述光学膜片包括扩散 片、 反射式增亮膜、 棱柱膜、 微透镜光学膜片和 /或带圆角的棱镜 光学膜片。
本发明还涉及一种液晶显示装置, 其中包括背光模块以及显 示面板, 所述背光模块的出光面的法线方向与所述显示面板的出 光面的法线方向之间具有夹角 ΘΡ¾
在本发明所述的液晶显示装置中, 所述夹角 epb的取值根据 出光视角 emax确定, 其中所述出光视角 emax为所述背光模块的 出光面的最大光强对应的出光方向与所述背光模块的出光面的法 线方向的夹角。
在本发明所述的液晶显示装置中, 所述背光模块的出光面的 最大光强对应的出光方向与所述显示面板的出光面的法线方向的
Figure imgf000005_0001
在本发明所述的液晶显示装置中, 所述夹角
光视角 emax
在本发明所述的液晶显示装置中, 所述夹角
光视角 emax
在本发明所述的液晶显示装置中, 所述夹角
所述出光视角 emax和所述背光模块的厚度确定。 在本发明所述的液晶显示装置中, 所述背光模块还包括设置 在所述背光模块的出光面上的光学膜片, 所述光学膜片包括扩散 片、 反射式增亮膜、 棱柱膜、 微透镜光学膜片和 /或带圆角的棱镜 光学膜片。
本发明还涉及一种液晶显示装置的制作方法, 其中所述液晶 显示装置包括背光模块以及显示面板, 所述液晶显示装置的制作 方法包括步骤: A、 根据出光视角 emax确定所述背光模块的出光 面的法线方向与所述显示面板的出光面的法线方向的夹角 epb ; 其中所述出光视角 emax 为所述背光模块的出光面的最大光强对 应的出光方向与所述背光模块的出光面的法线方向的夹角。
在本发明所述的液晶显示装置的制作方法中, 所述步骤 A之 前还包括步骤: A I、 根据所述背光模块的出光面的各出光方向的 光强, 确定所述出光视角 emax
在本发明所述的液晶显示装置的制作方法中, 所述背光模块 的出光面的最大光强对应的出光方向与所述显示面板的出光面的 法线方向的夹角 emp= ( emax-e
在本发明所述的液晶显示装置的制作方法中, 所述夹角 epb 小于所述出光视角 emax
在本发明所述的液晶显示装置的制作方法中, 所述夹角 epb 等于所述出光视角 emax
在本发明所述的液晶显示装置的制作方法中, 根据所述出光 视角 emax和所述背光模块的厚度确定所述夹角 epb
在本发明所述的液晶显示装置的制作方法中, 所述液晶显示 装置的制作方法还包括步骤: 在所述背光模块的出光面上设置光 学膜片; 所述光学膜片包括扩散片、 反射式增亮膜、 棱柱膜、 微 透镜光学膜片和 /或带圆角的棱 光学膜片。
实施本发明的液晶显示装置及其制作方法, 具有以下有益效 果: 通过改变显示面板和背光模块的相对位置, 减缓了采用侧向 式入光的背光模块的液晶显示装置光场不对称的现象, 解决了现 有侧向式入光的背光模块的液晶显示装置由于光场不对称现象导 致显示品质较差的技术问题。
为让本发明的上述内容能更明显易懂,下文特举优选实施例, 并配合所附图式, 作详细说明如下:
附图说明
图 1 为现有的侧向式入光的背光模块的结构示意图;
图 2为本发明的液晶显示装置的第一优选实施例的结构示意 图;
3为本发明的液晶显示装置的第二优选实施例的结构示意 图;
图 4为本发明的液晶显示装置的制作方法的优选实施例的流 程图。 具体实施方式
以下各实施例的说明是参考附加的图式, 用以例示本发明可 用以实施的特定实施例。 本发明所提到的方向用语, 例如 「上」、 「下」、 「前」、 「后」、 「左」、 「右」、 「内」、 「外」、 「侧面」 等, 仅 是参考附加图式的方向。 因此, 使用的方向用语是用以说明及理 解本发明, 而非用以限制本发明。
在图中, 结构相似的单元是以相同标号表示。
如图 2所示, 图 2为本发明的液晶显示装置的第一优选实施 例的结构示意图。 所述液晶显示装置包括背光模块 201 以及显示 面板 202, 在本实施例中, 背光模块 201 的出光面的法线方向 A2 与显示面板 202 的出光面的法线方向 A3具有夹角 epb, 夹角 epb 的取值根据出光视角 emax确定, 背光模块 201 的出光面的最大光 强对应的出光方向与显示面板 202 的出光面的法线方向的夹角 emp= ( emax-epb ), 其中出光视角 emax为背光模块 20 i 的出光面的 最大光强对应的出光方向与所述背光模块的出光面的法线方向的 夹角。
本发明的液晶显示装置使用时, 如图 2所示, 图中背光模块
201 的出光面的最大光强对应的出光方向为 A 1 , 背光模块 201 的 出光面的法线方向为 A2 , 显示面板 202 的出光面的法线方向为 A3 ,这样 A 1 和 A2之间夹角为 emax,A l 和 A3之间的夹角为 emp
A2和 A3之间的夹角为 epb。 其中夹角 emax可通过测量背光模块
201 的出光面的各出光方向的光强取得, 也可依经验值取得。
从图中可见, 本发明通过调整背光模块 201 和显示面板 202 的相对位置关系对夹角 θρ¾进行设置, 使得背光模块 201 的出光 面的最大光强对应的出光方向 A 1 与显示面板 202 的出光面的法 线方向 A3 尽可能一致, 即尽可能的减小夹角 emp (当夹角 epb 和出光视角 emax固定后, 夹角 emp的取值为 (emax-epb ), 此时方 向 A l、 方向 A2 以及方向 A3 处于同一平面中), 使得夹角 emax 的存在不会影响显示面板 202 的出光效果。 由于确定出光视角 emax后, 随着夹角 epb 的增大 (一般不会超过 emax ), 背光模块
201 的倾斜导致背光模块 20 1 在显示面板 202 的出光面的法线方 向上的厚度将增加, 这样不利于液晶显示装置薄厚度的要求。 因 此在设置夹角 epb要综合考虑出光视角 emax和背光模块 201 的厚 度, 在背光模块 201 允许的厚度范围内尽可能的减小夹角 emp。 其中夹角 epb优选不大于出光视角 emax; 在可能的情况下, 夹角 epb优选等于出光视角 emax (这时可达到最佳效果)。
在本实施例中, 在背光模块 201 的出光面上设置有光学膜片 203, 该光学膜片 203可例如为扩散片 (Diffuser Film , DF )、 反 射式增亮膜 ( Dual Brightness Enhancement Film , DBEF )、 棱柱 膜 (prism )、 微透镜光学膜片 (Micro Lens , ML )、 带圆角的棱镜 光学膜片 (Lenticule , LTC ) 或上述的任意组合, 其设置在背光 模块 201 的导光板的出光面上, 用以改善背光模块 201 出光的光 学效果。
如图 3所示,图 3为本发明的液晶显示装置的第二优选实施例 的结构示意图。 本优选实施例与第一优选实施例的区别在于背光 模块中的光源设置位置不同, 导致夹角 emax的方向不同, 因此使 得背光模块和显示面板的相对位置关系设置不同, 但是本优选实 施例中的液晶显示装置的结构以及所产生的效果与上述第一优选 实施例相似或相同, 因此背光模块具体的内部结构的设置不限制 本发明的保护范围。
如图 4所示, 图 4为本发明的液晶显示装置的制作方法的优 选实施例的流程图, 该方法开始于步骤 401 :
在步骤 401 中, 在所述背光模块的出光面上设置光学膜片; 而后, 在步骤 402 中, 根据所述背光模块的出光面的各出光 方向的光强, 确定出光视角 emax, 其中所述出光视角 emax为所述 背光模块的出光面的最大光强对应的出光方向与所述背光模块的 出光面的法线方向的夹角;
最后, 在步骤 403 中, 根据所述出光视角 emax和所述背光模 块的厚度确定所述背光模块的出光面的法线方向与所述显示面板 的出光面的法线方向之间的夹角 θρ¾, 所述背光模块的出光面的 最大光强对应的出光方向与所述显示面板的出光面的法线方向的
Figure imgf000010_0001
在步骤 401 中, 首先在背光模块的出光面上设置光学膜片, 该光学膜片可例如为扩散片 (Diffuser Film , DF )、 反射式增亮膜
( Dual Brightness Enhancement Film , DBEF )、 棱柱膜 ( prism )、 微透镜光学膜片 ( Micro Lens, ML )、 带圆角的棱镜光学膜片 ( Lenticule , LTC ) 或上述的任意组合, 其设置在背光模块的导 光板的出光面上, 用以改善背光模块出光的光学效果。 在设置好 光学膜片后, 整个背光模块的出射光的光场不对称的程度就已经 基本确定, 这样就可以进行下一步骤。
在步骤 402 中, 测量背光模块的出光面的各出光方向的光强 (也可依经验值取得), 依此了解背光模块的光场不对称的程度, 将所有测量到的各出光方向的光强中的最大值对应的出光视角设 定为出光视角 emax (即背光模块在这个角度 emax对应的出光方向 的光强是最大的), 出光视角 emax越大, 说明光场不对称的程度 越大, 对液晶显示器的显示品质的影响也就越大。 然后进行下一 步骤。
在步骤 403 中, 通过调整背光模块和显示面板的相对位置(即 背光模块的出光面的法线方向和显示面板的出光面的法线方向之 间的夹角 Θρ¾ ) 使背光模块的出光面的最大光强对应的出光方向 尽可能与显示面板的出光面的法线方向相一致, 即使背光模块的 出光面的最大光强对应的出光方向与所述显示面板的出光面的法 线方向的夹角 emp越小越好(当夹角 epb和出光视角 emax固定后, 夹角 emp的取值为 (emax-epb ) ), 使得夹角 emax的存在不会影响 显示面板的出光效果。 由于在步骤 402 中确定出光视角 emax后, 随着夹角 epb的增大 (一般不会超过 emax ), 背光模块的倾斜导致 背光模块在显示面板的出光面的法线方向上的厚度将增加, 这样 不利于液晶显示装置薄厚度的要求。 因此在设置夹角 Θρ¾要综合 考虑出光视角 emax和背光模块的厚度, 在背光模块允许的厚度范 围内尽可能的减小夹角 emp。 其中夹角 epb优选不大于出光视角 emax; 在可能的情况下, 夹角 epb优选等于出光视角 emax (这时 可达到最佳效果)。
下面通过表 1 的实验数据说明本发明的液晶显示装置及其制 作方法的有益效果。 表 1
Figure imgf000012_0001
表 1 中示出了使用六种不同的光学膜片的背光模块在采用本 发明的装置和方法前后光学膜片的出光增益, 其中仅采用 DF 光 学膜片的出光视角 emax达到 29° , 同时各视角光强中的最大值和 正视角光强的比值达到 134.5 % , 因此使用本发明的装置和方法对 背光模块和显示面板之间的相对位置进行设置前的光学膜片的出 光增益只有 65.3 % , 而采用本发明的装置和方法对背光模块和显 示面板之间的相对位置进行设置后, 使背光模块的出光面的最大 光强的出光方向与显示面板的出光面的法线方向的夹角 emp=
( emax-epb ) =o (这里没有考虑背光模块的厚度因素), 光学膜片 的出光增益上升到了 87.8% , 提升了 22.5 % , 甚至超过了采用正 常设置的 DFx2 的光学膜片的出光增益。 设置后另外的五种光学 膜片出光增益的提升分别为 5.8%、 3.9%、 2.8%、 5.8%、 3 %, 与 相应的出光视角 emax的大小大致成一定比例。 因此从表 1 中的数 据可知, 本发明的液晶显示装置及其制作方法对出光视角 emax 越大的背光模块改进效果越好, 从而可以不使用或减少使用光学 膜片的组合对背光模块偏离的光场方向进行补偿, 大大降低了背 光模块的制作成本。 由上述可知, 本发明的液晶显示装置及其制作方法通过改变 显示面板和背光模块的相对位置, 减缓了背光模块光场不对称的 现象, 提升了液晶显示装置的显示品质, 同时设置成本低, 很好 的解决了现有采用侧向式入光的背光模块的液晶显示装置由于光 场不对称现象导致显示品质较差的技术问题。
综上所述, 虽然本发明已以优选实施例揭露如上, 但上述优 选实施例并非用以限制本发明, 本领域的普通技术人员, 在不脱 离本发明的精神和范围内, 均可作各种更动与润饰, 因此本发明 的保护范围以权利要求界定的范围为准。

Claims

权 利 要 求
1、 一种液晶显示装置, 其中包括背光模块以及显示面板, 所 述背光模块的出光面的法线方向与所述显示面板的出光面的法线 方向之间具有夹角 epb ;
所述夹角 epb的取值根据出光视角 emax确定, 其中所述出光 视角 emax 为所述背光模块的出光面的最大光强对应的出光方向 与所述背光模块的出光面的法线方向的夹角;
所述背光模块的出光面的最大光强对应的出光方向与所述显 示面板的出光面的法线方向的夹角 emp= ( emax-epb ) ;
所述夹角 epb不大于所述出光视角 emax
2、 根据权利要求 1所述的液晶显示装置, 其中所述夹角 epb 等于所述出光视角 emax
3、 根据权利要求 1所述的液晶显示装置, 其中所述夹角 epb 的取值根据所述出光视角 emax和所述背光模块的厚度确定。
4、 根据权利要求 1所述的液晶显示装置, 其中所述背光模块 还包括设置在所述背光模块的出光面上的光学膜片, 所述光学膜 片包括扩散片、 反射式增亮膜、 棱柱膜、 微透镜光学膜片和 /或带 圆角的棱镜光学膜片。
5、 一种液晶显示装置, 其中包括背光模块以及显示面板, 所 述背光模块的出光面的法线方向与所述显示面板的出光面的法线 方向之间具有夹角 epb
6、 根据权利要求 5所述的液晶显示装置, 其中所述夹角 epb 的取值根据出光视角 emax确定, 其中所述出光视角 emax为所述 背光模块的出光面的最大光强对应的出光方向与所述背光 出光面的法线方向的夹角。
7、 根据权利要求 6所述的液晶显示装置, 其中所述背
的出光面的最大光强对应的出光方向与所述显示面板的出
法线方向的夹角 emp= ( emax-ep b ) o
8、 根据权利要求 6所述的液晶显示装置, 其中所述^ 小于所述出光视角 emax
9、 根据权利要求 6所述的液晶显示装置, 其中所述^ 等于所述出光视角 emax
ι ο、根据权利要求 6所述的液晶显示装置, 其中所述^ 的取值根据所述出光视角 emax和所述背光模块的厚度确定。
1 1、 根据权利要求 5所述的液晶显示装置, 其中所述背光模 块还包括设置在所述背光模块的出光面上的光学膜片, 所述光学 膜片包括扩散片、 反射式增亮膜、 棱柱膜、 微透镜光学膜片和 / 或带圆角的棱镜光学膜片。
12、 一种液晶显示装置的制作方法, 其中所述液晶显示装置 包括背光模块以及显示面板, 所述液晶显示装置的制作方法包括 步骤:
A、 根据出光视角 emax确定所述背光模块的出光面的法线方 向与所述显示面板的出光面的法线方向的夹角 Θρ¾ ; 其中所述出 光视角 emax 为所述背光模块的出光面的最大光强对应的出光方 向与所述背光模块的出光面的法线方向的夹角。
13、 根据权利要求 12所述的液晶显示装置的制作方法, 其中 A l、 根据所述背光模块的出光面的各出光方向的光强, 确定 所述出光视角 emax
14、 根据权利要求 12所述的液晶显示装置的制作方法, 其中 所述背光模块的出光面的最大光强对应的出光方向与所述显示面 板的出光面的法线方向的夹角 emp= ( emax-epb )。
15、 根据权利要求 12所述的液晶显示装置的制作方法, 其中 所述夹角 epb小于所述出光视角 emax
16、 根据权利要求 12所述的液晶显示装置的制作方法, 其中 所述夹角 epb等于所述出光视角 emax
17、 根据权利要求 12所述的液晶显示装置的制作方法, 其中 根据所述出光视角 emax 和所述背光模块的厚度确定所述夹角
6p b °
18、 根据权利要求 12所述的液晶显示装置的制作方法, 其中 所述液晶显示装置的制作方法还包括步骤:
在所述背光模块的出光面上设置光学膜片;
所述光学膜片包括扩散片、 反射式增亮膜、 棱柱膜、 微透镜 光学膜片和 /或带圆角的棱镜光学膜片。
PCT/CN2012/074907 2012-03-31 2012-04-28 液晶显示装置及其制作方法 WO2013143201A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/577,909 US9140932B2 (en) 2012-03-31 2012-04-28 Liquid crystal display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100916540A CN102621739A (zh) 2012-03-31 2012-03-31 液晶显示装置及其制作方法
CN201210091654.0 2012-03-31

Publications (1)

Publication Number Publication Date
WO2013143201A1 true WO2013143201A1 (zh) 2013-10-03

Family

ID=46561744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074907 WO2013143201A1 (zh) 2012-03-31 2012-04-28 液晶显示装置及其制作方法

Country Status (3)

Country Link
US (1) US9140932B2 (zh)
CN (1) CN102621739A (zh)
WO (1) WO2013143201A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181380B2 (ja) * 2013-02-13 2017-08-16 積水樹脂株式会社 発光表示装置
KR102076992B1 (ko) * 2013-09-03 2020-02-13 엘지디스플레이 주식회사 백라이트 유닛 및 이를 이용한 액정표시장치
CN107085307B (zh) * 2017-06-23 2020-01-31 厦门天马微电子有限公司 一种显示装置
CN108681165B (zh) * 2018-03-29 2021-04-02 厦门天马微电子有限公司 显示装置
CN109298572B (zh) * 2018-10-17 2022-05-24 京东方科技集团股份有限公司 角度调节器及其制造方法、显示装置及角度调节方法
CN109557723A (zh) * 2018-12-28 2019-04-02 上海天马微电子有限公司 一种液晶显示装置
CN111583876B (zh) * 2020-05-29 2021-06-01 深圳市华星光电半导体显示技术有限公司 背光模组制备方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356582A (zh) * 2000-12-01 2002-07-03 三菱电机株式会社 反射型液晶显示装置
CN2613768Y (zh) * 2003-04-21 2004-04-28 鸿富锦精密工业(深圳)有限公司 导光板和面光源装置
CN2627535Y (zh) * 2003-05-14 2004-07-21 统宝光电股份有限公司 发光装置的结构
KR20080048622A (ko) * 2006-11-29 2008-06-03 삼성전자주식회사 액정 표시 장치
CN102003641A (zh) * 2009-08-26 2011-04-06 Lg伊诺特有限公司 背光单元和使用该背光单元的显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169311A (ja) * 1993-12-17 1995-07-04 Enplas Corp 光散乱導光光源装置及び液晶表示装置
JP2004206916A (ja) * 2002-12-24 2004-07-22 Yoshihiro Sakai 面状光源
TW200933204A (en) * 2008-01-17 2009-08-01 Coretronic Corp Optical film applied to a side-emitting backlight module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356582A (zh) * 2000-12-01 2002-07-03 三菱电机株式会社 反射型液晶显示装置
CN2613768Y (zh) * 2003-04-21 2004-04-28 鸿富锦精密工业(深圳)有限公司 导光板和面光源装置
CN2627535Y (zh) * 2003-05-14 2004-07-21 统宝光电股份有限公司 发光装置的结构
KR20080048622A (ko) * 2006-11-29 2008-06-03 삼성전자주식회사 액정 표시 장치
CN102003641A (zh) * 2009-08-26 2011-04-06 Lg伊诺特有限公司 背光单元和使用该背光单元的显示设备

Also Published As

Publication number Publication date
US9140932B2 (en) 2015-09-22
CN102621739A (zh) 2012-08-01
US20140176865A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
WO2013143201A1 (zh) 液晶显示装置及其制作方法
JP6276418B2 (ja) 光学フィルム組の取付構造
WO2015135228A1 (zh) 背光模组及用该背光模组的液晶显示装置
JP2009063701A (ja) 表示装置
WO2015103801A1 (zh) 背光模组及用该背光模组的液晶显示装置
WO2014015541A1 (zh) 背光模组
WO2012126199A1 (zh) 背光模组及液晶显示装置
KR100945392B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
WO2015180122A1 (zh) 背光模组以及液晶显示器
TWI459088B (zh) 具導光板稜柱結構的背光模組及其製造方法
US20100283941A1 (en) Liquid crystal display panel, liquid crystal display device and manufacturing method of liquid crystal display panel
WO2016183902A1 (zh) 背光模组及液晶显示装置
US8310623B2 (en) Optical sheet and liquid crystal display including the same
WO2020124891A1 (zh) 背光模组及显示装置
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
CN106054469B (zh) 超薄型液晶显示器
WO2013149410A1 (zh) 液晶显示装置
WO2020062717A1 (zh) 一种显示装置
WO2017020364A1 (zh) 用于液晶显示器的背光模块
TWI448787B (zh) 背光模組
TW201321852A (zh) 液晶顯示裝置
WO2015143735A1 (zh) 液晶显示面板
CN102230591B (zh) 背光模组
WO2021088226A1 (zh) 一种背光模组及显示装置
US8405801B2 (en) Reflective liquid crystal panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13577909

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872814

Country of ref document: EP

Kind code of ref document: A1