WO2013143029A1 - 有机气体透过率测试装置 - Google Patents
有机气体透过率测试装置 Download PDFInfo
- Publication number
- WO2013143029A1 WO2013143029A1 PCT/CN2012/000445 CN2012000445W WO2013143029A1 WO 2013143029 A1 WO2013143029 A1 WO 2013143029A1 CN 2012000445 W CN2012000445 W CN 2012000445W WO 2013143029 A1 WO2013143029 A1 WO 2013143029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- hole
- station communication
- temperature control
- pipeline
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 63
- 230000005540 biological transmission Effects 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 59
- 238000005070 sampling Methods 0.000 claims abstract description 58
- 239000012159 carrier gas Substances 0.000 claims abstract description 33
- 230000035699 permeability Effects 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims description 103
- 239000002184 metal Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims 3
- 238000009413 insulation Methods 0.000 claims 1
- 230000008595 infiltration Effects 0.000 abstract description 11
- 238000001764 infiltration Methods 0.000 abstract description 11
- 239000012528 membrane Substances 0.000 abstract description 2
- 239000012466 permeate Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/082—Investigating permeability by forcing a fluid through a sample
- G01N15/0826—Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N2015/086—Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules
Definitions
- the invention relates to the field of barrier detection technology, and in particular to a test device for detecting the permeability of an organic gas of a material. Background technique
- the organic gas permeability test is a high-end technology in the barrier test.
- the permeation cell is the main component of the gas permeability test device, and the more critical one is the lower chamber of the permeation cell.
- the test principle of the organic gas permeability of the film is to place the diaphragm on the lower chamber of the permeation cell, and then install the upper chamber of the permeation cell above the diaphragm, and the lower chamber of the permeation cell and the upper chamber of the permeation cell constitute the entire permeation cell.
- test gas on one side of the diaphragm (the upper chamber of the permeate cell), vacuum on the other side (the lower chamber of the permeate chamber), and then introduce a test gas of a certain pressure into the upper chamber of the permeation cell.
- the test gas on the side has a certain pressure difference so that the test gas can penetrate from the high pressure side of the diaphragm to the low pressure side.
- the gas permeating through the membrane is collected by a metering tube disposed in the lower chamber of the permeation cell, and then the collected gas is sent to the detector for analysis by the carrier gas, so that the organic gas permeability of the film can be calculated from the analysis data.
- the lower chamber of the infiltration tank is the key to the accuracy of the test data.
- the main influencing factors are the pipeline connection and the tightness of the pipeline itself, the volume of the pipeline, and whether the pipeline layout is reasonable.
- the prior art permeation cell lower chamber tube is prone to poor sealing performance and leakage, and the gas entering the lower chamber tube due to leakage may affect the detection data, which becomes the biggest interference factor affecting the test; the volume of the pipeline is required
- One factor involved in the calculation due to the unreasonable layout of the pipeline, changes the volume of the pipeline that is ultimately used for calculation.
- the calculation test data is performed under the premise that the default sampling amount is consistent, so the accuracy of the test gas collected by the measuring tube can directly affect the accuracy, repeatability and reproducibility of the test data, especially It is usually tested that the lower chamber is still in a higher vacuum state when sampling.
- the object of the present invention is to solve the problem that the pipeline connection existing in the prior art and the pipeline itself are poor in sealing and easy to leak, and the pipeline layout is unreasonable, which causes the volume change of the pipeline to affect the accuracy, repeatability and reproducibility of the test data.
- the invention provides an organic gas permeability test device; the device integrated structure block has small volume, compact structure, simple structure, clear principle, convenient application, accurate quantitative advantage, and solves the gas permeability of the test film. When the sampling amount is inaccurate, the sampling is difficult, and the injection accuracy is poor.
- An organic gas permeability testing device comprising a quantitative sampling device, a permeation cell, and a detecting device, wherein the quantitative sampling device comprises a valve I, a valve IV, a multi-station communication wide, a dosing device, and a connecting portion between the portions thereof And quantitative sampling a connecting line between the device and the detecting device;
- the permeation cell is divided into an upper chamber of the permeation cell and a lower chamber of the permeation cell, wherein the lower chamber of the permeation cell comprises a structural block, a wide, a through hole, and the percolation chamber passes through the quantitative sampling device to infiltrate the pool and detect
- the device is connected, and the structural block is provided with a permeating air hole, a sampling hole, a vacuum pump air hole and a carrier gas input hole; and the permeation pool is connected by the quantitative sampling device and the detecting device.
- the permeating air hole is connected to the valve I through the through hole IV, and the sampling hole is connected to the through hole I through the through hole III, the through hole I is respectively connected with the wide I and the valve II, and the vacuum pump air hole passes through the through hole V and the valve II Connected, the carrier gas input hole is connected to the valve III through the through hole VI, the wide III is connected to the through hole II, the through hole II is connected to the through hole I, and the through hole I is connected to the valve I and the valve II, respectively.
- the permeating air hole, the sampling hole, the vacuum pump air hole, and the carrier gas input hole are disposed on the same side of the structural block, or are respectively disposed on different sides, or any two are on the same side and the others are respectively on different sides, or Any three are on the same side and the rest are on different sides.
- the structural block is a metal block, a plastic block or a ceramic block.
- the number of ports of the multi-station communication valve is at least six.
- a metering device temperature control device is disposed outside the metering device.
- the multi-station communication valve is provided with a multi-station communication valve temperature control device.
- At least one connecting pipe between the quantitative device and the multi-station communication valve, the connecting pipe between the multi-station communication valve and the valve IV, and the connecting pipe between the multi-station communication valve and the detecting device There is a pipeline temperature control device.
- the quantitative device temperature control device, the multi-station communication valve temperature control device and the pipeline temperature control device comprise a liquid temperature control device, or an air temperature control device, or a metal heating tube, or a metal heating wire and a heat preservation device.
- the invention comprises three parts: a quantitative sampling device, a permeation tank and a detecting device, wherein the permeation pool is divided into two parts: an upper chamber of the permeation tank and a lower chamber of the permeation tank, and the lower chamber of the permeation tank comprises a structural block, a valve and a through hole.
- the permeation cell and the detection device are connected by a quantitative sampling device.
- the structural block is provided with a permeating air hole, a sampling hole, a vacuum pump air hole and a carrier gas input hole.
- the permeate air hole is connected to the valve I through the through hole IV; the vacuum pump air hole is connected to the wide II through the through hole V; the carrier gas input hole is connected to the valve III through the through hole VI; the valve III is connected with the through hole II, the through hole II and the through hole I connection; the sampling hole is connected to the through hole I through the through hole III, and the through hole I is connected to the valve II and the valve I, respectively.
- the quantitative sampling device includes a valve I, a valve IV, a multi-station communication valve, a dosing device, and a connecting portion between the portions thereof, and a connecting line between the quantitative sampling device and the detecting device.
- the valve I is installed on the lower cavity structure block of the permeation tank, and is connected to the multi-station through the pipeline I; the multi-station communication valve is connected to the quantitative device through the pipeline II and the pipeline V, and also through the pipelines III and 2 #carrier gas source connection, connected to the detection device through the pipeline IV, and connected to the wide IV through the pipeline VI.
- the upper chamber of the permeate cell is connected to the pressure sensor through the line VIII; the vacuum pump is connected through the line IX, the valve VII is arranged on the line IX; the test gas is passed through the line VII and the test gas
- the source is connected, and the valve V is provided on the pipeline VII; the pipeline X is evacuated, and the pipeline X is provided with a valve VI.
- the multi-station communication valve has at least two working states. By adjusting the working state of the multi-station communication valve, the internal communication pipe of the multi-station communication valve can be changed to realize the change of the gas path.
- valve I, valve II, valve V, valve VI, valve VII are closed, valve III, valve IV is open, and the multi-position communication valve is in the working state of 1#.
- the carrier gas of 1# carrier gas source passes through pipeline XII, carrier gas input hole, through hole VI, valve I II, through hole II, through hole I, through hole III, sampling hole, pipeline I, multi-station Connecting valve port I, multi-station communication valve port II, pipe II, dosing device, pipe V, multi-station connecting wide pipe port V, multi-station communication valve port VI, pipe VI, valve IV , complete the purge. Then, the permeation tank and the quantitative sampling device are evacuated.
- valve I and the valve II are opened, the valve III and the valve IV are closed, and the multi-position communication valve is in the working state of 1#, and the vacuum pump passes through the pipeline XI in sequence.
- vacuum pump vent through hole V, valve II, through hole I, valve I, through hole IV, osmotic air hole for the lower chamber of the permeation cell, connected through hole (including through hole IV, through hole I, through hole II, through hole III, through hole v), valve (including valve I, valve ⁇ ) vacuum, and through the pipeline XI, vacuum pump vent, through hole V, valve II, through hole III, ⁇ sample hole, pipe I, multiplex Bit communication valve port I, multi-station communication valve port II, pipe II, dosing device, pipe V, multi-station connecting wide pipe port V, multi-station communication valve port VI, pipe VI completed The vacuum of the quantitative sampling device.
- valve and valve VI When the upper chamber of the permeation tank is evacuated, the valve and valve VI are closed, the valve VII is opened, and the vacuum pump sequentially passes through the valve VII and the pipeline IX to evacuate the upper chamber of the permeation tank.
- the valve I, the valve II, the wide VII open, the valve III, the valve IV, the valve V, the valve VI are closed, and the multi-station communication valve is in the 1# working state.
- the internal pressure is applied to the specified vacuum pressure and the vacuum is continued for a period of time before the penetration test is initiated.
- the valve V is opened, the width I, the valve II, the valve III, the valve IV, the wide VI, the valve VI I off, the multi-position communication valve is in the 1# working state, and the test gas source is supplied to the upper chamber of the permeation pool.
- Test gas with a certain pressure.
- the pressure value in the upper chamber of the permeation cell can be obtained by a pressure sensor, so that a certain pressure difference is formed on both sides of the sample, and under the action of the pressure difference, the test gas penetrates into the lower cavity of the permeation pool through the sample.
- valve I When testing, valve I open, valve II, wide III, valve IV, valve ⁇ , valve VI, valve VII off, multi-station connection is in 1# working state, permeate gas through permeation hole, through hole IV, valve I , through hole I, through hole III, sample hole, pipe I, multi-station communication valve port I, multi-station communication valve port II, pipe II, dosing device, pipe V, multi-station connection
- the pipe mouth V, the multi-position communication valve port VI, the pipe VI, and the valve IV are cut off.
- Valve I, valve II, valve IV, valve V, valve VI, valve VII are closed, valve III is open, multi-station communication valve is in 1# working state, 1# carrier gas source is loaded.
- Gas passes through line XII, carrier gas input hole, through hole VI, valve III, through hole II, through hole I, through hole III, sampling hole, pipe I, multi-station communication valve port I, multi-station Connected valve port II, pipe II, dosing device, pipe V, multi-station communication valve port V, multi-station communication valve port VI, pipe VI, complete pressure balance.
- valve I, valve II, valve III, wide IV, valve, valve VI, valve VII off, multi-station communication valve is in 2# working state, 2# carrier gas source
- the carrier gas passes through the pipeline III in turn.
- Station communication valve port III multi-station communication valve port II, pipe II, dosing device, pipe V, multi-station communication valve tube ⁇ ⁇ , multi-station communication valve port IV, pipe IV,
- the sample device in the dosing device and the connected pipe is carried into the detecting device for testing.
- valve I, valve IV, valve VI open, valve II, valve III, pf3 ⁇ 4 V, valve VII off, multi-station communication valve is in 1# working state, so that the permeation tank and the corresponding low-pressure pipeline communicate with the outside world. .
- the present invention also allows temperature control of portions of the quantitative sampling device to achieve good testing of certain adherent gases.
- the multi-station communication valve, the dosing device, the pipe II and the pipe V connecting the multi-station connecting wide and quantitative device, the pipe connecting the multi-station communication valve and the detecting device IV, connecting the multi-station communication valve and Line VI of valve IV is temperature controlled.
- At least one of the multi-station communication valve and the dosing device has an independent temperature control device, and at least one of the pipeline II, the pipeline IV, the pipeline V, and the pipeline VI is provided with a pipeline temperature control device.
- the multi-station communication valve is controlled by the temperature control device of the multi-station communication valve, and the quantitative device is controlled by the temperature control device of the quantitative device.
- Each pipeline is controlled by its own pipeline temperature control device, and the pipeline temperature control device I and the pipeline temperature control device are respectively connected to the pipeline II and the pipeline V of the multi-station communication valve and the quantitative device.
- the pipeline temperature control device III is provided outside the pipeline IV connecting the multi-station connection width and the detection device
- the pipeline temperature control device IV is provided outside the pipeline VI connecting the multi-station communication valve and the wide IV.
- the multi-station communication valve temperature control device, the quantitative device temperature control device, the pipeline temperature control device I, the pipeline temperature control device II, the pipeline temperature control device III, and the pipeline temperature control device IV may be the same set of temperature control devices. It can also be a separate temperature control device.
- the pipeline is extremely integrated, which can significantly reduce the size of the equipment.
- Pipeline sealing and dimensional stability are enhanced to reduce interference due to piping leakage and installation.
- Temperature control of the connecting lines between the key components of each test can effectively solve the adsorption and condensation caused by the uncontrolled temperature difference of the pipeline temperature.
- Figure 1 is a schematic structural view of the present invention
- FIG. 2 is a schematic structural view of an embodiment of a structural block in the present invention.
- Figure 3 is a schematic view showing the structure of the structural block of the present invention after the valve is removed;
- Figure 4 is a cross-sectional view taken along line A- ⁇ of Figure 3;
- Figure 5 is a schematic view showing the structure of the 1# working state of the multi-station communication valve of the present invention
- FIG. 6 is a schematic structural view of a 2# working state of a multi-station communication valve according to the present invention.
- Figure 7 is a schematic structural view of another embodiment of the present invention.
- Test gas source 2. Valve V, 3. Line VII, 4. Line VIII, 5. Pressure sensor, 6. Line IX, 7. Line X, 8. Valve VI, 9. Valve VII, 10. Vacuum pump, 11. Permeate chamber upper chamber, 12. 1# carrier gas source, 13. Through hole VI, 14. Valve III, 15. Through hole ⁇ , 16. Structural block, 17. Through hole III, 18. Piping II, 19. Dosing device, 20. Line V, 21. Line VI, 22. Valve IV, 23. Through Hole IV, 24. Valve I, 25. Through Hole I, 27. Valve II, 28. Through hole V, 29. Pipeline III, 30. Pipeline IV, 31. Detection device, 32. Multi-station communication valve, 33. Pipeline I, 34.
- An organic gas permeability testing device in combination with FIG. 1 to FIG. 6, the invention includes a quantitative sampling device, a permeation cell, and a detecting device 31, wherein the permeation cell is divided into a permeation cell upper chamber 11 and a permeation cell lower chamber by a sample 50.
- the lower chamber of the permeation cell comprises a structural block 16, a valve and a through hole, and the permeation cell and the detecting device 31 are connected by a quantitative sampling device.
- the structural block 16 is provided with a permeating air hole 51, a sampling hole 52, a vacuum pump air hole 53 and a carrier gas input hole 54.
- the permeating air hole 51 is connected to the valve 124 through the through hole IV23; the vacuum pump air hole 53 is connected to the valve 1127 through the through hole V28; the carrier gas input hole 54 is connected to the valve port 14 through the through hole VI13; the valve III14 is connected with the through hole 1115, the through hole 1115
- the through hole 125 is connected; the sampling hole 52 is connected to the through hole 125 through the through hole ; 17; the through hole 125 is connected to the valve 1127 and the width 124, respectively.
- the quantitative sampling device includes a valve 124, a valve IV22, a multi-station communication valve 32, a dosing device 19, and a connecting portion between the portions thereof, and a connecting line between the quantitative sampling device and the detecting device 31.
- the valve 124 is installed on the lower chamber structure block 16 of the permeation tank, and is connected to the multi-station communication valve 32 through the pipeline 133; the multi-station communication valve 32 is connected to the dosing device 19 through the pipe 1118 and the pipe V20, and also passes through the pipe.
- the road III29 is connected to the 2 ft carrier gas source 34, connected to the detecting device 31 via the line IV30, and connected to the valve IV22 via the line VI21.
- the upper chamber 11 of the permeation tank is connected to the pressure sensor 5 through a line VIII4; the vacuum pump 10 is connected through a line 1X6, a valve VII9 is arranged on the line 1X6, and the test gas source 1 is connected through a line VII3.
- a valve V2 is arranged on the pipe VII3; the pipe X7 is emptied, and the pipe VI8 is provided with a valve VI8.
- the multi-station communication width 32 has at least two working states. By adjusting the working state of the multi-station communication valve 32, the internal communication pipe of the multi-station communication valve 32 can be changed to realize the change of the air path.
- the lower chamber of the permeation tank and the quantitative sampling device are first purged, and the valve 124, the valve 1127, the valve V2, the valve VI8, the valve VII9 are closed, the valve 11114, the valve IV22 are opened, and the multi-station communication width 32 is in the lft working state.
- the carrier gas of the carrier gas source 12 passes through the pipeline ⁇ 56, the carrier gas input hole 54, the through hole VI13, the valve 11114, the through hole 1115, the through hole 125, the through hole 11117, the sampling hole 52, the pipeline 133, and more.
- the valve V2 When the upper chamber 11 of the permeation tank is evacuated, the valve V2, the width VI8 is closed, the valve VII9 is opened, and the vacuum pump 10 sequentially evacuates the upper chamber 11 of the permeation tank through the wide VII9 and the line 1X6.
- the valve 124, the valve 1127, the valve VII9 are opened, the valve 11114, the valve IV22, the valve V2, the valve VI8 are closed, and the multi-position communication valve 32 is in the 1# working state.
- the internal pressure is applied to the specified vacuum pressure and the vacuum is continued for a period of time before the penetration test is initiated.
- the valve V2 is opened, the valve 124, the valve 1127, the valve 11114, the valve IV22, the valve VI8, the valve VII9 are closed, and the multi-station communication valve 32 is in the 1# working state, and the test gas source 1 is directed to the upper chamber of the permeation tank.
- 11 provides a test gas with a certain pressure.
- the pressure value in the upper chamber 11 of the permeation cell can be obtained by the pressure sensor 5, so that a certain pressure difference is formed on both sides of the sample, and under the action of the pressure difference, the test gas permeates through the sample 50 into the lower chamber of the permeation cell.
- the valve 124 When the test is performed, the valve 124 is opened, the valve 1127, the wide 11114, the wide IV22, the valve V2, the valve VI8, the wide VII9 off, the multi-position communication valve 32 is in the ltt working state, the permeating gas passes through the permeating air hole 51, the through hole IV23, the valve 124, through hole 125, through hole 11117, sampling hole 52, pipeline 133, multi-station communication valve nozzle 141, multi-station communication valve nozzle 1142, pipeline 1118, dosing device 19, pipeline V20, multiplexing The position of the communication valve port V45, the multi-position communication valve port VI46, the line VI21, and the valve IV22 are cut off. After the end of the infiltration process, the pressure is balanced.
- Valve 124, valve 1127, valve IV22, valve V2, valve VI8, valve VII9 are closed, valve port 14 is open, multi-station communication valve 32 is in 1# working state, 1# carrier gas source 12
- the carrier gas passes through the pipeline XII56, the carrier gas input hole 54, the through hole VI13, the valve 11114, the through hole 1115, the through hole 125, the through hole 11117, the sampling hole 52, the pipeline 133, the multi-station connection Valve valve port 141, multi-station communication valve port 1142, pipeline 1118, dosing device 19, pipe V20, multi-station communication wide pipe port V45, multi-station communication valve port VI46, pipe VI21, completed Pressure balance.
- the valve 124, the valve 1127, the valve 11114, the valve IV22, the valve V2, the valve VI8, the valve VII9 are closed, the multi-position communication valve 32 is in the 2# working state, 2# carrier gas
- the carrier gas of the source 34 passes through the pipeline 1114, the multi-station communication valve nozzle 11143, the multi-station communication valve nozzle 1142, the pipeline 1118, the dosing device 19, the pipeline V20, the multi-station communication valve nozzle V45,
- the multi-station communication valve port IV44 and the pipe IV30 carry the sample gas in the dosing device 19 and the connected pipe to the detecting device 31 for testing.
- valve 124, m IV22 When the test is over, valve 124, m IV22.
- Valve VI8 is open, valve 1127, valve 11114, valve V2, valve VII9 is closed, multi-station communication valve 32 is in 1# working state, so that the permeation tank and the corresponding low pressure pipeline and the outside world The same.
- the permeating air hole 51, the sampling hole 52, the vacuum pump air hole 53, and the carrier gas input hole 54 are on the same side of the structural block 16; or are respectively distributed on different sides; or both are on the same side, and the others are on different sides respectively. Or any three on the same side and the rest on different sides.
- the structural block 16 is a metal block, a plastic block or a ceramic block.
- the multi-station communication valve 32 has at least six nozzles.
- An organic gas transmittance test device in combination with FIG. 2-4, FIG. 7-11, in this embodiment, a temperature test is performed on a part of the structure of the quantitative sampling device to achieve a good test for a certain adhesive gas.
- the multi-station communication valve 32 is temperature-controlled with the line VI21 of the valve IV22.
- At least one of the multi-station communication valve 32 and the dosing device 19 has an independent temperature control device, and at least one of the pipeline 1118, the pipeline IV30, the pipeline V20, and the pipeline VI21 is provided with a pipeline temperature control. Device.
- the multi-station communication valve 32 is temperature controlled by the multi-station communication valve temperature control device 66
- the dosing device 19 is temperature controlled by the dosing device temperature control device 65.
- Each of the f-channels is temperature-controlled by a respective pipeline temperature control device, and the pipeline temperature control device 161 and the pipeline temperature are respectively provided outside the pipeline 1118 and the pipeline V20 connecting the multi-station communication valve 32 and the dosing device 19.
- the control device 1162 is provided with a pipeline temperature control device 11164 outside the pipeline IV30 connecting the multi-station connection width 32 and the detection device 31, and a pipeline is provided outside the pipeline VI21 connecting the multi-station communication valve 32 and the valve IV22.
- Temperature control device IV63 Multi-station communication valve temperature control device 66, dosing device temperature control device 65, pipeline temperature control device 161, pipeline temperature control device 1162, pipeline temperature control device 11164, pipeline temperature control device IV63 can be the same set of temperature control The device may also be a separate temperature control device. For other contents, refer to Embodiment 1, and details are not described herein again. By properly setting the temperature at these temperature points (the specific setting temperature can be changed depending on the test gas), the adsorption and condensation problems of the adhesive gas flowing in the pipeline can be better solved.
- An organic gas transmittance test device combined with FIG. 2-4, FIG. 7-11, in this embodiment, multi-station communication valve temperature control
- the device 66, the quantitative device temperature control device 65, and the various pipeline temperature control devices can be implemented by using various methods such as a liquid temperature control device, an air temperature control device, a metal heating tube, a metal heating wire, and an insulation material and a heat preservation device.
- a liquid temperature control device such as a liquid temperature control device, an air temperature control device, a metal heating tube, a metal heating wire, and an insulation material and a heat preservation device.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
一种有机气体透过率测试装置;它包括定量取样装置,渗透池,检测装置(31),所述定量取样装置包括阀I(24)、阀IV(22)、多工位连通阀(32)、定量装置(19)及它们间的各部分连接管路,以及定量取样装置与检测装置(31)间的连接管路;渗透池被样品分为渗透池上腔(11)与渗透池下腔,所述渗透池下腔包括结构块(16)、阀、通孔,渗透池下腔通过定量取样装置将渗透池和检测装置(31)连接起来,所述结构块(16)设有渗透气孔(51)、采样孔(52)、真空泵气孔(53)和载气输入孔(54);渗透池通过定量取样装置和检测装置(31)连接;结构简单,操作方便,解决了在测试薄膜气体渗透性能时由于样气压力问题导致的取样量不准、取样困难、进样精度差等问题。
Description
说明书 有机气体透过率测试装置 技术领域
本发明涉及阻隔性检测技术领域,尤其涉及一种检测材料的有机气体渗透性的测试装置。 背景技术
有机气体透过率测试属于阻隔性检测中的高端技术, 渗透池是气体透过率测试装置的主 要部件, 其中更为关键的是渗透池下腔。 薄膜有机气体透过率的测试原理是将膜片放置于渗 透池下腔上, 然后在膜片上方安装渗透池上腔, 渗透池下腔与渗透池上腔组成整个渗透池。 在膜片一侧 (渗透池上腔) 对试验气体施加一定的压力, 在其另一侧 (渗透池下腔) 使用真 空泵抽真空, 然后向渗透池上腔通入一定压力的测试气体, 这样试样两侧的测试气体就具有 一定的压力差使得测试气体能从膜片的高压侧渗入低压侧。 通过设置在渗透池下腔的计量管 收集渗透过膜片的气体, 然后再通过载流气体将收集到的气体送入检测器进行分析, 这样就 可以由分析数据计算薄膜的有机气体透过率。
渗透池下腔是影响到测试数据是否准确的关键, 主要影响因素有管路连接以及管路自身 的密封性、 管路的体积、 以及管路布局是否合理。 现有技术的渗透池下腔管路容易出现密封 性不好、 导致出现泄漏, 由于泄漏而进入下腔管路中的气体会影响检测数据, 成为影响试验 的最大干扰因素; 管路的体积是需要参与计算的一个因素, 由于管路布局不合理, 给最终用 于计算的管路体积带来变化。 而且在这种测试方法中, 计算测试数据是在默认采样量一致的 前提下进行的, 因此用计量管收集的测试气体量精确度能直接影响测试数据的准确性、 重复 性和再现性, 尤其是通常在进行采样时测试下腔仍处于较高的真空状态。 对于目前的气体渗 透分析装置测试结构, 这几个问题相当突出。
发明内容
本发明的目的就是为解决现有技术存在的管路连接以及管路自身的密封性差、容易泄漏, 管路布局不合理造成管路的体积变化而影响测试数据的准确性、 重复性和再现性的问题; 提 供一种有机气体透过率测试装置; 该装置管路集成结构块体积小、 结构紧凑, 具有结构简单, 原理清晰, 应用方便, 定量准确的优点, 解决了在测试薄膜气体渗透性能时取样量不准、 取 样困难、 进样精度差等问题。
为实现上述目的, 本发明采用下述技术方案:
一种有机气体透过率测试装置, 包括定量取样装置, 渗透池, 检测装置, 所述定量取样 装置包括阀 I、 阀 IV、 多工位连通阔、 定量装置及它们间的各部分连接管路, 以及定量取样
装置与检测装置间的连接管路; 渗透池被样品分为渗透池上腔与渗透池下腔, 所述渗透池下 腔包括结构块、 阔、 通孔, 渗透池下腔通过定量取样装置将渗透池和检测装置连接起来, 所 述结构块设有渗透气孔、 采样孔、 真空泵气孔和载气输入孔; 渗透池通过定量取样装置和检 测装置连接。
所述渗透气孔通过通孔 IV与阀 I连接, 所述采样孔通过通孔 III与通孔 I连接, 通孔 I 分别与阔 I和阀 II连接, 所述真空泵气孔通过通孔 V与阀 II连接, 所述载气输入孔通过通 孔 VI与阀 III连接, 所述阔 III与通孔 II连接, 通孔 II与通孔 I连接, 通孔 I分别与阀 I 和阀 II连接。
所述渗透气孔、 采样孔、 真空泵气孔、 载气输入孔设在结构块的同一侧面上, 或分别设 在不同的侧面上, 或任意两者在同一侧面而其余分别在不同的侧面上, 或任意三者在同一侧 面而其余在不同的侧面上。
所述的结构块为金属块、 塑料块或陶瓷块。
所述多工位连通阀管口数量至少为六个。
所述定量装置外部设有定量装置温控装置。
所述多工位连通阀外部设有多工位连通阀温控装置。
所述定量装置与多工位连通阀间的连接管路、多工位连通阀与阀 IV间的连接管路以及多 工位连通阀与检测装置间的连接管路中至少有一处连接管路上设有管路温控装置。
所述定量装置温控装置,多工位连通阀温控装置以及各管路温控装置包括液体温控装置, 或空气温控装置, 或金属加热管, 或金属加热丝以及保温装置。
本发明的工作原理: 本发明包括定量取样装置、 渗透池、 检测装置三部分, 其中渗透池 被样品分为渗透池上腔与渗透池下腔两部分, 渗透池下腔包括结构块、 阀、 通孔三部分, 通 过定量取样装置将渗透池和检测装置连接起来。 结构块设有渗透气孔、 采样孔、 真空泵气孔 和载气输入孔。其中渗透气孔通过通孔 IV与阀 I连接; 真空泵气孔通过通孔 V与阔 II连接; 载气输入孔通过通孔 VI与阀 III连接; 阀 III与通孔 II连接, 通孔 II与通孔 I连接; 采样 孔通过通孔 III与通孔 I连接, 通孔 I分别与阀 II和阀 I连接。 定量取样装置包括阀 I、 阀 IV、 多工位连通阀、 定量装置及它们间的各部分连接管路、 以及定量取样装置与检测装置间 的连接管路。 其中阀 I安装在渗透池下腔结构块上, 并通过管路 I与多工位连通阔连接; 多 工位连通阀通过管路 II、 管路 V与定量装置连接, 还通过管路 III与 2#载气气源连接, 通过 管路 IV与检测装置连接, 并通过管路 VI与阔 IV连接。 渗透池上腔通过管路 VIII与压力传 感器相连; 通过管路 IX与真空泵相连, 管路 IX上设有阀 VII; 通过管路 VII与测试气体气
源相连, 管路 VII上设有阀 V; 通过管路 X排空, 管路 X上设有阀 VI。 其中多工位连通阀至 少具有两种工作状态, 通过调整多工位连通阀的工作状态可以改变多工位连通阀的内部连通 管道, 实现气路的更改。
试验前, 先对渗透池下腔和定量取样装置进行吹扫, 阀 I、 阀 II、 阀 V、 阀 VI、 阀 VII 关, 阀 III、 阀 IV开, 多工位连通阀处于 1#工作状态, 1#载气气源的载气依次通过管路 XII、 载气输入孔、 通孔 VI、 阀 I II、 通孔 II、 通孔 I、 通孔 III、 采样孔、 管路 I、 多工位连通阀 管口 I、 多工位连通阀管口 II、 管路 II、 定量装置、 管路 V、 多工位连通阔管口 V、 多工位 连通阀管口 VI、 管路 VI、 阀 IV, 完成吹扫。 然后对渗透池和定量取样装置抽真空, 对渗透 池下腔抽真空时, 阀 I、 阀 II开, 阀 III、 阀 IV关, 多工位连通阀处于 1#工作状态, 真空 泵依次通过管路 XI、 真空泵气孔、 通孔 V、 阀 II、 通孔 I、 阀 I、 通孔 IV、 渗透气孔完成对 于渗透池下腔、 相连接通孔 (包括通孔 IV、 通孔 I、 通孔 II、 通孔 III、 通孔 v)、 阀 (包括 阀 I、 阀 Π ) 的抽真空, 并通过管路 XI、 真空泵气孔、 通孔 V、 阀 II、 通孔 III、 釆样孔、 管路 I、 多工位连通阀管口 I、 多工位连通阀管口 II、 管路 II、 定量装置、 管路 V、 多工位 连通阔管口 V、 多工位连通阀管口 VI、 管路 VI完成对定量取样装置的抽真空。 对渗透池上腔 抽真空时, 阀 、 阀 VI关, 阀 VII开, 真空泵依次通过阀 VII、 管路 IX完成对渗透池上腔抽 真空。 对渗透池整体和定量取样装置抽真空时, 阀 I、 阀 II、 阔 VII开, 阀 III、 阀 IV、 阀 V、 阀 VI关, 多工位连通阀处于 1#工作状态。 使其内部达到指定真空压力并持续抽真空一段 时间后再开始渗透试验。 抽真空结束后, 阀 V开, 阔 I、 阀 II、 阀 III、 阀 IV、 阔 VI、 阀 VI I 关,多工位连通阀处于 1#工作状态, 由测试气体气源向渗透池上腔提供一定压力的测试气体。 渗透池上腔内压力值可通过压力传感器获得, 使样品两侧形成一定的压力差, 在压力差的作 用下, 试验气体通过样品渗透进入渗透池下腔内。 进行测试时, 阀 I开, 阀 II、 阔 III、 阀 IV、 阀¥、 阀 VI、 阀 VII关, 多工位连通阔处于 1#工作状态, 渗透气体通过渗透气孔、 通孔 IV、 阀 I、 通孔 I、 通孔 III、 釆样孔、 管路 I、 多工位连通阀管口 I、 多工位连通阀管口 II、 管路 II、 定量装置、 管路 V、 多工位连通阅管口 V、 多工位连通阀管口 VI、 管路 VI, 至阀 IV 截止。 渗透过程结束后进行压力平衡, 阀 I、 阀 II、 阀 IV、 阀V、 阀 VI、 阀 VII关, 阀 III 开, 多工位连通阀处于 1#工作状态, 1#载气气源的载气依次通过管路 XII、 载气输入孔、 通 孔 VI、 阀 III、 通孔 II、 通孔 I、 通孔 III、 采样孔、 管路 I、 多工位连通阀管口 I、 多工位 连通阀管口 II、 管路 II、 定量装置、 管路 V、 多工位连通阀管口 V、 多工位连通阀管口 VI、 管路 VI, 完成压力平衡。 当对样气进行自动定量进样时, 阀 I、 阀 II、 阀 III、 阔 IV、 阀 、 阀 VI、 阀 VII关, 多工位连通阀处于 2#工作状态, 2#载气气源的载气依次通过管路 III、 多
工位连通阀管口 III、 多工位连通阀管口 II、 管路 II、 定量装置、 管路 V、 多工位连通阀管 π ν、 多工位连通阀管口 IV、 管路 IV, 将定量装置及相连管路内的样气携带至检测装置中进 行测试。 当测试结束后, 阀 I、 阀 IV、 阀 VI开, 阀 II、 阀 III、 pf¾ V、 阀 VII关, 多工位连 通阀处于 1#工作状态, 使渗透池及相应低压管路与外界相通。
本发明还可对定量取样装置中的部分结构进行控温, 以实现对有一定附着性气体的良好 测试。 分别对多工位连通阀、 定量装置、 连接多工位连通阔与定量装置的管路 II和管路 V、 连接多工位连通阀与检测装置的管路 IV、 连接多工位连通阀与阀 IV的管路 VI进行控温。 所 述的多工位连通阀、 定量装置中至少一处带有独立的温控装置, 管路 II、 管路 IV、 管路 V、 管路 VI中至少一处设有管路温控装置。其中多工位连通阀由多工位连通阀温控装置进行温度 控制, 定量装置由定量装置温控装置进行温度控制。 各部管路分别采用各自的管路温控装置 进行温度控制, 连接多工位连通阀与定量装置的管路 II、 管路 V的外部分别设有管路温控装 置 I、 管路温控装置 II, 连接多工位连通阔与检测装置的管路 IV的外部设有管路温控装置 III, 连接多工位连通阀与阔 IV的管路 VI的外部设有管路温控装置 IV。 多工位连通阀温控 装置、 定量装置温控装置、 管路温控装置 I、 管路温控装置 II、 管路温控装置 III、 管路温 控装置 IV可以是同一套温控装置, 也可以是各自独立的温控装置。通过合理设置这些温度点 的温度(具体设置温度可根据测试气体的不同而更改), 能够更好地解决附着性气体在管路中 流动时的吸附与冷凝问题。
本发明的优点为:
1. 管路集成度极高, 能显著缩小设备体积。
2. 实现样气的准确自动采集及进样, 提高测试便利性。
3. 精确采样步骤, 降低人工操作误差, 提高测试精度。
4. 管路密封性以及尺寸稳定性增强, 可有效降低由于管路泄漏和安装等因素带来的干 扰。
5. 对各测试关键部件间的连接管路进行控温,可以有效解决由于管路温度不可控产生温 差后所带来的吸附和冷凝。
附图说明:
图 1为本发明结构示意图;
图 2是本发明中结构块的一种实施例结构示意图;
图 3是本发明中结构块在拆掉阀后的结构示意图;
图 4是图 3的 A- Α剖视图;
图 5为本发明中多工位连通阀的 1#工作状态结构示意图;
图 6为本发明中多工位连通阀的 2#工作状态结构示意图;
图 7是本发明的另一种实施例结构示意图;
图 8-图 11为本发明中管路控温的结构示意图;
其中, 1.测试气体气源, 2.阀 V, 3.管路 VII, 4.管路 VIII, 5.压力传感器, 6.管路 IX, 7.管路 X, 8.阀 VI, 9.阀 VII, 10.真空泵, 11.渗透池上腔, 12. 1#载气气源, 13.通孔 VI, 14.阀 III, 15.通孔 Π, 16.结构块, 17.通孔 III, 18.管路 II, 19.定量装置, 20.管路 V, 21.管路 VI, 22.阀 IV, 23.通孔 IV, 24.阀 I, 25.通孔 I, 27.阀 II, 28.通孔 V, 29.管路 III, 30.管路 IV, 31.检测装置, 32.多工位连通阀, 33.管路 I, 34. 2#载气气源, 41.多工位连通 阀管口 I, 42.多工位连通阔管口 II, 43.多工位连通阀管口 III, 44.多工位连通阀管口 IV, 45.多工位连通阀管口 V, 46.多工位连通阀管口 VI, 50.样品, 51.渗透气孔, 52.采样孔, 53. 真空泵气孔, 54.载气输入孔, 55.管路 XI, 56.管路 XII, 61.管路温控装置 I, 62.管路温控 装置 II, 63.管路温控装置 IV, 64.管路温控装置 III, 65.定量装置温控装置, 66.多工位连 通阀温控装置。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
实施例 1 :
一种有机气体透过率测试装置, 结合图 1-图 6中, 本发明包括定量取样装置、 渗透池、 检测装置 31三部分, 其中渗透池被样品 50分为渗透池上腔 11与渗透池下腔两部分, 渗透池 下腔包括结构块 16、 阀、 通孔三部分, 通过定量取样装置将渗透池和检测装置 31连接起来。 结构块 16设有渗透气孔 51、 采样孔 52、 真空泵气孔 53和载气输入孔 54。 其中渗透气孔 51 通过通孔 IV23与阀 124连接; 真空泵气孔 53通过通孔 V28与阀 1127连接; 载气输入孔 54 通过通孔 VI13与阀 ΠΙ14连接; 阀 III14与通孔 1115连接, 通孔 1115与通孔 125连接; 采 样孔 52通过通孔 ΙΠ17与通孔 125连接; 通孔 125分别与阀 1127和阔 124连接。 定量取样 装置包括阀 124、 阀 IV22、 多工位连通阀 32、 定量装置 19及它们间的各部分连接管路、 以 及定量取样装置与检测装置 31间的连接管路。 其中阀 124安装在渗透池下腔结构块 16上, 并通过管路 133与多工位连通阀 32连接; 多工位连通阀 32通过管路 1118、 管路 V20与定量 装置 19连接,还通过管路 III29与 2ft载气气源 34连接,通过管路 IV30与检测装置 31连接, 并通过管路 VI21与阀 IV22连接。渗透池上腔 11通过管路 VIII4与压力传感器 5相连; 通过 管路 1X6与真空泵 10相连,管路 1X6上设有阀 VII9;通过管路 VII3与测试气体气源 1相连,
管路 VII3上设有阀 V2; 通过管路 X7排空, 管路 X7上设有阀 VI8。 其中多工位连通阔 32至 少具有两种工作状态, 通过调整多工位连通阀 32的工作状态可以改变多工位连通阀 32的内 部连通管道, 实现气路的更改。
试验前, 先对渗透池下腔和定量取样装置进行吹扫, 阀 124、 阀 1127、 阀 V2、 阀 VI8、 阀 VII9关, 阀 11114、 阀 IV22开, 多工位连通阔 32处于 lft工作状态, 1#载气气源 12的载 气依次通过管路 ΧΠ56、 载气输入孔 54、 通孔 VI13、 阀 11114、 通孔 1115、 通孔 125、 通孔 11117、 采样孔 52、 管路 133、 多工位连通阀管口 141、 多工位连通阀管口 1142、 管路 1118、 定量装置 19、管路 V20、多工位连通阀管口 V45、多工位连通阀管口 VI46、管路 VI21、阔 IV22, 完成吹扫。 然后对渗透池和定量取样装置抽真空, 对渗透池下腔抽真空时, 阀 124、 阀 1127 开,阀 11114、阀 IV22关,多工位连通阀 32处于 1#工作状态,真空泵 10依次通过管路 XI55、 真空泵气孔 53、 通孔 V28、 阀 1127、 通孔 125、 阀 124、 通孔 IV23、 渗透气孔 51完成对于渗 透池下腔、 相连接通孔 (包括通孔 IV23、_通孔 125、 通孔 1115、 通孔 11117、 通孔 V28)、 阀 (包括阀 124、 阀 1127) 的抽真空, 并通过管路 XI55、 真空泵气孔 53、 通孔 V28、 阀 1127、 通孔 11117、 采样孔 52、 管路 133、 多工位连通阀管口 141、 多工位连通阀管口 1142、 管路 1118、 定量装置 19、 管路 V20、 多工位连通阀管口 V45、 多工位连通阀管口 VI46、 管路 VI21 完成对定量取样装置的抽真空。 对渗透池上腔 11抽真空时, 阀 V2、 阔 VI8关, 阀 VII9开, 真空泵 10依次通过阔 VII9、 管路 1X6完成对渗透池上腔 11抽真空。 对渗透池整体和定量取 样装置抽真空时, 阀 124、 阀 1127、 阀 VII9开, 阀 11114、 阀 IV22、 阀 V2、 阀 VI8关, 多 工位连通阀 32处于 1#工作状态。 使其内部达到指定真空压力并持续抽真空一段时间后再开 始渗透试验。抽真空结束后, 阀 V2开, 阀 124、 阀 1127、 阀 11114、 阀 IV22、 阀 VI8、 阀 VII9 关, 多工位连通阀 32处于 1#工作状态, 由测试气体气源 1向渗透池上腔 11提供一定压力的 测试气体。渗透池上腔 11内压力值可通过压力传感器 5获得,使样品两侧形成一定的压力差, 在压力差的作用下, 试验气体通过样品 50渗透进入渗透池下腔内。 进行测试时, 阀 124开, 阀 1127、 阔 11114、 阔 IV22、 阀 V2、 阀 VI8、 阔 VII9关, 多工位连通阀 32处于 ltt工作状态, 渗透气体通过渗透气孔 51、通孔 IV23、 阀 124、通孔 125、通孔 11117、采样孔 52、管路 133、 多工位连通阀管口 141、 多工位连通阀管口 1142、 管路 1118、 定量装置 19、 管路 V20、 多工 位连通阀管口 V45、 多工位连通阀管口 VI46、 管路 VI21, 至阀 IV22截止。 渗透过程结束后 进行压力平衡, 阀 124、 阀 1127、 阀 IV22、 阀 V2、 阀 VI8、 阀 VII9关, 阀 ΙΠ14开, 多工 位连通阀 32处于 1#工作状态, 1#载气气源 12的载气依次通过管路 XII56、 载气输入孔 54、 通孔 VI13、 阀 11114、 通孔 1115、 通孔 125、 通孔 11117、 采样孔 52、 管路 133、 多工位连
通阀管口 141、 多工位连通阀管口 1142、 管路 1118、 定量装置 19、 管路 V20、 多工位连通阔 管口 V45、 多工位连通阀管口 VI46、 管路 VI21 , 完成压力平衡。 当对样气进行自动定量进样 时, 阀 124、 阀 1127、 阀 11114、 阀 IV22、 阀 V2、 阀 VI8、 阀 VII9关, 多工位连通阀 32处 于 2#工作状态, 2#载气气源 34的载气依次通过管路 1114、 多工位连通阀管口 11143、 多工 位连通阀管口 1142、 管路 1118、 定量装置 19、 管路 V20、 多工位连通阀管口 V45、 多工位连 通阀管口 IV44、管路 IV30, 将定量装置 19及相连管路内的样气携带至检测装置 31中进行测 试。 当测试结束后, 阀 124、 m IV22. 阀 VI8开, 阀 1127、 阀 11114、 阀 V2、 阀 VII9关, 多工位连通阀 32处于 1#工作状态, 使渗透池及相应低压管路与外界相通。 渗透气孔 51、 采 样孔 52、 真空泵气孔 53、 载气输入孔 54在结构块 16的同一侧面上; 或分别分布在不同的侧 面上; 或任意两者在同一侧面, 其余分别在不同的侧面上; 或任意三者在同一侧面, 其余在 不同的侧面上。 所述的结构块 16为金属块、 塑料块或陶瓷块。 多工位连通阀 32管口数量至 少为六个。
实施例 2:
一种有机气体透过率测试装置, 结合图 2-4, 图 7- 11中, 本实施例中通过对定量取样装 置中的部分结构进行控温, 以实现对有一定附着性气体的良好测试。分别对多工位连通阀 32、 定量装置 19、连接多工位连通阀 32与定量装置 19的管路 1118和管路 V20、连接多工位连通 阀 32与检测装置 31的管路 IV30、 连接多工位连通阀 32与阀 IV22的管路 VI21进行控温。 所述的多工位连通阀 32、定量装置 19中至少一处带有独立的温控装置,管路 1118、管路 IV30、 管路 V20、 管路 VI21中至少一处设有管路温控装置。 其中多工位连通阀 32由多工位连通阀 温控装置 66进行温度控制, 定量装置 19由定量装置温控装置 65进行温度控制。各部 f路分 别采用各自的管路温控装置进行温度控制,连接多工位连通阀 32与定量装置 19的管路 1118、 管路 V20的外部分别设有管路温控装置 161、管路温控装置 1162, 连接多工位连通阔 32与检 测装置 31的管路 IV30的外部设有管路温控装置 11164, 连接多工位连通阀 32与阀 IV22的 管路 VI21的外部设有管路温控装置 IV63。多工位连通阀温控装置 66、定量装置温控装置 65、 管路温控装置 161、 管路温控装置 1162、 管路温控装置 11164、 管路温控装置 IV63可以是同 一套温控装置, 也可以是各自独立的温控装置, 其它内容参照实施例 1, 在此不再赘述。 通 过合理设置这些温度点的温度(具体设置温度可根据测试气体的不同而更改), 能够更好地解 决附着性气体在管路中流动时的吸附与冷凝问题。
实施例 3:
一种有机气体透过率测试装置, 结合图 2-4, 图 7-11 , 本实施例中, 多工位连通阀温控
装置 66、 定量装置温控装置 65、 以及各个管路温控装置可以采用液体温控装置、 空气温控装 置、 金属加热管、 金属加热丝以及采用保温材料和保温装置等多种方式来实现, 其它内容参 照实施例 2, 在此不再赘述。
上述虽然结合附图对发明的具体实施方式进行了描述, 但并非对本发明保护范围的限 制, 所属领域技术人员应该明白, 在本发明的技术方案的基础上, 本领域技术人员不需要付 出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。
Claims
1.一种有机气体透过率测试装置, 包括定量取样装置, 渗透池, 检测装置, 其特征是, 所述 定量取样装置包括阔 I、 阀 IV、 多工位连通阀、 定量装置及它们间的各部分连接管路, 以及 定量取样装置与检测装置间的连接管路; 渗透池被样品分为渗透池上腔与渗透池下腔, 所述 渗透池下腔包括结构块、 阀、 通孔, 渗透池下腔通过定量取样装置将渗透池和检测装置连接 起来, 所述结构块设有渗透气孔、 采样孔、 真空泵气孔和载气输入孔; 渗透池通过定量取样 装置和检测装置连接。
2. 如权利要求 1所述的有机气体透过率测试装置, 其特征是, 所述渗透气孔通过通孔 IV与 阔 I连接, 所述采样孔通过通孔 ΠΙ与通孔 I连接, 通孔 I分别与阀 I和阀 II连接, 所述真 空泵气孔通过通孔 V与阀 II连接, 所述载气输入孔通过通孔 VI与阀 III连接, 所述阀 ΠΙ 与通孔 II连接, 通孔 II与通孔 I连接, 通孔 I分别与阀 I和阀 II连接。 '
3.如权利要求 1或者 2所述的有机气体透过率测试装置, 其特征是,所述渗透气孔、 采样孔、 真空泵气孔、 载气输入孔设在结构块的同一侧面上, 或分别设在不同的侧面上, 或任意两者 在同一侧面而其余分别在不同的侧面上, 或任意三者在同一侧面而其余在不同的侧面上。 .
4.如权利要求 1或者 2所述的有机气体透过率测试装置, 其特征是, 所述的结构块为金属块、 塑料块或陶瓷块。
5.如权利要求 1所述的有机气体透过率测试装置, 其特征是, 所述多工位连通阀管口数量至 少为六个。 '
6.如权利要求 1所述的有机气体透过率测试装置, 其特征是, 所述定量装置外部设有定量装 置温控装置。
7.如权利要求 6所述的有机气体透过率测试装置, 其特征是, 所述多工位连通阀外部设有多 工位连通阀温控装置。
8.如权利要求 7所述的有机气体透过率测试装置, 其特征是, 所述定量装置与多工位连通阀 间的连接管路、多工位连通阀与阀 IV间的连接管路以及多工位连通阀与检测装置间的连接管 路中至少有一处连接管路上设有管路温控装置。
9.如权利要求 8所述的有机气体透过率测试装置, 其特征是, 所述定量装置温控装置, 多工 位连通阀温控装置以及各管路温控装置包括液体温控装置, 或空气温控装置, 或金属加热管, 或金属加热丝以及保温装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210084171.8 | 2012-03-27 | ||
CN2012100841718A CN102621033A (zh) | 2012-03-27 | 2012-03-27 | 有机气体透过率测试装置 |
CN201220120212.X | 2012-03-27 | ||
CN 201220120212 CN202522503U (zh) | 2012-03-27 | 2012-03-27 | 有机气体透过率测试装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013143029A1 true WO2013143029A1 (zh) | 2013-10-03 |
Family
ID=49258035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000445 WO2013143029A1 (zh) | 2012-03-27 | 2012-04-05 | 有机气体透过率测试装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013143029A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3111204A4 (en) * | 2014-02-24 | 2017-12-06 | Mocon, Inc. | Rugged target-analyte permeation testing instrument employing a consolidating block manifold |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201314906Y (zh) * | 2008-12-16 | 2009-09-23 | 济南兰光机电技术有限公司 | 有机气体透过率测试装置 |
US20100223979A1 (en) * | 2009-03-04 | 2010-09-09 | University Of South Carolina | Systems and Methods for Measurement of Gas Permeation Through Polymer Films |
CN201653847U (zh) * | 2010-04-26 | 2010-11-24 | 华南理工大学 | 一种角膜修复材料透氧量的测试装置 |
CN202092934U (zh) * | 2011-06-07 | 2011-12-28 | 济南兰光机电技术有限公司 | 使用管路集成结构块的气体渗透分析装置 |
CN202092929U (zh) * | 2011-06-07 | 2011-12-28 | 济南兰光机电技术有限公司 | 一种定量采样的气体渗透分析装置 |
-
2012
- 2012-04-05 WO PCT/CN2012/000445 patent/WO2013143029A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201314906Y (zh) * | 2008-12-16 | 2009-09-23 | 济南兰光机电技术有限公司 | 有机气体透过率测试装置 |
US20100223979A1 (en) * | 2009-03-04 | 2010-09-09 | University Of South Carolina | Systems and Methods for Measurement of Gas Permeation Through Polymer Films |
CN201653847U (zh) * | 2010-04-26 | 2010-11-24 | 华南理工大学 | 一种角膜修复材料透氧量的测试装置 |
CN202092934U (zh) * | 2011-06-07 | 2011-12-28 | 济南兰光机电技术有限公司 | 使用管路集成结构块的气体渗透分析装置 |
CN202092929U (zh) * | 2011-06-07 | 2011-12-28 | 济南兰光机电技术有限公司 | 一种定量采样的气体渗透分析装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3111204A4 (en) * | 2014-02-24 | 2017-12-06 | Mocon, Inc. | Rugged target-analyte permeation testing instrument employing a consolidating block manifold |
EP3111230A4 (en) * | 2014-02-24 | 2017-12-06 | Mocon, Inc. | Target-analyte permeation testing instrument with sensor feed line conditioning system |
US10488318B2 (en) | 2014-02-24 | 2019-11-26 | Mocon, Inc. | Target-analyte permeation testing instrument with sensor feed line conditioning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103575630B (zh) | 一种同时测定混合气各组成气体的膜渗透性的测定方法 | |
WO2016176898A1 (zh) | 一种混凝土气渗性测试设备及其测试方法 | |
CN105910971A (zh) | 富有机质致密岩心气体渗透率和扩散系数的联测方法 | |
CN101622530A (zh) | 用于测试气体泄漏检测的方法和装置 | |
CN112858139B (zh) | 分级围压下无限体积注入的多联柔性壁渗透仪及试验方法 | |
WO2020114354A1 (zh) | 一种用于气体浓缩采样的除水方法、进样方法及其装置 | |
WO2020155577A1 (zh) | 一种全二维气相色谱仪及调制方法 | |
CN113237605A (zh) | 一种天然气微量泄漏检测的在线分析集成机柜和方法 | |
CN106644605B (zh) | 一种地热水中气泡气体的收集装置及其收集方法 | |
CN108717030B (zh) | 一种氢同位素气体丰度的快速分析装置及方法 | |
CN114624319B (zh) | 一种基于热解析-四极质谱测量原理定量获取材料中ppm级氢同位素含量的方法 | |
CN217901489U (zh) | 一种双组分气体分离测试装置 | |
WO2013143029A1 (zh) | 有机气体透过率测试装置 | |
CN102928326B (zh) | 一种测试有机气体对膜的渗透性的装置及方法 | |
CN111189948A (zh) | 一种高真空负压进样系统及方法 | |
CN206192840U (zh) | 岩心气液两用渗透率测试装置 | |
CN203672755U (zh) | 一种气体渗透池及同时测定混合气各组成气体的膜渗透性的测定装置 | |
CN209372651U (zh) | 一种痕量水蒸气透过率测试装置 | |
CN112881551A (zh) | 一种同时测定水体中甲烷、氧化亚氮的装置和方法 | |
CN205103133U (zh) | 膨润土渗透系数测定仪 | |
CN204694509U (zh) | 一种卤代温室气体可冲洗型采样器 | |
CN202522503U (zh) | 有机气体透过率测试装置 | |
CN108760959B (zh) | 一种具有自动控压测样功能的减压气液平衡装置 | |
CN202092934U (zh) | 使用管路集成结构块的气体渗透分析装置 | |
CN112816644A (zh) | 水中VOCs检测装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12873349 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12873349 Country of ref document: EP Kind code of ref document: A1 |