WO2013141646A1 - 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지 - Google Patents

기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지 Download PDF

Info

Publication number
WO2013141646A1
WO2013141646A1 PCT/KR2013/002398 KR2013002398W WO2013141646A1 WO 2013141646 A1 WO2013141646 A1 WO 2013141646A1 KR 2013002398 W KR2013002398 W KR 2013002398W WO 2013141646 A1 WO2013141646 A1 WO 2013141646A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
texture
forming
chalcogenide
solar cell
Prior art date
Application number
PCT/KR2013/002398
Other languages
English (en)
French (fr)
Inventor
안승규
윤경훈
윤재호
조준식
안세진
곽지혜
신기식
조아라
유진수
박상현
박주형
어영주
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013141646A1 publication Critical patent/WO2013141646A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a chalcogenide-based solar cell, and more particularly, to a method for manufacturing a chalcogenide-based solar cell, including a double texture structure in which a texture is formed on a substrate, thereby increasing the light trapping ability. It is about.
  • a solar cell uses a diode composed of a p-n junction, and is classified into various types according to a material used as a light absorption layer.
  • chalcogenide solar cells which use direct-transition semiconductors with chalcogenide structures such as CIGS and CZTS, as light absorption layers, are attracting the most attention as materials that can be successfully oxidized in the future.
  • Chalcogenide means a compound containing S, Se, Te, which is a chalcogen element, and the chalcogenide compound, which is widely applied in the field of solar cells, is composed of group IB-IIIA-VIA elements, CuInS 2 (CIS), CuGaS 2 (CGS), CuInSe 2 (CISe), CuGaSe 2 (CGSe), CuAlSe 2 (CASe), CuInTe 2 (CITe), CuGaTe 2 (CGTe), Cu (In, Ga) S 2 (CIGS ), Cu (In, Ga) Se 2 (CIGSe), Cu 2 ZnSnS 4 (CZTS), and the like.
  • group IB-IIIA-VIA elements CuInS 2 (CIS), CuGaS 2 (CGS), CuInSe 2 (CISe), CuGaSe 2 (CGSe), CuAlSe 2 (CASe), CuInTe 2 (CITe), CuGaTe 2 (CGTe), Cu (In, Ga
  • Such chalcogenide-based compounds or thin films have a bandgap energy of 1 to 2 eV, which has the best light absorption coefficient (1x10 5 cm -1 ) among semiconductors and is very optically stable, making it a very light absorbing layer of solar cells. Ideal material.
  • CdS Another chalcogenide compound used in the solar cell industry is CdS, which is composed of group IIB-VIA elements, and is suitable as a buffer material located at an interface where PN junctions are formed.
  • Typical chalcogenide-based solar cells use CIGS or CZTS as the light absorption layer and CdS as the buffer layer.
  • FIG. 3 is a view showing the structure of a typical CIGS or CZTS solar cell.
  • the Mo electrode back electrode 30 is formed on the soda-lime glass substrate 10 with the adhesive layer 20 interposed therebetween.
  • a light absorption layer 40 of CIGS-based or CZTS-based semiconductor material is formed on the rear electrode 30, and a front electrode 60 of TCO material is formed with a buffer layer 50 of CdS material therebetween. Finally, the anti-reflection layer 70 is formed on the front electrode 60.
  • the present invention is to solve the above-mentioned problems of the prior art, a method of manufacturing a chalcogenide-based solar cell having a double texture structure formed with a texture on the substrate in order to improve the light trapping performance and the chalcogenide manufactured thereby
  • the purpose is to provide a solar cell.
  • a method of manufacturing a chalcogenide-based solar cell having a texture formed on a substrate comprising: preparing a substrate; Forming a substrate texture on the surface of the substrate; Forming a back electrode on the substrate; Forming a light absorption layer of chalcogenide-based semiconductor material on the rear electrode; Forming a buffer layer on the light absorbing layer; Forming a transparent electrode on the buffer layer; And forming a front surface texture on the surface of the transparent electrode, wherein concavities and convexities are formed on the surface of the rear electrode by the substrate texture.
  • the inventors of the present invention invented a method for manufacturing a chalcogenide-based solar cell having improved light trapping ability by forming a texture structure on both sides of the chalcogenide-based light absorbing layer.
  • the rear electrode has a thin thickness, a method of forming a texture on a substrate without necessarily forming a texture on the rear electrode and inventing a method of forming irregularities on the surface of the rear electrode by the influence thereof.
  • the forming of the substrate texture may be performed by a reactive ion etching (RIE) process using plasma.
  • RIE reactive ion etching
  • the RIE is anisotropically etched itself, the RIE process may be performed using a mask of nano to micro units in order to increase the height of texture irregularities.
  • the step of forming the substrate texture may be performed by wet etching the surface of the substrate with HF or a mixture of HF and HCl, or silica-sol containing SiO 2 particles.
  • the coating on the surface of the substrate may be proceeded to a heat treatment at a temperature of 500 °C or more, and formed by sputtering an aluminum layer on the substrate and then heated to 600 °C or more to react the substrate and aluminum and reacting the reactants by the reaction It may be performed by wet etching.
  • Si and Al 2 O 3 are formed as reactants, and the reactants may be removed by wet etching. At this time, since the reaction with aluminum proceeds irregularly on the surface of the glass substrate, a texture is formed on the surface of the substrate from which the reactants are removed.
  • the forming of the substrate texture may be performed by heating and curing the substrate and then wet etching the surface using the metallic hydroxide.
  • the forming of the substrate texture may be performed by ion implantation using plasma.
  • And forming the front electrode proceeds by depositing the TCO by a DC sputtering or RF sputtering process, the step of forming the front texture DC sputtering or RF sputtering the TCO under conditions that increase the deposited particle energy than forming the front electrode It is preferable to proceed by.
  • the step of forming the front texture may be performed by wet etching the surface of the front electrode by immersion in an acid solution. Since the transparent conductive film used for the front electrode is anisotropically wet etched according to the fine physical density, a texture may be formed on the surface of the front electrode.
  • the chalcogenide-based solar cell having a double texture structure in which a texture is formed on a substrate according to the present invention is characterized in that it is manufactured by the method described above.
  • a chalcogenide-based solar cell having a double texture structure having a texture formed on a substrate includes a substrate; A rear electrode formed on the substrate; A light absorption layer of chalcogenide-based semiconductor material formed on the rear electrode; A buffer layer formed on the light absorption layer; And a transparent electrode formed on the buffer layer, a back texture structure is formed on a surface of the back electrode in contact with the light absorbing layer, and a front texture structure is formed on the surface of the transparent electrode.
  • the light absorption layer is CuInS 2 (CIS), CuGaS 2 (CGS), CuInSe 2 (CISe), CuGaSe 2 (CGSe), CuAlSe 2 (CASe), CuInTe 2 (CITe), CuGaTe 2 (CGTe), Cu (In It is preferable that the material is one selected from Ga, S 2 (CIGS), Cu (In, Ga) Se 2 (CIGSe), and Cu 2 ZnSnS 4 (CZTS).
  • the present invention configured as described above has a double texture structure of the front surface texture and the substrate texture, thereby greatly increasing the light trapping performance, thereby improving the photoelectric conversion efficiency of the solar cell.
  • FIG. 1 is a schematic diagram showing a process of manufacturing a chalcogenide-based solar cell having a double texture structure with a texture formed on a substrate according to an embodiment of the present invention.
  • FIG. 2 is a view showing a light trapping state of the double texture structure chalcogenide solar cell of the present invention.
  • FIG. 3 is a view showing the structure of a typical CIGS or CZTS solar cell.
  • FIG. 1 is a schematic diagram illustrating a process of manufacturing a chalcogenide-based solar cell having a double texture structure having a texture formed on a substrate according to an embodiment of the present invention, the manufacturing method of the present embodiment shown in the following order.
  • the substrate 10 is prepared as shown in FIG. 1A and the surface is cleaned.
  • the type of the substrate is not particularly limited, and materials such as glass, SUS, polymer, and metal may be applied.
  • soda-lime glass substrates are mainly used in CIGS or CZTS solar cells for improvement of characteristics due to infiltration of Na.
  • techniques for diffusing Na by different methods using different substrates have been studied. have.
  • acetone, methanol, and distilled water are generally washed sequentially, and the washing effect may be enhanced by using ultrasonic waves during the washing process.
  • the substrate texture 12 is formed on the surface of the substrate 10.
  • various methods may be applied according to the type of the substrate 10.
  • Reactive ion etching may be applied to the glass material.
  • Reactive ion etching is a dry etching technique in which a surface is etched using ionized particles in a plasma. Anisotropic etching is performed to form a texture on an etching surface.
  • the process of forming the substrate texture by RIE on the surface of the glass substrate using SF 6 gas or a gas mixed with Ar and SF 6 as the process gas is controlled in the range of 0.1 ⁇ several hundred mTorr, Proceed with a DC self-bias voltage in the range of several tens to hundreds of volts.
  • anisotropic etching may occur to form a substrate texture.
  • the surface of the back electrode 30 having the unevenness of the substrate texture 12 formed on the substrate 10 is deposited thereon. It is desirable that the height of the substrate texture 12 be high because it must affect up to. Therefore, in order to increase the height of the substrate texture 12, a mask of nano to micro structure may be used during the reactive ion etching process.
  • wet etching using an acid solution may be applied to the glass substrate.
  • the substrate texture may be formed by etching the surface with a high concentration of HF or a high concentration of HF / HCl in a range of several to several ten percent for one to several ten minutes.
  • the substrate texture may be formed by a sol-gel process.
  • a substrate texture may be formed by SiO 2 particles remaining on the surface of the substrate.
  • the method of coating the silica-sol containing SiO 2 particles on the substrate may be a method such as a doctor blade, spin coating or spray coating, and the heat treatment for gelation is performed at a temperature of 500 ° C. or higher for 1 to 100 minutes. do.
  • Another method of forming the surface texture on the surface of the glass substrate is to react the aluminum with the substrate.
  • aluminum is sputtered on the surface of the substrate to form an aluminum layer, and heated to a temperature of 600 ° C. or higher to react the glass with aluminum.
  • Si and Al 2 O 3 are generated as reactants, which are removed by wet etching.
  • the reaction between the glass and aluminum does not proceed uniformly over the entire area but proceeds irregularly, a texture is formed on the surface of the substrate from which the by-products are removed.
  • the glass substrate may form a texture on the surface by ion beam etching, hot embossing and powder blasting.
  • the substrate texture may be formed on the polymer substrate by a reactive ion etching process.
  • the process of forming the substrate texture by RIE on the surface of the polymer substrate is performed by using CF6 or O2 gas alone or a mixture of Ar / O 2 , Ar / CF, and Ar / O 2 / CF 4 as the process gas.
  • the gas pressure in the reaction chamber is adjusted in the range of 0.1 to several hundred mTorr, and the DC self-bias voltage in the range of several tens to hundreds of V is applied to the substrate.
  • the substrate of the polymer material may form a substrate texture by a wet chemical etching process using a metallic hydroxide.
  • the substrate is heated to a temperature of 100 to several hundred degrees Celsius for 0.1 to 100 minutes to cure the polymer weakly, and the surface is etched for 1 to several ten minutes using high concentrations of several tens of percent metallic hydroxide. Is formed.
  • the polymer substrate may form a texture on the surface by ion beam etching, hot embossing and powder blasting.
  • a metal substrate using a metal foil including stainless steel may form a substrate texture by ion implantation using plasma.
  • This method is similar to RF sputtering, but involves injecting metal ions onto the surface of the substrate by applying an RF voltage of 10 to several hundred volts to the substrate while the substrate is placed on the cathode as a target. Form a texture on the surface.
  • the Ar gas flows into the interior of the equipment 1 ⁇ several hundred sccm, the gas pressure is adjusted to be in the range of 1 ⁇ 100mTorr.
  • the adhesive layer 20 is formed on the surface of the substrate 10 on which the substrate texture 12 is formed.
  • the adhesive layer 20 is formed to improve the adhesion between the substrate 10 and the back electrode, and may be omitted depending on the type of the substrate 10.
  • the adhesive layer 20 Since the adhesive layer 20 is thin, the adhesive layer 20 has a surface on which the unevenness 22 is formed due to the unevenness of the substrate texture 12.
  • the rear electrode 30 is formed on the adhesive layer 20 on which the unevenness is formed. Since the back electrode 30 is thin, the back electrode 30 is deposited with the unevenness 32 formed on the surface under the influence of the unevenness 22 of the substrate texture 12 and the adhesive layer 22.
  • CIGS or CZTS solar cells are generally formed with a rear electrode 30 of Mo material.
  • Mo not only has a similar coefficient of thermal expansion to glass used as a substrate for recent CIGS or CZTS solar cells, but also has excellent adhesion and electrical conductivity.
  • DC sputtering is generally used as a method for forming the back electrode 30 Mo thin film.
  • the DC sputtering process for forming the Mo rear electrode 30 uses a DC voltage of 10 V to several hundred V, flows Ar gas at 1 sccm to several hundred sccm, and performs 1 to 100 minutes at a pressure of 1 mTorr to 100 mTorr. do.
  • DC power is selectively applied in the range of several W to several tens of kW depending on the size of the substrate and target and the spacing between the substrate and the target.
  • the back electrode 30 may be changed into various configurations such as a double layer of a Na-doped Mo layer and a Na-doped Mo layer according to the type of the substrate 10, and may be used as the back electrode. If so, all configurations may apply. Regardless of the configuration, the rear electrode 30 is thin and is deposited with the unevenness 32 formed on the surface thereof.
  • a chalcogenide light absorbing layer 40 is formed on the rear electrode 30 having the unevenness 32 formed thereon.
  • a typical chalcogenide-based material CIGS-based or CZTS-based semiconductor, is used as the light absorption layer.
  • the method of forming the CIGS-based or CZTS-based light absorbing layer 40 is largely divided into a vacuum method and a non-vacuum method, and the vacuum method and the non-vacuum method are also divided into various methods, respectively, but are not particularly limited in the present embodiment, and have irregularities on the surface 32. Any method that can be deposited on the formed back electrode 30 can be applied.
  • the buffer layer 50 is formed on the light absorption layer 40.
  • a CdS thin film is generally applied.
  • the CdS buffer layer 50 is a chemical bath deposition (CBD) method for forming a film by immersing the substrate, which has been advanced to the stage of FIG. 1 (e), in an aqueous solution in which thiourea, cadmium sulfate, and alumina are mixed. Method).
  • CBD chemical bath deposition
  • the buffer layer 50 may be a ZnS or ZnSe thin film deposited by a CBD method or an In x Se y or ZnIn x Se y thin film deposited by a process based on evaporation, and a CVD based process. In x Se y or ZnSe thin film can be used.
  • the front electrode 60 is formed on the buffer layer 50.
  • the front electrode 60 deposits a transparent conductive film (TCO) such as ITO, ZnO: Al, ZnO: Ga, and ZnO: B, and these transparent conductive films are generally deposited by DC or RF sputtering, but electron beam evaporation is performed. It can also deposit by other methods, such as a method and a thermal evaporation method.
  • TCO transparent conductive film
  • the process of forming the front electrode 60 by DC or RF sputtering uses DC or RF power density per target area of 0.1 W / cm 2 to 2 W / cm 2 , and Ar gas or Ar gas at a pressure of 5 mTorr to 100 mTorr. Under a gas mixture of the doping element and 10 minutes to 100 minutes.
  • the gas flow rate for pressure maintenance is selectively applied in the range of 1 sccm to several hundred sccm depending on the volume of the vacuum chamber and the pump capacity, and the total DC or RF power is also applied to the size of the substrate and the target and between the substrate and the target. Depending on the spacing, it is selectively applied in the range of several W to several tens of kW.
  • the front texture 62 is formed on the front electrode 60.
  • the front texture 62 may be formed by etching the surface of the front electrode 60 to form irregularities and forming a transparent conductive film having irregularities formed on the surface of the front electrode 60.
  • the method of etching the surface of the front electrode 60 is a method of wet etching with an acid solution such as hydrochloric acid.
  • an acid solution such as hydrochloric acid.
  • the method of additionally forming a transparent conductive film having irregularities on the surface of the front electrode 60 is performed by DC or RF sputtering.
  • the above-described DC or RF sputtering process conditions for forming a transparent electrode focus on forming a thin transparent electrode thin film having a dense structure to act as an electrode.
  • the front texture 62 is a surface concave-convex structure formed on the sufficiently formed front electrode 60, by controlling the process conditions to adjust the size and energy of the sputtered transparent conductive film particles to form an irregular surface can do.
  • the DC or RF sputtering process for forming the front texture 62 uses a DC power density per target area of 2 W / cm 2 to 10 W / cm 2 , and Ar gas or Ar gas of 0.1 mTorr to 5 mTorr pressure. In the gas conditions in which the doping elements are mixed, it is performed for a relatively short time in the process for forming the front electrode in the range of 1 minute to several tens of minutes. In addition, during the sputtering process, the temperature of the substrate is raised to a range of room temperature to several hundred degrees Celsius.
  • the Ar gas flow rate for pressure maintenance is selectively applied in the range of 1 sccm to several hundred sccm depending on the volume of the vacuum chamber and the pump capacity, and the total DC or RF power is also applied to the size and size of the substrate and target.
  • a range similar to the case of forming the front electrode 60 is applied in that it can be selectively applied in the range of several W to several tens of kW depending on the distance between the targets.
  • the sputtering process conditions for forming the front texture 62 have higher DC power density per target area, lower gas pressure in the chamber, and higher substrate temperature than the front electrode 60. High energy results in irregularities on the deposition surface. On the other hand, if the energy of the deposited TCO particles is high, the quality of the deposition layer may be degraded, so the sputtering process for forming the front texture 62 is performed relatively short.
  • LPCVD low pressure CVD
  • a configuration in which a grid electrode made of a metal material such as Al or Ag is added on the front surface texture 62 may be used to improve the performance of the electrode.
  • an antireflection layer 70 is formed on the front texture 62, and MgF 2 and Al 2 O 3 are generally used as the antireflection layer 70.
  • An anti-reflection layer 70 of MgF 2 material is deposited by thermal evaporation using a MgF 2 pellets or, by using a Mg (thd) 2 and TiF 4 as a reaction gas to deposit an atomic layer deposition method (ALD, atomic layer deposition) .
  • ALD atomic layer deposition
  • the anti-reflection layer 70 made of Al 2 O 3 is deposited by atomic layer deposition using Al (CH 3 ) 3 and O 3 as a reaction gas.
  • FIG. 2 is a view showing a light trapping state of a double texture structure chalcogenide solar cell having a texture formed on the substrate of the present invention.
  • the double texture structure chalcogenide-based solar cell having a texture formed on the substrate fabricated in the step illustrated in FIG. 1 includes the unevenness 32 formed on the rear electrode 30 and the front texture 62 formed on the front electrode 60. At the same time.
  • the solar light incident on the front electrode 60 is reflected on the surface of the rear electrode 30 after photovoltaic generation through the light absorbing layer 40 through the buffer layer 50, and at this time on the unevenness 32 formed on the surface. Diffuse reflection occurs.
  • Sunlight diffused from the surface of the back electrode 30 having the unevenness 32 performs photovoltaic power through the light absorbing layer 40, and passes through the buffer layer 50 and the front electrode 60, and the front texture 62. In the back is diffusely reflected in the light absorbing layer 40 direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법에 관한 것으로서, 기판을 준비하는 단계; 상기 기판의 표면에 기판텍스처를 형성하는 단계; 상기 기판에 후면전극을 형성하는 단계; 상기 후면 전극 위에 칼코게나이드계 반도체 재질의 광흡수층을 형성하는 단계; 상기 광흡수층 위에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 투명전극을 형성하는 단계; 및 상기 투명전극의 표면에 전면텍스처를 형성하는 단계를 포함하며, 상기 기판텍스처에 의하여 상기 후면전극의 표면에 요철이 형성된 것을 특징으로 한다. 본 발명에 의한 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지는, 기판; 상기 기판 위에 형성된 후면전극; 상기 후면 전극 위에 형성된 칼코게나이드계 반도체 재질의 광흡수층; 상기 광흡수층 위에 형성된 버퍼층; 및 상기 버퍼층 위에 형성된 투명전극을 포함하여 구성되고, 상기 광흡수층에 접하는 상기 후면전극의 표면에 후면텍스처 구조가 형성되며, 상기 투명전극의 표면에 전면텍스처 구조가 형성된 것을 특징으로 한다. 본 발명은 전면텍스처와 기판텍스처의 2중 텍스처 구조를 구비함으로써 광포획 성능을 크게 증가시켜, 태양전지의 광전변환효율을 향상시키는 효과가 있다.

Description

기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지
본 발명은 칼코게나이드계 태양전지의 제조방법에 관한 것으로, 더욱 자세하게는 기판에 텍스처가 형성된 2중의 텍스처 구조를 포함하여 광포획 능력이 증가하여 효율이 증가된 칼코게나이드계 태양전지의 제조방법에 관한 것이다.
일반적으로 태양전지는 p-n접합으로 구성된 다이오드를 사용하며, 광흡수층으로 사용되는 물질에 따라 다양한 종류로 구분된다.
종래에는 광흡수층으로 실리콘을 사용하는 태양전지가 주류를 이루었지만, 최근에는 특성을 조절할 수 있는 다양한 화합물 반도체를 광흡수층으로 사용하려는 노력이 활발하다.
특히 CIGS와 CZTS와 같이 칼코게나이드(chalcogenide)구조를 가지는 직접천이형 반도체를 광흡수층으로 사용하는 칼코게나이드 태양전지는 향후에 산화에 성공할 수 있는 소재로 가장 주목받고 있다.
칼코게나이드는 칼코겐(chalcogen)원소인 S, Se, Te를 포함하는 화합물을 의미하며, 태양전지 분야에 많이 응용되는 칼코게나이드 화합물은 ⅠB-ⅢA-ⅥA족 원소로 구성되어 있으며, CuInS2(CIS), CuGaS2(CGS), CuInSe2(CISe), CuGaSe2(CGSe), CuAlSe2(CASe), CuInTe2(CITe), CuGaTe2(CGTe), Cu(In,Ga)S2(CIGS), Cu(In, Ga)Se2(CIGSe), Cu2ZnSnS4(CZTS) 등을 예로 들 수 있다. 이러한 칼코게나이드계 화합물 혹은 박막은 밴드갭 에너지가 1 내지 2 eV로서 반도체 중에서 가장 우수한 광흡수계수(1x105cm-1)를 가질 뿐만 아니라 전기광학적으로도 매우 안정하여 태양전지의 광흡수층으로 매우 이상적인 소재이다.
태양전지 산업에 이용되는 또 다른 칼코게나이드 화합물로는 ⅡB-ⅥA족 원소로 구성되어 있는 CdS가 대표적이며, PN 접합이 이루어지는 계면에 위치하는 버퍼소재로서 적합하다. 대표적인 칼코게나이드계 태양전지는 CIGS 또는 CZTS를 광흡수층으로 사용하고 있으며, CdS를 버퍼층으로 이용한다.
도 3은 일반적인 CIGS 또는 CZTS 태양전지의 구조를 나타내는 도면이다.
일반적으로 소다석회 유리 기판(10)의 위에 접착층(20)을 사이에 두고 Mo 재질의 후면전극(30)이 형성된다.
후면전극(30)의 위에는 CIGS계 또는 CZTS계 반도체 재질의 광흡수층(40)이 형성되며, CdS 재질의 버퍼층(50)을 사이에 두고 TCO 재질의 전면전극(60)이 형성된다. 마지막으로 전면전극(60)의 위에는 반사방지층(70)이 형성된다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 광포획 성능을 향상시키기 위하여 기판에 텍스처가 형성된 2중 텍스처 구조를 가지는 칼코게나이드계 태양전지를 제조하는 방법 및 이에 의해 제조된 칼코게나이드계 태양전지를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 의한 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법은, 기판을 준비하는 단계; 상기 기판의 표면에 기판텍스처를 형성하는 단계; 상기 기판에 후면전극을 형성하는 단계; 상기 후면 전극 위에 칼코게나이드계 반도체 재질의 광흡수층을 형성하는 단계; 상기 광흡수층 위에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 투명전극을 형성하는 단계; 및 상기 투명전극의 표면에 전면텍스처를 형성하는 단계를 포함하며, 상기 기판텍스처에 의하여 상기 후면전극의 표면에 요철이 형성된 것을 특징으로 한다.
본 발명의 발명자들은 칼코게나이드계 광흡수층을 사이에 두고 양쪽에 텍스처 구조를 형성하여 광포획 능력이 향상된 칼코게나이드계 태양전지의 제조방법을 발명하였다. 특히, 후면전극은 두께가 얇으므로 꼭 후면전극에 텍스처를 형성하지 않고 기판에 텍스처를 형성하여 그 영향에 의해 후면전극의 표면에도 요철이 형성되도록 하는 방법을 발명하였다.
이때, 기판이 유리재질 또는 폴리머재질일 때, 기판텍스처를 형성하는 단계는 플라즈마를 이용한 반응성 이온 식각(RIE) 공정으로 진행될 수 있다. RIE는 자체로 비등방적인 식각이 진행되지만, 텍스처 요철의 높이를 높이기 위하여 나노 내지 마이크로 단위의 마스크를 이용하여 RIE 공정을 진행할 수도 있다.
또한, 기판이 유리재질인 경우에 기판텍스처를 형성하는 단계가, HF 또는 HF와 HCl의 혼합액으로 상기 기판의 표면을 습식식각하여 진행되거나, SiO2입자를 포함하는 실리카-졸(silica-sol)을 상기 기판의 표면에 코팅한 뒤에 500℃ 이상의 온도에서 가열처리하는 공정으로 진행될 수 있으며, 기판 위에 알루미늄층을 스퍼터링하여 형성한 뒤에 600℃ 이상으로 가열하여 기판과 알루미늄을 반응시키고 반응에 의한 반응물을 습식식각하여 진행될 수도 있다.
유리재질의 기판과 알루미늄을 반응시키면 반응물로 Si와 Al2O3가 형성되며, 반응물은 습식식각으로 제거할 수 있다. 이때, 알루미늄과의 반응은 유리기판의 표면에서 불규칙하게 진행되므로 반응물이 제거된 기판의 표면에는 텍스처가 형성된다.
기판이 폴리머재질인 경우에 기판텍스처를 형성하는 단계가 기판을 가열하여 경화시킨 뒤에 금속성 수산화물을 이용하여 표면을 습식식각하는 방법으로 진행될 수도 있다.
기판이 금속재질인 경우에 기판텍스처를 형성하는 단계가 플라즈마를 이용한 이온주입법(ion implantation)으로 진행될 수도 있다.
그리고 전면전극 형성하는 단계가 DC 스퍼터링 또는 RF 스퍼터링 공정으로 TCO를 증착하여 진행되며, 전면텍스처를 형성하는 단계가 전면전극을 형성하는 단계보다 증착되는 입자에너지를 높이는 조건에 TCO를 DC 스퍼터링 또는 RF 스퍼터링하여 진행되는 것이 바람직하다.
동일한 장비를 이용하되, 증착되는 입자의 에너지가 더 높아지도록 공정조건을 조절하면 표면 거칠기가 거칠어지기 때문에 텍스처 구조를 형성할 수 있다.
반면에, 전면텍스처를 형성하는 단계는 산성용액에 침지하여 전면전극의 표면을 습식식각하여 진행되는 것일 수 있다. 전면전극에 사용되는 투명전도막은 미세한 물리적 치밀도에 따라서 비등방적으로 습식식각되기 때문에 전면전극의 표면에 텍스처를 형성할 수 있다.
본 발명에 의한 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지는 위에서 설명한 방법으로 제조된 것을 특징으로 한다.
또한 본 발명에 의한 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지는, 기판; 상기 기판 위에 형성된 후면전극; 상기 후면 전극 위에 형성된 칼코게나이드계 반도체 재질의 광흡수층; 상기 광흡수층 위에 형성된 버퍼층; 및 상기 버퍼층 위에 형성된 투명전극을 포함하여 구성되고, 상기 광흡수층에 접하는 상기 후면전극의 표면에 후면텍스처 구조가 형성되며, 상기 투명전극의 표면에 전면텍스처 구조가 형성된 것을 특징으로 한다.
이때, 광흡수층이 CuInS2(CIS), CuGaS2(CGS), CuInSe2(CISe), CuGaSe2(CGSe), CuAlSe2(CASe), CuInTe2(CITe), CuGaTe2(CGTe), Cu(In,Ga)S2(CIGS), Cu(In, Ga)Se2(CIGSe), Cu2ZnSnS4(CZTS) 중에서 선택된 하나의 재질인 것이 바람직하다.
상술한 바와 같이 구성된 본 발명은, 전면텍스처와 기판텍스처의 2중 텍스처 구조를 구비하여 광포획 성능을 크게 증가시킴으로써, 태양전지의 광전변환효율을 향상시키는 효과가 있다.
도 1은 본 발명의 실시예에 따라서 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지를 제조하는 과정을 나타낸 모식도이다.
도 2는 본 발명의 2중 텍스처 구조 칼코게나이드계 태양전지의 광포획 모습을 나타내는 도면이다.
도 3은 일반적인 CIGS 또는 CZTS 태양전지의 구조를 나타내는 도면이다.
[부호의 설명]
10: 기판 12: 기판텍스처
20: 접착층 30: 후면전극
40: 광흡수층 50: 버퍼층
60: 전면전극 62: 전면텍스처
70: 반사방지층
첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.
도 1은 본 발명의 실시예에 따라서 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지를 제조하는 과정을 나타낸 모식도이며, 도시된 본 실시예의 제조방법은 다음의 순서에 따른다.
도 1a에 도시된 것과 같이 기판(10)을 준비하고 표면을 세척한다. 기판의 종류는 특별히 제한되지 않으며, 유리, SUS, 폴리머, 금속 등의 재질이 적용될 수 있다. 최근에는 CIGS 또는 CZTS 태양전지에 있어서 Na의 침투에 의한 특성의 향상이 보고되어 소다석회유리 재질의 기판이 주로 사용되고 있으나, 다른 종류의 기판을 사용하면서 별도의 방법으로 Na을 확산시키려는 기술이 연구되고 있다.
기판(10)의 세척은 아세톤과 메탄올 및 증류수를 순차적으로 이용하여 세척하는 것이 일반적이며, 세척 과정에서 초음파를 이용하여 세척효과를 높일 수 있다.
도 1b에 도시된 것과 같이 기판(10)의 표면에 기판텍스처(12)를 형성한다.
기판텍스처(12)를 형성하는 방법은 기판(10)의 종류에 따라서 여러 가지 방법을 적용할 수 있다.
유리재질에는 반응성 이온 식각(RIE, reactive ion etching) 공정을 적용할 수 있다. 반응성 이온 식각은 플라즈마 내의 이온화된 입자를 이용하여 표면을 식각하는 건식 식각 기술이며, 비등방성 식각이 진행되어 식각표면에 텍스처가 형성된다.
유리재질의 기판 표면에 RIE로 기판텍스처를 형성하는 공정은 공정가스로 SF6가스 또는 Ar와 SF6를 혼합한 가스를 이용하고, 반응실의 가스 압력은 0.1~ 수백 mTorr의 범위에서 조절하며, -수십 ~ -수백 V 범위의 DC 셀프바이어스 전압이 기판에 인가되도록 하여 진행한다.
반응성 이온 식각 공정은 자체로도 비등방적인 식각이 발생하여 기판텍스처를 형성할 수 있지만, 본 발명에서는 기판(10)에 형성된 기판텍스처(12)의 요철이 그 위에 증착되는 후면전극(30)의 표면까지 영향을 미쳐야하기 때문에, 기판텍스처(12)의 높이가 높은 것이 바람직하다. 따라서 기판텍스처(12)의 높이를 증가시키기 위하여 반응성 이온 식각 공정 중에 나노 내지 마이크로 구조의 마스크를 이용할 수도 있다.
유리재질의 기판에 대해서는 산 용액을 이용한 습식식각을 적용할 수 있다.
유리재질의 경우에 수~ 수십% 범위의 고농도 HF 또는 고농도의 HF/HCl 혼합액으로 1 ~ 수십 분 동안 표면을 식각하여 기판텍스처를 형성할 수 있다.
유리재질 기판의 경우 졸-겔법에 기반을 둔 공정으로 기판텍스처를 형성할 수 있다.
먼저 0.1~수 마이크로미터 크기의 SiO2 입자를 포함하는 실리카-졸을 기판의 표면에 코팅하고 가열처리하면 기판의 표면에 잔류하는 SiO2 입자들에 의하여 기판텍스처를 형성할 수 있다. SiO2입자를 포함하는 실리카-졸을 기판에 코팅하는 방법은 닥터 블레이드나 스핀코팅 또는 스프레이 코팅 등의 방법을 적용할 수 있으며, 겔화를 위한 가열처리는 500℃ 이상의 온도에서 1~100분 동안 수행한다.
유리재질 기판의 표면에 표면텍스처를 형성하는 다른 방법은 기판과 알루미늄을 반응시키는 방법이다.
먼저 기판의 표면에 알루미늄을 스퍼터링하여 알루미늄층을 형성하고, 600℃ 이상의 온도로 가열하여 유리와 알루미늄을 반응시킨다. 유리와 알루미늄이 반응하면 반응물로 Si와 Al2O3가 생성되며 이는 습식식각으로 제거한다. 한편, 유리와 알루미늄 사이의 반응은 전 면적에서 균일하게 진행되지 않고 불규칙하게 진행되기 때문에, 부산물이 제거된 기판의 표면에는 텍스처가 형성된다.
이밖에도 유리재질의 기판은 이온빔 식각, 핫 엠보싱(hot embossing) 및 파우더 블라스팅(powder blasting) 등의 방법으로 표면에 텍스처를 형성할 수 있다.
폴리머재질의 기판에도 반응성 이온 식각 공정으로 기판텍스처를 형성할 수 있다.
폴리머재질의 기판 표면에 RIE로 기판텍스처를 형성하는 공정은 공정가스로 CF6나 O2 가스를 단독으로 사용하거나 Ar/O2, Ar/CF, Ar/O2/CF4를 혼합한 가스를 이용하고, 반응실의 가스 압력은 0.1~ 수백 mTorr의 범위에서 조절하며, -수십 ~ -수백 V 범위의 DC 셀프바이어스 전압이 기판에 인가되도록 하여 진행한다.
폴리머재질의 기판은 금속성 수산화물을 이용한 습식 화학 식각(wet chemical etching) 공정으로 기판텍스처를 형성할 수 있다.
먼저 기판을 100~ 수백 ℃의 온도로 0.1 ~ 100분 동안 가열하여 폴리머를 약하게 경화(cure)시키고, 수 ~ 수십%의 고농도 금속성 수산화물을 이용하여 표면을 1~ 수십 분 동안 식각하면 표면에 텍스처가 형성된다.
이밖에도 폴리머재질의 기판은 이온빔 식각, 핫 엠보싱(hot embossing) 및 파우더 블라스팅(powder blasting) 등의 방법으로 표면에 텍스처를 형성할 수 있다.
스테인리스 스틸을 포함하는 금속 포일을 이용한 금속재질의 기판은 플라즈마를 이용한 이온주입법(ion implantation)으로 기판텍스처를 형성할 수 있다.
이 방법은 공정이 RF 스퍼터링과 유사하게 구성되나, 기판을 타깃과 같이 캐소드(cathode)에 위치시킨 상태에서 기판에 10 ~ 수백 V의 RF 전압이 걸리도록 함으로써, 금속 이온을 기판의 표면에 주입하여 표면에 텍스처를 형성한다. 이때, 장비의 내부에는 Ar가스를 1 ~ 수백 sccm로 흘려주고, 가스 압력이 1 ~ 100mTorr의 범위가 되도록 조절한다.
도 1c에 도시된 것과 같이 기판텍스처(12)가 형성된 기판(10)의 표면에 접착층(20)을 형성한다. 접착층(20)은 기판(10)과 후면 전극의 접착력을 향상시키기 위하여 형성되며, 기판(10)의 종류에 따라서 생략될 수 있다.
접착층(20)은 두께가 얇기 때문에 기판텍스처(12)의 요철의 영향으로 요철(22)이 형성된 표면을 가진다.
도 1d에 도시된 것과 같이 요철이 형성된 접착층(20)의 위에 후면전극(30)을 형성한다. 후면전극(30)은 두께가 얇기 때문에 기판텍스처(12) 및 접착층(22)의 요철(22)의 영향에 의해서 표면에 요철(32)이 형성된 상태로 증착된다.
CIGS 또는 CZTS 태양전지에는 일반적으로 Mo 재질의 후면전극(30)이 형성된다. Mo는 최근 CIGS 또는 CZTS 태양전지의 기판으로 사용되는 유리와 열팽창계수가 비슷할 뿐만 아니라, 부착성과 전기 전도도가 모두 뛰어나다.
이러한 후면전극(30) Mo 박막을 형성하는 방법은 DC 스퍼터링이 일반적으로 사용된다. Mo 후면전극(30)을 형성하는 DC 스퍼터링 공정은 10 V~ 수백 V의 DC 전압을 이용하며, Ar 가스를 1 sccm~ 수백 sccm으로 흘리고, 1 mTorr~ 100 mTorr의 압력에서 1~ 100 분 동안 수행한다. DC 전력은 기판과 타깃의 크기 및 기판과 타깃 사이의 간격에 따라서 수 W~ 수십 kW의 범위에서 선택적으로 적용된다.
후면전극(30)은 기판(10)의 종류에 따라서 Na가 도핑된 Mo층과 Na가 도핑되지 않은 Mo층의 2중층으로 구성하는 등 다양한 구성으로 변경이 가능하며, 후면전극으로 이용될 수 있는 것이면 모든 구성이 적용될 수 있다. 어떠한 구성이 적용되어도 후면전극(30)은 두께가 얇아서 표면에 요철(32)이 형성된 상태로 증착된다.
도 1e에 도시된 것과 같이 요철(32)이 형성된 후면전극(30)의 위에 칼코게나이드(chalcogenide)계 광흡수층(40)을 형성한다. 특히, 대표적인 칼코게나이드계 재질인 CIGS계 또는 CZTS계 반도체를 광흡수층으로 사용한다.
이러한 CIGS계 또는 CZTS계 광흡수층(40)의 형성방법은 크게 진공법과 비진공법으로 나뉘며, 진공법과 비진공법도 각각 다양한 방법으로 나뉘지만, 본 실시예에서는 특별히 제한되지 않으며, 표면에 요철(32)이 형성된 후면전극(30) 위에 증착할 수 있는 모든 방법이 적용될 수 있다.
도 1f에 도시된 것과 같이 광흡수층(40)의 위에 버퍼층(50)을 형성한다. 버퍼층(50)은 CdS 박막을 적용하는 것이 일반적이다. CdS 버퍼층(50)은 도 1(e)의 단계까지 진행된 기판을 티오요소(thiourea)와 황산 카드뮴(cadmium sulfate) 및 알루미나가 혼합된 수용액에 침지시켜 성막 하는 CBD법(chemical bath deposition, 화학적 용액성장법)으로 증착시킨다.
이외에도 버퍼층(50)으로는 CBD법으로 증착된 ZnS나 ZnSe 박막 등과 증발법(evaporation)에 기반을 둔 공정으로 증착된 InxSey나 ZnInxSey 박막 및 CVD에 기반을 둔 공정으로 증착된 InxSey나 ZnSe 박막 등을 적용할 수 있다.
도 1g에 도시된 것과 같이 버퍼층(50)의 위에 전면전극(60)을 형성한다. 전면전극(60)은 ITO, ZnO:Al, ZnO:Ga, 및 ZnO:B 등과 같은 투명전도막(TCO)을 증착하며, 이러한 투명전도막들은 DC 또는 RF 스퍼터링으로 증착하는 것이 일반적이나, 전자빔 증발법이나 열증발법 등의 다른 방법으로 증착할 수도 있다.
DC 또는 RF 스퍼터링으로 전면전극(60)을 형성하는 공정은 0.1 W/cm2 ~ 2 W/cm2의 타깃 면적당 DC 또는 RF 전력 밀도를 이용하며, 5 mTorr ~ 100 mTorr 압력의 Ar 가스 또는 Ar 가스와 도핑원소를 혼합한 가스 조건에서, 10 분 ~ 100 분 동안 수행한다. 압력 유지를 위한 가스 유량은 진공 챔버(chamber)의 부피 및 펌프의 용량에 따라서 1 sccm ~ 수백 sccm의 범위에서 선택적으로 적용되며, 총 DC 또는 RF 전력 또한 기판과 타깃의 크기 및 기판과 타깃 사이의 간격에 따라서 수 W~ 수십 kW의 범위에서 선택적으로 적용된다.
또한 다른 종류의 투명전도막을 순차적으로 증착하여 2중 구조의 투명전도막을 구성하는 등 다양한 구성으로 변경이 가능하며, 전면전극으로 이용될 수 있는 것이면 모든 구성이 적용될 수 있다.
도 1h에 도시된 것과 같이 전면전극(60)에 전면텍스처(62)를 형성한다. 전면텍스처(62)를 형성하는 방법은 전면전극(60)의 표면을 식각하여 요철을 형성하는 방법과 전면전극(60)의 표면에 요철이 형성된 투명전도막을 형성하는 방법이 있다.
전면전극(60)의 표면을 식각하는 방법은 염산 등의 산성용액으로 습식식각하는 방법이다. 0.1~ 수 %의 HCl 용액에 도 1(h)의 단계까지 진행된 기판을 침지하여 수십~ 수백 초 동안 습식식각을 수행하면, 전면전극(60) 표면의 물리적 강도의 차이에 의해서 표면이 불균일하게 식각되어 표면에 텍스처가 형성된다.
전면전극(60)의 표면에 요철이 형성된 투명전도막을 추가적으로 형성하는 방법은 DC 또는 RF 스퍼터링으로 수행된다. 상기한 투명전극 형성시의 DC 또는 RF 스퍼터링 공정조건은 전극으로 작용할 수 있도록 치밀한 구조의 투명전극 박막을 충분한 두께로 형성하는 것에 초점을 둔 것이다. 반면에 전면텍스처(62)는 충분하게 형성된 전면전극(60)의 위에 표면 요철 구조를 형성한 것이므로, 공정조건을 조절하여 스퍼터되는 투명전도막 입자의 크기와 에너지가 커지도록 조절하여 불규칙한 표면을 형성할 수 있다.
구체적으로 전면텍스처(62)를 형성하는 DC 또는 RF 스퍼터링 공정은 2 W/cm2 ~ 10 W/cm2의 타깃 면적당 DC 전력 밀도를 이용하며, 0.1 mTorr ~ 5 mTorr 압력의 Ar 가스 또는 Ar 가스와 도핑원소를 혼합한 가스 조건에서, 1 분 ~ 수십 분의 범위로 전면전극 형성을 위한 공정에서 보다 상대적으로 짧은 시간 동안 수행한다. 또한, 스퍼터링 공정을 수행하는 중에 기판의 온도를 상온~수백 ℃의 범위로 높인다.
다만, 압력 유지를 위한 Ar 가스 유량은 진공 챔버(chamber)의 부피 및 펌프의 용량에 따라서 1 sccm ~ 수백 sccm의 범위에서 선택적으로 적용되며, 총 DC 혹은 RF 전력 또한 기판과 타깃의 크기 및 기판과 타깃 사이의 간격에 따라서 수W~ 수십kW의 범위에서 선택적으로 적용될 수 있는 점에서 전면전극(60)을 형성하는 경우와 비슷한 범위가 적용된다.
전면텍스처(62) 형성을 위한 스퍼터링 공정 조건은 전면전극(60)을 형성하는 경우에 비하여, 타깃 면적당 DC 전력 밀도가 높고 챔버 내의 가스 압은 낮으며 기판의 온도가 높기 때문에, 증착되는 TCO 입자의 에너지가 높아서 증착 표면에 요철이 형성된다. 한편, 증착되는 TCO 입자의 에너지가 높으면 증착층의 품질이 떨어질 수가 있으므로, 전면텍스처(62) 형성을 위한 스퍼터링 공정은 상대적으로 짧게 수행한다.
한편, LPCVD(low pressure CVD)공정을 적용하여 표면에 자체적으로 표면 텍스처가 형성된 투명전극층을 증착하는 기술이 개발되고 있으며, 이는 본 실시예에서 투명전극층과 전면텍스처를 각각 형성하는 것과 대응되어 같은 효과를 나타내는 기술이므로 본 실시예에 적용할 수 있다.
또한, 전면텍스처(62)의 위에 Al이나 Ag와 같은 금속재질의 그리드 전극을 추가하여 전극의 성능을 향상시키는 구성도 적용할 수 있다.
도 1i에 도시된 것과 같이 전면텍스처(62)의 위에 반사방지층(70)을 형성하며, 반사방지층(70)으로는 MgF2와 Al2O3가 일반적으로 사용된다.
MgF2 재질의 반사방지층(70)은 MgF2 펠렛을 이용하여 열증발법으로 증착하거나, Mg(thd)2와 TiF4를 반응 가스로 이용하여 원자층증착법(ALD, atomic layer deposition)으로 증착한다.
Al2O3 재질의 반사방지층(70)은 Al(CH3)3와 O3를 반응 가스로 이용하여 원자층증착법으로 증착한다.
도 2는 본 발명의 기판에 텍스처가 형성된 2중 텍스처 구조 칼코게나이드계 태양전지의 광포획 모습을 나타내는 도면이다.
도 1에 도시된 단계로 제조된 기판에 텍스처가 형성된 2중 텍스처 구조 칼코게나이드계 태양전지는 후면전극(30)에 형성된 요철(32)과 전면전극(60)에 형성된 전면텍스처(62)를 동시에 구비한다.
전면전극(60)으로 입사된 태양광은 버퍼층(50)을 거쳐 광흡수층(40)을 지나면서 광발전을 수행한 뒤에 후면전극(30) 표면에서 반사되며, 이때 표면에 형성된 요철(32)에 의해서 난반사가 발생한다.
요철(32)이 형성된 후면전극(30)의 표면에서 난반사된 태양광은 광흡수층(40)을 지나면서 광발전을 수행하며, 버퍼층(50)과 전면전극(60)을 지나서 전면텍스처(62)에서 다시 광흡수층(40)방향으로 난반사된다.
이와 같은 과정을 반복하면서 태양광이 광흡수층(40)에 오랫동안 머물기 때문에 태양전지의 효율이 크게 증가한다.
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 기판을 준비하는 단계;
    상기 기판의 표면에 기판텍스처를 형성하는 단계;
    상기 기판에 후면전극을 형성하는 단계;
    상기 후면 전극 위에 칼코게나이드계 반도체 재질의 광흡수층을 형성하는 단계;
    상기 광흡수층 위에 버퍼층을 형성하는 단계;
    상기 버퍼층 위에 투명전극을 형성하는 단계; 및
    상기 투명전극의 표면에 전면텍스처를 형성하는 단계를 포함하며,
    상기 기판텍스처에 의하여 상기 후면전극의 표면에 요철이 형성된 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  2. 청구항 1에 있어서,
    상기 기판이 유리재질 또는 폴리머재질이며,
    상기 기판텍스처를 형성하는 단계가 플라즈마를 이용한 반응성 이온 식각(RIE) 공정으로 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  3. 청구항 1에 있어서,
    상기 기판이 유리재질이며,
    상기 기판텍스처를 형성하는 단계가 HF 또는 HF와 HCl의 혼합액으로 상기 기판의 표면을 습식식각하여 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  4. 청구항 1에 있어서,
    상기 기판이 유리재질이며,
    상기 기판텍스처를 형성하는 단계가 SiO2입자를 포함하는 실리카-졸(silica-sol)을 상기 기판의 표면에 코팅한 뒤에 500℃ 이상의 온도에서 가열처리하는 공정으로 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  5. 청구항 1에 있어서,
    상기 기판이 유리재질이며,
    상기 기판텍스처를 형성하는 단계가 상기 기판 위에 알루미늄층을 스퍼터링하여 형성한 뒤에 600℃ 이상으로 가열하여 기판과 알루미늄을 반응시키고, 상기 반응에 의한 반응물을 습식식각하여 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  6. 청구항 1에 있어서,
    상기 기판이 폴리머재질이며,
    상기 기판텍스처를 형성하는 단계가 상기 기판을 가열하여 경화시킨 뒤에 금속성 수산화물을 이용하여 표면을 습식식각하여 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  7. 청구항 1에 있어서,
    상기 기판이 금속재질이며,
    상기 기판텍스처를 형성하는 단계가 플라즈마를 이용한 이온주입법(ion implantation)으로 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  8. 청구항 1에 있어서,
    상기 전면전극 형성하는 단계가 DC 스퍼터링 또는 RF 스퍼터링 공정으로 TCO를 증착하여 진행되며,
    상기 전면텍스처를 형성하는 단계가 상기 전면전극을 형성하는 단계보다 증착되는 입자에너지를 높이는 조건에 TCO를 DC 스퍼터링 또는 RF 스퍼터링하여 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  9. 청구항 1에 있어서,
    상기 전면텍스처를 형성하는 단계가 산성용액에 침지하여 상기 전면전극의 표면을 습식식각하여 진행되는 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법.
  10. 청구항 1 내지 청구항 9 중에 하나의 방법으로 제조된 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지.
  11. 청구항 10에 있어서,
    상기 광흡수층이 CuInS2(CIS), CuGaS2(CGS), CuInSe2(CISe), CuGaSe2(CGSe), CuAlSe2(CASe), CuInTe2(CITe), CuGaTe2(CGTe), Cu(In,Ga)S2(CIGS), Cu(In, Ga)Se2(CIGSe), Cu2ZnSnS4(CZTS) 중에서 선택된 하나의 재질인 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지.
  12. 기판;
    상기 기판 위에 형성된 후면전극;
    상기 후면 전극 위에 형성된 칼코게나이드계 반도체 재질의 광흡수층;
    상기 광흡수층 위에 형성된 버퍼층; 및
    상기 버퍼층 위에 형성된 투명전극을 포함하여 구성되고,
    상기 기판의 표면에 기판텍스처 구조가 형성되고, 상기 기판텍스처 구조에 의하여 상기 후면전극의 표면에 요철이 형성되며,
    상기 투명전극의 표면에 전면텍스처 구조가 형성된 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지.
  13. 청구항 12에 있어서,
    상기 광흡수층이 CuInS2(CIS), CuGaS2(CGS), CuInSe2(CISe), CuGaSe2(CGSe), CuAlSe2(CASe), CuInTe2(CITe), CuGaTe2(CGTe), Cu(In,Ga)S2(CIGS), Cu(In, Ga)Se2(CIGSe), Cu2ZnSnS4(CZTS) 중에서 선택된 하나의 재질인 것을 특징으로 하는 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지.
PCT/KR2013/002398 2012-03-23 2013-03-22 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지 WO2013141646A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0030082 2012-03-23
KR1020120030082A KR101326140B1 (ko) 2012-03-23 2012-03-23 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지

Publications (1)

Publication Number Publication Date
WO2013141646A1 true WO2013141646A1 (ko) 2013-09-26

Family

ID=49223012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002398 WO2013141646A1 (ko) 2012-03-23 2013-03-22 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지

Country Status (2)

Country Link
KR (1) KR101326140B1 (ko)
WO (1) WO2013141646A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462020B1 (ko) * 2013-11-29 2014-11-19 한국화학연구원 칼코젠화합물 광흡수체 기반 고효율 무/유기 하이브리드 태양전지 제조 방법
WO2020159133A1 (ko) * 2019-01-29 2020-08-06 한양대학교 산학협력단 칼코게나이드 반도체 및 이를 구비하는 박막트랜지스터
KR20200144617A (ko) * 2019-06-18 2020-12-30 (주)나노밸리 태양전지 및 태양전지 기판의 제조방법
KR102346834B1 (ko) 2019-11-20 2022-01-04 한양대학교 산학협력단 전이금속 디칼코겐 화합물 기반 광검출기 및 이의 제조 방법
KR102469842B1 (ko) 2020-04-22 2022-11-22 서울대학교산학협력단 전이금속 칼코게나이드를 광흡수층으로 포함하는 태양전지
KR102319613B1 (ko) 2020-09-04 2021-10-29 서울대학교산학협력단 2차원 물질을 이용한 페로브스카이트 유연 투명 태양전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201304A (ja) * 2006-01-30 2007-08-09 Honda Motor Co Ltd 太陽電池およびその製造方法
KR20080052913A (ko) * 2006-12-08 2008-06-12 송청담 박막형 태양전지 및 그 제조방법
KR20100109321A (ko) * 2009-03-31 2010-10-08 엘지이노텍 주식회사 태양전지 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201304A (ja) * 2006-01-30 2007-08-09 Honda Motor Co Ltd 太陽電池およびその製造方法
KR20080052913A (ko) * 2006-12-08 2008-06-12 송청담 박막형 태양전지 및 그 제조방법
KR20100109321A (ko) * 2009-03-31 2010-10-08 엘지이노텍 주식회사 태양전지 및 이의 제조방법

Also Published As

Publication number Publication date
KR20130107905A (ko) 2013-10-02
KR101326140B1 (ko) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2013141646A1 (ko) 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지
WO2009145418A1 (en) Bulk heterojunction solar cell and method of manufacturing the same
WO2012064000A1 (ko) Cigs 태양광 흡수층 제조방법
KR20100136790A (ko) 태양전지 및 그 제조방법
WO2013077547A1 (ko) 후면 tco층을 구비한 cis/cigs계 태양전지 및 그 제조방법
WO2012138194A2 (en) Solar cell and manufacturing method thereof
KR101592576B1 (ko) 태양전지 및 이의 제조방법
WO2011132915A2 (ko) 태양 전지 제조 방법
WO2011053087A2 (ko) 태양전지 및 이의 제조방법
WO2013141651A1 (ko) 텍스처층을 포함하는 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지
WO2012148208A2 (en) Solar cell and method of preparing the same
US8633053B2 (en) Photovoltaic device
Hashimoto et al. High efficiency CIGS solar cell on flexible stainless steel
KR101326139B1 (ko) 후면전극 표면에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지
WO2017142380A1 (ko) 태양전지 및 그 제조방법
WO2013055005A1 (en) Solar cell and preparing method of the same
WO2013089305A1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
WO2012050280A1 (ko) 태양 전지 및 이의 제조 방법
KR101825032B1 (ko) 패시베이션층을 포함한 칼코게나이드계 태양전지 및 그 제조방법
KR101262529B1 (ko) 태양전지 및 이의 제조방법
EP2432028B1 (en) Photovoltaic device
CN109638087A (zh) 提高光伏电池背电极与吸收层附着力的方法及光伏电池
KR20130059228A (ko) 태양전지 및 이의 제조방법
WO2013094943A1 (en) Solar cell and method of fabricating the same
EP3528293A1 (en) Thin-film solar cell and fabrication method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763509

Country of ref document: EP

Kind code of ref document: A1