WO2013141608A1 - Backlight unit - Google Patents

Backlight unit Download PDF

Info

Publication number
WO2013141608A1
WO2013141608A1 PCT/KR2013/002310 KR2013002310W WO2013141608A1 WO 2013141608 A1 WO2013141608 A1 WO 2013141608A1 KR 2013002310 W KR2013002310 W KR 2013002310W WO 2013141608 A1 WO2013141608 A1 WO 2013141608A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
led module
heat pipe
housing
pipe
Prior art date
Application number
PCT/KR2013/002310
Other languages
French (fr)
Korean (ko)
Inventor
최유진
이동헌
김병호
차준선
Original Assignee
티티엠주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티티엠주식회사 filed Critical 티티엠주식회사
Priority to CN201380015859.3A priority Critical patent/CN104603680B/en
Priority to JP2015501577A priority patent/JP6189411B2/en
Publication of WO2013141608A1 publication Critical patent/WO2013141608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the present invention relates to a backlight unit, and more particularly, to a backlight unit capable of cooling by dissipating heat generated from a light emitting device through a heat pipe.
  • FIG. 1 and 2 illustrate a flat panel display to which a backlight unit according to the prior art is applied, and is disclosed in Korean Patent Application No. 10-1047726 (name: backlight unit and display device having the same). Drawing.
  • the above-described backlight includes a light emitting device made of a light emitting diode and an LED module 1 formed of a circuit board, and a heat radiating plate 3 and a heat pipe made of a light guide plate 2 and a shape shown. And 4 and the housing 5 to form a backlight unit.
  • the above-described heat pipe 4 is formed in a flat plate shape as shown in Figs. 1 and 2 and is in close contact with the housing 5 as shown in Fig.
  • the above-described heat sink 3 is in close contact with the heat pipe 4, as shown in Figure 2, the LED module (1) consisting of a circuit board (1b) mounted with a light emitting element (1a) on one side bent. Is attached.
  • the light guide plate 2 described above is accommodated in the housing 5 together with the heat pipe 4 and the heat sink 3 as shown in FIG. 2.
  • heat of the LED module 1 is transferred to the heat pipe 4 through the heat sink 3 to radiate heat.
  • the heat of the LED module 1 is transferred to the heat pipe 4 through the heat sink 3, the LED module 1, the heat sink 3 and the heat sink 3 and the heat pipe ( 4)
  • the heat pipe 4 receives heat from the LED module 1 directly. It exhibits a relatively low heat dissipation performance than heat transfer with a heat dissipator such as the housing 5.
  • the heat pipe 4 is formed as a straight line, as shown in Figure 3, as one end is in close contact with the heat sink 3 to absorb heat of the LED module 1 to one end to radiate heat to the other end. .
  • the endothermic area is not only limited to one end, but a gap section G that does not endotherm is generated as shown. . Therefore, in the related art, due to the separation distance between the light emitting elements 1a formed by the spaced interval G, the heat of the light emitting element 1a disposed in the vicinity of the spaced interval G is relatively discharged. Since the luminous flux is deteriorated, the heat pipe 4 absorbs heat only the light emitting devices 1a disposed at the width of one end of the heat pipe 4 despite the light emitting device 1a in the separation section G.
  • the heat absorbing portion of the heat pipe 4 constituting one end of the heat pipe 4 by absorbing heat of the light emitting element 1a. Since the light emitting element 1a contacts the light emitting element 1a in a narrow area and absorbs heat of the light emitting element 1a in a limited manner, the working fluid received heat inside the heat pipe 4 serves as a condenser. Blind spot that cannot be delivered to the end ( ⁇ L) May occur.
  • the heat pipe 4 is formed in a straight line shape as shown, the heat pipe 4 is shown as shown in order to minimize the separation section G in which heat is not transmitted to the heat pipe 4. It is to be manufactured in a structure that minimizes the separation section G by installing densely or successively or by installing a wide heat pipe (not shown) instead of the heat pipe 4 shown.
  • a wide heat pipe not shown
  • reference numeral 11 in FIG. 1 is a reflective sheet for reflecting light of the light emitting device 1a
  • 12 is a supporting member for supporting a display panel displaying a screen
  • 13 is a diffusion sheet for diffusing light
  • 15 is a top cover which is coupled to the housing 5.
  • the present invention was created to solve the above problems, and an object thereof is to provide a backlight unit in which heat of an LED module can be directly transferred to a heat pipe.
  • one end of the components constituting the LED module is directly connected to one side of the heat pipe to directly transfer heat to the heat pipe, or the heat of the LED module to the heat pipe other heat conductive member, in addition to the heat
  • Another object is to provide a backlight unit that can transfer heat to the housing while the pipe transfers heat to the thermally conductive member.
  • a part of the heat pipe is in close contact with the above-mentioned heat conductive member, and another part is formed at an angle different from the above-described part in close contact with the heat conductive member, so that the backlight can transfer heat or radiate heat away from the heat conductive member.
  • Another purpose is to provide a unit.
  • another object of the present invention is to provide a backlight unit in which the above-described portion of the heat pipe that is in close contact with the thermally conductive member is formed long to increase the endothermic area.
  • a portion of the heat pipe may be bent to fix the LED module in close contact with the banded portion, or the circuit constituting the LED module may be directly patterned on the banded portion to directly absorb and transfer heat of the LED module.
  • Another object is to provide a backlight unit.
  • a backlight unit including: an optical plate including at least one of a light guide plate transmitting light in a dispersed state and a diffusion plate transmitting light in a diffusion state; An LED module having a light emitting element for providing light to the optical plate and a circuit for driving the light emitting element; A heat pipe that absorbs heat generated from the LED module to one side and radiates heat while transferring to the other side; And a housing accommodating at least one of the heat pipe, the optical plate, and the LED module, wherein the heat pipe is configured such that the LED module is directly connected to one side so that the heat of the LED module is directly transferred to one side.
  • the LED module may be configured of a substrate on which the circuit is patterned and on which the light emitting device is mounted, and the heat pipe is directly connected to one end portion of the heat pipe in an overlapping state.
  • the present invention is fixed to one side of the substrate is opposed to the side of the optical plate to radiate heat of the LED module to provide the light of the light emitting element mounted on the substrate to the side of the optical plate, and bent at one side
  • One side of the heat pipe is in close contact with the other side, and the heat of the heat pipe is directly transferred to the other side, or the heat of the LED module is transferred to the heat pipe through the other side, and the rear side of the other side where the heat pipe is in close contact with the housing
  • a heat dissipation angle for transferring heat transferred from the heat pipe and the heat of the LED module to the housing.
  • the heat pipe may be provided with at least one inflection point for bending in the other part such that the other part is in close contact with the housing and the heat is transferred to the housing while the part is in close contact with the other side of the genital heat dissipation angle.
  • the heat pipe may be formed to have a length parallel to the heat dissipation angle and closely adhere along the longitudinal direction of the heat dissipation angle.
  • the heat pipe may absorb heat of the LED module and transfer the heat to the other side of the heat dissipation angle, or the heat of the LED module from the heat dissipation angle.
  • One side is passed;
  • the other side formed to be extended at one side at a different angle from the one side, spaced apart from the heat dissipation angle by a different angle from one side, and the other side having heat transferred from one side as extending from one side.
  • the heat pipe may include, for example, an endothermic portion that absorbs heat of the LED module as the circuit patterned substrate of the LED module is directly connected to the adhesive state; And a heat transfer part which is bent at the heat absorbing part and formed to be connected to the heat absorbing part, and is transferred to the housing in close contact with the housing to transfer heat transferred from the heat absorbing part to the housing.
  • the heat pipe may include, for example, an endothermic portion that absorbs heat of the LED module as the circuit of the LED module is patterned on a surface thereof so that the LED module is directly connected to the same form. And a heat transfer part which is bent at the heat absorbing part and formed to be connected to the heat absorbing part, and is transferred to the housing in close contact with the housing to transfer heat transferred from the heat absorbing part to the housing.
  • the LED module may be partially disposed on the optical plate or disposed only at a central portion thereof to be directly connected to the heat pipe.
  • the heat pipe may include, for example, one side of the LDE module directly connected to absorb heat of the LED module; And a heat transfer part extending from the one side and extending to the housing in close contact with the housing and transferring the heat transferred from the one side to the housing.
  • the heat pipe can quickly transfer the heat of the LED module, thereby easily dissipating heat of the LED module.
  • the heat pipe can directly transfer the heat of the LED module, and in addition, the substrate and the heat pipe each have one side of the heat radiation angle. And since it is in close contact with the other side can also dissipate heat by transferring heat of the heat pipe transmitted from the LED module through the heat dissipation angle, and furthermore, as the heat pipe is partially bent by the inflection point, a part of the other side is in close contact with the heat dissipation angle. Since the other part of the other side is in close contact with the housing and transfers heat to the housing, heat can be radiated through the housing.
  • the heat absorbing area of the heat pipe can be increased.
  • heat can be transferred to the end of the other side to dissipate heat, and since one side of the heat pipe is formed along the heat dissipation angle, the heat transfer performance or heat dissipation performance required can be secured even if the heat pipe is not densely installed.
  • the substrate constituting the LED module is in close contact with the heat absorbing portion of the heat pipe, and the heat of the LED module is directly transferred to the heat pipe, thereby improving heat transfer performance and heat dissipation performance through the heat pipe, and further, heat absorbing of the heat pipe.
  • the heat dissipation heat resistance
  • the pipe may take the place of the substrate that constitutes the LED module.
  • the heat pipe is configured to one side and the other side is formed long bent at one side to which the LED module is directly connected, so the heat of the LED module can be easily transferred to Heat dissipation can be performed.
  • FIG. 1 is an exploded perspective view of a backlight unit according to the prior art
  • FIG. 2 is a partial side cross-sectional view of the backlight unit shown in FIG. 1;
  • FIG. 3 is a front view schematically showing the front of the backlight unit shown in FIG.
  • FIG. 4 is a front view of the backlight unit according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line A-A of FIG. 4;
  • FIG. 6 is a sectional view of a backlight unit according to a second embodiment of the present invention.
  • FIG. 7 is a sectional view of a backlight unit according to a third embodiment of the present invention.
  • FIG. 8 is a front view of a backlight unit according to a fourth embodiment of the present invention.
  • FIG. 9 is a front view of a backlight unit according to a fifth embodiment of the present invention.
  • FIG. 10 is a front view showing another embodiment of the heat pipe shown in FIG. And
  • FIG 11 is a front view of a backlight unit according to a sixth embodiment of the present invention.
  • the backlight unit according to the first embodiment of the present invention includes an optical plate 53, an LED module 50, a heat pipe 60, and a housing 54 as shown in FIGS. 4 and 5.
  • the optical plate 53 is composed of at least one of a conventional light guide plate for transmitting light in a dispersed state and a conventional diffuser plate for transmitting light in a diffused state.
  • the optical plate 53 is configured as a light guide plate, as shown in FIG. 5, the optical plate 53 is disposed in front of the LED module 50 to uniformly disperse the light flowing to the side through the LED module 50 to the light guide plate as a whole.
  • the optical plate 53 is composed of a diffusion plate, as shown in Figs. 9 and 10
  • the LED module 50 is installed on the back, the light of the LED module 50 flowing from the back uniformly as a whole Spread. Since the optical plate 53 is a normal member, detailed description thereof will be omitted.
  • the LED module 50 may include, for example, a light emitting device 51 for providing light to the above-described optical plate 53 and a circuit for driving the light emitting device 51.
  • the circuit may be patterned on the substrate 52 as shown in FIG. 4.
  • the light emitting device 51 may be configured as a light emitting diode mounted on the substrate 52 or a conventional LED package including the light emitting diode as shown in FIG. 4. Accordingly, the LED module 50 may include the light emitting device 51 and the substrate 52 patterned as shown in FIG. 4.
  • the LED module 50 is disposed on the side of the optical plate 53 to emit light toward the side of the optical plate 53, as shown in FIG. 4.
  • the heat pipe 60 absorbs heat generated from the LED module 50 to one side and heats (transfers) or radiates heat to the other side.
  • the heat pipe 60 is composed of a flat heat pipe, and one side is in close contact with the above-described substrate 52 of the LED module 50 as shown in FIG. 5.
  • the heat pipe 60 is directly connected to one side of the substrate 52, as shown in FIG. In this case, as shown in FIG. 5, the heat pipe 60 may be directly connected to one end of the substrate 52 in a stacked (overlapping) state. Therefore, since the heat pipe 60 is directly connected to the LED module 50 on one side, the heat pipe 60 effectively absorbs heat of the LED module 50 to one side and radiates while transferring to the other side. At this time, the heat pipe 60 quickly transfers the heat absorbed by the working fluid of the inside not shown to the other side.
  • the housing 54 described above receives at least one of the heat pipe 60, the LED module 50, and the optical plate 53, as shown in FIG. 5.
  • This housing 54 is combined with the outermost cover of the not shown display to protect the aforementioned components.
  • the housing 54 may be formed in a flat plate shape without being bent as shown in the drawing, and may be combined with a cover not shown.
  • the housing 54 is made of a material having rigidity and thermal conductivity, and may be made of, for example, metal or plastic material.
  • the first embodiment of the present invention may be provided with a heat radiation angle 56 as shown in FIG.
  • Heat dissipation angle 56 is made of a thermally conductive material, the substrate 52 is fixed to one side bent as shown.
  • one side of the heat pipe 60 having the substrate 52 stacked on the other side of the heat dissipation angle 56 is bent as shown. That is, the heat dissipation angle 56 contacts one side of the heat pipe 60 which is in contact with the substrate 52 in the stacked state and the other side of the heat dissipation angle 56 on the opposite side. Accordingly, the heat dissipation angle 56 is fixed to the substrate 52 on one side around the bending point, the heat pipe 60 is in close contact with the other side.
  • the heat radiating angle 56 receives heat simultaneously from the ends of the LED module 50 and the heat pipe 60 at one side, and heat is transferred from the heat absorbing portion of the heat pipe 60 through the other side to heat pipe at the other side.
  • the back surface of the contact surface which is in contact with 60 contacts the housing 54, thereby transferring heat to the housing 54 while assisting the heat transfer of the heat pipe 60, thereby more effectively dissipating heat of the LED module 50.
  • the first embodiment of the present invention is configured such that the heat of the LED module 50 is simultaneously transmitted to the heat dissipation angle 56 and the heat pipe 60, and also effectively houses the heat received by the heat dissipation angle 56.
  • the external radiator such as 54
  • the heat dissipation angle 56 is in close contact with the housing 54 on the other side of the heat pipe 60 is in close contact. Therefore, the heat radiation angle 56 can transfer the heat transferred to the housing 54 as described above.
  • the heat pipe 60 is in close contact with the heat dissipation angle 56, that is, close to the housing 54 in the direction of the condensation unit from the end of the lamination and the heat dissipation angle 56, the heat dissipation can be effectively radiated.
  • the first embodiment of the present invention exhibits excellent heat dissipation performance because the heat dissipation angle 56 and the heat pipe 60 simultaneously transfer heat of the LED module 50 to the housing 54. That is, the first embodiment shows excellent heat dissipation performance because the heat of the LED module 50 can be transferred to the housing 54 in various directions to dissipate heat.
  • the heat pipe 60 described above is an inflection point 60a for bending so that other parts not stacked in close contact with the housing 54 are partially stacked on the other side of the heat dissipation angle 56 as shown in FIG. 5.
  • 60b) is provided. That is, the heat pipe 60 is bent by the inflection points 60a and 60b, and other portions which are not stacked on the heat dissipation angle 56 are bent by bending to be in close contact with the housing 54.
  • the heat pipe 60 is preferably provided with a plurality of inflection points (60a, 60b) as shown. Therefore, the heat pipe 60 transfers a part of heat to the heat dissipation angle 56, transfers a part of the heat to the housing 54, and radiates heat through the housing 54.
  • the heat radiation angle 56 may be a space between the inflection start point (60a) of the heat pipe 60 from the inflection end point (60b) that is in close contact with the housing 54, as shown in FIG.
  • the other end can be formed in a form that can fill the space, in this case it can eliminate the inefficient portion of the heat transfer.
  • the backlight unit according to the second embodiment of the present invention has the same configuration as all of the above-described first embodiment, as shown in FIG. 6, except that the above-described heat dissipation angle 56 is omitted so that the heat pipe 60 Is directly connected to the substrate 52, which is different from the first embodiment. Therefore, referring only to these differences with reference to Figure 6 as follows.
  • one side for absorbing heat is bent to include a heat absorbing portion 62 and a heat transfer portion 64.
  • the heat absorbing portion 62 is directly connected to the substrate 52, as shown in the heat absorbing heat of the substrate 52.
  • the heat transfer part 64 is bent at approximately right angles at the heat absorbing portion 62 to form a long connection state with the heat absorbing portion 62, and is in close contact with the housing 54 to absorb heat at the heat absorbing portion 62.
  • the heat is transferred to the housing 54 to dissipate heat, and at the same time, the working fluid inside is rapidly moved to diffuse the heat of the heat absorbing part 62 and diffused throughout the inside.
  • the heat transfer unit 64 may directly absorb heat of the LED module 50 when one end of the substrate 52 is stacked in close contact with the front end side as shown, and in this case, The heat can be transferred more smoothly to dissipate heat.
  • the contact area with the substrate 52 is wider than that of the heat pipe 60 of the first embodiment. That is, the heat pipe 60 has an increased heat absorbing area than the first embodiment.
  • the heat transfer rate is significantly increased by removing the heat dissipation angle 50 that acts as a thermal resistance in the heat transfer path with the substrate 52. . Therefore, the heat pipe 60 absorbs and dissipates more heat than the first embodiment, and can easily absorb and transfer heat of the LED module 50.
  • the heat absorbing portion 62 may be configured in a state in which there is no channel for communicating the working fluid therein, as shown in an enlarged upper right portion of the figure, as shown in an enlarged lower right portion of the figure for more smooth heat dissipation. It is preferable that a channel communicating with the channel of the heat transfer part 64 is provided therein.
  • the thickness of the heat absorbing portion 62 may be thicker than the thickness of the heat absorbing portion 62 described in the former.
  • the backlight unit according to the third embodiment of the present invention has the same configuration as that of the second embodiment described above, except that the substrate in the components of the LED module 50 ( The difference is that the circuit patterned at 52 is directly printed on the heat absorbing portion 62 of the heat pipe 60 to omit the above-described substrate 52. Accordingly, only these differences will be described with reference to the accompanying drawings.
  • the circuit 52a is directly patterned on the surface of the heat absorbing portion 62 of the heat pipe 60 so that the heat absorbing portion 62 of the heat pipe 60 is described above. It replaces the role of one substrate 52. That is, in the third embodiment, the circuit 52a which has been printed on the substrate 52 described above is printed directly on the heat pipe 60. In the third embodiment, the light emitting element 51 is mounted on the circuit 52a patterned on the heat absorbing portion 62. Therefore, in the third embodiment, the LED module 50 is directly connected to the heat pipe 60 in the form of an identical body.
  • the above-described substrate 52 is omitted so that two thermal resistances generated between the light emitting element 51 and the substrate 52 and between the substrate 52 and the heat pipe 62 are obtained.
  • the heat resistance between the heat pipe 62 and the heat pipe 62 is reduced to only one heat resistance, not only the heat transfer performance (heat transfer performance) can be improved but also the manufacturing cost of the LED module 50 can be reduced.
  • the heat pipe 60 of the above-described third embodiment may be provided with a channel through which the working fluid is communicated to the heat absorbing portion 62 as described in the second embodiment.
  • the channel may not be provided. .
  • the backlight unit according to the fourth embodiment of the present invention has the same configuration as that of the above-described first embodiment, except that the above-described heat dissipation angle 56 is provided, and the heat pipe ( The difference is that 60 consists of one side 66 and the other side 68 formed long by the bending. Accordingly, only these differences will be described with reference to the accompanying drawings.
  • the heat pipe 60 includes one side 66 and the other side 68.
  • One side portion 66 is formed long in parallel with the heat dissipation angle 56 as shown in Figure 8 is in close contact with the heat dissipation angle 56 along the longitudinal direction of the heat dissipation angle 56 in a stacked state, as described above
  • one end of the substrate 52 constituting the LED module 50 is directly connected in a stacked state to absorb heat of the LED module 50.
  • One side portion 66 transmits the heat absorbed to the other side of the heat dissipation angle 56 in close contact with the housing 54, as shown in FIG.
  • the housing 54 dissipates the heat of the LED module 50 transmitted from the heat dissipation angle 56.
  • the other side portion 68 extends from one side portion 66 to form a different angle from the one side portion 66 described above.
  • the other side portion 68 is preferably extended in a straight form in one side portion 66 at a different angle from the one side portion 66 by bending.
  • the other side 68 may be bent to have an inclination ⁇ with one side 66 as shown, and may be bent at right angles to one side 66 for smooth communication of the working fluid, as shown. have.
  • the aforementioned inclination ⁇ has a range of ⁇ 90 ° ⁇ ⁇ + 90 ° based on the imaginary horizontal line H formed at the end of one side portion 66 as shown in FIG. 8.
  • the inclination ⁇ is in the range of an angle at which the other side 68 is not in line with one side 66 or an angle at which the other side 68 is not folded at one side 66.
  • the other side portion 68 is an angle is determined according to the required heat dissipation performance, it is preferably composed of 0 ° ⁇ ⁇ ⁇ +90 ° based on the horizontal line (H) described above, 0 ° ⁇ ⁇ ⁇ + 45 ° It is more preferable that it consists of.
  • the other side portion 68 may move away from the heat dissipation angle 56 as shown by a different angle from the one side portion 66 and thus may smoothly serve as a condensation portion.
  • one side 66 transfers the heat of the substrate 52 to the heat dissipation angle 56
  • the other side 68 is the one side 66 and the other.
  • the heat of the substrate 52 transferred from the heat dissipation angle 56 is dissipated.
  • the other side 68 may serve as a condensation unit by heat dissipation.
  • the inflection points 60a and 60b of the above-described first embodiment may be provided so that the substrate 52 is in direct contact with the other side 68 as in the second and third embodiments (see FIGS. 6 and 7).
  • the circuit 52a may be directly patterned so that the above-described heat dissipation angle 56 may be omitted.
  • the backlight unit according to the fifth embodiment of the present invention as shown in Figure 9, the heat pipe 60 is configured in the same manner as the fourth embodiment described above, except that the LED module 50 is shown
  • the difference is that the divided parts are arranged in the optical plate 53 without the heat-dissipation angle 56 described above. Accordingly, only these differences will be described with reference to the accompanying drawings.
  • the divided LED module 50 is partially disposed on the optical plate 53 as shown.
  • the LED module 50 may be divided into 2 to 16, in particular, as shown in the four can be arranged only near the edge of the optical plate 53, as shown in the optical plate 53 It may be partially disposed between the edge portion and the middle portion of the) or along the edge of the optical plate 53.
  • the LED module 50 may be directly connected to one side 66 of the heat pipe 60, as illustrated in the substrate 52, on which the above-described light emitting device 51 is mounted.
  • the above-described circuit 52a is patterned on one side 66 of the heat pipe 60, the same circuit may be directly connected to one side 66 of the heat pipe 60.
  • one side portion 66 may be stacked on the LED module 50.
  • the one side portion 66 may be closely attached to the side surface of the LED module 50 as shown in an enlarged view. It may be. Therefore, the heat pipe 60 absorbs heat of the LED module 50 to one side 66 and transfers the heat to the other side 68 while radiating heat through the housing 54 in which the other side 68 is in close contact. .
  • the heat of the LED module 50 can be easily transferred and radiated.
  • the other side 68 faces upwards, so that the working fluid therein smoothly moves the inside while repeating vaporization and condensation. Move. That is, the lower side heat pipe A of the optical plate 53 has the other side 68 facing upwards, so when the heat is transferred to the one side 66, the working fluid evaporates and rises to the other side 68. Condensation at the other side 68 returns to the lower side 66.
  • the other side 68 is directed downward so that the working fluid condensed in the other side 68 is not shown inside the wick
  • the capillary action may return to the vertical portion 66 vertically, but may not return smoothly to the vertical portion 66 vertically by gravity.
  • the upper side heat pipe B is formed by extending the other side portion 68 at one side portion 66, the return is not smoother. Therefore, the upper side heat pipe (B) is preferably configured in a straight shape as shown in Figure 10 for the smooth movement of the working fluid.
  • the upper side heat pipe (B) is formed in a straight line as shown as a whole as the other side portion 68 is formed in a straight line from the above-described one side portion 66 as shown in FIG. Most preferably, 50 is installed in a horizontal state. However, the upper side heat pipe B may be installed in an inclined state or a vertical state as shown in FIG. 10. In this case, the aforementioned inclination means an angle between the horizontal heat pipe 60 shown and the vertical heat pipe 60 shown as reference, and the horizontal heat pipe 60 is referred to as 0 °.
  • the heat pipe 60 in the vertical state is referred to as -90 °, it means an angle larger than -90 ° and smaller than 0 °, and an angle larger than -45 ° and smaller than 0 ° for smooth movement of the working fluid. desirable.
  • the backlight unit according to the sixth embodiment of the present invention has the same configuration as that of the fifth embodiment described above, except that the LED module 50 is provided only at the center of the optical plate 53 as shown in FIG. 11. The difference is that. Accordingly, only these differences will be described with reference to the accompanying drawings.
  • the LED module 50 is disposed only at the center of the optical plate 53.
  • the LED module 50 may have a substrate 52 or a circuit 52a as described above and be directly connected to the heat pipe 60.
  • the heat pipe 60 may be configured in plural as shown, and may be installed in the LED module 50 respectively. Alternatively, the heat pipe 60 may be configured in a singular form and installed in the LED module 50. The heat pipe 60 may be stacked on the LED module 50 as shown, or may be in close contact with the side surface of the LED module 50 as shown in an enlarged view. Then, the heat pipe 60 may be installed in all directions of the LED module 50, as shown by a virtual line (dotted line), When located on the lower side of the LED module 50 may be configured in a straight line form as shown in a virtual line may be installed in an inclined state in a horizontal state.
  • a virtual line dotted line
  • the heat pipe 60 transfers heat of the LED module 50 to radiate heat. Therefore, in the sixth embodiment, even when the LED module 50 is installed in the center of the optical plate 53, the heat of the LED module 50 can be easily transferred and radiated.
  • the LED module 50 and the heat pipe 60 of the sixth embodiment can also be applied to the fifth embodiment described above. That is, the LED module 50 and the heat pipe 60 of the sixth embodiment may be disposed at the central portion of the optical plate 53 shown in FIG. 9. In this case, the backlight unit emits light at the center and the edge of the optical plate 53 by the LED module 50 at the same time. At this time, the heat pipe 60 simultaneously transfers the heat of the central portion and the corner LED module 50 of the optical plate 53 to the housing 54 described above to radiate heat. Therefore, the backlight unit operates stably due to smooth heat dissipation.
  • the heat pipe can quickly transfer the heat of the LED module, thereby easily dissipating heat of the LED module.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

The present invention relates to a backlight unit. The backlight unit of the present invention comprises: an optical plate constituted by at least either a light guide plate for allowing light to pass at a dispersed state or a diffusion plate for allowing light to pass at a diffused state; an LED module having a light-emitting element for providing light to the optical plate and a circuit for driving the light-emitting element; a heat pipe for absorbing heat generated from the LED module through one side thereof and transferring the absorbed heat to the other side thereof so as to dissipate the heat; and a housing for accommodating at least one of the heat pipe, the optical plate and the LED module. The LED module is directly connected to one side of the heat pipe such that the heat from the LED module can be directly transferred to the one side of the heat pipe. The backlight unit of the present invention has excellent heat dissipating performance as the heat from the LED module is directly transferred the heat pipe.

Description

백라이트 유닛Backlight unit
본 발명은 백라이트 유닛에 관한 것으로서, 좀더 자세하게는 발광소자로부터 발생된 열을 히트파이프를 통해 방열하여 냉각시킬 수 있는 백라이트 유닛에 관한 것이다.The present invention relates to a backlight unit, and more particularly, to a backlight unit capable of cooling by dissipating heat generated from a light emitting device through a heat pipe.
평판형 디스플레이에서 도 1 및 도 2는 종래기술에 의한 백라이트 유닛이 적용된 평판형 디스플레이를 도시한 것으로서, 대한민국 특허청에 특허등록 제10-1047726호(명칭: 백라이트 유닛 및 이를 구비한 표시장치)에 개시된 도면이다. 1 and 2 illustrate a flat panel display to which a backlight unit according to the prior art is applied, and is disclosed in Korean Patent Application No. 10-1047726 (name: backlight unit and display device having the same). Drawing.
도 1에 도시된 바와 같이 전술한 백라이트는 발광다이오드로 이루어진 발광소자와 회로기판으로 구성된 LED 모듈(1)로 구성되며, 도시된 도광판(2)과 형재로 이루어진 금속재 방열대(3)와 히트파이프(4) 및 하우징(5)과 결합되어 백라이트 유닛을 구성한다.As shown in FIG. 1, the above-described backlight includes a light emitting device made of a light emitting diode and an LED module 1 formed of a circuit board, and a heat radiating plate 3 and a heat pipe made of a light guide plate 2 and a shape shown. And 4 and the housing 5 to form a backlight unit.
여기서, 전술한 히트파이프(4)는 도 1 및 도 2에 도시된 바와 같이 평판형으로 형성되어 도 2에 도시된 바와 같이 하우징(5)에 밀착된다. 그리고, 전술한 방열대(3)는 도 2에 도시된 바와 같이 히트파이프(4)에 밀착되고, 밴딩된 일측에 발광소자(1a)가 실장된 회로기판(1b)으로 이루어진 LED 모듈(1)이 부착된다. 또, 전술한 도광판(2)은 도 2에 도시된 바와 같이 히트파이프(4) 및 방열대(3)와 함께 하우징(5)에 수용된다.Here, the above-described heat pipe 4 is formed in a flat plate shape as shown in Figs. 1 and 2 and is in close contact with the housing 5 as shown in Fig. In addition, the above-described heat sink 3 is in close contact with the heat pipe 4, as shown in Figure 2, the LED module (1) consisting of a circuit board (1b) mounted with a light emitting element (1a) on one side bent. Is attached. In addition, the light guide plate 2 described above is accommodated in the housing 5 together with the heat pipe 4 and the heat sink 3 as shown in FIG. 2.
이러한 종래기술의 백라이트 유닛은 도 2에 도시된 바와 같이 LED 모듈(1)의 열이 방열대(3)를 거쳐 히트파이프(4)로 전달되어 방열된다.In the backlight unit of the prior art, as shown in FIG. 2, heat of the LED module 1 is transferred to the heat pipe 4 through the heat sink 3 to radiate heat.
그러나, 이러한 종래기술은 LED 모듈(1)의 열이 방열대(3)를 통해 히트파이프(4)로 전달되므로 LED 모듈(1)과 방열대(3) 그리고 방열대(3) 및 히트파이프(4) 사이의 열저항(Thermal resistance)에 의해 방열효과가 저하되는 문제가 있다. 즉, 금속재로 이루어진 방열대(3)는 내부의 작동유체로 인하여 신속하게 방열을 실시하는 히트파이프(4) 보다 전열효율이 낮으므로 히트파이프(4)가 LED 모듈(1)의 열을 직접 받아 하우징(5) 등의 방열체로 전열하는 것보다 상대적으로 낮은 방열성능을 나타낸다.However, since the heat of the LED module 1 is transferred to the heat pipe 4 through the heat sink 3, the LED module 1, the heat sink 3 and the heat sink 3 and the heat pipe ( 4) There is a problem in that the heat dissipation effect is lowered by the thermal resistance between. That is, since the heat sink 3 made of metal has a lower heat transfer efficiency than the heat pipe 4 which dissipates heat quickly due to the working fluid therein, the heat pipe 4 receives heat from the LED module 1 directly. It exhibits a relatively low heat dissipation performance than heat transfer with a heat dissipator such as the housing 5.
한편, 전술한 히트파이프(4)는 도 3에 도시된 바와 같이 직선형으로 형성되고, 일단부가 방열대(3)에 밀착됨에 따라 일단부로 LED 모듈(1)의 열을 흡열하여 타단부로 방열한다. On the other hand, the heat pipe 4 is formed as a straight line, as shown in Figure 3, as one end is in close contact with the heat sink 3 to absorb heat of the LED module 1 to one end to radiate heat to the other end. .
그러나, 이러한 종래기술은 히트파이프(4)의 일단부만이 방열대(3)에 접촉되므로 흡열면적이 일단부에 국한될 뿐만 아니라, 도시된 바와 같이 흡열이 안되는 이격구간(G)이 발생된다. 따라서, 종래기술은 이격구간(G)에 의해 형성되는 발광소자(1a)들 간의 이격거리로 인하여 이격구간(G)의 주변에 배치된 발광소자(1a)의 열이 상대적으로 적게 방출되므로 수명 및 광속의 저하가 우려되며, 이격구간(G)에도 발광소자(1a)가 있음에도 불구하고 히트파이프(4)의 일단부 폭에 배치된 발광소자(1a)들만 히트파이프(4)가 흡열하므로 히트파이프(4)의 전열성능을 충분히 발휘할 수 없는 정도의 열량만을 흡수하게 됨으로써, 다시 말하면 발광소자(1a)의 열을 흡열하고, 히트파이프(4)의 일단부를 구성하는 히트파이프(4)의 흡열부가 발광소자(1a)와 협소한 면적으로 접촉되어 제한적으로 발광소자(1a)의 열을 흡열하므로 히트파이프(4) 내부에서 열을 전달받은 작동유체가 응축부 역할을 하는 히트파이프(4)의 타단부 끝까지 전달되지 못하는 사각지대(△L)가 발생할 수 있다.However, in the related art, since only one end of the heat pipe 4 is in contact with the heat sink 3, the endothermic area is not only limited to one end, but a gap section G that does not endotherm is generated as shown. . Therefore, in the related art, due to the separation distance between the light emitting elements 1a formed by the spaced interval G, the heat of the light emitting element 1a disposed in the vicinity of the spaced interval G is relatively discharged. Since the luminous flux is deteriorated, the heat pipe 4 absorbs heat only the light emitting devices 1a disposed at the width of one end of the heat pipe 4 despite the light emitting device 1a in the separation section G. By absorbing only the amount of heat that the heat transfer performance of (4) cannot be sufficiently exhibited, that is, the heat absorbing portion of the heat pipe 4 constituting one end of the heat pipe 4 by absorbing heat of the light emitting element 1a. Since the light emitting element 1a contacts the light emitting element 1a in a narrow area and absorbs heat of the light emitting element 1a in a limited manner, the working fluid received heat inside the heat pipe 4 serves as a condenser. Blind spot that cannot be delivered to the end (△ L) May occur.
또한, 종래기술은 히트파이프(4)가 도시된 바와 같이 일직선형태로 형성되므로 히트파이프(4)에 열이 전달되지 않는 이격구간(G)을 최소화하기 위해 도시된 바와 같이 히트파이프(4)를 조밀하게 또는 연이어 설치하거나, 또는 도시된 히트파이프(4) 대신 미도시된 광폭의 히트파이프를 설치하여 이격구간(G)를 최소화하는 방향의 구조로 제조되어야 한다. 하지만, 이러한 경우 히트파이프(4)의 숫량 증가나 광폭화로 인하여 제조단가 및 제조비용이 증가한다.In addition, in the related art, since the heat pipe 4 is formed in a straight line shape as shown, the heat pipe 4 is shown as shown in order to minimize the separation section G in which heat is not transmitted to the heat pipe 4. It is to be manufactured in a structure that minimizes the separation section G by installing densely or successively or by installing a wide heat pipe (not shown) instead of the heat pipe 4 shown. However, in this case, the manufacturing cost and manufacturing cost increase due to the increase in the number of the heat pipes 4 or the widening.
한편, 도 1의 미설명부호 11은 발광소자(1a)의 빛을 반사하는 반사시트이고, 12는 화면을 표시하는 표시패널을 지지하기 위한 지지부재이며, 13은 빛을 확산시키는 확산시트이고, 15는 하우징(5)과 결합되는 탑커버이다.Meanwhile, reference numeral 11 in FIG. 1 is a reflective sheet for reflecting light of the light emitting device 1a, 12 is a supporting member for supporting a display panel displaying a screen, 13 is a diffusion sheet for diffusing light, 15 is a top cover which is coupled to the housing 5.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, LED 모듈의 열이 히트파이프에 직접적으로 전이될 수 있는 백라이트 유닛을 제공하기 위함이 그 목적이다.The present invention was created to solve the above problems, and an object thereof is to provide a backlight unit in which heat of an LED module can be directly transferred to a heat pipe.
또, LED 모듈을 구성하는 구성요소의 일단부가 히트파이프의 일측에 직결되어 직접적으로 히트파이프에 열을 전이하거나, LED 모듈의 열을 히트파이프가 다른 열전도성 부재에 전이할 수 있으며, 이에 더하여 히트파이프가 열전도성 부재에 열을 전이하면서 하우징에도 열을 전이할 수 있는 백라이트 유닛을 제공하기 위함이 다른 목적이다.In addition, one end of the components constituting the LED module is directly connected to one side of the heat pipe to directly transfer heat to the heat pipe, or the heat of the LED module to the heat pipe other heat conductive member, in addition to the heat Another object is to provide a backlight unit that can transfer heat to the housing while the pipe transfers heat to the thermally conductive member.
또한, 히트파이프의 일부분이 전술한 열전도성 부재에 밀착되고, 다른 부분이 열전도성 부재와 밀착된 전술한 일부분과 상이한 각도로 형성되어 열전도성 부재와 이격상태로 열을 전이하거나 방열할 수 있는 백라이트 유닛을 제공하기 위함이 또 다른 목적이다.In addition, a part of the heat pipe is in close contact with the above-mentioned heat conductive member, and another part is formed at an angle different from the above-described part in close contact with the heat conductive member, so that the backlight can transfer heat or radiate heat away from the heat conductive member. Another purpose is to provide a unit.
특히, 열전도성 부재에 밀착되는 히트파이프의 전술한 일부분이 길게 형성되어 흡열면적을 증가시킬 수 있는 백라이트 유닛을 제공하기 위함이 또 다른 목적이다.In particular, another object of the present invention is to provide a backlight unit in which the above-described portion of the heat pipe that is in close contact with the thermally conductive member is formed long to increase the endothermic area.
이와 달리, 히트파이프의 일부분이 밴딩되어 LED 모듈이 밴딩된 부위에 밀착상태로 고정되거나, LED 모듈을 구성하는 회로가 밴딩된 부위에 직접 패턴되어 LED 모듈의 열을 직접적으로 흡열하여 전이할 수 있는 백라이트 유닛을 제공하기 위함이 또 다른 목적이다.Alternatively, a portion of the heat pipe may be bent to fix the LED module in close contact with the banded portion, or the circuit constituting the LED module may be directly patterned on the banded portion to directly absorb and transfer heat of the LED module. Another object is to provide a backlight unit.
본 발명에 따른 백라이트 유닛은, 빛을 분산상태로 투과시키는 도광판이나 빛을 확산상태로 투과시키는 확산판 중 적어도 어느 하나로 이루어진 광학플레이트; 상기 광학플레이트에 빛을 제공하는 발광소자 및 발광소자를 구동시키는 회로를 갖는 LED 모듈; 상기 LED 모듈에서 발생되는 열을 일측으로 흡열하여 타측으로 전이하면서 방열하는 히트파이프; 및 상기 히트파이프와 상기 광학플레이트 및 상기 LED 모듈 중 적어도 어느 하나를 수용하는 하우징;을 포함하고, 상기 히트파이프는, 상기 LED 모듈이 일측에 직결되어 상기 LED 모듈의 열이 일측으로 직접 전이되는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a backlight unit including: an optical plate including at least one of a light guide plate transmitting light in a dispersed state and a diffusion plate transmitting light in a diffusion state; An LED module having a light emitting element for providing light to the optical plate and a circuit for driving the light emitting element; A heat pipe that absorbs heat generated from the LED module to one side and radiates heat while transferring to the other side; And a housing accommodating at least one of the heat pipe, the optical plate, and the LED module, wherein the heat pipe is configured such that the LED module is directly connected to one side so that the heat of the LED module is directly transferred to one side. It features.
상기 LED 모듈은, 상기 회로가 패턴되어 상기 발광소자가 실장되는 기판으로 구성되고, 상기 히트파이프는, 상기 하우징에 수용된 상기 기판의 일단부에 일측이 중첩상태로 직결된 것을 특징으로 한다.The LED module may be configured of a substrate on which the circuit is patterned and on which the light emitting device is mounted, and the heat pipe is directly connected to one end portion of the heat pipe in an overlapping state.
본 발명은, 상기 기판이 상기 광학플레이트의 측방과 대향하는 일측에 고정되어 상기 LED 모듈의 열을 방열하면서 기판에 실장된 상기 발광소자의 빛을 상기 광학플레이트의 측방으로 제공하고, 일측에서 밴딩된 타측에 상기 히트파이프의 일측이 밀착되어 타측으로 히트파이프의 열이 직접 전이되거나 타측을 통해 상기 LED 모듈의 열을 히트파이프에 전이하며, 히트파이프가 밀착된 타측의 배면이 상기 하우징과 밀착상태를 이루면서 상기 LED 모듈의 열 및 히트파이프에서 전이되는 열을 하우징에 전이하는 방열앵글;을 더 포함할 수 있다.The present invention is fixed to one side of the substrate is opposed to the side of the optical plate to radiate heat of the LED module to provide the light of the light emitting element mounted on the substrate to the side of the optical plate, and bent at one side One side of the heat pipe is in close contact with the other side, and the heat of the heat pipe is directly transferred to the other side, or the heat of the LED module is transferred to the heat pipe through the other side, and the rear side of the other side where the heat pipe is in close contact with the housing And a heat dissipation angle for transferring heat transferred from the heat pipe and the heat of the LED module to the housing.
상기 히트파이프는, 성기 방열앵글의 타측에 일부분이 밀착된 상태로 다른 부분이 상기 하우징에 밀착되어 하우징으로 열을 전이하도록 상기 다른 부분에 굴곡을 위한 적어도 하나의 변곡점이 마련될 수 있다.The heat pipe may be provided with at least one inflection point for bending in the other part such that the other part is in close contact with the housing and the heat is transferred to the housing while the part is in close contact with the other side of the genital heat dissipation angle.
상기 히트파이프는 예컨대, 상기 방열앵글과 평행한 길이로 길게 형성되어 방열앵글의 길이방향을 따라 밀착되고, 상기 LED 모듈의 열을 흡열하여 방열앵글의 타측에 전이하거나 방열앵글로부터 상기 LED 모듈의 열이 전달되는 일측부; 및 상기 일측부와 상이한 각도로 일측부에서 길게 연장형성되고, 일측부와의 상이한 각도에 의해 상기 방열앵글과 이격되며, 일측부에서 연장됨에 따라 일측부의 열이 전이되는 타측부;를 포함하여 구성할 수 있다.For example, the heat pipe may be formed to have a length parallel to the heat dissipation angle and closely adhere along the longitudinal direction of the heat dissipation angle. The heat pipe may absorb heat of the LED module and transfer the heat to the other side of the heat dissipation angle, or the heat of the LED module from the heat dissipation angle. One side is passed; And the other side formed to be extended at one side at a different angle from the one side, spaced apart from the heat dissipation angle by a different angle from one side, and the other side having heat transferred from one side as extending from one side. Can be configured.
상기 히트파이프는 예컨대, 상기 LED 모듈의 상기 회로가 패턴된 기판이 밀착상태로 직결됨에 따라 LED 모듈의 열을 흡열하는 흡열부; 및 상기 흡열부에서 밴딩되어 흡열부와 연결상태로 길게 형성되고, 상기 하우징에 밀착되어 흡열부에서 전이되는 열을 하우징에 전달하는 전열부;를 포함하여 구성할 수도 있다.The heat pipe may include, for example, an endothermic portion that absorbs heat of the LED module as the circuit patterned substrate of the LED module is directly connected to the adhesive state; And a heat transfer part which is bent at the heat absorbing part and formed to be connected to the heat absorbing part, and is transferred to the housing in close contact with the housing to transfer heat transferred from the heat absorbing part to the housing.
상기 히트파이프는 예컨대, 상기 LED 모듈의 상기 회로가 표면에 패턴되어 LED 모듈이 동일체 형태로 직결됨에 따라 LED 모듈의 열을 흡열하는 흡열부; 및 상기 흡열부에서 밴딩되어 흡열부와 연결상태로 길게 형성되고, 상기 하우징에 밀착되어 흡열부에서 전이되는 열을 하우징에 전달하는 전열부;를 포함하여 구성할 수도 있다.The heat pipe may include, for example, an endothermic portion that absorbs heat of the LED module as the circuit of the LED module is patterned on a surface thereof so that the LED module is directly connected to the same form. And a heat transfer part which is bent at the heat absorbing part and formed to be connected to the heat absorbing part, and is transferred to the housing in close contact with the housing to transfer heat transferred from the heat absorbing part to the housing.
상기 LED 모듈은, 상기 광학플레이트에 부분적으로 배치되거나 중앙부에만 배치되어 상기 히트파이프와 직결될 수 있고, 상기 히트파이프는 예컨대, 상기 LDE 모듈이 직결되어 LED 모듈의 열을 흡열하는 일측부; 및 상기 일측부에서 길게 연장형성되고, 상기 하우징에 밀착되어 일측부에서 전이되는 열을 하우징에 전달하는 전열부;를 포함하여 구성할 수 있다.The LED module may be partially disposed on the optical plate or disposed only at a central portion thereof to be directly connected to the heat pipe. The heat pipe may include, for example, one side of the LDE module directly connected to absorb heat of the LED module; And a heat transfer part extending from the one side and extending to the housing in close contact with the housing and transferring the heat transferred from the one side to the housing.
본 발명은 LED 모듈이 히트파이프에 직결되므로 히트파이프가 LED 모듈의 열을 신속하게 전이할 수 있으며, 이로 인하여 LED 모듈의 열을 용이하게 방열할 수 있다.According to the present invention, since the LED module is directly connected to the heat pipe, the heat pipe can quickly transfer the heat of the LED module, thereby easily dissipating heat of the LED module.
또, LED 모듈을 구성하는 기판의 일단부가 평면을 이루는 히트파이프의 일측에 중첩상태로 직결되므로 LED 모듈의 열을 히트파이프가 곧바로 전이할 수 있고, 이에 더하여 기판 및 히트파이프가 각각 방열앵글의 일측 및 타측에 밀착되므로 방열앵글을 통해서도 LED 모듈에서 전달된 히트파이프의 열을 전이하여 방열할 수 있으며, 더 나아가 히트파이프가 변곡점에 의해 일부분이 굴곡형성됨에 따라 방열앵글에 타측의 일부분이 밀착된 상태로 타측의 다른 부분이 하우징에 밀착되어 하우징으로도 열을 전이하므로 하우징을 통해서도 방열을 실시할 수 있다.In addition, since one end of the substrate constituting the LED module is directly connected to one side of the heat pipe forming a plane, the heat pipe can directly transfer the heat of the LED module, and in addition, the substrate and the heat pipe each have one side of the heat radiation angle. And since it is in close contact with the other side can also dissipate heat by transferring heat of the heat pipe transmitted from the LED module through the heat dissipation angle, and furthermore, as the heat pipe is partially bent by the inflection point, a part of the other side is in close contact with the heat dissipation angle. Since the other part of the other side is in close contact with the housing and transfers heat to the housing, heat can be radiated through the housing.
또한, 방열앵글의 길이방향을 따라 밀착되는 히트파이프의 일측부가 방열앵글을 따라 길게 형성되고, 히트파이프의 타측부가 일측부와 상이한 각도를 이루면서 길게 형성되므로 히트파이프의 흡열면적을 증가시킬 수 있을 뿐만 아니라 타측부의 단부까지 열을 전이하여 방열할 수 있으며, 히트파이프의 일측부가 방열앵글을 따라 길게 형성되므로 히트파이프를 조밀하게 설치하지 않아도 요구되는 전열성능이나 방열성능을 확보할 수 있다.In addition, since one side of the heat pipe closely contacted along the longitudinal direction of the heat dissipation angle is formed along the heat dissipation angle, and the other side of the heat pipe is formed at a different angle from the one side, the heat absorbing area of the heat pipe can be increased. In addition, heat can be transferred to the end of the other side to dissipate heat, and since one side of the heat pipe is formed along the heat dissipation angle, the heat transfer performance or heat dissipation performance required can be secured even if the heat pipe is not densely installed.
이와 달리, 히트파이프의 흡열부에 LED 모듈을 구성하는 기판이 밀착되어 LED 모듈의 열이 히트파이프에 직접 전이되므로 히트파이프를 통한 전열성능 및 방열성능을 향상시킬 수 있으며, 더 나아가 히트파이프의 흡열부에 LED 모듈의 회로가 패턴된 후 발광소자가 패턴된 회로에 실장될 경우 전술한 기판의 두께에 의한 전열장애(열저항)가 제거되어 전열성능 및 방열성능을 향상시킬 수 있을 뿐만 아니라, 히트파이프가 LED 모듈을 구성하는 기판의 역할을 대신할 수 있다.On the other hand, since the substrate constituting the LED module is in close contact with the heat absorbing portion of the heat pipe, and the heat of the LED module is directly transferred to the heat pipe, thereby improving heat transfer performance and heat dissipation performance through the heat pipe, and further, heat absorbing of the heat pipe. After the circuit of the LED module is patterned on the unit, when the light emitting device is mounted on the patterned circuit, the heat dissipation (heat resistance) due to the thickness of the substrate is eliminated, thereby improving heat transfer performance and heat dissipation performance, as well as heat. The pipe may take the place of the substrate that constitutes the LED module.
아울러, LED 모듈이 광학플레이트에 부분적으로 배치되거나 중앙부에 설치되어도, LED 모듈이 직결되는 일측부 및 일측부에서 밴딩되어 길게 형성되는 타측부로 히트파이프가 구성되므로 LED 모듈의 열을 용이하게 전이하여 방열을 실시할 수 있다.In addition, even if the LED module is partially disposed in the optical plate or installed in the center, the heat pipe is configured to one side and the other side is formed long bent at one side to which the LED module is directly connected, so the heat of the LED module can be easily transferred to Heat dissipation can be performed.
도 1은 종래기술에 의한 백라이트 유닛의 분해사시도;1 is an exploded perspective view of a backlight unit according to the prior art;
도 2는 도 1에 도시된 백라이트 유닛의 부분 측단면도;FIG. 2 is a partial side cross-sectional view of the backlight unit shown in FIG. 1; FIG.
도 3은 도 1에 도시된 백라이트 유닛의 정면을 개략적으로 도시한 정면도;3 is a front view schematically showing the front of the backlight unit shown in FIG.
도 4는 본 발명의 제1 실시예에 의한 백라이트 유닛의 정면도;4 is a front view of the backlight unit according to the first embodiment of the present invention;
도 5는 도4의 A-A선 단면도;5 is a cross-sectional view taken along the line A-A of FIG. 4;
도 6은 본 발명의 제2 실시예에 의한 백라이트 유닛의 단면도;6 is a sectional view of a backlight unit according to a second embodiment of the present invention;
도 7은 본 발명의 제3 실시예에 의한 백라이트 유닛의 단면도;7 is a sectional view of a backlight unit according to a third embodiment of the present invention;
도 8은 본 발명의 제4 실시예에 의한 백라이트 유닛의 정면도;8 is a front view of a backlight unit according to a fourth embodiment of the present invention;
도 9는 본 발명의 제5 실시예에 의한 백라이트 유닛의 정면도;9 is a front view of a backlight unit according to a fifth embodiment of the present invention;
도 10은 도 9에 도시된 히트파이프의 다른 실시예를 도시한 정면도; 및10 is a front view showing another embodiment of the heat pipe shown in FIG. And
도 11은 본 발명의 제6 실시예에 의한 백라이트 유닛의 정면도.11 is a front view of a backlight unit according to a sixth embodiment of the present invention.
이하, 첨부된 도 4 및 도 5를 참조하여 본 발명의 제1 실시예에 의한 백라이트 유닛을 설명하면 다음과 같다.Hereinafter, the backlight unit according to the first embodiment of the present invention will be described with reference to FIGS. 4 and 5.
본 발명의 제1 실시예에 의한 백라이트 유닛은 도 4 및 도 5에 도시된 바와 같이 광학플레이트(53), LED 모듈(50), 히트파이프(60) 및 하우징(54)을 포함한다.The backlight unit according to the first embodiment of the present invention includes an optical plate 53, an LED module 50, a heat pipe 60, and a housing 54 as shown in FIGS. 4 and 5.
광학플레이트(53)는 빛을 분산상태로 투과시키는 통상의 도광판이나 빛을 확산상태로 투과시키는 통상의 확산판 중 적어도 어느 하나로 구성된다. 광학플레이트(53)는 도광판으로 구성될 경우 도 5에 도시된 바와 같이 LED 모듈(50)의 전방에 배치되어 LED 모듈(50)을 통해 측면으로 유입되는 빛을 도광판에 전체적으로 균일하게 분산시킨다. 그리고, 광학플레이트(53)는 확산판으로 구성될 경우 도 9 및 도 10에 도시된 바와 같이 LED 모듈(50)이 배면에 설치되며, 배면에서 유입되는 LED 모듈(50)의 빛을 전체적으로 균일하게 확산시킨다. 이러한 광학플레이트(53)는 통상의 부재이므로 그 자세한 설명은 생략한다.The optical plate 53 is composed of at least one of a conventional light guide plate for transmitting light in a dispersed state and a conventional diffuser plate for transmitting light in a diffused state. When the optical plate 53 is configured as a light guide plate, as shown in FIG. 5, the optical plate 53 is disposed in front of the LED module 50 to uniformly disperse the light flowing to the side through the LED module 50 to the light guide plate as a whole. And, when the optical plate 53 is composed of a diffusion plate, as shown in Figs. 9 and 10, the LED module 50 is installed on the back, the light of the LED module 50 flowing from the back uniformly as a whole Spread. Since the optical plate 53 is a normal member, detailed description thereof will be omitted.
LED 모듈(50)은 예컨대, 전술한 광학플레이트(53)에 빛을 제공하는 발광소자(51) 및 발광소자(51)를 구동시키는 회로를 포함하여 구성될 수 있다. 이때, 회로는 도 4에 도시된 바와 같이 기판(52)에 패턴될 수 있다. 그리고, 발광소자(51)는 도 4에 도시된 바와 같이 기판(52)에 실장되는 발광다이오드 또는 이러한 발광다이오드를 포함하는 통상의 LED 패키지로 구성될 수 있다. 따라서, LED 모듈(50)은 도 4에 도시된 바와 같이 발광소자(51) 및 회로가 패턴된 기판(52)을 포함하여 구성될 수 있다.The LED module 50 may include, for example, a light emitting device 51 for providing light to the above-described optical plate 53 and a circuit for driving the light emitting device 51. In this case, the circuit may be patterned on the substrate 52 as shown in FIG. 4. In addition, the light emitting device 51 may be configured as a light emitting diode mounted on the substrate 52 or a conventional LED package including the light emitting diode as shown in FIG. 4. Accordingly, the LED module 50 may include the light emitting device 51 and the substrate 52 patterned as shown in FIG. 4.
LED 모듈(50)은 광학플레이트(53)가 도광판으로 구성될 경우, 도 4에 도시된 바와 같이 광학플레이트(53)의 측면에 배치되어 광학플레이트(53)의 측면으로 빛을 발광한다.When the optical plate 53 is composed of a light guide plate, the LED module 50 is disposed on the side of the optical plate 53 to emit light toward the side of the optical plate 53, as shown in FIG. 4.
히트파이프(60)는 LED 모듈(50)에서 발생되는 열을 일측으로 흡열하여 타측으로 전열(전이)하거나 방열한다. 히트파이프(60)는 평판형 히트파이프로 구성되어 도 5에 도시된 바와 같이 일측이 LED 모듈(50)의 전술한 기판(52)에 밀착된다. 이러한 히트파이프(60)는 도 5에 도시된 바와 같이 기판(52)이 일측에 직결된다. 이때, 히트파이프(60)는 도 5에 도시된 바와 같이 일측이 기판(52)의 일단부에 적층(중첩)상태로 직결되는 것이 바람직하다. 따라서, 히트파이프(60)는 일측에 LED 모듈(50)이 직결되므로 일측으로 LED 모듈(50)의 열을 효과적으로 흡열하여 타측으로 전이하면서 방열한다. 이때, 히트파이프(60)는 미도시된 내부의 작동유체에 의해 흡열된 열을 타측으로 신속하게 전달한다.The heat pipe 60 absorbs heat generated from the LED module 50 to one side and heats (transfers) or radiates heat to the other side. The heat pipe 60 is composed of a flat heat pipe, and one side is in close contact with the above-described substrate 52 of the LED module 50 as shown in FIG. 5. The heat pipe 60 is directly connected to one side of the substrate 52, as shown in FIG. In this case, as shown in FIG. 5, the heat pipe 60 may be directly connected to one end of the substrate 52 in a stacked (overlapping) state. Therefore, since the heat pipe 60 is directly connected to the LED module 50 on one side, the heat pipe 60 effectively absorbs heat of the LED module 50 to one side and radiates while transferring to the other side. At this time, the heat pipe 60 quickly transfers the heat absorbed by the working fluid of the inside not shown to the other side.
한편, 전술한 하우징(54)은 도 5에 도시된 바와 같이 히트파이프(60)와 LED 모듈(50) 및 광학플레이트(53) 중 적어도 어느 하나를 수용한다. 이러한 하우징(54)은 미도시된 디스플레이어의 최외곽을 이루는 커버와 결합되어 전술한 구성요소를 보호한다. 이와 같은 하우징(54)은 테두리가 도시된 바와 같이 밴딩되지 않고 평판형으로 형성되어 미도시된 커버와 결합될 수도 있다. 하우징(54)은 강성과 열전도성을 갖는 재질로 구성되며, 예컨대 금속재나 플라스틱재로 구성될 수 있다.Meanwhile, the housing 54 described above receives at least one of the heat pipe 60, the LED module 50, and the optical plate 53, as shown in FIG. 5. This housing 54 is combined with the outermost cover of the not shown display to protect the aforementioned components. The housing 54 may be formed in a flat plate shape without being bent as shown in the drawing, and may be combined with a cover not shown. The housing 54 is made of a material having rigidity and thermal conductivity, and may be made of, for example, metal or plastic material.
다른 한편, 본 발명의 제1 실시예는 도 5에 도시된 바와 같은 방열앵글(56)이 구비될 수 있다. 방열앵글(56)은 열전도성 재질로 이루어지며, 도시된 바와 같이 밴딩된 일측에 기판(52)이 고정된다. 그리고, 방열앵글(56)은 도시된 바와 같이 밴딩된 타측에 기판(52)이 적층된 히트파이프(60)의 일측이 접촉된다. 즉, 방열앵글(56)은 밴딩된 타측에 기판(52)과 적층상태로 접촉된 히트파이프(60)의 일측면과 반대편의 일측 타면이 접촉된다. 이에 따라, 방열앵글(56)은 밴딩된 지점을 중심으로 일측에 기판(52)이 고정되고, 타측에 히트파이프(60)가 밀착된다. 따라서, 방열앵글(56)은 일측에서 LED 모듈(50) 및 히트파이프(60)의 단부로부터 열을 동시에 전달받고, 타측을 통해 히트파이프(60)의 흡열부로부터 열이 전이되어 타측에서 히트파이프(60)와 접촉되는 접촉면의 배면이 하우징(54)과 접촉함으로써, 히트파이프(60)의 전열작용을 도와주면서 하우징(54)으로 열을 전달하므로 더욱 효과적으로 LED 모듈(50)의 열을 방열시킬 수 있다. 결과적으로, 본 발명의 제1 실시예는 LED 모듈(50)의 열이 방열앵글(56) 및 히트파이프(60)로 동시에 전달되도록 구성되고, 또한 방열앵글(56)이 전달받은 열을 효과적으로 하우징(54) 등의 외부 방열체에 접촉되어 전달되도록 구성됨으로써, LED 모듈(50)의 방열을 극대화할 수 있다.On the other hand, the first embodiment of the present invention may be provided with a heat radiation angle 56 as shown in FIG. Heat dissipation angle 56 is made of a thermally conductive material, the substrate 52 is fixed to one side bent as shown. In addition, one side of the heat pipe 60 having the substrate 52 stacked on the other side of the heat dissipation angle 56 is bent as shown. That is, the heat dissipation angle 56 contacts one side of the heat pipe 60 which is in contact with the substrate 52 in the stacked state and the other side of the heat dissipation angle 56 on the opposite side. Accordingly, the heat dissipation angle 56 is fixed to the substrate 52 on one side around the bending point, the heat pipe 60 is in close contact with the other side. Therefore, the heat radiating angle 56 receives heat simultaneously from the ends of the LED module 50 and the heat pipe 60 at one side, and heat is transferred from the heat absorbing portion of the heat pipe 60 through the other side to heat pipe at the other side. The back surface of the contact surface which is in contact with 60 contacts the housing 54, thereby transferring heat to the housing 54 while assisting the heat transfer of the heat pipe 60, thereby more effectively dissipating heat of the LED module 50. Can be. As a result, the first embodiment of the present invention is configured such that the heat of the LED module 50 is simultaneously transmitted to the heat dissipation angle 56 and the heat pipe 60, and also effectively houses the heat received by the heat dissipation angle 56. By being configured to be in contact with the external radiator, such as 54, it is possible to maximize the heat radiation of the LED module 50.
방열앵글(56)은 히트파이프(60)가 밀착된 타측의 배면이 하우징(54)과 밀착된다. 따라서, 방열앵글(56)은 전술한 바와 같이 전이되는 열을 하우징(54)에도 전이할 수 있다. 또한, 히트파이프(60)는 방열앵글(56)과 적층 밀착된 일측, 즉 방열앵글(56)과 적층이 끝나는 지점부터 응축부 방향으로 하우징(54)과 밀착하므로 응축부의 효과적인 방열이 가능하다. 이로 인하여, 본 발명의 제1 실시예는 방열앵글(56) 및 히트파이프(60)가 하우징(54)으로 동시에 LED 모듈(50)의 열을 전이하므로 우수한 방열성능을 보인다. 즉, 제1 실시예는 LED 모듈(50)의 열을 하우징(54)에 다방면으로 전이하여 방열할 수 있으므로 우수한 방열성능을 보인다.The heat dissipation angle 56 is in close contact with the housing 54 on the other side of the heat pipe 60 is in close contact. Therefore, the heat radiation angle 56 can transfer the heat transferred to the housing 54 as described above. In addition, the heat pipe 60 is in close contact with the heat dissipation angle 56, that is, close to the housing 54 in the direction of the condensation unit from the end of the lamination and the heat dissipation angle 56, the heat dissipation can be effectively radiated. For this reason, the first embodiment of the present invention exhibits excellent heat dissipation performance because the heat dissipation angle 56 and the heat pipe 60 simultaneously transfer heat of the LED module 50 to the housing 54. That is, the first embodiment shows excellent heat dissipation performance because the heat of the LED module 50 can be transferred to the housing 54 in various directions to dissipate heat.
여기서, 전술한 히트파이프(60)는 도 5에 도시된 바와 같이 방열앵글(56)의 타측에 일부분이 적층된 상태로 적층되지 않은 다른 부위가 하우징(54)에 밀착되도록 굴곡을 위한 변곡점(60a, 60b)이 마련된다. 즉, 히트파이프(60)는 변곡점(60a, 60b)에 의해 방열앵글(56)에 적층되지 않은 다른 부위가 밴딩에 의해 굴곡을 형성하여 하우징(54)에 밀착된다. 이때, 히트파이프(60)는 변곡점(60a, 60b)이 도시된 바와 같이 복수로 마련되는 것이 바람직하다. 따라서, 히트파이프(60)는 일부의 열을 방열앵글(56)에 전이하고, 나머지 일부의 열을 하우징(54)으로 전이하여 하우징(54)을 통해 방열을 실시한다. Here, the heat pipe 60 described above is an inflection point 60a for bending so that other parts not stacked in close contact with the housing 54 are partially stacked on the other side of the heat dissipation angle 56 as shown in FIG. 5. 60b) is provided. That is, the heat pipe 60 is bent by the inflection points 60a and 60b, and other portions which are not stacked on the heat dissipation angle 56 are bent by bending to be in close contact with the housing 54. At this time, the heat pipe 60 is preferably provided with a plurality of inflection points (60a, 60b) as shown. Therefore, the heat pipe 60 transfers a part of heat to the heat dissipation angle 56, transfers a part of the heat to the housing 54, and radiates heat through the housing 54.
한편, 방열앵글(56)은 히트파이프(60)의 변곡 시작점(60a)부터 하우징(54)과 밀착이 시작되는 변곡 끝점(60b) 사이에 공간이 발생할 수 있으므로, 도 5에 확대 도시된 바와 같이 공간을 채울 수 있는 형태로 타측 끝단이 형성될 수 있으며, 이러한 경우 열전달의 비효율 부분을 제거할 수 있다.On the other hand, the heat radiation angle 56 may be a space between the inflection start point (60a) of the heat pipe 60 from the inflection end point (60b) that is in close contact with the housing 54, as shown in FIG. The other end can be formed in a form that can fill the space, in this case it can eliminate the inefficient portion of the heat transfer.
다른 한편, 본 발명의 제2 실시예에 의한 백라이트 유닛은 도 6에 도시된 바와 같이 전술한 제1 실시예와 모든 구성이 동일하고, 다만 전술한 방열앵글(56)이 생략되어 히트파이프(60)에 기판(52)이 직결된 것이 제1 실시예와의 차이점이다. 따라서, 도 6을 참조하여 이러한 차이점만을 설명하면 다음과 같다.On the other hand, the backlight unit according to the second embodiment of the present invention has the same configuration as all of the above-described first embodiment, as shown in FIG. 6, except that the above-described heat dissipation angle 56 is omitted so that the heat pipe 60 Is directly connected to the substrate 52, which is different from the first embodiment. Therefore, referring only to these differences with reference to Figure 6 as follows.
제2 실시예는 히트파이프(60)가 도시된 바와 같이 열을 흡열하는 일측이 밴딩되어 흡열부(62) 및 전열부(64)로 구성된다. 흡열부(62)는 도시된 바와 같이 기판(52)이 직결되어 기판(52)의 열을 흡열한다. 그리고, 전열부(64)는 도시된 바와 같이 흡열부(62)에서 대략 직각으로 밴딩되어 흡열부(62)와 연결상태로 길게 형성되고, 하우징(54)에 밀착되어 흡열부(62)에서 흡열된 열을 하우징(54)에 전이하여 방열하는 동시에 흡열부(62)의 열이 신속하게 방열되도록 내부의 작동유체를 급속히 이동시켜서 내부에 전체적으로 확산시킨다. 이때, 전열부(64)는 도시된 바와 같이 선단측에 기판(52)의 일단부가 밀착상태로 적층될 경우 LED 모듈(50)의 열을 직접 흡열할 수도 있으며, 이러한 경우 LED 모듈(50)의 열을 더욱 원활하게 전이하여 방열할 수 있다.In the second embodiment, as shown in the heat pipe 60, one side for absorbing heat is bent to include a heat absorbing portion 62 and a heat transfer portion 64. The heat absorbing portion 62 is directly connected to the substrate 52, as shown in the heat absorbing heat of the substrate 52. In addition, the heat transfer part 64 is bent at approximately right angles at the heat absorbing portion 62 to form a long connection state with the heat absorbing portion 62, and is in close contact with the housing 54 to absorb heat at the heat absorbing portion 62. The heat is transferred to the housing 54 to dissipate heat, and at the same time, the working fluid inside is rapidly moved to diffuse the heat of the heat absorbing part 62 and diffused throughout the inside. At this time, the heat transfer unit 64 may directly absorb heat of the LED module 50 when one end of the substrate 52 is stacked in close contact with the front end side as shown, and in this case, The heat can be transferred more smoothly to dissipate heat.
이러한 히트파이프(60)는 도시된 바와 같이 흡열부(62)에 기판(52)이 밀착되므로 전술한 제1 실시예의 히트파이프(60) 보다 기판(52)과의 접촉면적이 넓다. 즉, 히트파이프(60)는 제1 실시예 보다 흡열면적이 증가된다. 그리고, 히트파이프(60)는 전술한 방열앵글(50)이 생략되므로 기판(52)과의 열전달 경로에서 열저항(Thermal resistance)으로 작용하는 방열앵글(50)의 제거에 의해 열전달률이 현저히 높아진다. 따라서, 히트파이프(60)는 제1 실시예 보다 많은 열을 흡열하여 방열할 수 있으며, 용이하게 LED 모듈(50)의 열을 흡열 및 전이할 수 있다.Since the substrate 52 is in close contact with the heat absorbing portion 62 as shown in the heat pipe 60, the contact area with the substrate 52 is wider than that of the heat pipe 60 of the first embodiment. That is, the heat pipe 60 has an increased heat absorbing area than the first embodiment. In addition, since the heat dissipation angle 50 of the heat pipe 60 is omitted, the heat transfer rate is significantly increased by removing the heat dissipation angle 50 that acts as a thermal resistance in the heat transfer path with the substrate 52. . Therefore, the heat pipe 60 absorbs and dissipates more heat than the first embodiment, and can easily absorb and transfer heat of the LED module 50.
한편, 흡열부(62)는 도면의 우측 상부에 확대 도시된 바와 같이 내부에 작동유체를 소통시키는 채널이 없는 상태로 구성될 수 있으나, 좀더 원활한 방열을 위해 도면의 우측 하부에 확대 도시된 바와 같이 내부에 전열부(64)의 채널과 연통된 채널이 마련되는 것이 바람직하다. 여기서, 후자의 경우 채널로 인하여 흡열부(62)의 두께가 전자에 설명된 흡열부(62)의 두께 보다 두껍게 형성될 수 있다.On the other hand, the heat absorbing portion 62 may be configured in a state in which there is no channel for communicating the working fluid therein, as shown in an enlarged upper right portion of the figure, as shown in an enlarged lower right portion of the figure for more smooth heat dissipation. It is preferable that a channel communicating with the channel of the heat transfer part 64 is provided therein. Here, in the latter case, due to the channel, the thickness of the heat absorbing portion 62 may be thicker than the thickness of the heat absorbing portion 62 described in the former.
다른 한편, 본 발명의 제3 실시예에 의한 백라이트 유닛은 도 7에 도시된 바와 같이 모든 구성이 전술한 제2 실시예와 동일하고, 다만 전술한 바와 같이 LED 모듈(50)의 구성품 중의 기판(52)에 패턴된 회로를 히트파이프(60)의 흡열부(62)에 직접 인쇄하여 전술한 기판(52)을 생략한 것이 그 차이점이다. 따라서, 첨부된 도면을 참조하여 이러한 차이점만을 설명하면 다음과 같다.On the other hand, as shown in Fig. 7, the backlight unit according to the third embodiment of the present invention has the same configuration as that of the second embodiment described above, except that the substrate in the components of the LED module 50 ( The difference is that the circuit patterned at 52 is directly printed on the heat absorbing portion 62 of the heat pipe 60 to omit the above-described substrate 52. Accordingly, only these differences will be described with reference to the accompanying drawings.
본 발명의 제3 실시예에 의한 백라이트 유닛은 도시된 바와 같이 회로(52a)가 히트파이프(60)의 흡열부(62) 표면에 직접 패턴되어 히트파이프(60)의 흡열부(62)가 전술한 기판(52)의 역할을 대신한다. 즉, 제3 실시예는 전술한 기판(52)에 인쇄되었던 회로(52a)가 히트파이프(60)에 직접 인쇄된다. 그리고, 제3 실시예는 도시된 바와 같이 흡열부(62)에 패턴된 회로(52a)에 발광소자(51)가 실장된다. 따라서, 제3 실시예는 히트파이프(60)에 LED 모듈(50)이 동일체 형태로 직결된다.In the backlight unit according to the third exemplary embodiment of the present invention, as illustrated, the circuit 52a is directly patterned on the surface of the heat absorbing portion 62 of the heat pipe 60 so that the heat absorbing portion 62 of the heat pipe 60 is described above. It replaces the role of one substrate 52. That is, in the third embodiment, the circuit 52a which has been printed on the substrate 52 described above is printed directly on the heat pipe 60. In the third embodiment, the light emitting element 51 is mounted on the circuit 52a patterned on the heat absorbing portion 62. Therefore, in the third embodiment, the LED module 50 is directly connected to the heat pipe 60 in the form of an identical body.
이러한 제3 실시예는 전술한 기판(52)이 생략되어 발광소자(51)와 기판(52) 그리고 기판(52)과 히트파이프(62) 사이에서 발생하는 두개의 열저항이 발광소자(51)와 히트파이프(62) 사이의 열저항, 즉 하나의 열저항 만으로 감소됨에 따라 전열성능(열전달 성능)을 향상시킬 수 있을 뿐만 아니라 LED 모듈(50)의 제조비용을 절감할 수 있다.In the third embodiment, the above-described substrate 52 is omitted so that two thermal resistances generated between the light emitting element 51 and the substrate 52 and between the substrate 52 and the heat pipe 62 are obtained. As the heat resistance between the heat pipe 62 and the heat pipe 62 is reduced to only one heat resistance, not only the heat transfer performance (heat transfer performance) can be improved but also the manufacturing cost of the LED module 50 can be reduced.
여기서, 전술한 제3 실시예의 히트파이프(60)는 제2 실시예에서 설명된 바와 같이 흡열부(62)에 작동유체가 소통되는 채널이 마련될 수 있으며, 이와 달리 채널이 마련되지 않을 수도 있다.Here, the heat pipe 60 of the above-described third embodiment may be provided with a channel through which the working fluid is communicated to the heat absorbing portion 62 as described in the second embodiment. Alternatively, the channel may not be provided. .
한편, 본 발명의 제4 실시예에 의한 백라이트 유닛은 도 8에 도시된 바와 같이 전술한 제1 실시예와 모든 구성이 동일하고, 다만 전술한 방열앵글(56)이 구비된 것과, 히트파이프(60)가 밴딩에 의해 길게 형성된 일측부(66) 및 타측부(68)로 구성된 것이 차이점이다. 따라서, 첨부된 도면을 참조하여 이러한 차이점만을 설명하면 다음과 같다.Meanwhile, as shown in FIG. 8, the backlight unit according to the fourth embodiment of the present invention has the same configuration as that of the above-described first embodiment, except that the above-described heat dissipation angle 56 is provided, and the heat pipe ( The difference is that 60 consists of one side 66 and the other side 68 formed long by the bending. Accordingly, only these differences will be described with reference to the accompanying drawings.
본 발명의 제4 실시예는 도 8에 도시된 바와 같이 히트파이프(60)가 일측부(66) 및 타측부(68)로 구성된다. 일측부(66)는 도 8에 도시된 바와 같이 방열앵글(56)과 평행한 길이로 길게 형성되어 방열앵글(56)의 길이방향을 따라 방열앵글(56)에 적층상태로 밀착되고, 전술한 도 5에 도시된 바와 같이 LED 모듈(50)을 구성하는 기판(52)의 일단부가 적층상태로 직결되어 LED 모듈(50)의 열을 흡열한다. 일측부(66)는 흡열된 열을 도 5에 도시된 바와 같이 하우징(54)과 밀착된 방열앵글(56)의 타측으로 전달한다. 따라서, 하우징(54)은 방열앵글(56)에서 전달된 LED 모듈(50)의 열을 방열한다.In the fourth embodiment of the present invention, as shown in FIG. 8, the heat pipe 60 includes one side 66 and the other side 68. One side portion 66 is formed long in parallel with the heat dissipation angle 56 as shown in Figure 8 is in close contact with the heat dissipation angle 56 along the longitudinal direction of the heat dissipation angle 56 in a stacked state, as described above As shown in FIG. 5, one end of the substrate 52 constituting the LED module 50 is directly connected in a stacked state to absorb heat of the LED module 50. One side portion 66 transmits the heat absorbed to the other side of the heat dissipation angle 56 in close contact with the housing 54, as shown in FIG. Thus, the housing 54 dissipates the heat of the LED module 50 transmitted from the heat dissipation angle 56.
타측부(68)는 도 8에 도시된 바와 같이 전술한 일측부(66)와 상이한 각도를 이루도록 일측부(66)에서 연장되어 길게 형성된다. 이러한 타측부(68)는 밴딩에 의해 일측부(66)와 상이한 각도로 일측부(66)에서 직선형태로 길게 연장되는 것이 바람직하다. 타측부(68)는 도시된 바와 같이 일측부(66)와 경사(θ)를 갖도록 밴딩될 수 있고, 도시된 바와 달리 작동유체의 원활한 소통을 위해 일측부(66)와 직각을 갖도록 밴딩될 수도 있다. 이때, 전술한 경사(θ)는 도 8에 도시된 바와 같이 일측부(66)의 단부에 형성되는 가상의 수평선(H)을 기준으로 -90°<θ< +90°의 범위를 갖는다. 즉, 경사(θ)는 타측부(68)가 일측부(66)와 일직선이 되지 않는 각도나 타측부(68)가 일측부(66)에 접히지 않는 각도의 범위로 이루어진다. 이러한 타측부(68)는 요구되는 방열성능에 따라 각도가 결정되며, 전술한 수평선(H)을 기준으로 0°≤θ< +90°로 구성되는 것이 바람직하고, 0°≤θ≤+45°로 구성되는 것이 더욱 바람직하다. As shown in FIG. 8, the other side portion 68 extends from one side portion 66 to form a different angle from the one side portion 66 described above. The other side portion 68 is preferably extended in a straight form in one side portion 66 at a different angle from the one side portion 66 by bending. The other side 68 may be bent to have an inclination θ with one side 66 as shown, and may be bent at right angles to one side 66 for smooth communication of the working fluid, as shown. have. In this case, the aforementioned inclination θ has a range of −90 ° <θ <+ 90 ° based on the imaginary horizontal line H formed at the end of one side portion 66 as shown in FIG. 8. That is, the inclination θ is in the range of an angle at which the other side 68 is not in line with one side 66 or an angle at which the other side 68 is not folded at one side 66. The other side portion 68 is an angle is determined according to the required heat dissipation performance, it is preferably composed of 0 ° ≤ θ <+90 ° based on the horizontal line (H) described above, 0 ° ≤ θ ≤ + 45 ° It is more preferable that it consists of.
타측부(68)는 일측부(66)와의 상이한 각도에 의해 도시된 바와 같이 방열앵글(56)과 멀어지므로 원활하게 응축부의 역할을 수행할 수 있다.The other side portion 68 may move away from the heat dissipation angle 56 as shown by a different angle from the one side portion 66 and thus may smoothly serve as a condensation portion.
이와 같이 구성된 히트파이프(60)는 도 8에 도시된 바와 같이 일측부(66)가 기판(52)의 열을 방열앵글(56)로 전이하고, 타측부(68)가 일측부(66) 및 방열앵글(56)로부터 전이된 기판(52)의 열을 방열한다.In the heat pipe 60 configured as described above, as shown in FIG. 8, one side 66 transfers the heat of the substrate 52 to the heat dissipation angle 56, and the other side 68 is the one side 66 and the other. The heat of the substrate 52 transferred from the heat dissipation angle 56 is dissipated.
이러한 제4 실시예는 히트파이프(60)의 일측부(66)가 도 8에 도시된 바와 같이 길게 형성되므로 흡열면적이 전술한 실시예들 보다 월등하게 증가된다. 따라서, 제4 실시예는 히트파이프(60)의 흡열량이 전술한 실시예들 보다 증가하므로 작동유체를 기화할 수 있는 정도로 충분하게 열이 흡열됨에 따라 히트파이프(60)에 마련된 타측부(68)의 단부까지 신속하게 열을 전달할 수 있다.In this fourth embodiment, since one side portion 66 of the heat pipe 60 is formed to be long as shown in FIG. 8, the endothermic area is significantly increased than the aforementioned embodiments. Therefore, in the fourth embodiment, since the endothermic amount of the heat pipe 60 is increased than the above-described embodiments, the other side portion 68 provided in the heat pipe 60 is heat absorbed sufficiently to vaporize the working fluid. It is possible to transfer heat quickly to the end of.
한편, 제4 실시예의 히트파이프(60)는 타측부(68)가 하우징(54)에 밀착되어 하우징(54)으로 열이 전달됨에 따라 타측부(68)가 방열에 의해 응축부 역할을 할 수 있도록 전술한 제1 실시예의 변곡점(60a, 60b)이 마련될 수 있으며, 제2 및 제3 실시예(도 6 및 도 7 참조)와 같이 타측부(68)에 기판(52)이 직접 접촉되거나 회로(52a)가 직접 패턴되어 전술한 방열앵글(56)이 생략된 상태로 구성될 수도 있다.On the other hand, in the heat pipe 60 of the fourth embodiment, as the other side 68 is in close contact with the housing 54 and heat is transferred to the housing 54, the other side 68 may serve as a condensation unit by heat dissipation. The inflection points 60a and 60b of the above-described first embodiment may be provided so that the substrate 52 is in direct contact with the other side 68 as in the second and third embodiments (see FIGS. 6 and 7). The circuit 52a may be directly patterned so that the above-described heat dissipation angle 56 may be omitted.
다른 한편, 본 발명의 제5 실시예에 의한 백라이트 유닛은 도 9에 도시된 바와 같이 히트파이프(60)가 전술한 제4 실시예와 동일하게 구성되고, 다만 LED 모듈(50)이 도시된 바와 같이 분할 구성되어 전술한 방열앵글(56)이 없는 상태로 광학플레이트(53)에 부분적으로 배치된 것이 그 차이점이다. 따라서, 첨부된 도면을 참조하여 이러한 차이점만을 설명하면 다음과 같다.On the other hand, the backlight unit according to the fifth embodiment of the present invention, as shown in Figure 9, the heat pipe 60 is configured in the same manner as the fourth embodiment described above, except that the LED module 50 is shown The difference is that the divided parts are arranged in the optical plate 53 without the heat-dissipation angle 56 described above. Accordingly, only these differences will be described with reference to the accompanying drawings.
제5 실시예는 도시된 바와 같이 분할 구성된 LED 모듈(50)이 광학플레이트(53)에 부분적으로 배치된다. 이때, LED 모듈(50)은 2개 내지 16개로 분할 구성될 수 있고, 특히 도시된 바와 같이 4개로 구성되어 광학플레이트(53)의 모서리 부근에만 배치될 수 있으며, 도시된 바와 달리 광학플레이트(53)의 모서리부와 중간부 사이나 광학플레이트(53)의 테두리를 따라 부분적으로 배치될 수도 있다.In the fifth embodiment, the divided LED module 50 is partially disposed on the optical plate 53 as shown. At this time, the LED module 50 may be divided into 2 to 16, in particular, as shown in the four can be arranged only near the edge of the optical plate 53, as shown in the optical plate 53 It may be partially disposed between the edge portion and the middle portion of the) or along the edge of the optical plate 53.
LED 모듈(50)은 전술한 발광소자(51)가 실장된 전술한 기판(52)이 마련되어 기판(52)을 통해 도시된 바와 같이 히트파이프(60)의 일측부(66)에 직결될 수 있으며, 이와 달리 히트파이프(60)의 일측부(66)에 전술한 회로(52a)가 패턴됨에 따라 히트파이프(60)의 일측부(66)에 동일체로 직결될 수도 있다.The LED module 50 may be directly connected to one side 66 of the heat pipe 60, as illustrated in the substrate 52, on which the above-described light emitting device 51 is mounted. Alternatively, as the above-described circuit 52a is patterned on one side 66 of the heat pipe 60, the same circuit may be directly connected to one side 66 of the heat pipe 60.
히트파이프(60)는 도시된 바와 같이 일측부(66)가 LED 모듈(50)에 적층될 수 있으며, 이와 달리 일측부(66)가 확대 도시된 바와 같이 LED 모듈(50)의 측면에 밀착될 수도 있다. 따라서, 히트파이프(60)는 일측부(66)로 LED 모듈(50)의 열을 흡열하여 타측부(68)로 전이하면서 타측부(68)가 밀착된 전술한 하우징(54)을 통해 방열한다.As shown in the heat pipe 60, one side portion 66 may be stacked on the LED module 50. Alternatively, the one side portion 66 may be closely attached to the side surface of the LED module 50 as shown in an enlarged view. It may be. Therefore, the heat pipe 60 absorbs heat of the LED module 50 to one side 66 and transfers the heat to the other side 68 while radiating heat through the housing 54 in which the other side 68 is in close contact. .
이상과 같은 제5 실시예는 LED 모듈(50)이 광학플레이트(53)에 부분적으로 설치되어도 LED 모듈(50)의 열을 용이하게 전이하여 방열할 수 있다.In the fifth embodiment as described above, even when the LED module 50 is partially installed in the optical plate 53, the heat of the LED module 50 can be easily transferred and radiated.
여기서, 전술한 히트파이프(60)는 도시된 바와 같이 광학플레이트(53)의 하부측에 위치한 경우 타측부(68)가 상부를 향하므로 내부의 작동유체가 기화 및 응축을 반복하면서 원활하게 내부를 이동한다. 즉, 광학플레이트(53)의 하부측 히트파이프(A)는 타측부(68)가 상부를 향하므로 일측부(66)로 열이 전이될 경우 작동유체가 증발되어 타측부(68)로 상승한 후 타측부(68)에서 응축되어 하부의 일측부(66)로 다시 복귀한다.Herein, when the heat pipe 60 is located at the lower side of the optical plate 53 as shown in the drawing, the other side 68 faces upwards, so that the working fluid therein smoothly moves the inside while repeating vaporization and condensation. Move. That is, the lower side heat pipe A of the optical plate 53 has the other side 68 facing upwards, so when the heat is transferred to the one side 66, the working fluid evaporates and rises to the other side 68. Condensation at the other side 68 returns to the lower side 66.
하지만, 도시된 바와 같이 광학플레이트(53)의 상부측에 위치하는 히트파이프(B)는 타측부(68)가 하부를 향하므로 타측부(68)에서 응축된 작동유체가 미도시된 내부의 위크에 의한 모세관 작용에 의해 수직을 이루는 일측부(66)로 복귀할 수는 있으나, 중력에 의해 수직을 이루는 일측부(66)로 원활하게 복귀하지 못한다. 특히, 상부측 히트파이프(B)는 타측부(68)가 일측부(66)에서 밴딩되어 연장형성되므로 복귀가 더욱 원활하지 못하다. 따라서, 상부측 히트파이프(B)는 작동유체의 원활한 이동을 위해 도 10에 도시된 바와 같이 일직선 형태로 구성되는 것이 바람직하다.However, as shown in the heat pipe (B) located on the upper side of the optical plate 53, the other side 68 is directed downward so that the working fluid condensed in the other side 68 is not shown inside the wick The capillary action may return to the vertical portion 66 vertically, but may not return smoothly to the vertical portion 66 vertically by gravity. In particular, since the upper side heat pipe B is formed by extending the other side portion 68 at one side portion 66, the return is not smoother. Therefore, the upper side heat pipe (B) is preferably configured in a straight shape as shown in Figure 10 for the smooth movement of the working fluid.
이러한 상부측 히트파이프(B)는 도 10에 도시된 바와 같이 전술한 타측부(68)가 전술한 일측부(66)에서 일직선으로 연장형성됨에 따라 전체적으로 도시된 바와 같이 일직선 형태로 구성되어 LED 모듈(50)에 수평상태로 설치되는 것이 가장 바람직하다. 하지만, 상부측 히트파이프(B)는 도 10에 도시된 바와 같이 경사상태나 수직상태로 설치될 수도 있다. 이때, 전술한 경사는 도시된 수평상태의 히트파이프(60) 및 도시된 수직상태의 히트파이프(60)들 사이의 각도를 의미하는 것으로 수평상태의 히트파이프(60)를 0°로 기준하고, 수직상태의 히트파이프(60)를 -90°로 기준할 경우 -90°보다 크고 0°보다 작은 각도를 의미하며, 작동유체의 원활한 이동을 위해 -45°보다 크고 0°보다 작은 각도로 이루어지는 것이 바람직하다.The upper side heat pipe (B) is formed in a straight line as shown as a whole as the other side portion 68 is formed in a straight line from the above-described one side portion 66 as shown in FIG. Most preferably, 50 is installed in a horizontal state. However, the upper side heat pipe B may be installed in an inclined state or a vertical state as shown in FIG. 10. In this case, the aforementioned inclination means an angle between the horizontal heat pipe 60 shown and the vertical heat pipe 60 shown as reference, and the horizontal heat pipe 60 is referred to as 0 °. When the heat pipe 60 in the vertical state is referred to as -90 °, it means an angle larger than -90 ° and smaller than 0 °, and an angle larger than -45 ° and smaller than 0 ° for smooth movement of the working fluid. desirable.
한편, 본 발명의 제6 실시예에 의한 백라이트 유닛은 전술한 제5 실시예와 모든 구성이 동일하고, 다만 도 11에 도시된 바와 같이 LED 모듈(50)이 광학플레이트(53)의 중앙에만 마련된 것이 그 차이점이다. 따라서, 첨부된 도면을 참조하여 이러한 차이점만을 설명하면 다음과 같다.Meanwhile, the backlight unit according to the sixth embodiment of the present invention has the same configuration as that of the fifth embodiment described above, except that the LED module 50 is provided only at the center of the optical plate 53 as shown in FIG. 11. The difference is that. Accordingly, only these differences will be described with reference to the accompanying drawings.
제6 실시예는 도시된 바와 같이 LED 모듈(50)이 광학플레이트(53)의 중앙에만 배치된다. LED 모듈(50)은 전술한 바와 같은 기판(52)이나 회로(52a)가 마련되어 히트파이프(60)에 직결될 수 있다.In the sixth embodiment, as shown, the LED module 50 is disposed only at the center of the optical plate 53. The LED module 50 may have a substrate 52 or a circuit 52a as described above and be directly connected to the heat pipe 60.
히트파이프(60)는 도시된 바와 같이 복수로 구성되어 LED 모듈(50)에 각각 설치될 수 있으며, 이와 달리 단수로 구성되어 LED 모듈(50)에 설치될 수도 있다. 히트파이프(60)는 도시된 바와 같이 LED 모듈(50)에 적층될 수 있으며, 이와 달리 확대 도시된 바와 같이 LED 모듈(50)의 측면에 밀착될 수도 있다. 그리고, 히트파이프(60)는 가상선(일점쇄선)으로 도시된 바와 같이 LED 모듈(50)의 사방으로 설치될 수도 있으며, LED 모듈(50)의 하부측에 위치할 경우 가상선으로 도시된 바와 같이 일직선 형태로 구성되어 수평상태로 경사상태로 설치될 수도 있다.The heat pipe 60 may be configured in plural as shown, and may be installed in the LED module 50 respectively. Alternatively, the heat pipe 60 may be configured in a singular form and installed in the LED module 50. The heat pipe 60 may be stacked on the LED module 50 as shown, or may be in close contact with the side surface of the LED module 50 as shown in an enlarged view. Then, the heat pipe 60 may be installed in all directions of the LED module 50, as shown by a virtual line (dotted line), When located on the lower side of the LED module 50 may be configured in a straight line form as shown in a virtual line may be installed in an inclined state in a horizontal state.
이상과 같은 제6 실시예는 히트파이프(60)가 LED 모듈(50)의 열을 전이하여 방열시킨다. 따라서, 제6 실시예는 LED 모듈(50)이 광학플레이트(53)의 중앙부에 설치되어도 LED 모듈(50)의 열을 용이하게 전이하여 방열할 수 있다.In the sixth embodiment as described above, the heat pipe 60 transfers heat of the LED module 50 to radiate heat. Therefore, in the sixth embodiment, even when the LED module 50 is installed in the center of the optical plate 53, the heat of the LED module 50 can be easily transferred and radiated.
여기서, 제6 실시예의 LED 모듈(50) 및 히트파이프(60)는 전술한 제5 실시예에도 적용이 가능하다. 즉, 제6 실시예의 LED 모듈(50) 및 히트파이프(60)는 도 9에 도시된 광학플레이트(53)의 중앙부에 배치될 수 있다. 이러한 경우 백라이트 유닛은 LED 모듈(50)에 의해 광학플레이트(53)의 중앙부 및 모서리측에서 동시에 빛이 발산된다. 이때, 히트파이프(60)는 광학플레이트(53)의 중앙부 및 모서리측 LED 모듈(50)의 열을 전술한 하우징(54)으로 동시에 전이하여 방열한다. 따라서, 백라이트 유닛은 원활한 방열로 인하여 안정적으로 작동한다.Here, the LED module 50 and the heat pipe 60 of the sixth embodiment can also be applied to the fifth embodiment described above. That is, the LED module 50 and the heat pipe 60 of the sixth embodiment may be disposed at the central portion of the optical plate 53 shown in FIG. 9. In this case, the backlight unit emits light at the center and the edge of the optical plate 53 by the LED module 50 at the same time. At this time, the heat pipe 60 simultaneously transfers the heat of the central portion and the corner LED module 50 of the optical plate 53 to the housing 54 described above to radiate heat. Therefore, the backlight unit operates stably due to smooth heat dissipation.
상기한 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하므로, 본 발명의 적용 범위는 이와 같은 것에 한정되지 않으며, 동일 사상의 범주내에서 적절한 변경이 가능하다. 따라서, 본 발명의 실시예에 나타난 각 구성 요소의 형상 및 구조는 변형하여 실시할 수 있으므로, 이러한 형상 및 구조의 변형은 첨부된 본 발명의 특허청구범위에 속함은 당연한 것이다.Since the above embodiments are merely illustrative of preferred embodiments of the present invention, the scope of application of the present invention is not limited to the above, and appropriate modifications are possible within the scope of the same idea. Therefore, since the shape and structure of each component shown in the embodiment of the present invention can be carried out by deformation, it is natural that the modification of the shape and structure belong to the appended claims of the present invention.
본 발명은 LED 모듈이 히트파이프에 직결되므로 히트파이프가 LED 모듈의 열을 신속하게 전이할 수 있으며, 이로 인하여 LED 모듈의 열을 용이하게 방열할 수 있다.According to the present invention, since the LED module is directly connected to the heat pipe, the heat pipe can quickly transfer the heat of the LED module, thereby easily dissipating heat of the LED module.

Claims (9)

  1. 빛을 분산상태로 투과시키는 도광판이나 빛을 확산상태로 투과시키는 확산판 중 적어도 어느 하나로 이루어진 광학플레이트;An optical plate comprising at least one of a light guide plate for transmitting light in a dispersed state and a diffuser plate for transmitting light in a diffusion state;
    상기 광학플레이트에 빛을 제공하는 발광소자 및 발광소자를 구동시키는 회로를 갖는 LED 모듈;An LED module having a light emitting element for providing light to the optical plate and a circuit for driving the light emitting element;
    상기 LED 모듈에서 발생되는 열을 일측으로 흡열하여 타측으로 전이하면서 방열하는 히트파이프; 및A heat pipe that absorbs heat generated from the LED module to one side and radiates heat while transferring to the other side; And
    상기 히트파이프와 상기 광학플레이트 및 상기 LED 모듈 중 적어도 어느 하나를 수용하는 하우징;을 포함하고,And a housing accommodating at least one of the heat pipe, the optical plate, and the LED module.
    상기 히트파이프는,The heat pipe,
    상기 LED 모듈이 일측에 직결되어 상기 LED 모듈의 열이 일측으로 직접 전이되는 것을 특징으로 하는 백라이트 유닛.The LED module is directly connected to one side of the backlight unit, characterized in that the heat of the LED module is directly transferred to one side.
  2. 제 1 항에 있어서, 상기 LED 모듈은,The method of claim 1, wherein the LED module,
    상기 회로가 패턴되어 상기 발광소자가 실장되는 기판으로 구성되고,The circuit is patterned and composed of a substrate on which the light emitting element is mounted,
    상기 히트파이프는,The heat pipe,
    상기 하우징에 수용된 상기 기판의 일단부에 일측이 중첩상태로 직결된 것을 특징으로 하는 백라이트 유닛.The backlight unit, characterized in that the one side is directly connected in an overlapping state to one end of the substrate accommodated in the housing.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 기판이 상기 광학플레이트의 측방과 대향하는 일측에 고정되어 상기 LED 모듈의 열을 방열하면서 기판에 실장된 상기 발광소자의 빛을 상기 광학플레이트의 측방으로 제공하고, 일측에서 밴딩된 타측에 상기 히트파이프의 일측이 밀착되어 타측으로 히트파이프의 열이 직접 전이되거나 타측을 통해 상기 LED 모듈의 열을 히트파이프에 전이하며, 히트파이프가 밀착된 타측의 배면이 상기 하우징과 밀착상태를 이루면서 상기 LED 모듈의 열 및 히트파이프에서 전이되는 열을 하우징에 전이하는 방열앵글;을 더 포함하는 백라이트 유닛.The substrate is fixed to one side facing the side of the optical plate to provide heat from the light emitting element mounted on the substrate to the side of the optical plate while dissipating heat of the LED module, the heat on the other side bent from one side One side of the pipe is in close contact and the heat of the heat pipe is directly transferred to the other side or the heat transfer of the LED module to the heat pipe through the other side, the other side of the heat pipe is in close contact with the housing while the other side of the LED module is in close contact with the housing And a heat dissipation angle for transferring heat transferred from the heat pipe and heat transferred from the heat pipe to the housing.
  4. 제 3 항에 있어서, 상기 히트파이프는,The method of claim 3, wherein the heat pipe,
    성기 방열앵글의 타측에 일부분이 밀착된 상태로 다른 부분이 상기 하우징에 밀착되어 하우징으로 열을 전이하도록 상기 다른 부분에 굴곡을 위한 적어도 하나의 변곡점이 마련된 것을 특징으로 하는 백라이트 유닛.At least one inflection point for bending is provided in the other portion such that the other portion is in close contact with the housing and the heat is transferred to the housing while the part is in close contact with the other side of the genital heat dissipation angle.
  5. 제 3 항에 있어서, 상기 히트파이프는,The method of claim 3, wherein the heat pipe,
    상기 방열앵글과 평행한 길이로 길게 형성되어 방열앵글의 길이방향을 따라 밀착되고, 상기 LED 모듈의 열을 흡열하여 방열앵글의 타측에 전이하거나 방열앵글로부터 상기 LED 모듈의 열이 전달되는 일측부; 및A side portion formed to have a length parallel to the heat dissipation angle and closely contacted along a length direction of the heat dissipation angle, and absorbs heat of the LED module to transfer to the other side of the heat dissipation angle, or transfers heat of the LED module from the heat dissipation angle; And
    상기 일측부와 상이한 각도로 일측부에서 길게 연장형성되고, 일측부와의 상이한 각도에 의해 상기 방열앵글과 이격되며, 일측부에서 연장됨에 따라 일측부의 열이 전이되는 타측부;를 포함하는 백라이트 유닛.The other side is formed to extend in one side at a different angle from the one side, the other side is spaced apart from the heat dissipation angle by a different angle with one side, the heat transfers from one side as extending from one side; unit.
  6. 제 1 항에 있어서, 상기 히트파이프는,The method of claim 1, wherein the heat pipe,
    상기 LED 모듈의 상기 회로가 패턴된 기판이 밀착상태로 직결됨에 따라 LED 모듈의 열을 흡열하는 흡열부; 및An endothermic portion that absorbs heat of the LED module as the circuit patterned substrate of the LED module is directly connected to the adhesive state; And
    상기 흡열부에서 밴딩되어 흡열부와 연결상태로 길게 형성되고, 상기 하우징에 밀착되어 흡열부에서 전이되는 열을 하우징에 전달하는 전열부;를 포함하는 백라이트 유닛.And a heat transfer part which is bent at the heat absorbing part and formed to be connected to the heat absorbing part, and is transferred to the housing in close contact with the housing and transferred from the heat absorbing part to the housing.
  7. 제 1 항에 있어서, 상기 히트파이프는,The method of claim 1, wherein the heat pipe,
    상기 LED 모듈의 상기 회로가 표면에 패턴되어 LED 모듈이 동일체 형태로 직결됨에 따라 LED 모듈의 열을 흡열하는 흡열부; 및An endothermic unit for absorbing heat of the LED module as the circuit of the LED module is patterned on a surface thereof and the LED module is directly connected to the same body; And
    상기 흡열부에서 밴딩되어 흡열부와 연결상태로 길게 형성되고, 상기 하우징에 밀착되어 흡열부에서 전이되는 열을 하우징에 전달하는 전열부;를 포함하는 백라이트 유닛.And a heat transfer part which is bent at the heat absorbing part and formed to be connected to the heat absorbing part, and is transferred to the housing in close contact with the housing and transferred from the heat absorbing part to the housing.
  8. 제 1 항에 있어서, 상기 LED 모듈은,The method of claim 1, wherein the LED module,
    상기 광학플레이트에 부분적으로 배치되거나 중앙부에만 배치되어 상기 히트파이프와 직결되고,Partially disposed on the optical plate or disposed only at a central portion thereof to be directly connected to the heat pipe;
    상기 히트파이프는,The heat pipe,
    상기 LDE 모듈이 직결되어 LED 모듈의 열을 흡열하는 일측부; 및One side portion is directly connected to the LDE module to absorb heat of the LED module; And
    상기 일측부에서 길게 연장형성되고, 상기 하우징에 밀착되어 일측부에서 전이되는 열을 하우징에 전달하는 타측부;를 포함하는 백라이트 유닛.And a second side extending from the one side and extending to the housing in close contact with the housing and transferring heat transferred from the one side to the housing.
  9. 제 8 항에 있어서, 상기 타측부는,The method of claim 8, wherein the other side,
    상기 일측부와 상이한 각도로 일측부에서 길게 연장형성되거나 일측부와 일직선을 이루는 것을 특징으로 하는 백라이트 유닛.The backlight unit, characterized in that extending at one side or formed in a straight line with one side at a different angle from the one side.
PCT/KR2013/002310 2012-03-22 2013-03-20 Backlight unit WO2013141608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380015859.3A CN104603680B (en) 2012-03-22 2013-03-20 Back light unit
JP2015501577A JP6189411B2 (en) 2012-03-22 2013-03-20 Backlight unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120029490A KR101342247B1 (en) 2012-03-22 2012-03-22 backlight unit
KR10-2012-0029490 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013141608A1 true WO2013141608A1 (en) 2013-09-26

Family

ID=49222984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002310 WO2013141608A1 (en) 2012-03-22 2013-03-20 Backlight unit

Country Status (4)

Country Link
JP (2) JP6189411B2 (en)
KR (1) KR101342247B1 (en)
CN (2) CN107092131A (en)
WO (1) WO2013141608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561766B (en) * 2014-10-14 2016-12-11 Playnitride Inc Light emitting module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131203B1 (en) * 2018-08-10 2020-07-07 주식회사 씨지아이 Lighting module having enhanced heat radiation performance, bent type heat plate used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060048662A (en) * 2004-06-29 2006-05-18 쿄세라 코포레이션 Liquid crystal display device
JP2007287463A (en) * 2006-04-17 2007-11-01 Sharp Corp Lighting system
KR20080034715A (en) * 2006-10-17 2008-04-22 주식회사 우영 Edge-type led back light unit
KR20110132801A (en) * 2010-06-03 2011-12-09 엘지이노텍 주식회사 Backlight unit and display appratus having the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321345C (en) * 2003-08-06 2007-06-13 友达光电股份有限公司 Sidelight back light module
JP2006011242A (en) * 2004-06-29 2006-01-12 Kyocera Corp Liquid crystal display device
DE102005051628B4 (en) * 2004-10-29 2010-09-30 Lg Display Co., Ltd. Backlight unit and liquid crystal display device
JP2007017497A (en) * 2005-07-05 2007-01-25 Showa Denko Kk Backlight unit and liquid crystal display device
CN101017278A (en) * 2007-03-09 2007-08-15 友达光电股份有限公司 side lighting back light module
US7467882B2 (en) * 2007-05-17 2008-12-23 Kun-Jung Chang Light-emitting diode heat-dissipating module
KR20100132801A (en) * 2009-06-10 2010-12-20 엘지전자 주식회사 Method and apparatus for receving digital broadcasting signal
JPWO2011077692A1 (en) * 2009-12-22 2013-05-02 日本電気株式会社 Planar light source device, display device, and planar light source device manufacturing method
JP5317365B2 (en) * 2010-01-07 2013-10-16 エルジー イノテック カンパニー リミテッド Backlight unit
JP4842390B1 (en) * 2010-06-30 2011-12-21 シャープ株式会社 Illumination device and image display device including the same
JP2012054108A (en) * 2010-09-01 2012-03-15 Sharp Corp Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060048662A (en) * 2004-06-29 2006-05-18 쿄세라 코포레이션 Liquid crystal display device
JP2007287463A (en) * 2006-04-17 2007-11-01 Sharp Corp Lighting system
KR20080034715A (en) * 2006-10-17 2008-04-22 주식회사 우영 Edge-type led back light unit
KR20110132801A (en) * 2010-06-03 2011-12-09 엘지이노텍 주식회사 Backlight unit and display appratus having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561766B (en) * 2014-10-14 2016-12-11 Playnitride Inc Light emitting module

Also Published As

Publication number Publication date
KR20130107586A (en) 2013-10-02
CN104603680A (en) 2015-05-06
JP2015514292A (en) 2015-05-18
KR101342247B1 (en) 2013-12-16
JP2017162819A (en) 2017-09-14
CN104603680B (en) 2017-07-28
JP6189411B2 (en) 2017-08-30
CN107092131A (en) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2011122781A2 (en) Light emitting diode lighting lamp
WO2010126255A2 (en) Heat sink for a protrusion-type ic package
CN102484195B (en) Luminescent device and use the light unit of this luminescent device
WO2014014220A1 (en) Edge-type led lighting apparatus
WO2014208907A1 (en) Light source circuit unit and lighting device comprising same
JP2007317778A (en) Backlight unit
JP7511621B2 (en) Photography lights
WO2013073744A1 (en) Led lighting, and light source device for backlight unit
WO2013141608A1 (en) Backlight unit
CN205579339U (en) Backlight module and display
WO2010137841A2 (en) Light-emitting diode package and backlight unit
TWM435618U (en) Light-emitting module and display apparatus
WO2009131333A2 (en) Illuminator, backlight unit comprising the illuminator and display device using the backlight unit
WO2013154370A1 (en) Backlight unit
WO2012108653A2 (en) Led lighting device and streetlight device having same
WO2014193094A1 (en) Circuit board and lighting device and board housing module having the circiut board
WO2017104964A1 (en) Led lighting device
JP5488801B2 (en) Display device
WO2015196508A1 (en) Backlight assembly and liquid crystal display thereof
WO2019112401A1 (en) Heat radiating device for electronic element
JP4180762B2 (en) Light emitting device
US10764988B2 (en) Imaging device
CN217879951U (en) Projection light machine
US7436669B2 (en) 3D multi-layer heat conduction diffusion plate
KR20150073428A (en) Radiant heat device attached circuit of LED module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763830

Country of ref document: EP

Kind code of ref document: A1