WO2013141481A1 - Flexible thin film battery capable of withstanding high temperature treatment and method for fabricating same - Google Patents

Flexible thin film battery capable of withstanding high temperature treatment and method for fabricating same Download PDF

Info

Publication number
WO2013141481A1
WO2013141481A1 PCT/KR2013/000963 KR2013000963W WO2013141481A1 WO 2013141481 A1 WO2013141481 A1 WO 2013141481A1 KR 2013000963 W KR2013000963 W KR 2013000963W WO 2013141481 A1 WO2013141481 A1 WO 2013141481A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
thin film
film layer
current collector
layer
Prior art date
Application number
PCT/KR2013/000963
Other languages
French (fr)
Korean (ko)
Inventor
박호영
Original Assignee
지에스칼텍스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스(주) filed Critical 지에스칼텍스(주)
Publication of WO2013141481A1 publication Critical patent/WO2013141481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film battery capable of heat treatment of a positive electrode material at a high temperature, exhibiting excellent unit cell capacity and output characteristics, and exhibiting flexibility by exhibiting flexibility. More specifically, a pyrolysis temperature of 350 ° C. or more is flexible. Film layer; A positive electrode current collector pattern and a negative electrode current collector pattern formed to be electrically separated from each other on the flexible film layer; An anode pattern formed on the anode current collector pattern; An electrolyte pattern formed on the anode pattern; And a cathode pattern formed on the electrolyte pattern and a method of manufacturing the same.
  • the conventional commercialized lithium secondary battery has an active material, a separator, a liquid electrolyte, and a carbon cathode as a basic configuration.
  • Such a structure is complex and has a limit in miniaturization.
  • conventional lithium secondary batteries are not easy to manufacture a thin thickness by using a pouch (poch), there is a risk of explosion accident.
  • liquid electrolytes have device fouling problems due to low temperature freezing, high temperature evaporation and leakage.
  • the thin film battery is composed of a positive electrode, a solid electrolyte and a negative electrode, and is formed by sequentially forming the above-mentioned solid-state battery components.
  • the thin film battery can be manufactured to a thickness of about several tens of micrometers, which makes it possible to miniaturize.
  • the thin film battery is stable because there is no risk of explosion, and a battery having various patterns can be realized according to a mask shape.
  • the solid electrolyte used in the thin film battery must satisfy all characteristics such as high ionic conductivity, electrochemical stability window, and low electrical conductivity. Solid electrolytes can solve low temperature freezing, high temperature evaporation, etc., which have been a problem in liquid electrolytes.
  • Thin-film microcells have a current density and total energy because all components are thinned. Although there is a disadvantage in that the storage density is low, it is intended to compensate for the disadvantages of the thin film battery by manufacturing a thin film battery having a trench structure that can increase the effective area per unit area [Korea Patent No. 296741].
  • Korean Patent No. 994,627 discloses a thin film lithium battery using a polyimide supporting substrate, but since it uses a polyimide supporting substrate having low heat resistance such as Kapton, heat treatment is possible only at a low temperature of about 300 ° C. There was a limit to improvement.
  • a relatively thick substrate in a thin film battery has a high weight and volume ratio, which affects the active material. That is, the ratio of the active material to the total weight and volume of the battery is lowered, thereby limiting the use of the battery.
  • the present inventors have studied and tried to manufacture a thin film battery that can be flexibly exhibited by having a thin thickness while exhibiting excellent unit cell capacity and output characteristics due to heat treatment of a cathode material at a high temperature.
  • the thin film battery is configured to include the mid film layer, it is possible to heat-treat the cathode material at a high temperature, thereby greatly improving the capacity and output characteristics of the unit cell, and the thickness of the thin film battery can be kept thin, thereby showing flexible characteristics.
  • the discovery has completed the present invention.
  • the thin film battery of the present invention for achieving the above object is a flexible film layer having a thermal decomposition temperature of 350 °C or more; A positive electrode current collector pattern and a negative electrode current collector pattern formed to be electrically separated from each other on the flexible film layer; An anode pattern formed on the anode current collector pattern; An electrolyte pattern formed on the anode pattern; And a cathode pattern formed on the electrolyte pattern.
  • the present invention forming a flexible film layer having a thermal decomposition temperature of 350 °C or more on the base substrate; Forming an anode current collector pattern and an anode pattern on the flexible film layer and performing rapid thermal annealing (RTA); Forming an electrolyte pattern on the anode pattern; Forming a cathode current collector pattern on the flexible film layer to be electrically separated from the cathode current collector pattern; And forming a negative electrode pattern on the electrolyte pattern.
  • RTA rapid thermal annealing
  • a functional film including a polyimide film layer having excellent heat resistance may be applied to a thin film battery to perform heat treatment of a cathode material at a high temperature, thereby realizing a thin film battery having high capacity and high output characteristics.
  • separating the substrate commonly used in thin film cells to form a unit cell of a thin thickness to improve the energy density and output density due to the formation of multiple cells of the parallel stacked structure, and the advantage that the thin film transfer to the barrier film layer have.
  • 1 to 4 are cross-sectional views of a thin film battery according to an embodiment of the present invention.
  • Figure 5 shows the TGA pyrolysis curve of the polyimide used in the examples.
  • buffer layer 130 anode current collector pattern
  • anode pattern 140 cathode current collector pattern
  • cathode pattern 150 electrolyte pattern
  • barrier film layer 190 protective pattern
  • FIG. 1 to 4 illustrate cross-sectional views of a thin film battery in which a plurality of layers are stacked according to an embodiment of the present invention.
  • the thin film battery 100 includes a flexible film layer 110, a buffer layer 120, a positive electrode current collector pattern 130, a positive electrode pattern 131, a negative electrode current collector pattern 140, and a negative electrode.
  • the pattern 141 and the electrolyte pattern 150 are included.
  • the flexible film layer 110 is made of a flexible material that the thermal decomposition temperature is 350 °C or more, preferably a polyimide film layer may be used.
  • the pyrolysis temperature of the flexible film layer is preferably at least 500 °C, more preferably at least 600 °C, the upper limit is not particularly limited, but may appear at 700 °C or less.
  • the pyrolysis temperature means the inflection point temperature of the curve in the thermogravimetric analysis (TGA) diagram.
  • TGA thermogravimetric analysis
  • the polyimide having excellent heat resistance may be used to heat the cathode material at a high temperature.
  • the polyimide is PMDA (pyromellitic dianhydride), DSDA (diphenylsulfone tetracarboxylic dianhydride), BTDA (benzophenone tetracarboxylic dianhydride), Benzophenonetetracarboxylic dianhydride (BTDA) , 6FDA (hexafluoroisopropylidene bisphthalic dianhydride), BPDA (biphenyl tetracarboxylic dianhydride) and ODPA (Oxydiphthalic anhydride) At least one dianhydride selected from the group consisting of, ODA (oxy dianiline, Oxydianiline), MDA (methylene dianiline, Methylenedianiline), MPDA (meth-phenylene diamine, m-phenylene diamine), DAP ( 2,6-diaminopyridine, 2,6-Diaminopyridine), DABP (3,3'-diamino benzophen
  • a condensate of BPDA (biphenyl tetracarboxylic dianhydride) and PPDA (para-phenylene diamine) or BPDA (biphenyl tetracarboxy dianhydride) as a polyamic acid which is a precursor of the polyimide.
  • PPDA para-phenylene diamine
  • ODA oxy dianiline
  • the rapid thermal treatment temperature may be increased to 600 ° C. More advantageous in terms of complete crystallization.
  • a buffer layer 120 which functions as passivation and insulation, is formed on the flexible film layer 110.
  • the buffer layer may be formed of a material that does not cause a chemical reaction with lithium, and is preferably a single layer using lithium oxide, lithium fluoride, silicon oxide, silicon nitride, magnesium oxide, aluminum oxide, or two or more of the above materials. It can be formed in a multi-layer structure using, more preferably it is formed in a single layer or a multi-layer structure containing magnesium oxide or aluminum oxide. On the other hand, the thickness of the buffer layer is preferably formed to 50 ⁇ 500 nm.
  • the flexible film layer 110 and the buffer layer 120 preferably has a thin thickness of several tens of micrometers or less so that the entire thin film battery exhibits flexible characteristics, and the sum of the thicknesses of the flexible film layer and the buffer layer is preferably in the range of 1 to 25 ⁇ m. It is preferable to exist as.
  • the flexible film layer and the buffer layer may be formed in a multi-layered structure alternately stacked in a plurality of layers, in this case, the buffer layer may be located on the top.
  • the positive current collector pattern 130 is electrically connected to the positive electrode 131.
  • the positive electrode current collector pattern 130 is not particularly limited as long as it has high conductivity without causing chemical change in the thin film battery 100.
  • the anode current collector pattern 130 may be used as a conductive layer such as noble metals such as platinum (Pt), gold (Au), and the like, heat resistant steel such as nickel-containing alloys, conductive oxide films such as ITO, and the like.
  • the nickel-containing alloy commercially available hastelloy, inconel, constantan and the like can be used.
  • titanium or chromium may be formed to increase the adhesion of the cathode active material.
  • a metal oxide such as titanium oxide or titanium nitride, which is a diffusion barrier layer, may be selectively deposited between the conductive layer and the adhesive layer, and the thickness of the anode current collector pattern may include 50 to 500 including all of the adhesive layer, the diffusion barrier layer, and the conductive layer. It is preferable to form in nm.
  • the negative electrode current collector pattern 140 is electrically connected to the negative electrode 141 and is electrically separated from the positive electrode current collector pattern 130.
  • the cathode current collector pattern 140 is not particularly limited as long as it has high conductivity without causing chemical change in the thin film battery 100.
  • precious metals such as platinum (Pt), gold (Au), nickel (Ni), such as Hastelloy, Inconnel, Constantan, etc., as the cathode current collector pattern 140.
  • Alloys, copper (Cu), brass (Cu-Zn alloys), molybdenum (Mo) metals, and the like can be used. Fine irregularities may be formed on the surface of the negative electrode current collector pattern 140 to increase adhesion of the negative electrode active material, and the thickness of the negative electrode current collector pattern may be 50 to 500 nm.
  • the positive electrode pattern 131 may use a positive electrode known in the art as an active material thin film, and the type thereof is not particularly limited.
  • the positive electrode active material is, for example, LiCoO as a compound capable of reversibly intercalating / deintercalating lithium in a lithium battery. 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 , LiNiVO 4 , LiCoMnO 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , V 2 O 5 , MnO 2 , MoO 3 Etc. may be used alone or in combination of two or more thereof, and the thickness of the anode pattern may be 0.5 to 15.0 ⁇ m.
  • the negative electrode pattern 141 may use a negative electrode known in the art as an active material thin film, and the type thereof is not particularly limited.
  • the negative electrode active material is, for example, a material capable of reversibly oxidizing / reducing lithium in a lithium battery, using Li, Sn 3 N 4 , Si, graphite, Li-Mg, Li-Al alloy, etc. alone or in combination of two or more thereof. It may be used, the thickness of the negative electrode pattern may be formed to 0.5 ⁇ 10.0 ⁇ m.
  • the electrolyte pattern 150 is positioned between the anode 131 and the cathode 141, and an inorganic solid electrolyte or an organic solid electrolyte may be used.
  • the inorganic solid electrolyte include Li 2 OB 2 O 3 , Li 2 OV 2 O 5 -SiO 2 , Li 2 SO 4 -Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 OLi 2 WO 4 -B 2 O 3 , LiPON (Li 2.9 PO 3.3 N 0.46 ), LiBON (Li 3.099 BO 2.532 N 0.516 ) and the like, these may be used alone or in combination of two or more.
  • organic solid electrolyte examples include a lithium salt mixed with a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyedgetion lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, or the like. These can be mentioned, These can be used individually or in combination of 2 or more types.
  • the thickness of the electrolyte pattern may be formed to 0.7 ⁇ 3.0 ⁇ m.
  • the base substrate 160 may be further included below the flexible film layer 110 of the thin film battery 100, and the base substrate may be separated from the flexible film layer. The substrate can be recycled again.
  • the base substrate 160 may include metal sheets such as nickel (Ni) and nickel-based alloys, titanium (Ti), chromium (Cr), stainless steel, tungsten (W), molybdenum (Mo), and the like; Ceramic or glass sheet such as aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon oxide (SiO 2 ), quartz, glass, mica, sapphire, etc. You can use one.
  • the mica includes both natural mica and artificially synthesized synthetic mica.
  • a silicon wafer or a substrate on which an oxide is treated on the silicon wafer may be used as the base substrate.
  • the thin film battery 100 may include a passivation layer 170 and a barrier film layer 180 on a cathode pattern.
  • the passivation layer 170 is formed to surround the anode pattern 131, the cathode pattern 141, and the electrolyte pattern 150 in order to prevent the thin film battery 100 from being oxidized in the air.
  • the passivation layer 170 is to prevent oxidation of main components of the thin film battery in the air, and may be formed of an organic passivation layer, an inorganic passivation layer, or a combination of an organic passivation layer and an inorganic passivation layer.
  • the thickness of the organic protective film may be formed of 1.0 ⁇ 5.0 ⁇ m
  • the thickness of the inorganic protective film may be formed of 30 ⁇ 200 nm.
  • organic protective film Although it does not specifically limit as a material of the said organic protective film, for example, diazo type, azide type, acryl type, polyamide type, polyester type, epoxide type, poly which start superposition
  • the material of the organic protective film for example, polystyrenes, acrylics, ureas, isocyanates, xylene resins, etc., in which radicals are generated by heat to initiate polymerization, may be used alone or in combination of two or more thereof. have. It is possible to use a combination of a resin in which polymerization is initiated by photopolymerization and a resin in which radicals are generated by heat and polymerization is initiated.
  • the material of the inorganic protective film is not particularly limited, but for example, silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, silicon oxide, aluminum oxide, zirconium oxide, magnesium oxide, titanium oxide, A stone oxide, cerium oxide, silicon oxynitride (SiON), etc. can be used individually or in combination of 2 or more types.
  • the organic passivation layer and the inorganic passivation layer are alternately formed, for example, such as an organic passivation layer, an inorganic passivation layer, an organic passivation layer, or an inorganic passivation layer. It may be formed, or any one protective film such as an organic protective film / organic protective film / inorganic protective film may be laminated in two or more layers. Here, the protective film forming each layer may be the same or different materials.
  • the barrier film layer 180 is used as a film showing a flexible property, serves to primarily protect the thin film battery by blocking moisture and oxygen. In particular, when the base substrate is removed, it may serve as a support for the thin film battery, and thin film transfer to the barrier film layer is possible.
  • a composite film material for example, an Ultra Barrier Film of Materion, 3M, or Dupont
  • Film materials up to 10 ⁇ 4 g / m 2 day may be used.
  • the barrier film layer is preferably formed in a thickness of 20 ⁇ 300 ⁇ m range.
  • the total thickness of the actual battery except for the barrier film is controlled to be within several tens of micrometers, thereby increasing the capacity of the thin film battery unit cell by stacking the unit cells. Because of this, the thin film battery can be used as a power source for smart cards, various tag products and MEMS, ultra-thin electronic devices, which are highly dependent on thickness and volume.
  • the thin film battery 100 of the present invention may include a positive current collector pattern 130 directly on the flexible film layer 110, without including a buffer layer.
  • a protection pattern 190 is additionally formed, and the protection pattern ( The cathode current collector pattern 140 and the cathode pattern 141 may be formed on the 190.
  • the protective pattern 190 may include silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, silicon oxide, aluminum oxide, zirconium oxide, magnesium oxide, titanium oxide, stone oxide, cerium oxide, and silicon oxynitride. (SiON) and the like may be used, but preferably silicon oxide and aluminum oxide may be used, and most preferably Al 2 O 3 may be used.
  • the thin film battery of the present invention comprises the steps of forming a flexible film layer 110 having a thermal decomposition temperature of 350 °C or more on the base substrate 160; Forming a buffer layer (120) on the flexible film layer (110); Forming an anode current collector pattern 130 and an anode pattern 131 on the buffer layer 120 and performing rapid thermal annealing (RTA); Forming an electrolyte pattern 150 on the anode pattern; Forming a cathode current collector pattern 140 on the buffer layer 120 to be electrically separated from the anode current collector pattern 130; And forming a cathode pattern 141 on the electrolyte pattern.
  • RTA rapid thermal annealing
  • an adhesive may be applied to prevent the flexible film layer from being peeled off in a subsequent step. More specifically, the adhesive may be applied by spin coating an aminosilane-based coupling agent. For example, 3-aminopropyl-triethoxysilane, N-2-aminoethyl-3-aminopropyltrimethoxysilane, or the like may be applied. Can be used.
  • the stacking order of each component in the manufacturing process of the thin film battery is not particularly limited.
  • the thin film battery of the present invention comprises the steps of forming a flexible film layer 110 having a thermal decomposition temperature of 350 °C or more on the base substrate 160; Forming an anode current collector pattern 130 and an anode pattern 131 on the flexible film layer 110 and performing rapid thermal annealing (RTA); Forming an electrolyte pattern 150 on the anode pattern; Forming a protective pattern 190 on the flexible film layer 110; Forming a cathode current collector pattern 140 on the protection pattern 190 to be electrically separated from the cathode current collector pattern 130; And forming a cathode pattern 141 on the electrolyte pattern.
  • RTA rapid thermal annealing
  • the thin film battery may be manufactured by a conventionally known dry process, wet process, or a combination of dry and wet methods.
  • dry process include thermal evaporation, e-beam evaporation, sputtering, chemical vapor deposition (CVD), and the like, and spin coating and sol-gel methods. , Dip coating, casting, printing, spraying, and the like.
  • a positive current collector pattern and a positive electrode pattern are formed on the flexible film layer 110 and rapid thermal annealing (RTA) is performed
  • RTA rapid thermal annealing
  • 400 to 700 ° C., for complete crystallization of the positive electrode material is preferable. It is good to proceed the heat treatment at a high temperature of 500 ⁇ 600 °C.
  • the manufacturing method may further include forming a passivation layer 170 surrounding the anode pattern, the electrolyte pattern, and the cathode pattern, and forming the barrier film layer 180 on the passivation layer.
  • the passivation layer 170 is encapsulated to surround the anode pattern 131, the cathode pattern 141, and the electrolyte pattern 150 to protect the pattern, and a barrier film on the passivation layer 170.
  • Layer 180 may be formed.
  • the base substrate 160 may be separated from the flexible film layer 110.
  • the base substrate 160 may be separated by a lift-off or a wet lift-off by a laser. Through this, the total thickness of the entire thin film battery may be thinned to maintain flexible characteristics.
  • the barrier film layer 180 may serve as a support for the thin film battery instead of the separated base substrate 160.
  • the separated base substrate can be recycled.
  • PAA polyamic acid
  • BPDA biphenyl tetracarboxylic dianhydride
  • PPDA para-phenylene diamine
  • PAA polyamic acid
  • TGA TGA 2050 / TA instruments Inc
  • the polyimide was pyrolyzed at about 600 ° C., and the inflection point of the TGA curve was measured at 653.76 ° C.
  • FIG. 5 the polyimide was pyrolyzed at about 600 ° C., and the inflection point of the TGA curve was measured at 653.76 ° C.
  • PAA Polyamic acid
  • magnesium oxide (MgO) was deposited at 300 nm on the polyimide film layer 110 to form a buffer layer 120.
  • a cathode pattern 131 was formed by applying magnetron sputtering by applying a DC / RF hybridization power source having a thickness of 2 ⁇ m in an argon or argon / oxygen mixed gas atmosphere of 10 to 20 mTorr using a LiCoO 2 target as a cathode active material.
  • the effective area of the LiCoO 2 active material thin film electrode was formed to be 2.4 cm 2 through a mask pattern.
  • a rapid heat treatment was performed at 600 ° C. under an atmosphere of Ar / O 2 mixed gas.
  • the solid electrolyte layer thin film 150 was sputtered with RF magnetron in a pure nitrogen atmosphere using a Li 3 PO 4 target to deposit a 1.5 ⁇ m thick LiPON electrolyte layer in which oxygen in Li 3 PO 4 was replaced with some nitrogen.
  • a 350 nm thick Cu—Zn alloy was deposited as a cathode current collector pattern 140.
  • a metal lithium thin film was deposited to have a thickness of 2 ⁇ m by vacuum thermal evaporation to form a cathode pattern 141.
  • the protective film layer 170 was formed by alternately depositing an inorganic protective film (Al 2 O 3 ) having a thickness of 50 nm and an organic protective film (Polyurea) having a thickness of 1 ⁇ m.
  • 3M Ultra Barrier Film was formed on the passivation layer 170 as a barrier film layer 180 by lamination.
  • the base substrate 160 is separated from the polyimide film layer 110 by lift-off using an excimer laser, thereby manufacturing a final thin film battery in which the base substrate is separated.
  • a 75 ⁇ m thick Kapton (Dupont) film was used as the base substrate, and platinum (Pt) was DC sputtered to a thickness of 10 nm using a positive current collector pattern on the base substrate to increase adhesion to the base substrate.
  • Titanium (Ti) Inconel was deposited between platinum (Pt) and the base substrate to a thickness of 150 nm and 120 nm, respectively.
  • a cathode pattern was formed by applying magnetron sputtering by applying a DC / RF hybridization power source having a thickness of 2 ⁇ m in an argon or argon / oxygen mixed gas atmosphere of 10 to 20 mTorr using a LiCoO 2 target as a cathode active material.
  • the effective area of the LiCoO 2 active material thin film electrode was formed to be 2.4 cm 2 through a mask pattern.
  • a rapid heat treatment was performed at 350 ° C. under an atmosphere of Ar / O 2 mixed gas.
  • the solid electrolyte layer thin film was RF magnetron sputtered in a pure nitrogen atmosphere using a Li 3 PO 4 target to deposit a 1.5 ⁇ m thick LiPON electrolyte layer in which oxygen in Li 3 PO 4 was replaced with some nitrogen.
  • a cathode current collector pattern a 350 nm thick Cu—Zn alloy was deposited by thin film.
  • a metal lithium thin film was deposited to a thickness of 2 ⁇ m by vacuum thermal evaporation to form a cathode pattern.
  • an inorganic protective film (Al) having a thickness of 50 nm as a protective film layer. 2 O 3 ) And thickness 1 ⁇ m was manufactured by alternately depositing an organic protective film (Polyurea).
  • Discharge capacities were measured according to charge and discharge cycles of the thin film batteries of Examples and Comparative Examples, and the results are shown in Table 1 and FIG. 6.
  • the thin film battery of Example showed more than 13% discharge capacity in the initial charge / discharge cycle compared to the thin film battery of the comparative example which performed the rapid heat treatment at 350 ° C., and the discharge capacity decreased with cycles. (capacity fade) also did not appear much.
  • the comparative example shows the LiCoO 2 electrode characteristics of the low-temperature phase (LT-phase) and the discharge characteristics of the LiCoO 2 electrode of the typical high-temperature phase (HT-phase). Compared with not showing a constant flat voltage, the average discharge voltage was also low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a thin film battery and a method for fabricating same, in which a cathode material can be thermally treated at a high temperature so that the thin film battery has an excellent unit cell capacity and output characteristics and also has flexibility due to its thin thickness. The thin film battery according to the present invention includes: a flexible film layer having a pyrolysis temperature of about 350 °C or more; a cathode current collector pattern and an anode current collector pattern which are formed on the flexible film layer to be electrically separated from each other; a cathode pattern formed on the cathode current collector pattern; an electrolyte pattern formed on the cathode pattern; and an anode pattern formed on the electrolyte pattern.

Description

고온 열처리가 가능한 플렉시블 박막전지 및 이의 제조방법Flexible thin film battery capable of high temperature heat treatment and manufacturing method thereof
본 발명은 높은 온도에서 양극물질의 열처리가 가능하여 우수한 단위셀의 용량 및 출력 특성을 나타내면서도 얇은 두께로 구현되어 유연성을 나타낼 수 있는 박막전지에 관한 것으로, 보다 구체적으로 열분해온도가 350℃ 이상인 플렉시블 필름층; 상기 플렉시블 필름층 상에 서로 전기적으로 분리되도록 형성된 양극 전류집전체 패턴 및 음극 전류집전체 패턴; 상기 양극 전류집전체 패턴 상에 형성된 양극 패턴; 상기 양극 패턴 상에 형성된 전해질 패턴; 및 상기 전해질 패턴 상에 형성된 음극 패턴을 포함하는 박막전지 및 이의 제조방법에 관한 것이다. The present invention relates to a thin film battery capable of heat treatment of a positive electrode material at a high temperature, exhibiting excellent unit cell capacity and output characteristics, and exhibiting flexibility by exhibiting flexibility. More specifically, a pyrolysis temperature of 350 ° C. or more is flexible. Film layer; A positive electrode current collector pattern and a negative electrode current collector pattern formed to be electrically separated from each other on the flexible film layer; An anode pattern formed on the anode current collector pattern; An electrolyte pattern formed on the anode pattern; And a cathode pattern formed on the electrolyte pattern and a method of manufacturing the same.
전자, 정보 통신 산업의 발달과 함께 개인이 각종 개인용 단말기와 사무용 기기 등을 휴대하게 되었고, 이로 인해, 휴대전화, 휴대용 AV 기기, 휴대용 OA 기기 등의 많은 분야에서 기기의 소형화가 급격히 이루어지고 있다.With the development of the electronic and information communication industries, individuals have carried various personal terminals and office devices, and as a result, the miniaturization of devices has been rapidly made in many fields such as mobile phones, portable AV devices, and portable OA devices.
결국, 전자기기의 소형화, 휴대화 추세에 따라 에너지 밀도가 더욱 증대되어 성능이 우수하고 소형인 리튬이차전지의 개발이 매우 절실한 문제가 되고 있다. As a result, according to the trend of miniaturization and portability of electronic devices, the energy density is further increased, and the development of excellent and small size lithium secondary batteries becomes a very urgent problem.
한편, 기존의 상용화된 리튬이차전지는 활물질, 분리막, 액체전해질, 탄소음극을 기본구성으로 한다. 이러한 구조는 복잡하여 소형화에 한계가 있다. 또한 기존의 리튬이차전지는 파우치(pouch) 사용으로 얇은 두께 제작이 용이하지 않고, 폭발 사고의 위험성이 있다. 그리고, 액체전해질은 저온 결빙, 고온 증발 및 누액 발생에 의한 기기 오손 문제가 있다.Meanwhile, the conventional commercialized lithium secondary battery has an active material, a separator, a liquid electrolyte, and a carbon cathode as a basic configuration. Such a structure is complex and has a limit in miniaturization. In addition, conventional lithium secondary batteries are not easy to manufacture a thin thickness by using a pouch (poch), there is a risk of explosion accident. In addition, liquid electrolytes have device fouling problems due to low temperature freezing, high temperature evaporation and leakage.
이러한 문제를 극복하기 위하여, 박막전지가 개발되었다. 박막전지는 양극, 고체전해질 및 음극으로 구성되며, 전고상의 상기 전지 구성 요소들을 순차적으로 성막하여 형성된다. 박막전지는 수십 마이크로 미터 정도의 두께로 제조될 수 있어, 소형화가 가능하다. 또한, 박막전지는 기존의 리튬이차전지와는 달리 폭발의 위험성이 없어 안정하며, 마스크 형태에 따라 다양한 패턴의 전지를 구현할 수 있다. 박막전지에 사용되는 고체 전해질은 높은 이온전도도(ionic conductivity), 전기화학적으로 안정한 전위창(electrochemical stability window), 낮은 전기전도도(electrical conductivity) 등의 특성을 모두 만족시켜야 한다. 고체전해질은 액체전해질에서 문제가 되었던 저온 결빙, 고온 증발 등을 해결할 수 있다.In order to overcome this problem, a thin film battery has been developed. The thin film battery is composed of a positive electrode, a solid electrolyte and a negative electrode, and is formed by sequentially forming the above-mentioned solid-state battery components. The thin film battery can be manufactured to a thickness of about several tens of micrometers, which makes it possible to miniaturize. In addition, unlike a conventional lithium secondary battery, the thin film battery is stable because there is no risk of explosion, and a battery having various patterns can be realized according to a mask shape. The solid electrolyte used in the thin film battery must satisfy all characteristics such as high ionic conductivity, electrochemical stability window, and low electrical conductivity. Solid electrolytes can solve low temperature freezing, high temperature evaporation, etc., which have been a problem in liquid electrolytes.
박막형 마이크로전지는 모든 구성요소들이 박막화되어 있기 때문에 전류밀도 및 총 에너지 저장밀도가 낮은 단점이 있으나 단위 면적당 유효면적을 증가시킬 수 있는 트랜치 구조의 박막전지를 제작함으로써 박막전지가 가지는 단점을 보완하고자 하였다[한국등록특허 제296741호]. 박막전지의 에너지 저장밀도는 사용된 양극물질(cathode material)에 의해 결정되는데, 지금까지 TiS2 , V2O5 , LiCoO2 , LiMn2O4, LiNiO2 등의 양극물질들이 알려져 왔으며, 특히 4 V 영역에서 안정한 충방전 특성을 보이는 높은 전류밀도의 LiMO2 (M=Co, Ni)에 관한 연구가 많이 행해지고 있다.Thin-film microcells have a current density and total energy because all components are thinned. Although there is a disadvantage in that the storage density is low, it is intended to compensate for the disadvantages of the thin film battery by manufacturing a thin film battery having a trench structure that can increase the effective area per unit area [Korea Patent No. 296741]. The energy storage density of thin film cells is determined by the cathode material used.2 , V2O5 , LiCoO2 , LiMn2O4, LiNiO2 Cathode materials have been known, and high current density LiMO exhibiting stable charge and discharge characteristics, especially in the 4 V region.2 Much research has been conducted on (M = Co, Ni).
B. Wang 등은 미국 전기화학회지에 LiCoO2 박막을 공기 중에서의 열처리로 결정화시켜 제조한 Li/LIPON/LiCoO2/Pt/Si 구조의 박막전지를 발표하였고, 이로써 상용화된 벌크형 이차전지의 양극 물질인 LiCoO2의 박막전지로의 가능성을 보여주었다[Journal of the Electrochemical Society, 143, p3203]. 또한 B. J. Neudecker 등도 로(Furnace) 열처리법을 이용하여 700℃에서 LiCoO2 양극 박막을 열처리하여 Lithium free 전지를 제작하고 그 특성을 제시하였다[Journal of the Electrochemical Society, 147(2), p517]. 상기의 연구에서 보여주고 있듯이, 양극박막은 층상구조를 가질 때 충방전 특성을 나타내게 되고 이를 위하여 통상 고온의 열처리를 수행해야 한다. B. Wang et al. Presented a Li / LIPON / LiCoO 2 / Pt / Si structured thin film battery prepared by crystallizing a LiCoO 2 thin film by heat treatment in the air in the American Electrochemical Society. LiCoO 2 as a thin film cell has been shown [Journal of the Electrochemical Society, 143, p3203]. In addition, BJ Neudecker et al. Also fabricated a Lithium free battery by heat treating LiCoO 2 anode thin film at 700 ° C. using Furnace heat treatment method [Journal of the Electrochemical Society, 147 (2), p517]. As shown in the above studies, when the anode thin film has a layered structure, it exhibits charge and discharge characteristics, and for this purpose, a high temperature heat treatment should be generally performed.
한국등록특허 994,627호에서는 폴리이미드 서포팅 기판을 사용한 박막 리튬 배터리를 개시하고 있으나, Kapton 과 같이 낮은 내열성을 가지는 폴리이미드 서포팅 기판을 사용하므로 약 300℃ 정도의 낮은 온도에서만 열처리가 가능하므로 충방전 특성의 개선에 있어 한계가 있었다. Korean Patent No. 994,627 discloses a thin film lithium battery using a polyimide supporting substrate, but since it uses a polyimide supporting substrate having low heat resistance such as Kapton, heat treatment is possible only at a low temperature of about 300 ° C. There was a limit to improvement.
한편, 박막전지에서 상대적으로 두께운 기판은 높은 무게 및 부피 비율을 나타내며, 이는 활성 물질에 영향을 미치게 된다. 즉 전지의 총 무게, 부피에 대한 활성물질의 비율이 낮아져 전지의 용도를 제한하게 되는 문제가 있다. On the other hand, a relatively thick substrate in a thin film battery has a high weight and volume ratio, which affects the active material. That is, the ratio of the active material to the total weight and volume of the battery is lowered, thereby limiting the use of the battery.
따라서 높은 온도에서 양극물질의 열처리가 가능하여 우수한 단위셀의 용량 및 출력 특성을 나타내면서도, 플렉시블한 특성을 나타내기 위하여 두께가 얇은 박막전지를 제공할 수 있는 방법이 요구되는 실정이다. Therefore, there is a need for a method capable of providing a thin film battery having a thin thickness in order to exhibit excellent capacity and output characteristics of the unit cell, and to exhibit flexible characteristics by enabling heat treatment of a cathode material at a high temperature.
이에 본 발명자들은, 높은 온도에서 양극물질의 열처리가 이루어져 우수한 단위셀의 용량 및 출력 특성을 나타내면서도 얇은 두께로 구현되어 유연성을 나타낼 수 있는 박막전지를 제조하고자 연구, 노력한 결과, 내열성을 가지는 특정 폴리이미드 필름층을 포함하도록 박막전지를 구성하면 고온에서 양극물질의 열처리가 가능하여 단위셀의 용량 및 출력 특성이 크게 개선되고, 박막전지의 두께가 얇게 유지될 수 있어 플렉시블한 특성을 나타낼 수 있음을 발견함으로써 본 발명을 완성하게 되었다. Accordingly, the present inventors have studied and tried to manufacture a thin film battery that can be flexibly exhibited by having a thin thickness while exhibiting excellent unit cell capacity and output characteristics due to heat treatment of a cathode material at a high temperature. When the thin film battery is configured to include the mid film layer, it is possible to heat-treat the cathode material at a high temperature, thereby greatly improving the capacity and output characteristics of the unit cell, and the thickness of the thin film battery can be kept thin, thereby showing flexible characteristics. The discovery has completed the present invention.
따라서, 본 발명의 목적은 높은 열분해온도를 나타내는 필름층을 포함하여 우수한 충방전 특성을 나타내는 플렉시블한 박막전지 및 이의 제조방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a flexible thin film battery having excellent charge and discharge characteristics including a film layer exhibiting a high pyrolysis temperature and a method of manufacturing the same.
상기 목적을 달성하기 위한 본 발명의 박막전지는 열분해온도가 350℃ 이상인 플렉시블 필름층; 상기 플렉시블 필름층 상에 서로 전기적으로 분리되도록 형성된 양극 전류집전체 패턴 및 음극 전류집전체 패턴; 상기 양극 전류집전체 패턴 상에 형성된 양극 패턴; 상기 양극 패턴 상에 형성된 전해질 패턴; 및 상기 전해질 패턴 상에 형성된 음극 패턴을 포함하는 것을 특징으로 한다. The thin film battery of the present invention for achieving the above object is a flexible film layer having a thermal decomposition temperature of 350 ℃ or more; A positive electrode current collector pattern and a negative electrode current collector pattern formed to be electrically separated from each other on the flexible film layer; An anode pattern formed on the anode current collector pattern; An electrolyte pattern formed on the anode pattern; And a cathode pattern formed on the electrolyte pattern.
또한 본 발명은, 베이스 기판 상부에 열분해온도가 350℃ 이상인 플렉시블 필름층을 형성하는 단계; 상기 플렉시블 필름층 상부에 양극 전류집전체 패턴 및 양극 패턴을 형성하고 급속 열처리(RTA: rapid thermal annealing)를 수행하는 단계; 상기 양극 패턴 상에 전해질 패턴을 형성하는 단계; 상기 플렉시블 필름층 상부에 양극 전류집전체 패턴과 전기적으로 분리되도록 음극 전류집전체 패턴을 형성하는 단계; 및 상기 전해질 패턴 상에 음극 패턴을 형성하는 단계를 포함하는 박막전지의 제조방법을 또 다른 특징으로 한다. In another aspect, the present invention, forming a flexible film layer having a thermal decomposition temperature of 350 ℃ or more on the base substrate; Forming an anode current collector pattern and an anode pattern on the flexible film layer and performing rapid thermal annealing (RTA); Forming an electrolyte pattern on the anode pattern; Forming a cathode current collector pattern on the flexible film layer to be electrically separated from the cathode current collector pattern; And forming a negative electrode pattern on the electrolyte pattern.
본 발명은 내열성이 우수한 폴리이미드 필름층을 포함하는 기능막을 박막전지에 적용하여 고온에서 양극 물질의 열처리를 진행할 수 있어 고용량, 고출력의 특성을 가지는 박막전지를 구현할 수 있다. 또한 박막전지에서 통상적으로 사용되는 기판을 분리하여 얇은 두께의 단위 셀을 형성하여 병렬 적층 구조의 다중 셀 형성에 따른 에너지 밀도 및 출력 밀도를 향상시킬 수 있으며, 배리어 필름층에 박막 전사가 가능한 장점이 있다. According to the present invention, a functional film including a polyimide film layer having excellent heat resistance may be applied to a thin film battery to perform heat treatment of a cathode material at a high temperature, thereby realizing a thin film battery having high capacity and high output characteristics. In addition, by separating the substrate commonly used in thin film cells to form a unit cell of a thin thickness to improve the energy density and output density due to the formation of multiple cells of the parallel stacked structure, and the advantage that the thin film transfer to the barrier film layer have.
도 1 내지 4는 본 발명의 일 실시예에 따른 박막전지의 단면도이다.1 to 4 are cross-sectional views of a thin film battery according to an embodiment of the present invention.
도 5는 실시예에서 사용된 폴리이미드의 TGA 열분해 곡선을 나타낸 것이다. Figure 5 shows the TGA pyrolysis curve of the polyimide used in the examples.
도 6은 실시예 및 비교예의 박막전지의 충방전 그래프(2 싸이클)를 비교한 것이다. 6 compares the charge / discharge graphs (two cycles) of the thin film batteries of Examples and Comparative Examples.
[부호의 설명][Description of the code]
100 : 박막전지 110 : 플렉시블 필름층100: thin film battery 110: flexible film layer
120 : 버퍼층 130 : 양극 전류집전체 패턴120: buffer layer 130: anode current collector pattern
131 : 양극 패턴 140 : 음극 전류집전체 패턴131: anode pattern 140: cathode current collector pattern
141 : 음극 패턴 150 : 전해질 패턴141: cathode pattern 150: electrolyte pattern
160 : 베이스 기판 170 : 보호막층160: base substrate 170: protective film layer
180 : 배리어 필름층 190 : 보호 패턴180: barrier film layer 190: protective pattern
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. Like reference numerals refer to like elements throughout.
이하 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 박막전지 및 이를 제조하는 방법에 관하여 상세히 설명하기로 한다. Hereinafter, a thin film battery and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 또는 "상부에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 다른 부분 "하에" 또는 "하부에" 있다고 할 때, 이 역시 다른 부분 "바로 아래에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 또는 "바로 아래에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. When a portion of a layer, film, region, plate, or the like is said to be "on" or "on" another portion, this includes not only when the other portion is "directly above" but also when there is another portion in the middle. Also, when referred to as "below" or "below" another part, this also includes the case where there is another part "inside" as well as another part in the middle. On the contrary, when a part is "directly above" or "directly below" another part, there is no other part in the middle.
도 1 내지 4는 본 발명의 일 실시예에 따라 복수의 층이 적층된 형태의 박막전지의 단면도를 나타낸 것이다. 1 to 4 illustrate cross-sectional views of a thin film battery in which a plurality of layers are stacked according to an embodiment of the present invention.
박막전지의 구조Structure of Thin Film Battery
도 1을 참조하면, 상기 박막전지(100)는 플렉시블 필름층(110), 버퍼층(120), 양극 전류집전체 패턴(130), 양극 패턴(131), 음극 전류집전체 패턴(140), 음극 패턴(141) 및 전해질 패턴(150)을 포함한다.Referring to FIG. 1, the thin film battery 100 includes a flexible film layer 110, a buffer layer 120, a positive electrode current collector pattern 130, a positive electrode pattern 131, a negative electrode current collector pattern 140, and a negative electrode. The pattern 141 and the electrolyte pattern 150 are included.
이 때, 상기 플렉시블 필름층(110)은 열분해온도가 350℃ 이상으로 나타나는 플렉시블한 재질로 이루어지며, 바람직하게는 폴리이미드 필름층이 사용될 수 있다. 상기 플렉시블 필름층의 열분해온도는 바람직하게는 500℃ 이상, 보다 바람직하게는 600℃ 이상으로 나타날 수 있으며, 그 상한은 특별히 제한되지 아니하나, 700℃ 이하로 나타날 수 있다. 상기 열분해온도는 열중량 분석(TGA) 다이어그램에서 곡선의 변곡점 온도를 의미한다. 상기와 같이 내열성이 우수한 폴리이미드를 사용하여야 고온에서 양극 물질의 열처리가 가능하다. At this time, the flexible film layer 110 is made of a flexible material that the thermal decomposition temperature is 350 ℃ or more, preferably a polyimide film layer may be used. The pyrolysis temperature of the flexible film layer is preferably at least 500 ℃, more preferably at least 600 ℃, the upper limit is not particularly limited, but may appear at 700 ℃ or less. The pyrolysis temperature means the inflection point temperature of the curve in the thermogravimetric analysis (TGA) diagram. As described above, the polyimide having excellent heat resistance may be used to heat the cathode material at a high temperature.
상기 폴리이미드는 PMDA(피로메리틱 디안하이드라이드, Pyromellitic dianhydride), DSDA(디페닐술폰 테트라카르복실릭 디안하이드라이드, diphenylsulfone tetracarboxylic dianhydride), BTDA(벤조페논 테트라카르복실릭 디안하이드라이드, Benzophenonetetracarboxylic dianhydride), 6FDA(헥사플로로 이소프로필리덴-비스프탈릭 디안하이드라이드, Hexafluoroisopropylidene bisphthalic dianhydride), BPDA(비페닐 테트라카르복실 디안하이드라이드, Biphenyl tetracarboxylic dianhydride) 및 ODPA(옥시 디프탈릭 안하이드라이드, Oxydiphthalic anhydride)로 이루어진 군에서 선택된 적어도 하나의 디안하이드라이드(dianhydride)와, ODA(옥시 디아닐린, Oxydianiline), MDA(메틸렌 디아닐린, Methylenedianiline), MPDA(메타-페닐렌 디아민, m-phenylene diamine), DAP(2,6-디아미노피리딘, 2,6-Diaminopyridine), DABP(3,3'-디아미노 벤조페논, 3,3'-Diaminobenzophenone), PPDA(파라-페닐렌 디아민, p-phenylene diamine), DAPI(디아미노 페닐 인단, Diamino phenyl indane), APB(비스(아미노페톡시)벤젠, Bis(aminophenoxy)benzene) 및 GAPDS(비스(감마-아미노프로필)테트라메틸 디실록산, Bis(γ-aminopropyl) tetramethyl disiloxane)로 이루어진 군에서 선택된 적어도 하나의 디아민(diamine)의 축합물인 폴리아믹산(Polyamic acid)을 열경화하여 제조될 수 있으며, 바람직하게는 상기 폴리아믹산을 350 ~ 550℃에서 열경화하여 제조될 수 있다. The polyimide is PMDA (pyromellitic dianhydride), DSDA (diphenylsulfone tetracarboxylic dianhydride), BTDA (benzophenone tetracarboxylic dianhydride), Benzophenonetetracarboxylic dianhydride (BTDA) , 6FDA (hexafluoroisopropylidene bisphthalic dianhydride), BPDA (biphenyl tetracarboxylic dianhydride) and ODPA (Oxydiphthalic anhydride) At least one dianhydride selected from the group consisting of, ODA (oxy dianiline, Oxydianiline), MDA (methylene dianiline, Methylenedianiline), MPDA (meth-phenylene diamine, m-phenylene diamine), DAP ( 2,6-diaminopyridine, 2,6-Diaminopyridine), DABP (3,3'-diamino benzophenone, 3,3'-Diaminobenzophenone) , PPDA (para-phenylene diamine, p-phenylene diamine), DAPI (diamino phenyl indane), APB (bis (aminophenoxy) benzene, Bis (aminophenoxy) benzene) and GAPDS (bis (gamma- Aminopropyl) tetramethyl disiloxane, Bis (γ-aminopropyl) tetramethyl disiloxane may be prepared by thermosetting a polyamic acid (Polyamic acid), a condensate of at least one diamine selected from the group consisting of, preferably The polyamic acid may be prepared by thermosetting at 350 to 550 ° C.
더욱 바람직하게는, 상기 폴리이미드의 전구체인 폴리아믹산으로서 BPDA(비페닐 테트라카르복실 디안하이드라이드)과 PPDA(파라-페닐렌 디아민)의 축합물, 또는 BPDA(비페닐 테트라카르복실 디안하이드라이드)과 PPDA(파라-페닐렌 디아민) 및 ODA(옥시 디아닐린)의 축합물을 사용하는 것이 제조되는 폴리이미드의 내열성 면에서 보다 유리하다. 특히, 이 경우 600℃ 이상의 열분해온도를 나타낼 수 있어 후술하는 양극 전류집전체 패턴 및 양극 패턴을 형성한 후 급속열처리를 하는 과정에서, 예를 들면 600℃ 까지 급속열처리 온도를 높일 수 있어 양극 물질의 완전한 결정화 측면에서 보다 유리하다.More preferably, a condensate of BPDA (biphenyl tetracarboxylic dianhydride) and PPDA (para-phenylene diamine) or BPDA (biphenyl tetracarboxy dianhydride) as a polyamic acid which is a precursor of the polyimide. The use of condensates of PPDA (para-phenylene diamine) and ODA (oxy dianiline) is more advantageous in terms of the heat resistance of the polyimide produced. In particular, in this case, it is possible to exhibit a thermal decomposition temperature of 600 ° C. or higher, and thus, in the process of rapid thermal treatment after forming the anode current collector pattern and the anode pattern described below, for example, the rapid thermal treatment temperature may be increased to 600 ° C. More advantageous in terms of complete crystallization.
상기 플렉시블 필름층(110)의 상부에는 패시베이션(passivation)과 절연(insulation) 역할을 하는 버퍼층(120)이 형성된다. 상기 버퍼층은 리튬과의 화학적 반응이 일어나지 않는 물질을 사용하며, 바람직하게는 리튬 산화물, 리튬 불화물, 실리콘 산화물, 실리콘 질화물, 마그네슘 산화물, 알루미늄 산화물 등을 사용한 단일층, 또는 상기 물질 중 2종 이상의 물질을 사용한 다층 구조로 형성할 수 있으며, 보다 바람직하게는 마그네슘 산화물 또는 알루미늄 산화물이 포함된 단일층 또는 다층 구조로 형성하는 것이 좋다. 한편 상기 버퍼층의 두께는 50 ~ 500 nm로 형성하는 것이 바람직하다. A buffer layer 120, which functions as passivation and insulation, is formed on the flexible film layer 110. The buffer layer may be formed of a material that does not cause a chemical reaction with lithium, and is preferably a single layer using lithium oxide, lithium fluoride, silicon oxide, silicon nitride, magnesium oxide, aluminum oxide, or two or more of the above materials. It can be formed in a multi-layer structure using, more preferably it is formed in a single layer or a multi-layer structure containing magnesium oxide or aluminum oxide. On the other hand, the thickness of the buffer layer is preferably formed to 50 ~ 500 nm.
상기 플렉시블 필름층(110) 및 버퍼층(120)은 전체 박막전지가 플렉시블한 특성을 나타내도록 수십 ㎛ 이하의 얇은 두께를 나타내는 것이 좋으며, 플렉시블 필름층 및 버퍼층의 두께 합은 바람직하게 1 ~ 25 ㎛ 범위로 존재하는 것이 바람직하다. 또한 상기 플렉시블 필름층 및 버퍼층은 교번하여 복수의 층으로 적층된 다층 구조로 형성될 수 있으며, 이 경우 버퍼층이 최상부에 위치할 수 있다.The flexible film layer 110 and the buffer layer 120 preferably has a thin thickness of several tens of micrometers or less so that the entire thin film battery exhibits flexible characteristics, and the sum of the thicknesses of the flexible film layer and the buffer layer is preferably in the range of 1 to 25 μm. It is preferable to exist as. In addition, the flexible film layer and the buffer layer may be formed in a multi-layered structure alternately stacked in a plurality of layers, in this case, the buffer layer may be located on the top.
상기 양극 전류집전체 패턴(130)은 상기 양극(131)과 전기적으로 연결되어 있다. 상기 양극 전류집전체 패턴(130)은 박막전지(100)에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 예를 들어, 상기 양극 전류집전체 패턴(130)은 도전층으로서 백금(Pt), 금(Au), 등과 같은 귀금속류, 니켈 함유 합금 등과 같은 내열강, ITO 등과 같은 전도성 산화물막 등이 사용될 수 있다.The positive current collector pattern 130 is electrically connected to the positive electrode 131. The positive electrode current collector pattern 130 is not particularly limited as long as it has high conductivity without causing chemical change in the thin film battery 100. For example, the anode current collector pattern 130 may be used as a conductive layer such as noble metals such as platinum (Pt), gold (Au), and the like, heat resistant steel such as nickel-containing alloys, conductive oxide films such as ITO, and the like.
상기 니켈 함유 합금으로서는, 상업적으로 입수 가능한 하스텔로이(hastelloy), 인코넬(inconel), 콘스탄탄(Constantan) 등이 사용될 수 있다. 상기 양극 전류집전체 패턴(130) 형성 전에 티타늄 또는 크롬을 성막하여 양극 활물질의 접착력을 높일 수도 있다. 또한 선택적으로 확산방지층인 티타늄산화물 또는 티타늄질화물 등과 같은 금속 산화물을 도전층과 접착층 사이에 증착할 수도 있으며, 상기 양극 전류집전체 패턴의 두께는 접착층, 확산방지층 및 도전층을 모두 포함하여 50 ~ 500 nm로 형성하는 것이 바람직하다.As the nickel-containing alloy, commercially available hastelloy, inconel, constantan and the like can be used. Before forming the cathode current collector pattern 130, titanium or chromium may be formed to increase the adhesion of the cathode active material. In addition, a metal oxide such as titanium oxide or titanium nitride, which is a diffusion barrier layer, may be selectively deposited between the conductive layer and the adhesive layer, and the thickness of the anode current collector pattern may include 50 to 500 including all of the adhesive layer, the diffusion barrier layer, and the conductive layer. It is preferable to form in nm.
상기 음극 전류집전체 패턴(140)은 상기 음극(141)과 전기적으로 연결되어 있으며, 아울러 상기 양극 전류집전체 패턴(130)과 전기적으로 분리되어 있다. 상기 음극 전류집전체 패턴(140)은 박막전지(100)에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 예를 들어, 상기 음극 전류집전체 패턴(140)으로 백금(Pt), 금(Au)등과 같은 귀금속류, 하스텔로이(Hastelloy), 인코넬(Inconnel), 콘스탄탄(Constantan) 등과 같은 니켈(Ni)계 합금, 구리(Cu), 황동(Cu-Zn 합금) 및 몰리브덴(Mo) 금속 등이 사용될 수 있다. 상기 음극 전류집전체 패턴(140)의 표면에 필요에 따라 미세 요철을 형성하여 음극 활물질의 접착력을 높일 수도 있으며, 상기 음극 전류집전체 패턴의 두께는 50 ~ 500 nm로 형성하는 것이 바람직하다.The negative electrode current collector pattern 140 is electrically connected to the negative electrode 141 and is electrically separated from the positive electrode current collector pattern 130. The cathode current collector pattern 140 is not particularly limited as long as it has high conductivity without causing chemical change in the thin film battery 100. For example, precious metals such as platinum (Pt), gold (Au), nickel (Ni), such as Hastelloy, Inconnel, Constantan, etc., as the cathode current collector pattern 140. Alloys, copper (Cu), brass (Cu-Zn alloys), molybdenum (Mo) metals, and the like can be used. Fine irregularities may be formed on the surface of the negative electrode current collector pattern 140 to increase adhesion of the negative electrode active material, and the thickness of the negative electrode current collector pattern may be 50 to 500 nm.
상기 양극 패턴(131)은 본 기술 분야에서 알려진 양극을 활물질 박막으로서 사용할 수 있으며, 그 종류는 특별히 제한되지 않는다. 양극 활물질은, 예를 들어, 리튬 전지에서 리튬을 가역적으로 인터칼레이션/디인터칼레이션 할 수 있는 화합물로 LiCoO2, LiMn2O4, LiNiO2, LiFePO4, LiNiVO4, LiCoMnO4, LiCo1/3Ni1/3Mn1/3O2, V2O5, MnO2, MoO3 등을 단독 또는 2종 이상을 조합하여 사용할 수 있으며, 상기 양극 패턴의 두께는 0.5 ~ 15.0 ㎛ 로 형성될 수 있다. The positive electrode pattern 131 may use a positive electrode known in the art as an active material thin film, and the type thereof is not particularly limited. The positive electrode active material is, for example, LiCoO as a compound capable of reversibly intercalating / deintercalating lithium in a lithium battery.2, LiMn2O4, LiNiO2, LiFePO4, LiNiVO4, LiCoMnO4, LiCo1/3Ni1/3Mn1/3O2, V2O5, MnO2, MoO3 Etc. may be used alone or in combination of two or more thereof, and the thickness of the anode pattern may be 0.5 to 15.0 μm.
또한 상기 음극 패턴(141)은 본 기술 분야에서 알려진 음극을 활물질 박막으로서 사용할 수 있으며, 그 종류는 특별히 제한되지 않는다. 음극 활물질은, 예를 들어 리튬 전지에서 리튬이 가역적으로 산화/환원할 수 있는 소재로 Li, Sn3N4, Si, 흑연, Li-Mg, Li-Al 합금 등을 단독 또는 2종 이상을 조합하여 사용할 수 있으며, 상기 음극 패턴의 두께는 0.5 ~10.0 ㎛ 로 형성될 수 있다. In addition, the negative electrode pattern 141 may use a negative electrode known in the art as an active material thin film, and the type thereof is not particularly limited. The negative electrode active material is, for example, a material capable of reversibly oxidizing / reducing lithium in a lithium battery, using Li, Sn 3 N 4 , Si, graphite, Li-Mg, Li-Al alloy, etc. alone or in combination of two or more thereof. It may be used, the thickness of the negative electrode pattern may be formed to 0.5 ~ 10.0 ㎛.
상기 전해질패턴(150)은 양극(131) 및 음극(141) 사이에 위치하며, 무기 고체 전해질 또는 유기 고체 전해질이 사용될 수 있다. 상기 무기 고체 전해질의 예로서는 Li2O-B2O3, Li2O-V2O5-SiO2, Li2SO4-Li2O-B2O3, Li3PO4, Li2OLi2WO4-B2O3, LiPON(Li2.9PO3.3N0.46), LiBON(Li3.099BO2.532N0.516)등을 들 수 있으며, 이들은 단독 또는 2종 이상이 조합되어 사용될 수 있다. 상기 유기 고체 전해질의 예로서는 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐알코올, 폴리 불화 비닐리덴 등에 리튬염을 혼합한 형태를 들 수 있으며, 이들은 단독 또는 2종 이상이 조합되어 사용될 수 있다. 또한 상기 전해질패턴의 두께는 0.7 ~ 3.0 ㎛로 형성될 수 있다. The electrolyte pattern 150 is positioned between the anode 131 and the cathode 141, and an inorganic solid electrolyte or an organic solid electrolyte may be used. Examples of the inorganic solid electrolyte include Li 2 OB 2 O 3 , Li 2 OV 2 O 5 -SiO 2 , Li 2 SO 4 -Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 OLi 2 WO 4 -B 2 O 3 , LiPON (Li 2.9 PO 3.3 N 0.46 ), LiBON (Li 3.099 BO 2.532 N 0.516 ) and the like, these may be used alone or in combination of two or more. Examples of the organic solid electrolyte include a lithium salt mixed with a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyedgetion lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, or the like. These can be mentioned, These can be used individually or in combination of 2 or more types. In addition, the thickness of the electrolyte pattern may be formed to 0.7 ~ 3.0 ㎛.
도 2을 참조하면, 상기 박막전지(100)의 플렉시블 필름층(110) 하부에 베이스 기판(160)을 더 포함할 수 있고, 상기 베이스 기판은 상기 플렉시블 필름층과 분리될 수 있으며, 분리된 베이스 기판은 다시 재활용될 수 있다. Referring to FIG. 2, the base substrate 160 may be further included below the flexible film layer 110 of the thin film battery 100, and the base substrate may be separated from the flexible film layer. The substrate can be recycled again.
베이스 기판(160)은 니켈(Ni) 및 니켈계 합금, 티타늄(Ti), 크롬(Cr), 스테인레스 스틸(stainless steel), 텅스텐(W), 몰리브덴(Mo) 등과 같은 금속 시트; 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화실리콘(SiO2), 석영(quartz), 유리(glass), 운모(mica), 사파이어(Sapphire) 등과 같은 세라믹 혹은 유리 시트 중에서 어느 하나를 사용할 수 있다. 상기 운모는 천연 운모 및 인공적으로 합성된 합성 운모를 모두 포함한다. 또한, 상기 베이스 기판으로서는, 실리콘 웨이퍼, 실리콘 웨이퍼 상에 산화물이 처리된 기판이 사용될 수 있다.The base substrate 160 may include metal sheets such as nickel (Ni) and nickel-based alloys, titanium (Ti), chromium (Cr), stainless steel, tungsten (W), molybdenum (Mo), and the like; Ceramic or glass sheet such as aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon oxide (SiO 2 ), quartz, glass, mica, sapphire, etc. You can use one. The mica includes both natural mica and artificially synthesized synthetic mica. In addition, as the base substrate, a silicon wafer or a substrate on which an oxide is treated on the silicon wafer may be used.
도 3을 참조하면, 상기 박막전지(100)는 음극 패턴 상에 보호막층(170) 및 배리어 필름층(180)을 포함할 수 있다. Referring to FIG. 3, the thin film battery 100 may include a passivation layer 170 and a barrier film layer 180 on a cathode pattern.
상기 보호막층(170)은 박막전지(100)가 대기 중에서 산화되는 것을 방지하기 위하여, 양극 패턴(131), 음극 패턴(141) 및 전해질 패턴(150)를 둘러싸는 형태로 형성된다. 상기 보호막층(170)은 대기 중에서 박막전지가 주요 구성 성분들이 산화되는 것을 방지하기 위한 것으로서, 유기 보호막, 또는 무기 보호막, 또는 유기 보호막 및 무기 보호막의 조합으로 이루어질 수 있다. 또한 상기 유기보호막의 두께는 1.0 ~ 5.0 ㎛로 형성될 수 있으며, 상기 무기 보호막의 두께는 30 ~ 200 nm로 형성될 수 있다. The passivation layer 170 is formed to surround the anode pattern 131, the cathode pattern 141, and the electrolyte pattern 150 in order to prevent the thin film battery 100 from being oxidized in the air. The passivation layer 170 is to prevent oxidation of main components of the thin film battery in the air, and may be formed of an organic passivation layer, an inorganic passivation layer, or a combination of an organic passivation layer and an inorganic passivation layer. In addition, the thickness of the organic protective film may be formed of 1.0 ~ 5.0 ㎛, the thickness of the inorganic protective film may be formed of 30 ~ 200 nm.
상기 유기 보호막의 재료로는 특별히 한정되지는 않으나, 예를 들어, 광중합(Photo polymerization)에 의하여 중합이 개시되는 다이아조계, 아지드계, 아크릴계, 폴리아미드계, 폴리에스테르계, 에폭사이드계, 폴리에테르계, 우레탄계 수지 등을 단독 또는 2종 이상을 조합하여 사용할 수 있다. 또한, 상기 유기 보호막의 재료로는, 예를 들어, 열에 의해 라디칼이 생성되어 중합이 개시되는 폴리스티렌계, 아크릴계, 우레아계, 이소시아네이트계, 자일렌계 수지 등을 단독 또는 2종 이상을 조합하여 사용할 수 있다. 상기 광중합에 의해 중합이 개시되는 수지 및 열에 의해 라디칼이 생성되어 중합이 개시되는 수지 등을 조합하여 사용할 수 있다.Although it does not specifically limit as a material of the said organic protective film, For example, diazo type, azide type, acryl type, polyamide type, polyester type, epoxide type, poly which start superposition | polymerization by photopolymerization. Ether type, urethane type resin, etc. can be used individually or in combination of 2 or more types. As the material of the organic protective film, for example, polystyrenes, acrylics, ureas, isocyanates, xylene resins, etc., in which radicals are generated by heat to initiate polymerization, may be used alone or in combination of two or more thereof. have. It is possible to use a combination of a resin in which polymerization is initiated by photopolymerization and a resin in which radicals are generated by heat and polymerization is initiated.
상기 무기 보호막의 재료로는 특별히 한정되지는 않으나, 예를 들어, 실리콘 질화물, 알루미늄 질화물, 지르코늄 질화물, 티타늄 질화물, 하프늄 질화물, 탄탈륨 질화물, 실리콘 산화물, 알루미늄 산화물, 지르코늄 산화물, 마그네슘 산화물, 티타늄 산화물, 석산화물, 세륨 산화물, 실리콘 산화질화물(SiON) 등을 단독 또는 2종 이상을 조합하여 사용할 수 있다.The material of the inorganic protective film is not particularly limited, but for example, silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, silicon oxide, aluminum oxide, zirconium oxide, magnesium oxide, titanium oxide, A stone oxide, cerium oxide, silicon oxynitride (SiON), etc. can be used individually or in combination of 2 or more types.
상기 보호막층(170)이 유기 보호막 및 무기 보호막의 조합으로 이루어진 경우는, 특별히 한정되지는 않으나, 예를 들어, 유기 보호막/무기 보호막/유기 보호막/무기 보호막과 같이 유기 보호막 및 무기 보호막이 교대로 형성되거나, 또는 유기 보호막/유기 보호막/무기 보호막과 같이 어느 하나의 보호막이 2층 이상으로 적층될 수 있다. 여기서, 각 층을 이루는 보호막은 그 재료가 서로 동일하거나 다를 수 있다. When the passivation layer 170 is formed of a combination of an organic passivation layer and an inorganic passivation layer, the organic passivation layer and the inorganic passivation layer are alternately formed, for example, such as an organic passivation layer, an inorganic passivation layer, an organic passivation layer, or an inorganic passivation layer. It may be formed, or any one protective film such as an organic protective film / organic protective film / inorganic protective film may be laminated in two or more layers. Here, the protective film forming each layer may be the same or different materials.
또한 상기 배리어 필름층(180)은 플렉시블한 성질을 나타내는 필름이 사용되며, 수분 및 산소를 차단하여 박막전지를 1차적으로 보호하는 역할을 한다. 특히 베이스 기판이 제거되는 경우 박막전지의 지지체 역할을 할 수 있으며, 상기 배리어 필름층으로 박막 전사가 가능하다. 상기 배리어 필름으로는 PET, PEN 또는 Fluoropolymer 필름 기판 상에 유기/무기 다층막을 형성한 복합 필름 소재(예들 들어 Materion 사, 3M 사 또는 Dupont 사의 Ultra Barrier Film)가 사용될 수 있으며, 바람직하게는 수분투과율이 10-4 g/m2day 이하인 필름 소재가 사용될 수 있다. 또한 상기 배리어 필름층은 20 ~ 300 ㎛ 범위의 두께로 형성되는 것이 바람직하다. In addition, the barrier film layer 180 is used as a film showing a flexible property, serves to primarily protect the thin film battery by blocking moisture and oxygen. In particular, when the base substrate is removed, it may serve as a support for the thin film battery, and thin film transfer to the barrier film layer is possible. As the barrier film, a composite film material (for example, an Ultra Barrier Film of Materion, 3M, or Dupont) having an organic / inorganic multilayer formed on a PET, PEN, or Fluoropolymer film substrate may be used. Film materials up to 10 −4 g / m 2 day may be used. In addition, the barrier film layer is preferably formed in a thickness of 20 ~ 300 ㎛ range.
상기와 같은 본 발명의 박막전지는 배리어 필름을 제외한 실제 전지의 총 두께가 수십 ㎛ 이내로 제어되어, 박막전지 단위 셀의 용량을 상기 단위 셀의 적층을 통해 증가시킬 수 있다. 이로 인하여, 상기 박막전지는 두께 및 부피에 크게 의존하는 스마트 카드, 각종 태그(tag) 제품 및 MEMS, 초박막 전자 디바이스의 전원 공급원으로서 사용될 수 있다. In the thin film battery of the present invention as described above, the total thickness of the actual battery except for the barrier film is controlled to be within several tens of micrometers, thereby increasing the capacity of the thin film battery unit cell by stacking the unit cells. Because of this, the thin film battery can be used as a power source for smart cards, various tag products and MEMS, ultra-thin electronic devices, which are highly dependent on thickness and volume.
한편, 도 4에서 보는 바와 같이, 본 발명의 박막전지(100)는 버퍼층을 포함하지 않은 채, 플렉시블 필름층(110) 상부에 바로 양극 전류 집전체 패턴(130)이 형성될 수 있다. 다만, 이 경우 음극 전류 집전체 패턴(140) 및 음극 패턴(141)이 플렉시블 필름층(110)과 직접 접촉하여 산화되는 것을 방지하기 위하여, 보호 패턴(190)이 추가적으로 형성되고, 상기 보호 패턴(190) 상에 음극 전류 집전체 패턴(140) 및 음극 패턴(141)이 형성될 수 있다.On the other hand, as shown in Figure 4, the thin film battery 100 of the present invention may include a positive current collector pattern 130 directly on the flexible film layer 110, without including a buffer layer. However, in this case, in order to prevent the cathode current collector pattern 140 and the cathode pattern 141 from directly contacting the flexible film layer 110 and being oxidized, a protection pattern 190 is additionally formed, and the protection pattern ( The cathode current collector pattern 140 and the cathode pattern 141 may be formed on the 190.
상기 보호 패턴(190)으로는 실리콘 질화물, 알루미늄 질화물, 지르코늄 질화물, 티타늄 질화물, 하프늄 질화물, 탄탈륨 질화물, 실리콘 산화물, 알루미늄 산화물, 지르코늄 산화물, 마그네슘 산화물, 티타늄 산화물, 석산화물, 세륨 산화물, 실리콘 산화질화물(SiON) 등이 사용될 수 있으나, 바람직하게는 실리콘 산화물, 알루미늄 산화물이 사용될 수 있으며, 가장 바람직하게는 Al2O3가 사용되는 것이 좋다.The protective pattern 190 may include silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, silicon oxide, aluminum oxide, zirconium oxide, magnesium oxide, titanium oxide, stone oxide, cerium oxide, and silicon oxynitride. (SiON) and the like may be used, but preferably silicon oxide and aluminum oxide may be used, and most preferably Al 2 O 3 may be used.
박막전지의 제조방법Manufacturing Method of Thin Film Battery
본 발명의 박막전지는 베이스 기판(160) 상부에 열분해온도가 350℃ 이상인 플렉시블 필름층(110)을 형성하는 단계; 상기 플렉시블 필름층(110) 상부에 버퍼층(120)을 형성하는 단계; 상기 버퍼층(120) 상부에 양극 전류집전체 패턴(130) 및 양극 패턴(131)을 형성하고 급속 열처리(RTA: rapid thermal annealing)를 수행하는 단계; 상기 양극 패턴 상에 전해질 패턴(150)을 형성하는 단계; 상기 버퍼층(120) 상부에 양극 전류집전체 패턴(130)과 전기적으로 분리되도록 음극 전류집전체 패턴(140)을 형성하는 단계; 및 상기 전해질 패턴 상에 음극 패턴(141)을 형성하는 단계를 포함하여 제조될 수 있다. The thin film battery of the present invention comprises the steps of forming a flexible film layer 110 having a thermal decomposition temperature of 350 ℃ or more on the base substrate 160; Forming a buffer layer (120) on the flexible film layer (110); Forming an anode current collector pattern 130 and an anode pattern 131 on the buffer layer 120 and performing rapid thermal annealing (RTA); Forming an electrolyte pattern 150 on the anode pattern; Forming a cathode current collector pattern 140 on the buffer layer 120 to be electrically separated from the anode current collector pattern 130; And forming a cathode pattern 141 on the electrolyte pattern.
한편, 상기 플렉시블 필름층을 베이스 기판 상부에 형성함에 있어서, 후속 공정에서 플렉시블 필름층이 박리되는 것을 막기 위하여, 접착제를 도포할 수 있다. 보다 구체적으로 상기 접착제로서 아미노실란계 커플링제를 스핀 코팅하여 도포할 수 있으며, 일 예로서 3-아미노프로필-트리에톡시실란, N-2-아미노에틸-3-아미노프로필트리메톡시실란 등이 사용될 수 있다.Meanwhile, in forming the flexible film layer on the base substrate, an adhesive may be applied to prevent the flexible film layer from being peeled off in a subsequent step. More specifically, the adhesive may be applied by spin coating an aminosilane-based coupling agent. For example, 3-aminopropyl-triethoxysilane, N-2-aminoethyl-3-aminopropyltrimethoxysilane, or the like may be applied. Can be used.
다만 상기 박막전지의 제조과정에 있어서 각 구성 요소의 적층 순서는 특별히 한정되지 않는다. 예를 들어, 양극 전류집전체 패턴(130) / 양극(131) / 전해질 패턴(150) / 음극(141) / 음극 전류집전체 패턴(140); 양극 전류집전체 패턴(130) / 양극(131) / 전해질 패턴(150) / 음극 전류집전체 패턴(140) / 음극(141); 양극 (131) / 양극 전류집전체 패턴(130) / 전해질 패턴(150) / 음극(141) / 음극 전류집전체 패턴(140); 음극 전류집전체 패턴(140)/ 음극(141) / 전해질 패턴(150) / 양극(131) / 양극 전류집전체 패턴(130); 음극 전류집전체 패턴(140) / 음극(141) / 전해질 패턴(150) / 양극 전류집전체 패턴(130) / 양극(131); 음극(141) / 음극 전류집전체 패턴(140) / 전해질 패턴(150) / 양극(131) / 양극 전류집전체 패턴(130); 또는 음극(141) / 음극 전류 집전체 패턴(140) / 전해질층(150) / 양극 전류집전체 패턴(130) / 양극(131) 순으로 적층될 수 있다. However, the stacking order of each component in the manufacturing process of the thin film battery is not particularly limited. For example, the anode current collector pattern 130 / anode 131 / electrolyte pattern 150 / cathode 141 / cathode current collector pattern 140; Anode current collector pattern 130 / anode 131 / electrolyte pattern 150 / cathode current collector pattern 140 / cathode 141; An anode 131 / anode current collector pattern 130 / electrolyte pattern 150 / cathode 141 / cathode current collector pattern 140; A cathode current collector pattern 140 / a cathode 141 / electrolyte pattern 150 / a cathode 131 / a cathode current collector pattern 130; A cathode current collector pattern 140 / a cathode 141 / electrolyte pattern 150 / a cathode current collector pattern 130 / a cathode 131; A cathode 141 / cathode current collector pattern 140 / electrolyte pattern 150 / anode 131 / anode current collector pattern 130; Alternatively, the cathode 141 may be stacked in the order of the cathode current collector pattern 140, the electrolyte layer 150, the anode current collector pattern 130, and the anode 131.
또한, 본 발명의 박막전지는 베이스 기판(160) 상부에 열분해온도가 350℃ 이상인 플렉시블 필름층(110)을 형성하는 단계; 상기 플렉시블 필름층(110) 상부에 양극 전류집전체 패턴(130) 및 양극 패턴(131)을 형성하고 급속 열처리(RTA: rapid thermal annealing)를 수행하는 단계; 상기 양극 패턴 상에 전해질 패턴(150)을 형성하는 단계; 상기 플렉시블 필름층(110) 상부에 보호 패턴(190)을 형성하는 단계; 상기 보호 패턴(190) 상부에 양극 전류집전체 패턴(130)과 전기적으로 분리되도록 음극 전류집전체 패턴(140)을 형성하는 단계; 및 상기 전해질 패턴 상에 음극 패턴(141)을 형성하는 단계를 포함하여 제조될 수 있다.In addition, the thin film battery of the present invention comprises the steps of forming a flexible film layer 110 having a thermal decomposition temperature of 350 ℃ or more on the base substrate 160; Forming an anode current collector pattern 130 and an anode pattern 131 on the flexible film layer 110 and performing rapid thermal annealing (RTA); Forming an electrolyte pattern 150 on the anode pattern; Forming a protective pattern 190 on the flexible film layer 110; Forming a cathode current collector pattern 140 on the protection pattern 190 to be electrically separated from the cathode current collector pattern 130; And forming a cathode pattern 141 on the electrolyte pattern.
상기 박막전지는 기존에 공지된 건식 공정, 또는 습식 공정, 또는 건식 및 습식이 조합된 공정으로 제조할 수 있다. 상기 건식 공정의 예로서는 열증착법(thermal evaporation), e-빔 증착법(E-beam evaporation), 스퍼터링(sputtering), 화학기상증착법(CVD) 등을 들 수 있으며, 습식 공정의 예로서는 스핀 코팅, 졸-겔법, 딥 코팅, 캐스팅(casting), 프린팅, 스프레이 등을 들 수 있다.The thin film battery may be manufactured by a conventionally known dry process, wet process, or a combination of dry and wet methods. Examples of the dry process include thermal evaporation, e-beam evaporation, sputtering, chemical vapor deposition (CVD), and the like, and spin coating and sol-gel methods. , Dip coating, casting, printing, spraying, and the like.
특히, 상기 플렉시블 필름층(110) 상부에 양극 전류집전체 패턴 및 양극 패턴을 형성하고 급속 열처리(RTA: rapid thermal annealing)를 수행할 때, 양극 물질의 완전한 결정화를 위하여 400 ~ 700℃, 바람직하게는 500 ~ 600℃의 고온으로 열처리를 진행하는 것이 좋다. In particular, when a positive current collector pattern and a positive electrode pattern are formed on the flexible film layer 110 and rapid thermal annealing (RTA) is performed, 400 to 700 ° C., for complete crystallization of the positive electrode material, is preferable. It is good to proceed the heat treatment at a high temperature of 500 ~ 600 ℃.
또한 상기 제조방법은 상기 양극 패턴, 전해질 패턴 및 음극 패턴을 둘러싸는 보호막층(170)을 형성하는 단계 및 상기 보호막층 상부에 배리어 필름층(180)을 형성하는 단계를 더 포함할 수 있다. In addition, the manufacturing method may further include forming a passivation layer 170 surrounding the anode pattern, the electrolyte pattern, and the cathode pattern, and forming the barrier film layer 180 on the passivation layer.
상기 보호막층(170)은 양극 패턴(131), 음극 패턴(141) 및 전해질 패턴(150)를 둘러싸는 형태로 형성(encapsulation)하여 상기 패턴을 보호하고, 보호막층(170)의 상부에 배리어 필름층(180)을 형성할 수 있다. The passivation layer 170 is encapsulated to surround the anode pattern 131, the cathode pattern 141, and the electrolyte pattern 150 to protect the pattern, and a barrier film on the passivation layer 170. Layer 180 may be formed.
상기 배리어 필름층(180)의 형성 후, 베이스 기판(160)을 플렉시블 필름층(110)과 분리할 수 있다. 상기 베이스 기판(160)의 분리는 레이져에 의한 리프트 오프(Lift-Off) 또는 습식 리프트 오프 등에 의하여 이루어질 수 있으며, 이를 통하여 전체 박막전지의 총 두께를 얇게 형성하여 플렉시블한 특성을 유지할 수 있고, 이 때 배리어 필름층(180)은 분리된 상기 베이스 기판(160)을 대신하여 박막전지의 지지체 역할을 한다. 또한 분리된 베이스 기판은 재활용이 가능하다. After the barrier film layer 180 is formed, the base substrate 160 may be separated from the flexible film layer 110. The base substrate 160 may be separated by a lift-off or a wet lift-off by a laser. Through this, the total thickness of the entire thin film battery may be thinned to maintain flexible characteristics. In this case, the barrier film layer 180 may serve as a support for the thin film battery instead of the separated base substrate 160. In addition, the separated base substrate can be recycled.
이하, 본 발명의 바람직한 실시예를 통하여 본 발명의 박막전지에 관하여 상세히 설명하기로 한다.Hereinafter, the thin film battery of the present invention will be described in detail with reference to preferred embodiments of the present invention.
이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.The following examples are only for illustrating the present invention, but the scope of the present invention is not limited to the following examples.
실시예Example
[플렉시블 필름층의 내열성 측정][Measurement of Heat Resistance of Flexible Film Layer]
하기 화학식 1에서 나타난 바와 같이, BPDA(비페닐 테트라카르복실 디안하이드라이드)과 PPDA(파라-페닐렌 디아민)을 반응시켜 제조된 폴리 아믹산(PAA)을 폴리이미드의 전구체로서 사용하였으며, 구체적으로는 Ube사의 U-varnish series 를 사용하였다. As shown in Formula 1 below, polyamic acid (PAA) prepared by reacting BPDA (biphenyl tetracarboxylic dianhydride) and PPDA (para-phenylene diamine) was used as a precursor of polyimide. Ube's U-varnish series was used.
[규칙 제26조에 의한 보정 18.02.2013] 
화학식 1
Figure WO-DOC-FIGURE-70
[Revision 18.02.2013 under Rule 26]
Formula 1
Figure WO-DOC-FIGURE-70
이때, 내열성을 측정하기 위해 상기 폴리 아믹산(PAA)(Ube사의 U-varnish series) 을 유리기판에 코팅한 후, 이를 550℃로 경화시켜 폴리이미드 필름을 형성시켰고 이를 박리한 2.5mg의 샘플로 TGA(TGA 2050/TA instruments Inc) 분석을 진행하였으며, 그 결과를 도 5에 나타내었다. At this time, the polyamic acid (PAA) (Ube's U-varnish series) was coated on a glass substrate to measure heat resistance, and then cured at 550 ° C. to form a polyimide film, which was then peeled off to a 2.5 mg sample. TGA (TGA 2050 / TA instruments Inc) analysis was performed, and the results are shown in FIG. 5.
상기 도 5에서 보는 바와 같이, 상기 폴리이미드는 약 600℃ 부근에서 열분해가 진행되었으며, TGA 곡선의 변곡점은 653.76℃ 로 측정되었다. As shown in FIG. 5, the polyimide was pyrolyzed at about 600 ° C., and the inflection point of the TGA curve was measured at 653.76 ° C. FIG.
[박막전지 제조][Manufacture of thin film battery]
0.7mm의 두께를 갖는 glass를 베이스 기판(160)으로 사용하고, 상기 베이스 기판(160) 상부에, 3-아미노프로필-트리에톡시실란의 10 중량% 에탄올 희석액을 스핀 코팅하여 도포한 후, 상기 폴리 아믹산(PAA)(Ube사의 U-varnish series)을 스핀 코팅하고 550℃로 경화시켜 15 ㎛의 폴리이미드 필름층(110)을 형성하였다. Using a glass having a thickness of 0.7mm as the base substrate 160, and spin-coated a 10% by weight ethanol dilution of 3-aminopropyl-triethoxysilane on the base substrate 160, and then Polyamic acid (PAA) (U-varnish series, manufactured by Ube) was spin coated and cured at 550 ° C. to form a 15 μm polyimide film layer 110.
다음 상기 폴리이미드 필름층(110) 상부에 마그네슘 산화물(MgO)을 300 nm로 증착하여 버퍼층(120)을 형성하였다. Next, magnesium oxide (MgO) was deposited at 300 nm on the polyimide film layer 110 to form a buffer layer 120.
그리고, 상기 버퍼층 상부(120)에 양극 전류 집전체 패턴(130)으로 백금(Pt)을 10 nm 두께로 DC 스퍼터링 하였으며, 버퍼층(120)과의 접착성을 증대시키기 위해 티타늄(Ti)과 인코넬을 각각 150 nm와 120 nm 두께로 백금(Pt)과 버퍼층(120) 사이에 증착하였다. 이어, 양극 활물질로 LiCoO2 타겟을 사용하여 10 내지 20 mTorr의 아르곤 또는 아르곤/산소 혼합 가스 분위기하에서 2 ㎛ 두께로 DC/RF 혼성화 전원을 인가하여 마그네트론 스퍼터링하여 양극 패턴(131)을 형성하였다. LiCoO2 활물질 박막 전극의 유효면적은 마스크 패턴을 통해 2.4 cm2로 형성하였다. 다음 양극의 결정화를 위해 Ar/O2 혼합 가스 분위기 하 1기압 조건에서 600℃로 급속 열처리 공정을 수행하였다. 이어, 고체 전해질층 박막(150)은 Li3PO4 타겟을 사용하여 순수한 질소 분위기하에서 RF 마그네트론 스퍼터링하여 Li3PO4 내의 산소가 일부 질소로 치환된 형태의 LiPON 전해질층을 1.5 ㎛ 두께로 증착하였다. 이어, 음극 전류 집전체 패턴(140)으로는 350 nm 두께의 Cu-Zn 합금을 박막 증착하였다. 이어, 금속 리튬 박막을 진공 열증착법에 의해 2 ㎛ 두께로 증착하여 음극 패턴(141)을 형성하였다. In addition, platinum sputtered with a thickness of 10 nm on the upper portion of the buffer layer 120 using the anode current collector pattern 130, and titanium and inconel were added to increase adhesion with the buffer layer 120. 150 nm and 120 nm in thickness were deposited between the platinum (Pt) and the buffer layer 120, respectively. Subsequently, a cathode pattern 131 was formed by applying magnetron sputtering by applying a DC / RF hybridization power source having a thickness of 2 μm in an argon or argon / oxygen mixed gas atmosphere of 10 to 20 mTorr using a LiCoO 2 target as a cathode active material. The effective area of the LiCoO 2 active material thin film electrode was formed to be 2.4 cm 2 through a mask pattern. In order to crystallize the anode, a rapid heat treatment was performed at 600 ° C. under an atmosphere of Ar / O 2 mixed gas. Subsequently, the solid electrolyte layer thin film 150 was sputtered with RF magnetron in a pure nitrogen atmosphere using a Li 3 PO 4 target to deposit a 1.5 μm thick LiPON electrolyte layer in which oxygen in Li 3 PO 4 was replaced with some nitrogen. . Subsequently, a 350 nm thick Cu—Zn alloy was deposited as a cathode current collector pattern 140. Subsequently, a metal lithium thin film was deposited to have a thickness of 2 μm by vacuum thermal evaporation to form a cathode pattern 141.
다음, 보호막층(170)으로서 두께 50 nm의 무기 보호막(Al2O3)과 두께 1 ㎛의 유기 보호막(Polyurea)을 교대로 증착하여 형성하였다. 그리고 상기 보호막층(170) 상부에 배리어 필름층(180)으로서 3M사의 Ultra Barrier Film을 라미네이션 접착에 의하여 75 ㎛ 두께로 형성하였다. Next, the protective film layer 170 was formed by alternately depositing an inorganic protective film (Al 2 O 3 ) having a thickness of 50 nm and an organic protective film (Polyurea) having a thickness of 1 μm. 3M Ultra Barrier Film was formed on the passivation layer 170 as a barrier film layer 180 by lamination.
마지막으로 상기 베이스 기판(160)은 엑시머 레이져(Excimer laser)를 사용한 리프트 오프(Lift-Off)에 의하여 폴리이미드 필름층(110)으로부터 분리됨으로써, 베이스 기판이 분리된 최종 박막전지를 제조하였다. Finally, the base substrate 160 is separated from the polyimide film layer 110 by lift-off using an excimer laser, thereby manufacturing a final thin film battery in which the base substrate is separated.
비교예Comparative example
베이스 기판으로 75 ㎛ 두께의 Kapton(Dupont 사) 필름을 사용하고, 상기 베이스 기판 상부에 양극 전류 집전체 패턴으로 백금(Pt)을 10 nm 두께로 DC 스퍼터링 하였으며, 베이스 기판과의 접착성을 증대시키기 위해 티타늄(Ti) 인코넬을 각각 150 nm와 120 nm 두께로 백금(Pt)과 베이스 기판 사이에 증착하였다. 이어, 양극 활물질로 LiCoO2 타겟을 사용하여 10 내지 20 mTorr의 아르곤 또는 아르곤/산소 혼합 가스 분위기하에서 2 ㎛ 두께로 DC/RF 혼성화 전원을 인가하여 마그네트론 스퍼터링하여 양극 패턴을 형성하였다. LiCoO2 활물질 박막 전극의 유효면적은 마스크 패턴을 통해 2.4 cm2로 형성하였다. 다음 양극의 결정화를 위해 Ar/O2 혼합 가스 분위기 하 1기압 조건에서 350℃로 급속 열처리 공정을 수행하였다. 이어, 고체 전해질층 박막은 Li3PO4 타겟을 사용하여 순수한 질소 분위기하에서 RF 마그네트론 스퍼터링하여 Li3PO4 내의 산소가 일부 질소로 치환된 형태의 LiPON 전해질층을 1.5 ㎛ 두께로 증착하였다. 이어, 음극 전류 집전체 패턴으로는 350 nm 두께의 Cu-Zn 합금을 박막 증착하였다. 이어, 금속 리튬 박막을 진공 열증착법에 의해 2 ㎛ 두께로 증착하여 음극 패턴을 형성하였다. A 75 μm thick Kapton (Dupont) film was used as the base substrate, and platinum (Pt) was DC sputtered to a thickness of 10 nm using a positive current collector pattern on the base substrate to increase adhesion to the base substrate. Titanium (Ti) Inconel was deposited between platinum (Pt) and the base substrate to a thickness of 150 nm and 120 nm, respectively. Subsequently, a cathode pattern was formed by applying magnetron sputtering by applying a DC / RF hybridization power source having a thickness of 2 μm in an argon or argon / oxygen mixed gas atmosphere of 10 to 20 mTorr using a LiCoO 2 target as a cathode active material. The effective area of the LiCoO 2 active material thin film electrode was formed to be 2.4 cm 2 through a mask pattern. In order to crystallize the anode, a rapid heat treatment was performed at 350 ° C. under an atmosphere of Ar / O 2 mixed gas. Subsequently, the solid electrolyte layer thin film was RF magnetron sputtered in a pure nitrogen atmosphere using a Li 3 PO 4 target to deposit a 1.5 μm thick LiPON electrolyte layer in which oxygen in Li 3 PO 4 was replaced with some nitrogen. Next, as a cathode current collector pattern, a 350 nm thick Cu—Zn alloy was deposited by thin film. Subsequently, a metal lithium thin film was deposited to a thickness of 2 μm by vacuum thermal evaporation to form a cathode pattern.
다음, 보호막층으로서 두께 50 nm의 무기 보호막(Al2O3)과 두께 1 ㎛의 유기 보호막(Polyurea)을 교대로 증착하여 형성함으로써 최종 박막전지를 제조하였다.Next, an inorganic protective film (Al) having a thickness of 50 nm as a protective film layer.2O3) And thickness 1 μm The final thin film battery was manufactured by alternately depositing an organic protective film (Polyurea).
실험예 : 방전용량의 측정 Experimental Example: Measurement of Discharge Capacity
상기 실시예 및 비교예의 박막전지의 충방전 싸이클에 따른 방전용량을 측정하였으며, 그 결과를 하기 표 1 및 도 6에 나타내었다. Discharge capacities were measured according to charge and discharge cycles of the thin film batteries of Examples and Comparative Examples, and the results are shown in Table 1 and FIG. 6.
표 1
싸이클 수 방전용량(μAh)
실시예 비교예
2 237 210
4 234 175
6 231 138
8 228 110
10 227 87
Table 1
Number of cycles Discharge Capacity (μAh)
Example Comparative example
2 237 210
4 234 175
6 231 138
8 228 110
10 227 87
상기 표 1에서 보는 바와 같이, 실시예의 박막전지의 경우 350℃에서 급속 열처리 공정을 수행한 비교예의 박막전지에 비하여 초기 충방전 싸이클에서 13% 이상의 방전용량을 나타내었으며, 사이클에 따른 방전용량 감소 현상(capacity fade)도 크게 나타나지 않는 것을 확인할 수 있었다. As shown in Table 1, the thin film battery of Example showed more than 13% discharge capacity in the initial charge / discharge cycle compared to the thin film battery of the comparative example which performed the rapid heat treatment at 350 ° C., and the discharge capacity decreased with cycles. (capacity fade) also did not appear much.
또한 도 6의 충방전 그래프에서 보는 바와 같이, 비교예의 경우 저온상(LT-phase)의 LiCoO2 전극 특성을 나타내며, 전형적인 고온상(HT-phase)의 LiCoO2 전극의 방전 특성을 나타내는 실시예에 비하여 일정한 평탄 전압을 나타내지 않을 뿐 아니라 평균 방전 전압도 낮음을 확인할 수 있었다.In addition, as shown in the charge / discharge graph of FIG. 6, the comparative example shows the LiCoO 2 electrode characteristics of the low-temperature phase (LT-phase) and the discharge characteristics of the LiCoO 2 electrode of the typical high-temperature phase (HT-phase). Compared with not showing a constant flat voltage, the average discharge voltage was also low.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 기술자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 이하에 기재되는 특허청구범위에 의해서 판단되어야 할 것이다.Although the above description has been made with reference to the embodiments of the present invention, this is only an example, and those skilled in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom. . Therefore, the true technical protection scope of the present invention should be judged by the claims described below.

Claims (18)

  1. 열분해온도가 350℃ 이상인 플렉시블 필름층;Pyrolysis temperature is 350 ℃ or more flexible film layer;
    상기 플렉시블 필름층 상에 서로 전기적으로 분리되도록 형성된 양극 전류집전체 패턴 및 음극 전류집전체 패턴;A positive electrode current collector pattern and a negative electrode current collector pattern formed to be electrically separated from each other on the flexible film layer;
    상기 양극 전류집전체 패턴 상에 형성된 양극 패턴;An anode pattern formed on the anode current collector pattern;
    상기 양극 패턴 상에 형성된 전해질 패턴; 및An electrolyte pattern formed on the anode pattern; And
    상기 전해질 패턴 상에 형성된 음극 패턴Cathode pattern formed on the electrolyte pattern
    을 포함하는 것을 특징으로 하는 박막전지.Thin film battery comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 플렉시블 필름층은 폴리이미드 필름층인 것을 특징으로 하는 박막전지.The flexible film layer is a thin film battery, characterized in that the polyimide film layer.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 플렉시블 필름층은 500℃ 이상의 열분해온도를 가지는 것을 특징으로 하는 박막전지.The flexible film layer is a thin film battery, characterized in that having a thermal decomposition temperature of 500 ℃ or more.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 플렉시블 필름층은 PMDA(피로메리틱 디안하이드라이드, Pyromellitic dianhydride), DSDA(디페닐술폰 테트라카르복실릭 디안하이드라이드, diphenylsulfone tetracarboxylic dianhydride), BTDA(벤조페논 테트라카르복실릭 디안하이드라이드, Benzophenonetetracarboxylic dianhydride), 6FDA(헥사플로로 이소프로필리덴-비스프탈릭 디안하이드라이드, Hexafluoroisopropylidene bisphthalic dianhydride), BPDA(비페닐 테트라카르복실 디안하이드라이드, Biphenyl tetracarboxylic dianhydride) 및 ODPA(옥시 디프탈릭 안하이드라이드, Oxydiphthalic anhydride)로 이루어진 군에서 선택된 적어도 하나의 디안하이드라이드(dianhydride)와, ODA(옥시 디아닐린, Oxydianiline), MDA(메틸렌 디아닐린, Methylenedianiline), MPDA(메타-페닐렌 디아민, m-phenylene diamine), DAP(2,6-디아미노피리딘, 2,6-Diaminopyridine), DABP(3,3'-디아미노 벤조페논, 3,3'-Diaminobenzophenone), PPDA(파라-페닐렌 디아민, p-phenylene diamine), DAPI(디아미노 페닐 인단, Diamino phenyl indane), APB(비스(아미노페톡시)벤젠, Bis(aminophenoxy)benzene) 및 GAPDS(비스(감마-아미노프로필)테트라메틸 디실록산, Bis(γ-aminopropyl) tetramethyl disiloxane)로 이루어진 군에서 선택된 적어도 하나의 디아민(diamine)의 축합물로부터 제조되는 폴리이미드 필름층인 것을 특징으로 하는 박막전지.The flexible film layer is PMDA (pyromellitic dianhydride), DSDA (diphenylsulfone tetracarboxylic dianhydride), diphenylsulfone tetracarboxylic dianhydride), BTDA (benzophenone tetracarboxylic dianhydride, Benzophenonetetracarboxylic dianhydride) ), 6FDA (hexafluoroisopropylidene-bisphthalic dianhydride, Hexafluoroisopropylidene bisphthalic dianhydride), BPDA (biphenyl tetracarboxylic dianhydride) and ODPA (Oxydiphthalic anhydride) At least one dianhydride selected from the group consisting of), ODA (oxy dianiline, Oxydianiline), MDA (methylene dianiline, Methylenedianiline), MPDA (meth-phenylene diamine, m-phenylene diamine), DAP (2,6-diaminopyridine, 2,6-Diaminopyridine), DABP (3,3'-diamino benzophenone, 3,3'-Diaminobenzop henone), PPDA (para-phenylene diamine, p-phenylene diamine), DAPI (diamino phenyl indane, Diamino phenyl indane), APB (bis (aminophenoxy) benzene, Bis (aminophenoxy) benzene) and GAPDS (bis Thin film battery, characterized in that the polyimide film layer made from a condensate of at least one diamine selected from the group consisting of gamma-aminopropyl) tetramethyl disiloxane, Bis (γ-aminopropyl) tetramethyl disiloxane).
  5. 제1항에 있어서,The method of claim 1,
    상기 플렉시블 필름층 상에 버퍼층이 형성되고, A buffer layer is formed on the flexible film layer,
    상기 버퍼층 상에 양극 전류집전체 패턴 및 음극 전류 집전체 패턴이 서로 전기적으로 분리되도록 형성된 것을 특징으로 하는 박막전지.The thin film battery, characterized in that the positive electrode current collector pattern and the negative electrode current collector pattern formed on the buffer layer to be electrically separated from each other.
  6. 제5항에 있어서, The method of claim 5,
    상기 버퍼층은 리튬 산화물, 리튬 불화물, 실리콘 산화물, 실리콘 질화물, 마그네슘 산화물 및 알루미늄 산화물 중에서 선택된 1종 또는 2종 이상의 화합물로 이루어지는 것을 특징으로 하는 박막전지.The buffer layer is a thin film battery comprising one or two or more compounds selected from lithium oxide, lithium fluoride, silicon oxide, silicon nitride, magnesium oxide and aluminum oxide.
  7. 제1항에 있어서,The method of claim 1,
    상기 플렉시블 필름층 상에 보호 패턴이 형성되고, A protective pattern is formed on the flexible film layer,
    상기 보호 패턴 상에 음극 전류 집전체 패턴이 형성된 것을 특징으로 하는 박막전지.The thin film battery, characterized in that the negative current collector pattern is formed on the protective pattern.
  8. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 플렉시블 필름층은 하부에 베이스 기판을 더 포함하는 것을 특징으로 하는 박막전지. The thin film battery, characterized in that the flexible film layer further comprises a base substrate at the bottom.
  9. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 음극 패턴 상에 보호막층 및 배리어 필름층을 더 포함하는 것을 특징으로 하는 박막전지. The thin film battery further comprises a protective film layer and a barrier film layer on the cathode pattern.
  10. 제9항에 있어서,The method of claim 9,
    상기 배리어 필름층은 수분투과율이 10-4 g/m2day 이하인 것을 특징으로 하는 박막전지.The barrier film layer is a thin film battery, characterized in that the water transmittance is 10 -4 g / m 2 day or less.
  11. 제5항에 있어서,The method of claim 5,
    상기 플렉시블 필름층 및 버퍼층의 두께 합은 1 ~ 25 ㎛ 범위에 있는 것을 특징으로 하는 박막전지.Thin film battery, characterized in that the sum of the thickness of the flexible film layer and the buffer layer is in the range of 1 ~ 25 ㎛.
  12. 베이스 기판 상부에 열분해온도가 350℃ 이상인 플렉시블 필름층을 형성하는 단계;Forming a flexible film layer having a pyrolysis temperature of 350 ° C. or higher on the base substrate;
    상기 플렉시블 필름층 상부에 양극 전류집전체 패턴 및 양극 패턴을 형성하고 급속 열처리를 수행하는 단계; Forming an anode current collector pattern and an anode pattern on the flexible film layer and performing rapid heat treatment;
    상기 양극 패턴 상에 전해질 패턴을 형성하는 단계; Forming an electrolyte pattern on the anode pattern;
    상기 플렉시블 필름층 상부에 양극 전류집전체 패턴과 전기적으로 분리되도록 음극 전류집전체 패턴을 형성하는 단계; 및Forming a cathode current collector pattern on the flexible film layer to be electrically separated from the cathode current collector pattern; And
    상기 전해질 패턴 상에 음극 패턴을 형성하는 단계를 포함하는 것을 특징으로 하는 박막전지의 제조방법.And forming a cathode pattern on the electrolyte pattern.
  13. 제12항에 있어서,The method of claim 12,
    상기 플렉시블 필름층 상부에 버퍼층을 형성하고, 상기 버퍼층 상부에 양극 전류집전체 패턴 및 양극 패턴을 형성하는 것을 특징으로 하는 박막전지의 제조방법.Forming a buffer layer on the flexible film layer, and forming a cathode current collector pattern and an anode pattern on the buffer layer.
  14. 제12항에 있어서,The method of claim 12,
    상기 플렉시블 필름층 상부에 보호 패턴을 형성하고, 상기 보호 패턴 상부에 양극 전류집전체 패턴과 전기적으로 분리되도록 음극 전류집전체 패턴을 형성하는 것을 특징으로 하는 박막전지의 제조방법.Forming a protection pattern on the flexible film layer and forming a cathode current collector pattern on the protection pattern so as to be electrically separated from the cathode current collector pattern.
  15. 제12항에 있어서,The method of claim 12,
    상기 플렉시블 필름층은 PMDA(피로메리틱 디안하이드라이드, Pyromellitic dianhydride), DSDA(디페닐술폰 테트라카르복실릭 디안하이드라이드, diphenylsulfone tetracarboxylic dianhydride), BTDA(벤조페논 테트라카르복실릭 디안하이드라이드, Benzophenonetetracarboxylic dianhydride), 6FDA(헥사플로로 이소프로필리덴-비스프탈릭 디안하이드라이드, Hexafluoroisopropylidene bisphthalic dianhydride), BPDA(비페닐 테트라카르복실 디안하이드라이드, Biphenyl tetracarboxylic dianhydride) 및 ODPA(옥시 디프탈릭 안하이드라이드, Oxydiphthalic anhydride)로 이루어진 군에서 선택된 적어도 하나의 디안하이드라이드(dianhydride)와, ODA(옥시 디아닐린, Oxydianiline), MDA(메틸렌 디아닐린, Methylenedianiline), MPDA(메타-페닐렌 디아민, m-phenylene diamine), DAP(2,6-디아미노피리딘, 2,6-Diaminopyridine), DABP(3,3'-디아미노 벤조페논, 3,3'-Diaminobenzophenone), PPDA(파라-페닐렌 디아민, p-phenylene diamine), DAPI(디아미노 페닐 인단, Diamino phenyl indane), APB(비스(아미노페톡시)벤젠, Bis(aminophenoxy)benzene) 및 GAPDS(비스(감마-아미노프로필)테트라메틸 디실록산, Bis(γ-aminopropyl) tetramethyl disiloxane)로 이루어진 군에서 선택된 적어도 하나의 디아민(diamine)의 축합물을 열경화하여 형성하는 것을 특징으로 하는 박막전지의 제조방법.The flexible film layer is PMDA (pyromellitic dianhydride), DSDA (diphenylsulfone tetracarboxylic dianhydride), diphenylsulfone tetracarboxylic dianhydride), BTDA (benzophenone tetracarboxylic dianhydride, Benzophenonetetracarboxylic dianhydride) ), 6FDA (hexafluoroisopropylidene-bisphthalic dianhydride, Hexafluoroisopropylidene bisphthalic dianhydride), BPDA (biphenyl tetracarboxylic dianhydride) and ODPA (Oxydiphthalic anhydride) At least one dianhydride selected from the group consisting of), ODA (oxy dianiline, Oxydianiline), MDA (methylene dianiline, Methylenedianiline), MPDA (meth-phenylene diamine, m-phenylene diamine), DAP (2,6-diaminopyridine, 2,6-Diaminopyridine), DABP (3,3'-diamino benzophenone, 3,3'-Diaminobenzop henone), PPDA (para-phenylene diamine, p-phenylene diamine), DAPI (diamino phenyl indane, Diamino phenyl indane), APB (bis (aminophenoxy) benzene, Bis (aminophenoxy) benzene) and GAPDS (bis A method of manufacturing a thin film battery, characterized in that the condensate of at least one diamine selected from the group consisting of gamma-aminopropyl) tetramethyl disiloxane and Bis (γ-aminopropyl) tetramethyl disiloxane) is formed by thermosetting.
  16. 제12항에 있어서,The method of claim 12,
    상기 급속 열처리는 400 ~ 700℃에서 이루어지는 것을 특징으로 하는 박막전지의 제조방법.The rapid heat treatment is a manufacturing method of a thin film battery, characterized in that made at 400 ~ 700 ℃.
  17. 제12항에 있어서,The method of claim 12,
    상기 양극 패턴, 전해질 패턴 및 음극 패턴을 둘러싸는 보호막층을 형성하는 단계; 및Forming a protective layer surrounding the anode pattern, the electrolyte pattern, and the cathode pattern; And
    상기 보호막 상부에 배리어 필름층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 박막전지의 제조방법.The method of claim 1, further comprising forming a barrier film layer on the passivation layer.
  18. 제17항에 있어서, The method of claim 17,
    상기 배리어 필름층의 형성 후, 베이스 기판을 플렉시블 필름층과 분리하는 단계를 더 포함하는 것을 특징으로 하는 박막전지의 제조방법.After the formation of the barrier film layer, the method of manufacturing a thin film battery, further comprising the step of separating the base substrate from the flexible film layer.
PCT/KR2013/000963 2012-03-21 2013-02-07 Flexible thin film battery capable of withstanding high temperature treatment and method for fabricating same WO2013141481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0028666 2012-03-21
KR1020120028666A KR101355007B1 (en) 2012-03-21 2012-03-21 Flexible thin film battery through thermal annealing at high temperature and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013141481A1 true WO2013141481A1 (en) 2013-09-26

Family

ID=49222898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000963 WO2013141481A1 (en) 2012-03-21 2013-02-07 Flexible thin film battery capable of withstanding high temperature treatment and method for fabricating same

Country Status (2)

Country Link
KR (1) KR101355007B1 (en)
WO (1) WO2013141481A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053862A1 (en) * 2015-09-23 2017-03-30 Applied Materials, Inc. Adhesion promotion in electrochemical devices
CN110073535A (en) * 2019-02-21 2019-07-30 京东方科技集团股份有限公司 Lithium ion battery and preparation method thereof
US10566584B2 (en) 2014-06-23 2020-02-18 Schott Ag Electrical storage system with a sheet-like discrete element, sheet-like discrete element, method for producing same, and use thereof
US10673025B2 (en) 2014-12-01 2020-06-02 Schott Ag Electrical storage system comprising a sheet-type discrete element, discrete sheet-type element, method for the production thereof, and use thereof
US20210111427A1 (en) * 2019-10-11 2021-04-15 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes during lithium metal deposition
US11028242B2 (en) * 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
US11646444B2 (en) 2014-12-02 2023-05-09 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11876174B2 (en) 2020-01-15 2024-01-16 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12034116B2 (en) 2021-06-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064187A1 (en) * 2014-10-23 2016-04-28 주식회사 엘지화학 Multi-layer structured lithium metal electrode and method for manufacturing same
KR101984719B1 (en) * 2014-10-23 2019-05-31 주식회사 엘지화학 Li metal electrode with multi-layer and forming method thereof
KR101637938B1 (en) * 2014-11-06 2016-07-08 한국과학기술연구원 Method of fabricating cathode for thin film battery using laser, cathode fabricated thereby, and thin film battery including the same
WO2016072664A1 (en) * 2014-11-06 2016-05-12 한국과학기술연구원 Method for manufacturing cathode for thin film battery using laser, cathode for thin film battery manufactured thereby, and thin film battery comprising same
KR101883728B1 (en) * 2016-08-23 2018-07-31 주식회사 테토스 Method for manufacturing a multi layer structure for electromagnetic interference shield
KR102524454B1 (en) * 2019-10-25 2023-04-20 동우 화인켐 주식회사 Thin Film Battery Assembly
KR20220122271A (en) 2021-02-26 2022-09-02 동우 화인켐 주식회사 Current collector and thin film battery having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050121194A (en) * 2002-07-26 2005-12-26 엑셀라트론 솔리드 스테이트 엘엘씨 Thin film battery
US20070264564A1 (en) * 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
JP2008293791A (en) * 2007-05-24 2008-12-04 Sumitomo Electric Ind Ltd Solid thin film battery
US20090056981A1 (en) * 2005-04-18 2009-03-05 Toyo Boseki Kabushiki Kaisha Thin film-laminated polyimide film and flexible printed wiring board
KR20110001447A (en) * 2009-06-30 2011-01-06 지에스나노텍 주식회사 Thin film battery and method of connecting electrode terminal of thin film battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050121194A (en) * 2002-07-26 2005-12-26 엑셀라트론 솔리드 스테이트 엘엘씨 Thin film battery
US20090056981A1 (en) * 2005-04-18 2009-03-05 Toyo Boseki Kabushiki Kaisha Thin film-laminated polyimide film and flexible printed wiring board
US20070264564A1 (en) * 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
JP2008293791A (en) * 2007-05-24 2008-12-04 Sumitomo Electric Ind Ltd Solid thin film battery
KR20110001447A (en) * 2009-06-30 2011-01-06 지에스나노텍 주식회사 Thin film battery and method of connecting electrode terminal of thin film battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566584B2 (en) 2014-06-23 2020-02-18 Schott Ag Electrical storage system with a sheet-like discrete element, sheet-like discrete element, method for producing same, and use thereof
US10673025B2 (en) 2014-12-01 2020-06-02 Schott Ag Electrical storage system comprising a sheet-type discrete element, discrete sheet-type element, method for the production thereof, and use thereof
US11646444B2 (en) 2014-12-02 2023-05-09 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
WO2017053862A1 (en) * 2015-09-23 2017-03-30 Applied Materials, Inc. Adhesion promotion in electrochemical devices
CN110073535A (en) * 2019-02-21 2019-07-30 京东方科技集团股份有限公司 Lithium ion battery and preparation method thereof
US11028242B2 (en) * 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
US20210111427A1 (en) * 2019-10-11 2021-04-15 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes during lithium metal deposition
US11876174B2 (en) 2020-01-15 2024-01-16 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12034116B2 (en) 2021-06-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof

Also Published As

Publication number Publication date
KR101355007B1 (en) 2014-01-24
KR20130106965A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
WO2013141481A1 (en) Flexible thin film battery capable of withstanding high temperature treatment and method for fabricating same
JP4043296B2 (en) All solid battery
US9118068B2 (en) Layered solid-state battery
WO2011065765A2 (en) Method for manufacturing a separator, separator made by same, and electrochemical device comprising the separator
WO2011025216A2 (en) Photodetector using a graphene thin film and nanoparticles, and method for producing same
WO2008153564A1 (en) Multilayer solid electrolyte for lithium thin film batteries
JP2015130352A (en) Method for manufacturing lithium battery using nanoporous separator layer
WO2016208970A1 (en) Method for manufacturing curved electrode assembly
CN105247724B (en) Substrate for solid state battery
JP2002352850A (en) Chip cell and its manufacturing method
CN111868963B (en) Battery, method for manufacturing battery, circuit board, electronic device, and electric vehicle
WO2013089347A1 (en) Thin film battery having improved battery performance through substrate surface treatment and method for manufacturing same
CN111727526B (en) Solid-state battery
JP2009301727A (en) Method for manufacturing of lithium battery
WO2019022402A2 (en) Method for manufacturing lithium electrode
JP5148902B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
WO2018212466A1 (en) Electrode assembly manufacturing apparatus and electrode assembly manufacturing method
KR20060124978A (en) Thin film battery and fabrication method thereof
JP7246182B2 (en) Secondary battery and porous separator for secondary battery
US20190363395A1 (en) Thin film solid-state secondary battery
WO2018012902A1 (en) Electrode and method for manufacturing same
JP2012038433A (en) Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery
WO2020106106A1 (en) Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
WO2018016855A1 (en) Method for manufacturing electrode and current collector for electrochemical device
JP2009211920A (en) All solid lithium secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763940

Country of ref document: EP

Kind code of ref document: A1