WO2013141339A1 - Multilayer wiring board and method for manufacturing same - Google Patents

Multilayer wiring board and method for manufacturing same Download PDF

Info

Publication number
WO2013141339A1
WO2013141339A1 PCT/JP2013/058229 JP2013058229W WO2013141339A1 WO 2013141339 A1 WO2013141339 A1 WO 2013141339A1 JP 2013058229 W JP2013058229 W JP 2013058229W WO 2013141339 A1 WO2013141339 A1 WO 2013141339A1
Authority
WO
WIPO (PCT)
Prior art keywords
interlayer connection
wiring board
connection conductor
multilayer wiring
cross
Prior art date
Application number
PCT/JP2013/058229
Other languages
French (fr)
Japanese (ja)
Inventor
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013141339A1 publication Critical patent/WO2013141339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes

Definitions

  • the present invention relates to a multilayer wiring board provided with an interlayer connection conductor and a method for manufacturing the multilayer wiring board.
  • Patent Document 1 proposes a technique for reducing the size of a module by multilayering a wiring board constituting the module to change the wiring structure formed in the module circuit to a three-dimensional wiring structure.
  • the multilayer wiring board 200 is composed of a stacked body of a plurality of insulating layers 201.
  • an in-plane electrode 202 is formed on the front surface or the back surface, and in-plane formed on each insulating layer 201.
  • An interlayer connection conductor 203 that connects the electrodes 202 is formed.
  • the density of the in-plane electrodes 202 formed on each insulating layer 201 of the multilayer wiring board 200 has been increasing.
  • the area where the interlayer connection conductor 203 for connecting the in-plane electrodes 202 can be arranged is small. If the interlayer connection conductor 203 is to be arranged in this limited area, the interlayer connection conductor 203 must be formed small. I must.
  • the interlayer connection conductor 203 is made small, for example, the cross-sectional area thereof is reduced, the connection area between the interlayer connection conductor 203 and the in-plane electrode 202 is reduced, so that the connection reliability is reduced, and the in-plane of the connection target Even when the electrodes 202 are connected by the plurality of interlayer connection conductors 203 formed across the plurality of insulating layers 201, the connection reliability between the interlayer connection conductors 203 is lowered. Furthermore, when this multilayer wiring board 200 is used in a high frequency module, the surface area of the interlayer connection conductor 203 decreases as the interlayer connection conductor 203 becomes smaller, so that the high frequency characteristics deteriorate due to the skin effect. Problems arise. Therefore, in order to solve these problems, a technique for forming the interlayer connection conductor 203 having the largest possible cross-sectional area within a limited region is required.
  • the interlayer connection conductor 203 is usually formed in a circular or rectangular cross section by laser or punching.
  • the limited area described above has a circular or rectangular shape in plan view and an irregular shape.
  • the interlayer connection conductor 203 cannot be formed with a cross section adapted to a limited region. Therefore, conventionally, the interlayer connection conductor 203 is formed by forming a single through hole in each insulating layer 201 having a maximum cross-sectional area (circular or rectangular) in a range that does not protrude from the limited region.
  • a method of forming the interlayer connection conductor 203 cannot be said to make effective use of a limited area.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a multilayer wiring board having an interlayer connection conductor having a larger cross-sectional area and surface area, and a method for manufacturing the same.
  • a multilayer wiring board according to the present invention is different from the in-plane electrodes formed on at least two insulating layers in a multilayer wiring board formed by laminating a plurality of insulating layers.
  • An interlayer connection conductor that connects the in-plane electrodes that are formed in an insulating layer and at least a portion of which overlaps in plan view, and the interlayer connection conductor is a portion in which the double-sided electrodes to be connected overlap in plan view
  • a conductive region is provided in an interlayer connection hole formed by connecting a plurality of through-holes having a predetermined cross-sectional shape formed in the connection region.
  • Each of the through-holes is formed so that the cross-section of the through-hole is partially overlapped with the cross-section of the other through-holes adjacent to each other.
  • the interlayer connection conductor is formed by forming the interlayer connection hole formed by coupling a plurality of through holes to the connection region set in the insulating layer, it is protruded from the connection region as in the past.
  • the interlayer has a large cross-sectional area and surface area.
  • a multilayer wiring board provided with a connection conductor can be provided.
  • connection area between the in-plane electrode and the interlayer connection conductor can be increased by forming the cross-sectional area of the interlayer connection conductor large, the connection strength and connection reliability of both can be improved. Moreover, even if the laminated positions of the insulating layers are shifted, the in-plane electrodes that are the connection targets can be reliably connected to each other.
  • the surface area of the interlayer connection conductor increases as the cross-sectional area of the interlayer connection conductor increases, for example, when this multilayer wiring board is used in a high-frequency module, the resistance value decreases due to the skin effect. Thus, it is possible to suppress the deterioration of the high frequency characteristics due to the formation of the interlayer connection conductor on the multilayer wiring board.
  • the interlayer connection conductor having a larger cross-sectional area and surface area than the conventional one can be formed in a limited region where the interlayer connection conductor can be disposed, the above-described decrease in connection strength and connection reliability, etc.
  • the interlayer connection hole may be formed by combining the through holes including the through holes having different cross-sectional areas.
  • the part where the cross-sectional area of the through-hole can be increased in the connection region forms a through-hole with a large cross-sectional area, and the part that cannot be formed large forms a through-hole with a small cross-sectional area.
  • Interlayer connection holes can be formed, so the total number of through holes can be reduced compared to a configuration in which an interlayer connection hole is formed by combining multiple through holes with a small cross-sectional area in the connection region. Hole machining costs can be reduced.
  • the interlayer connection conductor may be formed across a plurality of the insulating layers disposed between the electrodes in both sides. In this case, since the cross-sectional area of each interlayer connection conductor formed in each insulating layer is large, the connection area between the interlayer connection conductors is increased, and the connection strength and connection reliability of both can be improved.
  • the surface area of the interlayer connection conductor is large, when the interlayer connection conductor is used as a heat dissipation conductor, the heat dissipation can be improved.
  • the method for manufacturing a multilayer wiring board is a method for manufacturing a multilayer wiring board in which in-plane electrodes formed on different insulating layers are connected by an interlayer connection conductor, and at least one of the in-plane electrode and the interlayer connection conductor.
  • a connection region is set in the insulating sheet between the electrodes in both surfaces where the electrodes in the both surfaces overlap in plan view, and a plurality of adjacent cross-sections of the through holes overlap in the connection region in plan view. After the through holes are formed, a conductive material is provided in each through hole to form the interlayer connection conductor.
  • each through hole may be formed by laser processing. Since laser processing can perform fine drilling at high speed, the processing time of the interlayer connection hole can be shortened.
  • the insulating sheet may be a ceramic green sheet or a resin sheet.
  • the insulating layer is formed of a ceramic green sheet or a resin sheet, a multilayer wiring board having an interlayer connection conductor having a large cross-sectional area can be manufactured.
  • an interlayer connection conductor is formed by forming an interlayer connection hole in which a plurality of through holes are coupled to a connection region set in an insulating layer.
  • an interlayer connection conductor is formed by forming a single through hole in each insulating layer having a maximum cross section (circular or rectangular shape) in a range that does not protrude, the cross-sectional area and surface area are reduced.
  • a multilayer wiring board provided with a large interlayer connection conductor can be provided.
  • a multilayer wiring board according to an embodiment of the present invention will be described with reference to FIGS.
  • the module 1 using the multilayer wiring board 5 includes a multilayer wiring board 5 in which in-plane electrodes 3 and interlayer connection conductors 4 are formed on each insulating layer 2, and an electronic device mounted on the multilayer wiring board 5.
  • Examples of such a module include a Bluetooth (registered trademark) module, a wireless LAN module, and an antenna switch module disposed immediately below an antenna of a mobile phone.
  • the multilayer wiring board 5 is a laminate of a plurality of insulating layers 2 in which each insulating layer 2 is formed of glass epoxy resin, low temperature co-fired ceramic (LTCC) or the like. An electrode 3 is formed, and an interlayer connection conductor 4 that connects the in-plane electrodes 3 formed on each insulating layer 2 in the stacking direction is formed inside. In addition, the manufacturing method of this multilayer wiring board 2 is demonstrated below.
  • the electronic component 6 is composed of a semiconductor element in which various circuits are formed on an active surface, a passive component such as a chip capacitor, a chip inductor, and a chip resistor.
  • the electronic component 6 is formed on the multilayer wiring board 5 using a known surface mounting technique. Implemented.
  • FIG. 2A is a plan view of a region A in FIG. 1, and FIG. 2B is a cross-sectional view of the interlayer connection conductor 4.
  • FIG. 2 (a) and 2 (b) indicate the connection region 8 set in the insulating layer 2
  • the broken line in FIG. 2 (b) indicates the insulating layer 2 in the process of forming the interlayer connection conductor 4.
  • the part which overlapped with the adjacent through-hole 7 among the outer periphery of the cross section of the several through-hole 7 formed is shown.
  • the interlayer connection conductor 4 is formed in different insulating layers 2 and connects the in-plane electrodes 3 at least partially overlapping in a plan view in the stacking direction.
  • the in-plane electrodes 3 to be connected are planar.
  • a conductive material such as Cu is formed in the interlayer connection hole 9 formed by joining a plurality of through holes 7 formed in the connection region 8 set in the insulating layer 2 between the inner electrodes 3 on both sides. Is formed.
  • the connection region 8 set in the insulating layer 2 is a portion where the double-sided inner electrodes 3a and 3b to be connected to the interlayer connection conductor 4 overlap in plan view.
  • connection region 8 is a portion where the double-sided inner electrodes 3 overlap in plan view, and other regions formed on the insulating layer 2 between the double-sided inner electrodes 3.
  • the region is set so as not to overlap with the in-plane electrode 3 in plan view.
  • a rectangular connection area is set in the insulating layer 2 in a plan view, and the cross section has a predetermined shape (this area) In the embodiment, a circular shape), and two through holes 7 having the same cross-sectional area are formed.
  • each of the through holes 7 is formed such that the cross section thereof partially overlaps the cross section of the other through hole 7, so that both the through holes 7 are coupled to form one interlayer connection hole 9. Is done.
  • a conductive material is provided in the interlayer connection hole 9 to form the interlayer connection conductor 4.
  • the cross section of each through-hole 7 is formed with the maximum area that can be formed in the connection region.
  • the interlayer connection conductor 4 was formed with only one through-hole 7, and thus formed by a conventional method.
  • the cross-sectional area of the interlayer connection conductor is smaller than the cross-sectional area of the interlayer connection conductor 4 of this embodiment.
  • FIG. 3 (a) to 3 (c) are process diagrams showing a process of forming the interlayer connection conductor 4 and the in-plane electrode 3 connected to the interlayer connection conductor 4, and a cross section of the ceramic green sheet 2a is shown. Partially shown. Moreover, the dashed-dotted line of FIG. 3A shows each through-hole 7 formed in the insulating layer 2.
  • a ceramic green sheet 2a for forming each insulating layer 2 is produced.
  • a ceramic material for example, a mixture of barium oxide, silicon oxide, alumina, calcium oxide and boron oxide, a ceramic that becomes a filler such as alumina, and a glass such as borosilicate glass and silicon oxide is prepared. To do. Then, a solvent is added to and mixed with these ceramic materials, and a resin binder and a plasticizer are further added to produce a ceramic slurry. The ceramic slurry is molded to produce a ceramic green sheet 2a having a thickness of about 20 to 200 ⁇ m. .
  • each ceramic green sheet 2a is irradiated with a laser beam a plurality of times so as to be connected to different positions on the set connection region 8, whereby each through-hole 7 (this In the embodiment, two) each is formed so that the cross-section thereof partially overlaps the cross-section of the other through-hole 7 adjacent to each other, whereby one through-hole connection hole formed by coupling the respective through-holes 7 9 is formed.
  • the interlayer connection conductor 4 is formed by filling the interlayer connection hole 9 with a conductive paste (for example, a mixture of a binder resin composed of Cu powder and ethyl cellulose and a solvent).
  • a conductive paste for example, a mixture of a binder resin composed of Cu powder and ethyl cellulose and a solvent.
  • an in-plane electrode 3 having a predetermined shape is formed on the ceramic green sheet 2a using a conductive paste by a printing technique or the like.
  • the process from the production of the ceramic green sheet 2a to the formation of the in-plane electrode 3 corresponds to a preparation process in the present invention.
  • the ceramic green sheets 2a are laminated in a predetermined order, and are bonded by, for example, a hydrostatic pressure method to form a ceramic laminated body (forming process).
  • the ceramic laminate is fired to manufacture the multilayer wiring board 5.
  • the step of filling the interlayer connection hole 9 with the conductive paste and the step of forming the in-plane electrode 3 may be performed simultaneously.
  • FIG. 4A to 4E are process diagrams showing a process of forming the interlayer connection conductor 4 and the in-plane electrode 3 connected to the interlayer connection conductor 4, and a cross section of the resin sheet 2b is partially shown. Show. Moreover, the dashed-dotted line of FIG.4 (b) to (d) has shown each through-hole 7 formed in the resin sheet 2b.
  • a resin sheet 2b made of a thermoplastic resin such as liquid crystal polymer (LCP) or polyether ether ketone (PEEK) is prepared, and Cu foil or the like is formed on the main surface of the resin sheet 2b.
  • the metal foil 10 is pasted.
  • interlayer connection holes 9 are formed in the resin sheet 2b in the same manner as in the case where the insulating layer 2 is the ceramic green sheet 2a. At this time, the laser beam is irradiated from the surface of the resin sheet 2b where the metal foil 10 is not formed.
  • a resist pattern 11 is formed on the metal foil 10 using a printing technique or the like as a mask when the in-plane electrode 3 is formed by etching.
  • the in-plane electrode 3 is formed by removing the excess metal foil 10 by etching. At this time, either a positive type or a negative type may be adopted as an etching method.
  • the in-plane electrode 3 may be formed by pasting a previously patterned metal foil 10 on a predetermined position of the resin sheet 2b. In this manufacturing method, the interlayer connection hole 9 is formed before the in-plane electrode 3 is formed, but the order may be reversed.
  • the interlayer connection conductor 4 is formed by filling the interlayer connection hole 9 of each resin sheet 2b with a conductive paste containing Cu, Ag, or the like. At this time, the conductive paste is filled using a printing technique or the like.
  • the process from the production of the resin sheet 2b to the formation of the interlayer connection conductor 4 corresponds to the preparation process in the present invention.
  • the resin sheets 2b are laminated in a predetermined order to form a resin sheet 2b laminate, and the laminate is pressure-bonded by applying a vacuum press to manufacture the multilayer wiring board 5 (forming process).
  • the pressure bonding temperature is preferably about 250 ° C. to 350 ° C., for example. Note that the resin sheet 2b does not need to be pressure-bonded in a lump, and may be pressure-bonded for each sheet 2b or each time a plurality of sheets 2b are stacked.
  • the interlayer connection conductor 4 is formed by forming the interlayer connection hole 9 formed by combining the plurality of through holes 7 in the connection region 8 set in the insulating layer 2.
  • the interlayer connection conductor 4 is formed by forming the interlayer connection hole 9 formed by combining the plurality of through holes 7 in the connection region 8 set in the insulating layer 2.
  • connection area between the in-plane electrode 3 and the interlayer connection conductor 4 can be increased by forming the cross-sectional area of the interlayer connection conductor 4 large, the connection strength and connection reliability of both can be improved. Moreover, even if the laminated positions of the insulating layers 2 are shifted, the in-plane electrodes 3 that are the connection targets can be reliably connected to each other.
  • the surface area of the interlayer connection conductor 4 increases as the cross-sectional area of the interlayer connection conductor 4 increases, for example, when the multilayer wiring board 5 is used in a high frequency module, the resistance due to the skin effect is increased. The value becomes low, and deterioration of the high frequency characteristics due to the formation of the interlayer connection conductor 4 on the multilayer wiring board 5 can be suppressed.
  • the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the conventional one can be formed in a limited region where the interlayer connection conductor 4 can be disposed, the above-described connection strength and connection reliability are lowered.
  • the surface area of the interlayer connection conductor 4 is large, when the interlayer connection conductor 4 is used as a heat dissipation conductor, the heat dissipation can be improved.
  • each insulating layer 2 is irradiated with laser light a plurality of times so as to be connected to different positions, whereby each through-hole 7 is respectively connected to the other through-hole 7 whose cross section is adjacent.
  • the interlayer connection conductor 4 is formed by forming one interlayer connection hole 9 formed by coupling the through holes 7 to form a part of the interlayer having a large cross-sectional area.
  • the multilayer wiring board 5 provided with the connection conductor 4 can be manufactured.
  • This manufacturing method can also be applied to the case where the insulating layer 2 is formed of the ceramic green sheet 2a or the resin sheet 2b. Therefore, the insulating layer 2 is formed of the ceramic green sheet 2a or the resin sheet 2b.
  • the multilayer wiring board 5 including the interlayer connection conductor 4 having a large cross-sectional area can be manufactured.
  • each through hole 7 is formed by laser processing capable of performing fine drilling at high speed, the processing time of the interlayer connection hole 9 can be shortened.
  • FIGS. 5A to 5E are modifications of the interlayer connection conductor 4 in the case where the interlayer connection hole 9 is formed by a plurality of through holes 7 having the same cross-sectional area.
  • FIGS. (C) is a modification of the interlayer connection conductor 4 when the interlayer connection hole 9 is formed by a plurality of through holes 7 including the through holes 7 having different cross-sectional areas. 2 that are the same as those in FIG. 2 are the same as or equivalent to those in FIG.
  • connection region 8 has the same rectangular shape as in FIG. 2, and a plurality of through-holes 7 having a cross-sectional area smaller than the cross-sectional area of each through-hole 7 shown in FIG.
  • the interlayer connection conductor 4 is formed by forming the interlayer connection hole 9
  • the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the interlayer connection conductor 4 shown in FIG. 2 can be formed.
  • connection region 8 is a square
  • connection region 8 is a square
  • An interlayer connection conductor having a large area can be formed.
  • FIG. 5B by combining a plurality of through holes 7 having a smaller cross sectional area than this through hole, an interlayer having a larger cross sectional area and surface area can be formed.
  • the connection conductor 4 can be formed.
  • connection region 8 has a convex shape (FIG. 5C), an L shape (FIG. 5D), or an irregular shape (FIG. 5E), a plurality of connection regions 8 are shown as shown in each figure.
  • the interlayer connection conductor 4 having a larger cross-sectional area and surface area can be formed as compared with the conventional case.
  • connection region 8 has the same rectangular shape as that of FIG. 2 and FIG. 5 (a), and the through-hole has a maximum cross section in a range not protruding from the connection region 8.
  • the interlayer connection conductor 4 is formed by combining the through hole 7 having a smaller cross-sectional area with the cross-sectional area 7, the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the interlayer connection conductor 4 shown in FIG. be able to.
  • the total number of through holes 7 can be reduced as compared with the interlayer connection conductor 4 shown in FIG. 5A, the processing time and processing cost of the interlayer connection hole 9 can be reduced, and the interlayer connection conductor having a large cross-sectional area and large surface area. Since 4 can be formed efficiently, it is practical.
  • connection region 8 has an irregular shape (FIG. 6A) and a triangular shape (FIG. 6B)
  • a plurality of different cross-sectional areas are provided.
  • the interlayer connection conductor 4 By forming the interlayer connection conductor 4 by combining the through holes 7, the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the interlayer connection conductor formed by the conventional method can be formed.
  • the interlayer connection conductor 4 may be formed across a plurality of insulating layers 2 arranged between the in-plane electrodes 3 to be connected.
  • an interlayer connection conductor 4 is formed by each of the plurality of insulating layers 2 arranged between the in-plane electrodes 3, and the in-plane electrodes 3 are connected via the plurality of interlayer connection conductors 4.
  • the cross section of the through hole 7 is not limited to a circular shape, and may be formed in a rectangular shape, for example.
  • the through hole 7 can be formed by punching or the like.
  • the interlayer connection conductor 4 is formed on only a part of the plurality of interlayer connection conductors 4 formed on the multilayer wiring board 5, and the remainder is formed by a single through-hole 7 in the conventional method. It does not matter even if it is the composition to do. In this way, the total number of through holes 7 formed in the multilayer wiring board 5 can be reduced by forming the interlayer connection conductors 4 that do not need to have a large cross-sectional area by the conventional method. The manufacturing time of the substrate 5 can be shortened and the manufacturing cost can be reduced. Further, a part of the interlayer connection conductor 4 may be arranged so as to protrude from the in-plane electrode 3 as shown in FIG.
  • the present invention can be applied to various multilayer wiring boards provided with interlayer connection conductors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The purpose of the present invention is to obtain a multilayer wiring board that has an interlayer connection conductor having a greater lateral cross-sectional area and surface area. A multilayer wiring board formed by stacking a plurality of insulating layers (2), wherein the multilayer wiring board is provided with in-plane electrodes (3a, 3b) formed in at least two insulating layers (2), and an interlayer connection conductor (4) for connecting together the in-plane electrodes (3a, 3b) that are formed in different insulating layers (2) and that at least partially overlap as viewed in a plane. The interlayer connection conductor (4) is formed so that a connection region (8) is set in the insulating layers (2) between the in-plane electrodes (3a, 3b) to be connected, in the portion where the in-plane electrodes (3a, 3b) to be connected overlap as viewed in a plane, and that an electroconductive material is provided in an interlayer connection hole (9) formed in the connection region (8) and obtained by joining a plurality of through-holes (7) having a predetermined shape in lateral cross-section. Each of the through-holes (7) is formed so that the lateral cross-section thereof partially overlaps with the lateral cross-section of an adjacent through-hole (7).

Description

多層配線基板およびその製造方法Multilayer wiring board and manufacturing method thereof
 本発明は、層間接続導体を備える多層配線基板およびこの多層配線基板の製造方法に関する。 The present invention relates to a multilayer wiring board provided with an interlayer connection conductor and a method for manufacturing the multilayer wiring board.
 近年、携帯電話などの携帯端末装置の小型・薄型化に伴って、これに搭載されるモジュールの小型化が要求されている。そこで、従来では、図8に示すように、モジュールを構成する配線基板を多層化してモジュールの回路に形成される配線の構造を3次元的な配線構造にして、モジュールの小型化を図る技術が提案されている(特許文献1)。 In recent years, with the reduction in size and thickness of mobile terminal devices such as mobile phones, there has been a demand for downsizing of modules mounted thereon. Therefore, in the prior art, as shown in FIG. 8, there is a technique for reducing the size of a module by multilayering a wiring board constituting the module to change the wiring structure formed in the module circuit to a three-dimensional wiring structure. It has been proposed (Patent Document 1).
 この場合、多層配線基板200は、複数の絶縁層201の積層体からなり、各絶縁層201においては、表面または裏面に面内電極202が形成されるとともに各絶縁層201に形成された面内電極202どうしを接続する層間接続導体203が形成される。 In this case, the multilayer wiring board 200 is composed of a stacked body of a plurality of insulating layers 201. In each insulating layer 201, an in-plane electrode 202 is formed on the front surface or the back surface, and in-plane formed on each insulating layer 201. An interlayer connection conductor 203 that connects the electrodes 202 is formed.
 このようにすることで、モジュール200に形成される回路の3次元的な配線構造が実現し、従来の配線基板の主面のみに面内電極を形成するモジュールの構成と比較して、モジュール200の小型化を図ることができる。 In this way, a three-dimensional wiring structure of the circuit formed in the module 200 is realized, and the module 200 is compared with the configuration of the module in which the in-plane electrodes are formed only on the main surface of the conventional wiring board. Can be miniaturized.
特開2006-270081号(段落0029~0031、図1等参照)Japanese Patent Laying-Open No. 2006-270081 (see paragraphs 0029 to 0031, FIG. 1, etc.)
 しかしながら、近年、さらにモジュール200の小型化が要求されるようになり、多層配線基板200の各絶縁層201に形成される面内電極202の高密度化が進んでいるため、各絶縁層201の面内電極202どうしを接続する層間接続導体203を配置できる領域が小さくなっており、この限られた領域に、層間接続導体203を配置しようとすると、層間接続導体203を小さくして形成しなければならない。 However, in recent years, further downsizing of the module 200 has been required, and the density of the in-plane electrodes 202 formed on each insulating layer 201 of the multilayer wiring board 200 has been increasing. The area where the interlayer connection conductor 203 for connecting the in-plane electrodes 202 can be arranged is small. If the interlayer connection conductor 203 is to be arranged in this limited area, the interlayer connection conductor 203 must be formed small. I must.
 しかし、層間接続導体203を小さく、例えば、その横断面積を小さくすると、層間接続導体203と面内電極202との接続面積が小さくなるため、接続信頼性が低下し、また、接続対象の面内電極202間を複数の絶縁層201に渡って形成された複数の層間接続導体203で接続する場合も、層間接続導体203間の接続信頼性が低下する。さらには、この多層配線基板200を高周波用のモジュールに使用する場合は、層間接続導体203が小さくなるのに伴い、層間接続導体203の表面積が小さくなるため、表皮効果により高周波特性が劣化するという問題が生じる。そこで、これらの問題を解決するために、限られた領域内で可能な限り大きな横断面積を有する層間接続導体203を形成する技術が求められている。 However, if the interlayer connection conductor 203 is made small, for example, the cross-sectional area thereof is reduced, the connection area between the interlayer connection conductor 203 and the in-plane electrode 202 is reduced, so that the connection reliability is reduced, and the in-plane of the connection target Even when the electrodes 202 are connected by the plurality of interlayer connection conductors 203 formed across the plurality of insulating layers 201, the connection reliability between the interlayer connection conductors 203 is lowered. Furthermore, when this multilayer wiring board 200 is used in a high frequency module, the surface area of the interlayer connection conductor 203 decreases as the interlayer connection conductor 203 becomes smaller, so that the high frequency characteristics deteriorate due to the skin effect. Problems arise. Therefore, in order to solve these problems, a technique for forming the interlayer connection conductor 203 having the largest possible cross-sectional area within a limited region is required.
 ところで、層間接続導体203は、通常、レーザやパンチ加工により横断面が円形または矩形状に形成されるが、上記した限られた領域は、平面視形状で円形や矩形状のほか、異形形状を有する場合があるため、このような場合には、限られた領域に合わせた横断面で層間接続導体203を形成することができない。そこで、従来では、この限られた領域からはみ出さない範囲で横断面(円形状または矩形状)が最大面積となる単一の貫通孔を各絶縁層201に形成することにより層間接続導体203を形成しているが、このような層間接続導体203の形成方法では、限られた領域を有効に活用しているとはいえない。 By the way, the interlayer connection conductor 203 is usually formed in a circular or rectangular cross section by laser or punching. However, the limited area described above has a circular or rectangular shape in plan view and an irregular shape. In such a case, the interlayer connection conductor 203 cannot be formed with a cross section adapted to a limited region. Therefore, conventionally, the interlayer connection conductor 203 is formed by forming a single through hole in each insulating layer 201 having a maximum cross-sectional area (circular or rectangular) in a range that does not protrude from the limited region. Although formed, such a method of forming the interlayer connection conductor 203 cannot be said to make effective use of a limited area.
 本発明は、上記した課題に鑑みてなされたものであり、横断面積および表面積のより大きな層間接続導体を有する多層配線基板およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a multilayer wiring board having an interlayer connection conductor having a larger cross-sectional area and surface area, and a method for manufacturing the same.
 上記した目的を達成するために、本発明の多層配線基板は、複数の絶縁層が積層されて形成された多層配線基板において、少なくとも二つの前記絶縁層に形成された面内電極と、異なる前記絶縁層に形成され、少なくともその一部が平面視において重なる前記面内電極どうしを接続する層間接続導体とを備え、前記層間接続導体は、接続対象である前記両面内電極が平面視で重なる部分において、当該両面内電極間の前記絶縁層に接続領域が設定され、該接続領域に形成され横断面が所定形状の複数の貫通孔が結合されて成る層間接続孔に導電性材料が設けられて形成され、前記各貫通孔それぞれは、その横断面が隣接する他の前記貫通孔の横断面と一部が重なるように形成されていることを特徴としている。 In order to achieve the above object, a multilayer wiring board according to the present invention is different from the in-plane electrodes formed on at least two insulating layers in a multilayer wiring board formed by laminating a plurality of insulating layers. An interlayer connection conductor that connects the in-plane electrodes that are formed in an insulating layer and at least a portion of which overlaps in plan view, and the interlayer connection conductor is a portion in which the double-sided electrodes to be connected overlap in plan view A conductive region is provided in an interlayer connection hole formed by connecting a plurality of through-holes having a predetermined cross-sectional shape formed in the connection region. Each of the through-holes is formed so that the cross-section of the through-hole is partially overlapped with the cross-section of the other through-holes adjacent to each other.
 このように、絶縁層に設定された接続領域に複数の貫通孔が結合されて成る層間接続孔を形成することにより層間接続導体が形成されるため、従来のように、当該接続領域からはみ出さない範囲で横断面(円形状または矩形状)が最大面積となる単一の貫通孔を各絶縁層に形成することにより層間接続導体を形成する場合と比較して、横断面積および表面積が大きな層間接続導体を備える多層配線基板を提供することができる。 Thus, since the interlayer connection conductor is formed by forming the interlayer connection hole formed by coupling a plurality of through holes to the connection region set in the insulating layer, it is protruded from the connection region as in the past. Compared to the case where an interlayer connection conductor is formed by forming a single through hole in each insulating layer with a maximum cross-sectional area (circular or rectangular) in a range that does not exist, the interlayer has a large cross-sectional area and surface area. A multilayer wiring board provided with a connection conductor can be provided.
 また、層間接続導体の横断面積を大きく形成することにより、面内電極と層間接続導体との接続面積を広くできるため、両者の接続強度ならびに接続信頼性を向上することができる。また、各絶縁層の積層位置がずれた場合であっても、確実に接続対象である面内電極どうしを接続することができる。 In addition, since the connection area between the in-plane electrode and the interlayer connection conductor can be increased by forming the cross-sectional area of the interlayer connection conductor large, the connection strength and connection reliability of both can be improved. Moreover, even if the laminated positions of the insulating layers are shifted, the in-plane electrodes that are the connection targets can be reliably connected to each other.
 また、層間接続導体の横断面積が大きくなるのに伴って、層間接続導体の表面積が大きくなるため、例えば、この多層配線基板を高周波用のモジュールに使用した場合に、表皮効果により抵抗値が低くなり、層間接続導体を多層配線基板に形成したことに起因する高周波特性の劣化を抑制することができる。 In addition, since the surface area of the interlayer connection conductor increases as the cross-sectional area of the interlayer connection conductor increases, for example, when this multilayer wiring board is used in a high-frequency module, the resistance value decreases due to the skin effect. Thus, it is possible to suppress the deterioration of the high frequency characteristics due to the formation of the interlayer connection conductor on the multilayer wiring board.
 また、層間接続導体を配置することができる限られた領域内で、従来よりも横断面積および表面積が大きな層間接続導体を形成することができるため、上記した接続強度や接続信頼性の低下などの問題を解決するために、層間接続導体の横断面積および表面積を大きく形成できるように接続対象の面内電極の面積を広げる必要がないため、各絶縁層に形成される面内電極の設計自由度を向上することができる。 In addition, since the interlayer connection conductor having a larger cross-sectional area and surface area than the conventional one can be formed in a limited region where the interlayer connection conductor can be disposed, the above-described decrease in connection strength and connection reliability, etc. In order to solve the problem, it is not necessary to increase the area of the in-plane electrode to be connected so that the cross-sectional area and surface area of the interlayer connection conductor can be increased, so the degree of freedom in designing the in-plane electrodes formed in each insulating layer Can be improved.
 また、前記層間接続孔が、横断面の面積が異なる前記貫通孔を含む前記各貫通孔が結合されて成るものであってもよい。このようにすることで、接続領域内で貫通孔の横断面の面積を大きく形成できる部分は、横断面積が大きな貫通孔を形成するとともに、大きく形成できない部分は横断面積が小さな貫通孔を形成して層間接続孔を形成できるため、接続領域内に横断面積の小さな複数の貫通孔を結合して成る層間接続孔を形成する構成と比較して、貫通孔の総数を減らすことができ、層間接続孔の加工コストを低減することができる。 Further, the interlayer connection hole may be formed by combining the through holes including the through holes having different cross-sectional areas. In this way, the part where the cross-sectional area of the through-hole can be increased in the connection region forms a through-hole with a large cross-sectional area, and the part that cannot be formed large forms a through-hole with a small cross-sectional area. Interlayer connection holes can be formed, so the total number of through holes can be reduced compared to a configuration in which an interlayer connection hole is formed by combining multiple through holes with a small cross-sectional area in the connection region. Hole machining costs can be reduced.
 また、前記層間接続導体は、前記両面内電極間に配置された複数の前記絶縁層に渡って形成されていてもよい。この場合、各絶縁層に形成される層間接続導体それぞれの横断面積が大きいため、層間接続導体間の接続面積が大きくなり、両者の接続強度ならびに接続信頼性の向上を図ることができる。 Further, the interlayer connection conductor may be formed across a plurality of the insulating layers disposed between the electrodes in both sides. In this case, since the cross-sectional area of each interlayer connection conductor formed in each insulating layer is large, the connection area between the interlayer connection conductors is increased, and the connection strength and connection reliability of both can be improved.
 また、層間接続導体の表面積が大きいため、前記層間接続導体を放熱用の導体として使用した場合に、放熱性の向上を図ることができる。 Further, since the surface area of the interlayer connection conductor is large, when the interlayer connection conductor is used as a heat dissipation conductor, the heat dissipation can be improved.
 また、多層配線基板の製造方法は、異なる絶縁層に形成された面内電極どうしが層間接続導体により接続された多層配線基板の製造方法において、前記面内電極および前記層間接続導体のうち少なくとも一方が設けられて前記絶縁層を形成する複数の絶縁シートを準備する準備工程と、前記各絶縁シートを積層、圧着して積層体を形成する形成工程とを備え、前記準備工程では、接続対象である前記両面内電極が平面視で重なる部分において、当該両面内電極間の前記絶縁シートに接続領域を設定し、該接続領域において、隣接する貫通孔の横断面どうしが平面視において重なるように複数の前記貫通孔を形成した後、前記各貫通孔に導電性材料を設けて前記層間接続導体を形成することを特徴としている。 The method for manufacturing a multilayer wiring board is a method for manufacturing a multilayer wiring board in which in-plane electrodes formed on different insulating layers are connected by an interlayer connection conductor, and at least one of the in-plane electrode and the interlayer connection conductor. Provided with a plurality of insulating sheets for forming the insulating layer and a forming process for laminating and crimping the insulating sheets to form a laminate. A connection region is set in the insulating sheet between the electrodes in both surfaces where the electrodes in the both surfaces overlap in plan view, and a plurality of adjacent cross-sections of the through holes overlap in the connection region in plan view. After the through holes are formed, a conductive material is provided in each through hole to form the interlayer connection conductor.
 このように製造することにより、横断面積および表面積の大きな層間接続導体を備える多層配線基板を製造することができる。 By manufacturing in this way, it is possible to manufacture a multilayer wiring board having an interlayer connection conductor having a large cross-sectional area and large surface area.
 また、前記各貫通孔がレーザ加工により形成されていてもよい。レーザ加工は、微細な穴あけを高速で行うことができるため、層間接続孔の加工時間の短縮を図ることができる。 Further, each through hole may be formed by laser processing. Since laser processing can perform fine drilling at high speed, the processing time of the interlayer connection hole can be shortened.
 また、前記絶縁シートが、セラミックグリーンシートまたは樹脂シートであってもかまわない。この場合、絶縁層がセラミックグリーンシートまたは樹脂シートで形成される場合に、横断面積の大きな層間接続導体を備える多層配線基板を製造することができる。 Further, the insulating sheet may be a ceramic green sheet or a resin sheet. In this case, when the insulating layer is formed of a ceramic green sheet or a resin sheet, a multilayer wiring board having an interlayer connection conductor having a large cross-sectional area can be manufactured.
 本発明によれば、絶縁層に設定された接続領域に複数の貫通孔が結合されて成る層間接続孔を形成することにより層間接続導体を形成することで、従来のように、当該接続領域からはみ出さない範囲で横断面(円形状または矩形状)が最大面積となる単一の貫通孔を各絶縁層に形成することにより層間接続導体を形成する場合と比較して、横断面積および表面積が大きな層間接続導体を備える多層配線基板を提供することができる。 According to the present invention, an interlayer connection conductor is formed by forming an interlayer connection hole in which a plurality of through holes are coupled to a connection region set in an insulating layer. Compared to the case where an interlayer connection conductor is formed by forming a single through hole in each insulating layer having a maximum cross section (circular or rectangular shape) in a range that does not protrude, the cross-sectional area and surface area are reduced. A multilayer wiring board provided with a large interlayer connection conductor can be provided.
本発明の一実施形態にかかる多層配線基板を使用したモジュールの断面図である。It is sectional drawing of the module using the multilayer wiring board concerning one Embodiment of this invention. 図1のA領域の平面図である。It is a top view of A area | region of FIG. 図1の多層配線基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the multilayer wiring board of FIG. 図1の多層配線基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the multilayer wiring board of FIG. 図2に示した層間接続導体の変形例を示す図である。It is a figure which shows the modification of the interlayer connection conductor shown in FIG. 図2に示した層間接続導体の変形例を示す図である。It is a figure which shows the modification of the interlayer connection conductor shown in FIG. 他の実施例にかかる多層配線基板の一部の切断平面図である。It is a one part cutting | disconnection top view of the multilayer wiring board concerning another Example. 従来のモジュールを構成する多層配線基板の断面図である。It is sectional drawing of the multilayer wiring board which comprises the conventional module.
 本発明の一実施形態にかかる多層配線基板について、図1および図2を参照して説明する。 A multilayer wiring board according to an embodiment of the present invention will be described with reference to FIGS.
 この実施形態にかかる多層配線基板5を使用したモジュール1は、各絶縁層2に面内電極3および層間接続導体4などが形成された多層配線基板5と、多層配線基板5に実装される電子部品6とを備えるモジュールであり、その例として、Bluetooth(登録商標)モジュール、無線LANモジュール、携帯電話のアンテナ直下に配置されるアンテナスイッチモジュールなどが挙げられる。 The module 1 using the multilayer wiring board 5 according to this embodiment includes a multilayer wiring board 5 in which in-plane electrodes 3 and interlayer connection conductors 4 are formed on each insulating layer 2, and an electronic device mounted on the multilayer wiring board 5. Examples of such a module include a Bluetooth (registered trademark) module, a wireless LAN module, and an antenna switch module disposed immediately below an antenna of a mobile phone.
 多層配線基板5は、各絶縁層2がガラスエポキシ樹脂や低温同時焼成セラミック(LTCC)などで形成された複数の絶縁層2の積層体であり、各絶縁層2には、主面に面内電極3が形成されるとともに、内部には各絶縁層2に形成された面内電極3どうしを積層方向に渡って接続する層間接続導体4が形成される。なお、この多層配線基板2の製造方法については、以下に説明する。 The multilayer wiring board 5 is a laminate of a plurality of insulating layers 2 in which each insulating layer 2 is formed of glass epoxy resin, low temperature co-fired ceramic (LTCC) or the like. An electrode 3 is formed, and an interlayer connection conductor 4 that connects the in-plane electrodes 3 formed on each insulating layer 2 in the stacking direction is formed inside. In addition, the manufacturing method of this multilayer wiring board 2 is demonstrated below.
 電子部品6は、能動面に各種回路が形成された半導体素子や、チップコンデンサ、チップインダクタ、チップ抵抗などからなる受動部品などから構成され、周知の表面実装技術を用いて多層配線基板5上に実装される。 The electronic component 6 is composed of a semiconductor element in which various circuits are formed on an active surface, a passive component such as a chip capacitor, a chip inductor, and a chip resistor. The electronic component 6 is formed on the multilayer wiring board 5 using a known surface mounting technique. Implemented.
 次に、この実施形態にかかる多層配線基板5の各絶縁層2に形成される層間接続導体4について、図2を参照して説明する。なお、図2(a)は、図1のA領域の平面図であり、図2(b)はその層間接続導体4の横断面図である。なお、図2(a)および(b)の一点鎖線は、絶縁層2に設定される接続領域8を示し、図2(b)の破線は、層間接続導体4の形成過程において絶縁層2に形成される複数の貫通孔7の横断面の外周のうち、隣接する貫通孔7と重なった部分を示している。 Next, the interlayer connection conductor 4 formed in each insulating layer 2 of the multilayer wiring board 5 according to this embodiment will be described with reference to FIG. 2A is a plan view of a region A in FIG. 1, and FIG. 2B is a cross-sectional view of the interlayer connection conductor 4. As shown in FIG. 2 (a) and 2 (b) indicate the connection region 8 set in the insulating layer 2, and the broken line in FIG. 2 (b) indicates the insulating layer 2 in the process of forming the interlayer connection conductor 4. The part which overlapped with the adjacent through-hole 7 among the outer periphery of the cross section of the several through-hole 7 formed is shown.
 層間接続導体4は、異なる絶縁層2に形成され、少なくともその一部が平面視において重なる面内電極3どうしを積層方向に渡って接続するものであり、接続対象である両面内電極3が平面視で重なる部分において、当該両面内電極3間の絶縁層2に設定された接続領域8に形成された複数の貫通孔7が結合されて成る層間接続孔9に、例えば、Cuなどの導電材料が設けられて形成される。なお、図2(a)に示すように、絶縁層2に設定される接続領域8は、層間接続導体4の接続対象となる両面内電極3a,3bが平面視で重なる部分であり、両面内電極間3に複数の絶縁層2が配置される場合は、接続領域8は、平面視で両面内電極3が重なる部分であって、両面内電極3間の絶縁層2に形成される他の面内電極3と平面視で重ならない領域に設定される。 The interlayer connection conductor 4 is formed in different insulating layers 2 and connects the in-plane electrodes 3 at least partially overlapping in a plan view in the stacking direction. The in-plane electrodes 3 to be connected are planar. In a portion overlapping in view, a conductive material such as Cu is formed in the interlayer connection hole 9 formed by joining a plurality of through holes 7 formed in the connection region 8 set in the insulating layer 2 between the inner electrodes 3 on both sides. Is formed. As shown in FIG. 2A, the connection region 8 set in the insulating layer 2 is a portion where the double-sided inner electrodes 3a and 3b to be connected to the interlayer connection conductor 4 overlap in plan view. When a plurality of insulating layers 2 are arranged between the electrodes 3, the connection region 8 is a portion where the double-sided inner electrodes 3 overlap in plan view, and other regions formed on the insulating layer 2 between the double-sided inner electrodes 3. The region is set so as not to overlap with the in-plane electrode 3 in plan view.
 したがって、例えば、図1のA領域には、図2(b)に示すように、絶縁層2に平面視で矩形状の接続領域が設定され、その領域内に横断面が所定の形状(この実施形態では円形状)で、それぞれ横断面積が等しい二つの貫通孔7が形成される。この場合、両貫通孔7それぞれは、その横断面が他方の貫通孔7の横断面と一部が重なるように形成されることにより両貫通孔7が結合して一つの層間接続孔9が形成される。そして、当該層間接続孔9に導電材料が設けられて層間接続導体4が形成される。なお、各貫通孔7それぞれの横断面は、接続領域に形成できる最大の面積で形成されており、従来では、この貫通孔7ひとつのみで層間接続導体4が形成されていたため、従来方法により形成される層間接続導体は、その横断面積が、この実施形態の層間接続導体4の横断面積よりも小さくなる。 Therefore, for example, in the area A of FIG. 1, as shown in FIG. 2B, a rectangular connection area is set in the insulating layer 2 in a plan view, and the cross section has a predetermined shape (this area) In the embodiment, a circular shape), and two through holes 7 having the same cross-sectional area are formed. In this case, each of the through holes 7 is formed such that the cross section thereof partially overlaps the cross section of the other through hole 7, so that both the through holes 7 are coupled to form one interlayer connection hole 9. Is done. Then, a conductive material is provided in the interlayer connection hole 9 to form the interlayer connection conductor 4. The cross section of each through-hole 7 is formed with the maximum area that can be formed in the connection region. In the past, the interlayer connection conductor 4 was formed with only one through-hole 7, and thus formed by a conventional method. The cross-sectional area of the interlayer connection conductor is smaller than the cross-sectional area of the interlayer connection conductor 4 of this embodiment.
 (多層配線基板5の製造方法1)
 この実施形態にかかる多層配線基板5の製造方法(絶縁層2がセラミックグリーンシート2aの場合)について、図3を参照して説明する。なお、図3(a)~図3(c)は、層間接続導体4および該層間接続導体4に接続される面内電極3の形成過程を示す工程図であり、セラミックグリーンシート2aの断面を部分的に示している。また、図3(a)の一点鎖線は絶縁層2に形成される各貫通孔7を示している。
(Manufacturing method 1 of the multilayer wiring board 5)
A method of manufacturing the multilayer wiring board 5 according to this embodiment (when the insulating layer 2 is a ceramic green sheet 2a) will be described with reference to FIG. 3 (a) to 3 (c) are process diagrams showing a process of forming the interlayer connection conductor 4 and the in-plane electrode 3 connected to the interlayer connection conductor 4, and a cross section of the ceramic green sheet 2a is shown. Partially shown. Moreover, the dashed-dotted line of FIG. 3A shows each through-hole 7 formed in the insulating layer 2.
 まず、各絶縁層2を形成するセラミックグリーンシート2aを作製する。この場合、セラミック材料として、例えば、酸化バリウム、酸化ケイ素、アルミナ、酸化カルシウムおよび酸化ホウ素の混合物や、アルミナのようなフィラとなるセラミックと、ホウケイ酸系ガラス、酸化ケイ素などのガラスの混合物を用意する。そして、これらのセラミック材料に溶媒を加えて混合し、さらに樹脂バインダおよび可塑剤を添加してセラミックスラリーを作製し、このセラミックスラリーを成形して厚み20~200μm程度のセラミックグリーンシート2aを作製する。 First, a ceramic green sheet 2a for forming each insulating layer 2 is produced. In this case, as a ceramic material, for example, a mixture of barium oxide, silicon oxide, alumina, calcium oxide and boron oxide, a ceramic that becomes a filler such as alumina, and a glass such as borosilicate glass and silicon oxide is prepared. To do. Then, a solvent is added to and mixed with these ceramic materials, and a resin binder and a plasticizer are further added to produce a ceramic slurry. The ceramic slurry is molded to produce a ceramic green sheet 2a having a thickness of about 20 to 200 μm. .
 次に、図3(a)に示すように、各セラミックグリーンシート2aそれぞれにおいて、設定された接続領域8にレーザ光を異なる位置に連なるように複数回照射することにより、各貫通孔7(この実施形態では二つ)それぞれを、その横断面が隣接する他方の貫通孔7の横断面と一部が重なるように形成し、これにより、各貫通孔7が結合して成る一つの層間接続孔9を形成する。 Next, as shown in FIG. 3 (a), each ceramic green sheet 2a is irradiated with a laser beam a plurality of times so as to be connected to different positions on the set connection region 8, whereby each through-hole 7 (this In the embodiment, two) each is formed so that the cross-section thereof partially overlaps the cross-section of the other through-hole 7 adjacent to each other, whereby one through-hole connection hole formed by coupling the respective through-holes 7 9 is formed.
 次に、図3(b)に示すように、層間接続孔9に導電性ペースト(例えば、Cu粉末とエチルセルロースからなるバインダ樹脂と溶剤との混合物)を充填して層間接続導体4を形成する。 Next, as shown in FIG. 3B, the interlayer connection conductor 4 is formed by filling the interlayer connection hole 9 with a conductive paste (for example, a mixture of a binder resin composed of Cu powder and ethyl cellulose and a solvent).
 次に、図3(c)に示すように、セラミックグリーンシート2a上に所定の形状を有する面内電極3を、導電ペーストを用いて印刷技術などにより形成する。なお、セラミックグリーンシート2aの作製から面内電極3を形成するまでの過程が本発明における準備工程に相当する。 Next, as shown in FIG. 3 (c), an in-plane electrode 3 having a predetermined shape is formed on the ceramic green sheet 2a using a conductive paste by a printing technique or the like. The process from the production of the ceramic green sheet 2a to the formation of the in-plane electrode 3 corresponds to a preparation process in the present invention.
 次に、各セラミックグリーンシート2aを所定の順に積層し、例えば、静水圧法により圧着してセラミック積層体を形成する(形成工程)。 Next, the ceramic green sheets 2a are laminated in a predetermined order, and are bonded by, for example, a hydrostatic pressure method to form a ceramic laminated body (forming process).
 最後に、セラミック積層体を焼成し、多層配線基板5を製造する。なお、層間接続孔9に導電性ペーストを充填する工程と面内電極3を形成する工程とを同時に行ってもかまわない。 Finally, the ceramic laminate is fired to manufacture the multilayer wiring board 5. The step of filling the interlayer connection hole 9 with the conductive paste and the step of forming the in-plane electrode 3 may be performed simultaneously.
 (多層配線基板5の製造方法2)
 この実施形態にかかる多層配線基板5の製造方法(絶縁層2が樹脂シート2bの場合)について、図4を参照して説明する。なお、図4(a)~(e)は、層間接続導体4および該層間接続導体4に接続される面内電極3の形成過程を示す工程図であり、樹脂シート2bの断面を部分的に示している。また、図4(b)から(d)の一点鎖線は樹脂シート2bに形成される各貫通孔7を示している。
(Manufacturing method 2 of the multilayer wiring board 5)
A method for manufacturing the multilayer wiring board 5 according to this embodiment (when the insulating layer 2 is a resin sheet 2b) will be described with reference to FIG. 4A to 4E are process diagrams showing a process of forming the interlayer connection conductor 4 and the in-plane electrode 3 connected to the interlayer connection conductor 4, and a cross section of the resin sheet 2b is partially shown. Show. Moreover, the dashed-dotted line of FIG.4 (b) to (d) has shown each through-hole 7 formed in the resin sheet 2b.
 まず、図4(a)に示すように、液晶ポリマ(LCP)やポリエーテルエーテルケトン(PEEK)などの熱可塑性樹脂からなる樹脂シート2bを用意し、その樹脂シート2bの主面にCu箔などの金属箔10を張り付ける。 First, as shown in FIG. 4A, a resin sheet 2b made of a thermoplastic resin such as liquid crystal polymer (LCP) or polyether ether ketone (PEEK) is prepared, and Cu foil or the like is formed on the main surface of the resin sheet 2b. The metal foil 10 is pasted.
 次に、図4(b)に示すように、上記した絶縁層2がセラミックグリーンシート2aである場合と同じ要領で樹脂シート2bに層間接続孔9を形成する。このとき、レーザ光は、樹脂シート2bの金属箔10が形成されていない側の面から照射する。 Next, as shown in FIG. 4B, interlayer connection holes 9 are formed in the resin sheet 2b in the same manner as in the case where the insulating layer 2 is the ceramic green sheet 2a. At this time, the laser beam is irradiated from the surface of the resin sheet 2b where the metal foil 10 is not formed.
 次に、図4(c)に示すように、面内電極3をエッチングにより形成する際のマスクとして、レジストパターン11を印刷技術などを用いて金属箔10上に形成する。 Next, as shown in FIG. 4C, a resist pattern 11 is formed on the metal foil 10 using a printing technique or the like as a mask when the in-plane electrode 3 is formed by etching.
 次に、図4(d)に示すように、エッチングにより余分な金属箔10を除去して面内電極3を形成する。このとき、エッチング方法として、ポジ型、ネガ型のいずれの方法を採用してもかまわない。なお、面内電極3は、予めパターン化した金属箔10を樹脂シート2bの所定位置に張り付けるようにして形成してもかまわない。また、この製造方法では、層間接続孔9の形成を面内電極3の形成前に行ったが、これらの順番を逆にしてもよい。 Next, as shown in FIG. 4D, the in-plane electrode 3 is formed by removing the excess metal foil 10 by etching. At this time, either a positive type or a negative type may be adopted as an etching method. The in-plane electrode 3 may be formed by pasting a previously patterned metal foil 10 on a predetermined position of the resin sheet 2b. In this manufacturing method, the interlayer connection hole 9 is formed before the in-plane electrode 3 is formed, but the order may be reversed.
 次に、図4(e)に示すように、各樹脂シート2bの層間接続孔9にCuやAgなどを含む導電性ペーストを充填して、層間接続導体4を形成する。このとき、導電性ペーストの充填は、印刷技術などを用いて行う。このように、樹脂シート2bの作製から層間接続導体4を形成するまでの過程が本発明における準備工程に相当する。 Next, as shown in FIG. 4E, the interlayer connection conductor 4 is formed by filling the interlayer connection hole 9 of each resin sheet 2b with a conductive paste containing Cu, Ag, or the like. At this time, the conductive paste is filled using a printing technique or the like. Thus, the process from the production of the resin sheet 2b to the formation of the interlayer connection conductor 4 corresponds to the preparation process in the present invention.
 次に、各樹脂シート2bを所定の順番で積層し、樹脂シート2b積層体を形成し、真空プレスを施すことにより積層体を圧着して多層配線基板5を製造する(形成工程)。このとき、圧着温度を、例えば250℃~350℃程度とすることが好ましい。なお、樹脂シート2bの圧着は、一括して行う必要はなく、各シート2b毎あるいは複数枚のシート2bを積み重ねる毎に圧着するようにしてもよい。 Next, the resin sheets 2b are laminated in a predetermined order to form a resin sheet 2b laminate, and the laminate is pressure-bonded by applying a vacuum press to manufacture the multilayer wiring board 5 (forming process). At this time, the pressure bonding temperature is preferably about 250 ° C. to 350 ° C., for example. Note that the resin sheet 2b does not need to be pressure-bonded in a lump, and may be pressure-bonded for each sheet 2b or each time a plurality of sheets 2b are stacked.
 したがって、上記した実施形態によれば、絶縁層2に設定された接続領域8に複数の貫通孔7が結合されて成る層間接続孔9を形成することにより層間接続導体4が形成されるため、従来のように、当該接続領域8からはみ出さない範囲で横断面(円形状または矩形状)が最大面積となる単一の貫通孔を各絶縁層に形成することにより層間接続導体を形成する場合と比較して、横断面積が大きな層間接続導体4を備える多層配線基板5を提供することができる。 Therefore, according to the above-described embodiment, the interlayer connection conductor 4 is formed by forming the interlayer connection hole 9 formed by combining the plurality of through holes 7 in the connection region 8 set in the insulating layer 2. When forming an interlayer connection conductor by forming a single through hole in each insulating layer having a maximum cross-sectional area (circular or rectangular) in a range that does not protrude from the connection region 8 as in the prior art As compared with the above, it is possible to provide the multilayer wiring board 5 including the interlayer connection conductor 4 having a large cross-sectional area.
 また、層間接続導体4の横断面積を大きく形成することにより、面内電極3と層間接続導体4との接続面積を広くできるため、両者の接続強度ならびに接続信頼性を向上することができる。また、各絶縁層2の積層位置がずれた場合であっても、確実に接続対象である面内電極3どうしを接続することができる。 Also, since the connection area between the in-plane electrode 3 and the interlayer connection conductor 4 can be increased by forming the cross-sectional area of the interlayer connection conductor 4 large, the connection strength and connection reliability of both can be improved. Moreover, even if the laminated positions of the insulating layers 2 are shifted, the in-plane electrodes 3 that are the connection targets can be reliably connected to each other.
 また、層間接続導体4の横断面積が大きくなるのに伴って、層間接続導体4の表面積が大きくなるため、例えば、この多層配線基板5を高周波用のモジュールに使用した場合に、表皮効果により抵抗値が低くなり、層間接続導体4を多層配線基板5に形成したことに起因する高周波特性の劣化を抑制することができる。 In addition, since the surface area of the interlayer connection conductor 4 increases as the cross-sectional area of the interlayer connection conductor 4 increases, for example, when the multilayer wiring board 5 is used in a high frequency module, the resistance due to the skin effect is increased. The value becomes low, and deterioration of the high frequency characteristics due to the formation of the interlayer connection conductor 4 on the multilayer wiring board 5 can be suppressed.
 また、層間接続導体4を配置することができる限られた領域内で、従来よりも横断面積および表面積が大きな層間接続導体4を形成することができるため、上記した接続強度や接続信頼性の低下などの問題を解決するために、層間接続導体4の横断面積および表面積を大きく形成できるように接続対象の面内電極3の面積を広げる必要がないため、各絶縁層2に形成される面内電極3の設計自由度を向上することができる。 Further, since the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the conventional one can be formed in a limited region where the interlayer connection conductor 4 can be disposed, the above-described connection strength and connection reliability are lowered. In order to solve the above problems, it is not necessary to increase the area of the in-plane electrode 3 to be connected so that the cross-sectional area and surface area of the interlayer connection conductor 4 can be increased. The design freedom of the electrode 3 can be improved.
 また、層間接続導体4の表面積が大きいため、層間接続導体4を放熱用の導体として使用した場合に、放熱性の向上を図ることができる。 Further, since the surface area of the interlayer connection conductor 4 is large, when the interlayer connection conductor 4 is used as a heat dissipation conductor, the heat dissipation can be improved.
 また、上記した製造方法のように、各絶縁層2に、レーザ光を異なる位置に連なるように複数回照射することにより、各貫通孔7それぞれを、その横断面が隣接する他方の貫通孔7の横断面と一部が重なるように形成し、これにより、各貫通孔7が結合して成る一つの層間接続孔9を形成して層間接続導体4を形成することで、横断面積の大きな層間接続導体4を備える多層配線基板5を製造することができる。また、この製造方法は、絶縁層2がセラミックグリーンシート2aまたは樹脂シート2bで形成される場合にも適用することができるため、絶縁層2がセラミックグリーンシート2aまたは樹脂シート2bで形成される場合に、横断面積の大きな層間接続導体4を備える多層配線基板5を製造することができる。 Further, as in the manufacturing method described above, each insulating layer 2 is irradiated with laser light a plurality of times so as to be connected to different positions, whereby each through-hole 7 is respectively connected to the other through-hole 7 whose cross section is adjacent. In this way, the interlayer connection conductor 4 is formed by forming one interlayer connection hole 9 formed by coupling the through holes 7 to form a part of the interlayer having a large cross-sectional area. The multilayer wiring board 5 provided with the connection conductor 4 can be manufactured. This manufacturing method can also be applied to the case where the insulating layer 2 is formed of the ceramic green sheet 2a or the resin sheet 2b. Therefore, the insulating layer 2 is formed of the ceramic green sheet 2a or the resin sheet 2b. In addition, the multilayer wiring board 5 including the interlayer connection conductor 4 having a large cross-sectional area can be manufactured.
 また、各貫通孔7を微細な穴あけを高速で行うことができるレーザ加工により形成するため、層間接続孔9の加工時間の短縮を図ることができる。 Further, since each through hole 7 is formed by laser processing capable of performing fine drilling at high speed, the processing time of the interlayer connection hole 9 can be shortened.
 (層間接続導体4の変形例)
 図2に示した層間接続導体4の変形例について、図5および図6を参照して説明する。なお、図5(a)~(e)は、横断面積がそれぞれ等しい複数の貫通孔7により層間接続孔9が形成される場合の層間接続導体4の変形例であり、図6(a)~(c)は、横断面積が異なる貫通孔7を含む複数の貫通孔7により層間接続孔9が形成される場合の層間接続導体4の変形例である。なお、図2と同じ符号が付されたところは、図2と同じであるかこれと同等であるため、説明を省略する。
(Modification of interlayer connection conductor 4)
A modification of the interlayer connection conductor 4 shown in FIG. 2 will be described with reference to FIGS. FIGS. 5A to 5E are modifications of the interlayer connection conductor 4 in the case where the interlayer connection hole 9 is formed by a plurality of through holes 7 having the same cross-sectional area. FIGS. (C) is a modification of the interlayer connection conductor 4 when the interlayer connection hole 9 is formed by a plurality of through holes 7 including the through holes 7 having different cross-sectional areas. 2 that are the same as those in FIG. 2 are the same as or equivalent to those in FIG.
 例えば、図5(a)に示すように、接続領域8が図2と同じ矩形状であって、図2に示した各貫通孔7の横断面積よりも小さな横断面積を有する貫通孔7を複数形成して層間接続孔9を形成することにより層間接続導体4を形成した場合、図2に示した層間接続導体4よりも横断面積および表面積がより大きい層間接続導体4を形成することができる。 For example, as shown in FIG. 5A, the connection region 8 has the same rectangular shape as in FIG. 2, and a plurality of through-holes 7 having a cross-sectional area smaller than the cross-sectional area of each through-hole 7 shown in FIG. When the interlayer connection conductor 4 is formed by forming the interlayer connection hole 9, the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the interlayer connection conductor 4 shown in FIG. 2 can be formed.
 また、接続領域8が正方形である場合には、従来の方法においても、接続領域8からはみ出さない範囲で横断面積が最大となる単一の貫通孔を形成することにより、その範囲内で横断面積の大きな層間接続導体を形成することができるが、図5(b)に示すように、この貫通孔よりも小さい横断面積の貫通孔7を複数組み合わせることにより、さらに横断面積および表面積の大きな層間接続導体4を形成することができる。 Further, when the connection region 8 is a square, even in the conventional method, by forming a single through hole having a maximum cross-sectional area in a range that does not protrude from the connection region 8, crossing within the range is possible. An interlayer connection conductor having a large area can be formed. As shown in FIG. 5B, by combining a plurality of through holes 7 having a smaller cross sectional area than this through hole, an interlayer having a larger cross sectional area and surface area can be formed. The connection conductor 4 can be formed.
 また、接続領域8が凸状(図5(c))、L字状(図5(d))、異形状(図5(e))である場合には、それぞれの図に示すように複数の貫通孔7を組み合わせることにより、従来と比較して、横断面積および表面積の大きな層間接続導体4を形成することができる。 Further, when the connection region 8 has a convex shape (FIG. 5C), an L shape (FIG. 5D), or an irregular shape (FIG. 5E), a plurality of connection regions 8 are shown as shown in each figure. By combining the through-holes 7, the interlayer connection conductor 4 having a larger cross-sectional area and surface area can be formed as compared with the conventional case.
 また、図6(a)に示すように、接続領域8が図2および図5(a)と同じ矩形状であって、接続領域8からはみ出さない範囲で横断面が最大面積となる貫通孔7とこれより小さな横断面積の貫通孔7とを組み合わせることにより層間接続導体4を形成した場合、図2に示した層間接続導体4よりも、横断面積および表面積の大きな層間接続導体4を形成することができる。また、図5(a)に示した層間接続導体4よりも、貫通孔7の総数を少なくできるため、層間接続孔9の加工時間および加工コストを低減でき、横断面積および表面積の大きな層間接続導体4を効率よく形成できるので実用的である。 Further, as shown in FIG. 6 (a), the connection region 8 has the same rectangular shape as that of FIG. 2 and FIG. 5 (a), and the through-hole has a maximum cross section in a range not protruding from the connection region 8. When the interlayer connection conductor 4 is formed by combining the through hole 7 having a smaller cross-sectional area with the cross-sectional area 7, the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the interlayer connection conductor 4 shown in FIG. be able to. Further, since the total number of through holes 7 can be reduced as compared with the interlayer connection conductor 4 shown in FIG. 5A, the processing time and processing cost of the interlayer connection hole 9 can be reduced, and the interlayer connection conductor having a large cross-sectional area and large surface area. Since 4 can be formed efficiently, it is practical.
 また、図6(a)および(b)に示すように、接続領域8が異形状(図6(a))、三角形状(図6(b))である場合にも、横断面積の異なる複数の貫通孔7を組み合わせて層間接続導体4を形成することにより、従来方法により形成した層間接続導体よりも、横断面積および表面積の大きな層間接続導体4を形成することができる。 In addition, as shown in FIGS. 6A and 6B, even when the connection region 8 has an irregular shape (FIG. 6A) and a triangular shape (FIG. 6B), a plurality of different cross-sectional areas are provided. By forming the interlayer connection conductor 4 by combining the through holes 7, the interlayer connection conductor 4 having a larger cross-sectional area and surface area than the interlayer connection conductor formed by the conventional method can be formed.
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。 The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention.
 例えば、図1のB領域に示すように、層間接続導体4を、接続対象である面内電極3間に配置された複数の絶縁層2に渡って形成してもかまわない。この場合、面内電極3間に配置された複数の絶縁層2それぞれで層間接続導体4を形成し、面内電極3間を複数の層間接続導体4を介して接続する。このようにすることで、面内電極3間に配置された絶縁層2に形成される各層間接続導体4それぞれは、横断面積が大きく形成されるため、層間接続導体4間の接続面積が大きくなり、両層間接続導体4間の接続強度ならびに接続信頼性を向上することができる。 For example, as shown in the region B of FIG. 1, the interlayer connection conductor 4 may be formed across a plurality of insulating layers 2 arranged between the in-plane electrodes 3 to be connected. In this case, an interlayer connection conductor 4 is formed by each of the plurality of insulating layers 2 arranged between the in-plane electrodes 3, and the in-plane electrodes 3 are connected via the plurality of interlayer connection conductors 4. By doing in this way, since each interlayer connection conductor 4 formed in the insulating layer 2 disposed between the in-plane electrodes 3 has a large cross-sectional area, the connection area between the interlayer connection conductors 4 is large. Thus, the connection strength and connection reliability between the two interlayer connection conductors 4 can be improved.
 また、貫通孔7の横断面は円形状に限られず、例えば矩形状に形成してもかまわない。この場合、パンチ加工などにより貫通孔7を形成することができる。 Further, the cross section of the through hole 7 is not limited to a circular shape, and may be formed in a rectangular shape, for example. In this case, the through hole 7 can be formed by punching or the like.
 また、多層配線基板5に形成される複数の層間接続導体4の一部のみに上記した層間接続導体4を形成し、残りを従来の方法で単一の貫通孔7により層間接続導体4を形成する構成であってもかまわない。このように、横断面積を大きく形成する必要のない層間接続導体4を従来の方法により形成することで、多層配線基板5に形成される貫通孔7の総数を少なくすることができるため、多層配線基板5の製造時間の短縮ならびに製造コストの削減を図ることができる。また、層間接続導体4の一部は、図7のように、面内電極3からはみ出るように配置されていてもよい。 Further, the interlayer connection conductor 4 is formed on only a part of the plurality of interlayer connection conductors 4 formed on the multilayer wiring board 5, and the remainder is formed by a single through-hole 7 in the conventional method. It does not matter even if it is the composition to do. In this way, the total number of through holes 7 formed in the multilayer wiring board 5 can be reduced by forming the interlayer connection conductors 4 that do not need to have a large cross-sectional area by the conventional method. The manufacturing time of the substrate 5 can be shortened and the manufacturing cost can be reduced. Further, a part of the interlayer connection conductor 4 may be arranged so as to protrude from the in-plane electrode 3 as shown in FIG.
 また、本発明は、層間接続導体を備える種々の多層配線基板に通用することができる。 Further, the present invention can be applied to various multilayer wiring boards provided with interlayer connection conductors.
 2  絶縁層
 2a セラミックグリーンシート
 2b 樹脂シート
 3,3a,3b  面内電極
 4  層間接続導体
 5  多層配線基板
 7  貫通孔
 8  接続領域
 9  層間接続孔
 
2 Insulating layer 2a Ceramic green sheet 2b Resin sheet 3, 3a, 3b In-plane electrode 4 Interlayer connection conductor 5 Multilayer wiring board 7 Through hole 8 Connection area 9 Interlayer connection hole

Claims (8)

  1.  複数の絶縁層が積層されて形成された多層配線基板において、
     少なくとも二つの前記絶縁層に形成された面内電極と、
     異なる前記絶縁層に形成され、少なくともその一部が平面視において重なる前記面内電極どうしを接続する層間接続導体とを備え、
     前記層間接続導体は、接続対象である前記両面内電極が平面視で重なる部分において、当該両面内電極間の前記絶縁層に接続領域が設定され、該接続領域に形成され横断面が所定形状の複数の貫通孔が結合されて成る層間接続孔に導電性材料が設けられて形成され、
     前記各貫通孔それぞれは、その横断面が隣接する他の前記貫通孔の横断面と一部が重なるように形成されている
     ことを特徴とする多層配線基板。
    In a multilayer wiring board formed by laminating a plurality of insulating layers,
    In-plane electrodes formed on at least two of the insulating layers;
    An interlayer connection conductor that connects the in-plane electrodes that are formed in different insulating layers and at least a part of which overlaps in plan view;
    In the interlayer connection conductor, a connection region is set in the insulating layer between the electrodes in both surfaces, and the cross section is formed in a predetermined shape in the connection region in a portion where the electrodes in both surfaces to be connected overlap in plan view. A conductive material is provided in an interlayer connection hole formed by coupling a plurality of through holes,
    Each of the through holes is formed so that a cross section thereof partially overlaps with a cross section of another adjacent through hole.
  2.  前記層間接続孔は、横断面の面積が異なる前記貫通孔を含む前記各貫通孔が結合されて成ることを特徴とする請求項1に記載の多層配線基板。 The multilayer wiring board according to claim 1, wherein the interlayer connection hole is formed by combining the through holes including the through holes having different cross-sectional areas.
  3.  前記層間接続導体は、前記両面内電極間に配置された複数の前記絶縁層に渡って形成されていることを特徴とする請求項1または2に記載の多層配線基板。 3. The multilayer wiring board according to claim 1, wherein the interlayer connection conductor is formed across a plurality of the insulating layers disposed between the electrodes on both sides.
  4.  前記層間接続導体が放熱用の導体として使用されることを特徴とする請求項1ないし3のいずれかに記載の多層配線基板。 The multilayer wiring board according to any one of claims 1 to 3, wherein the interlayer connection conductor is used as a heat radiation conductor.
  5.  異なる絶縁層に形成された面内電極どうしが層間接続導体により接続された多層配線基板の製造方法において、
     前記面内電極および前記層間接続導体のうち少なくとも一方が設けられて前記絶縁層を形成する複数の絶縁シートを準備する準備工程と、
     前記各絶縁シートを積層、圧着して積層体を形成する形成工程とを備え、
     前記準備工程では、
     接続対象である前記両面内電極が平面視で重なる部分において、当該両面内電極間の前記絶縁シートに接続領域を設定し、該接続領域において、隣接する貫通孔の横断面どうしが平面視において重なるように複数の前記貫通孔を形成した後、前記各貫通孔に導電性材料を設けて前記層間接続導体を形成する
     ことを特徴とする多層配線基板の製造方法。
    In the method of manufacturing a multilayer wiring board in which in-plane electrodes formed on different insulating layers are connected by an interlayer connection conductor,
    Preparing a plurality of insulating sheets provided with at least one of the in-plane electrode and the interlayer connection conductor to form the insulating layer; and
    Forming the laminate by laminating and press-bonding the insulating sheets, and
    In the preparation step,
    A connection region is set in the insulating sheet between the double-sided electrodes at the portion where the double-sided internal electrodes to be connected overlap in plan view, and in the connection region, cross-sections of adjacent through holes overlap in plan view. After forming the plurality of through holes as described above, a conductive material is provided in each through hole to form the interlayer connection conductor.
  6.  前記各貫通孔がレーザ加工により形成されることを特徴とする請求項5に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 5, wherein each through hole is formed by laser processing.
  7.  前記絶縁シートがセラミックグリーンシートであることを特徴とする請求項5または6に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 5 or 6, wherein the insulating sheet is a ceramic green sheet.
  8.  前記絶縁シートが樹脂シートであることを特徴とする請求項5または6に記載の多層配線基板の製造方法。
     
     
    The method for manufacturing a multilayer wiring board according to claim 5, wherein the insulating sheet is a resin sheet.

PCT/JP2013/058229 2012-03-23 2013-03-22 Multilayer wiring board and method for manufacturing same WO2013141339A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-067413 2012-03-23
JP2012067413 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141339A1 true WO2013141339A1 (en) 2013-09-26

Family

ID=49222790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058229 WO2013141339A1 (en) 2012-03-23 2013-03-22 Multilayer wiring board and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013141339A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104853518A (en) * 2014-02-17 2015-08-19 Lg伊诺特有限公司 Printed circuit board and method of manufacturing the same
CN109119400A (en) * 2018-09-25 2019-01-01 中国电子科技集团公司第四十三研究所 High current carrying capacity multilayer ceramic substrate and preparation method thereof
EP4106499A1 (en) * 2021-06-18 2022-12-21 Rohde & Schwarz GmbH & Co. KG Method for manufacturing a carrier material and a carrier material with deheating properties
CN115884509A (en) * 2021-09-27 2023-03-31 荣耀终端有限公司 Flexible circuit board, circuit board assembly and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779079A (en) * 1993-09-09 1995-03-20 Nec Corp Ceramic multilayer wiring board
JPH11135948A (en) * 1997-10-30 1999-05-21 Kyocera Corp Multilayer circuit board
JP2003086948A (en) * 2000-12-14 2003-03-20 Denso Corp Method for manufacturing multilayer substrate and multilayer substrate formed thereby
JP2004134378A (en) * 2002-07-17 2004-04-30 Ngk Spark Plug Co Ltd Copper paste, and wiring board using the same
JP2010199318A (en) * 2009-02-25 2010-09-09 Kyocera Corp Wiring board, and mounted structure having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779079A (en) * 1993-09-09 1995-03-20 Nec Corp Ceramic multilayer wiring board
JPH11135948A (en) * 1997-10-30 1999-05-21 Kyocera Corp Multilayer circuit board
JP2003086948A (en) * 2000-12-14 2003-03-20 Denso Corp Method for manufacturing multilayer substrate and multilayer substrate formed thereby
JP2004134378A (en) * 2002-07-17 2004-04-30 Ngk Spark Plug Co Ltd Copper paste, and wiring board using the same
JP2010199318A (en) * 2009-02-25 2010-09-09 Kyocera Corp Wiring board, and mounted structure having the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104853518A (en) * 2014-02-17 2015-08-19 Lg伊诺特有限公司 Printed circuit board and method of manufacturing the same
EP2911485A1 (en) * 2014-02-17 2015-08-26 LG Innotek Co., Ltd. Printed circuit board and method of manufacturing the same
US9801275B2 (en) 2014-02-17 2017-10-24 Lg Innotek Co., Ltd. Printed circuit board and method of manufacturing the same
CN109119400A (en) * 2018-09-25 2019-01-01 中国电子科技集团公司第四十三研究所 High current carrying capacity multilayer ceramic substrate and preparation method thereof
CN109119400B (en) * 2018-09-25 2024-04-09 中国电子科技集团公司第四十三研究所 Multilayer ceramic substrate with high current carrying capacity and manufacturing method thereof
EP4106499A1 (en) * 2021-06-18 2022-12-21 Rohde & Schwarz GmbH & Co. KG Method for manufacturing a carrier material and a carrier material with deheating properties
CN115884509A (en) * 2021-09-27 2023-03-31 荣耀终端有限公司 Flexible circuit board, circuit board assembly and electronic equipment

Similar Documents

Publication Publication Date Title
CN109074900B (en) High-frequency multilayer interconnection substrate and method for manufacturing same
JP4254860B2 (en) Multilayer substrate with built-in chip-type electronic component and method for manufacturing the same
WO2014174882A1 (en) Printed wire board and printed wire board manufacturing method
JP2012028730A (en) Multi layer circuit board and method of manufacturing the same
JPWO2005067359A1 (en) Ceramic multilayer substrate
WO2014162478A1 (en) Component-embedded substrate and manufacturing method for same
WO2013141339A1 (en) Multilayer wiring board and method for manufacturing same
JP4277275B2 (en) Ceramic multilayer substrate and high frequency electronic components
JP5842859B2 (en) Multilayer wiring board and module having the same
JP6128209B2 (en) MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND PROBE CARD BOARD
US20160242287A1 (en) Multilayer substrate and method for manufacturing the same
KR20090051627A (en) Multilayer ceramic substrate and manufacturing method of the same
JP6819603B2 (en) Multilayer ceramic substrate and its manufacturing method
JP2002271038A (en) Composite multilayer board, its manufacturing method and electronic component
JP5207854B2 (en) Component built-in ceramic substrate and manufacturing method thereof
JP2004186395A (en) Manufacturing method of ceramic substrate
KR101018100B1 (en) Multilayer ceramic substrate, Method of forming conductive vias having multi-electrode and Method of fabricating multilayer ceramic substrate using the same
CN211702527U (en) Multilayer substrate
JP6750728B2 (en) Multi-layer electronic component and multi-layer electronic component module
CN221057223U (en) Electronic component
KR100900671B1 (en) Method of forming conductive via for multilayer interconnection substrate
WO2019240000A1 (en) Method for manufacturing electric element, electric element, and electric element mounting structure
JP5036591B2 (en) Wiring board
JP2010232695A (en) Multilayer ceramic capacitor
JP2009027044A (en) Multi-layer capacitor and wiring board with built-in capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP