WO2013141248A1 - 光変調パネルおよび光変調装置 - Google Patents

光変調パネルおよび光変調装置 Download PDF

Info

Publication number
WO2013141248A1
WO2013141248A1 PCT/JP2013/057857 JP2013057857W WO2013141248A1 WO 2013141248 A1 WO2013141248 A1 WO 2013141248A1 JP 2013057857 W JP2013057857 W JP 2013057857W WO 2013141248 A1 WO2013141248 A1 WO 2013141248A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrates
substrate
light modulation
electric field
Prior art date
Application number
PCT/JP2013/057857
Other languages
English (en)
French (fr)
Inventor
佐藤 英次
中村 浩三
寿史 渡辺
隆裕 中原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/386,201 priority Critical patent/US9291812B2/en
Publication of WO2013141248A1 publication Critical patent/WO2013141248A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • G02F1/0105Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Definitions

  • Electrodes 451 and 452 are provided on the side surfaces of the spacers 431 and 432, and the electrodes 451 and 452 are separated from the electrodes 412 and 422 provided on the plate 411 and the substrate 421 by the passivation layers 461 and 462. ing.
  • the plate-like particles 331 rotate so that their long axes are along the lines of electric force.
  • the orientation at this time is not necessarily limited so that the plate surface (flake surface) of the plate-like particle 331 is parallel to the plate 411 and the substrate 421 as shown in FIG.
  • a light modulation device includes the light modulation panel.
  • (A) is a figure which shows the microscope picture which image
  • (b) is the voltage applied between comb electrodes. It is a figure which shows the micrograph which image
  • (c) is the flake in planar view when the voltage applied between comb-tooth electrodes is relatively high
  • (A) * (b) is sectional drawing which shows schematic structure of the other display apparatus concerning Embodiment 1.
  • FIG. (A) * (b) is sectional drawing which shows schematic structure of the display apparatus concerning Embodiment 2.
  • (A) * (b) is principal part sectional drawing which shows typically the behavior of the flake when an electric field is applied to a light modulation layer, when the flake which consists of a dielectric material or a dielectric coating metal is used.
  • (A) * (b) is sectional drawing which shows schematic structure of the reflection type display apparatus concerning the modification 1 of Embodiment 7.
  • FIG. (A) * (b) is sectional drawing which shows schematic structure of the transflective display apparatus concerning the modification 2 of Embodiment 7.
  • FIG. (A) * (b) is sectional drawing which shows schematic structure of the display apparatus which performs the color display concerning the modification 3 of Embodiment 7.
  • the comb electrode 15 is a comb-like electrode having a patterned electrode portion 15L (electrode line) and a space portion 15S (electrode non-forming portion), and more specifically, the stem electrode 15B. (Trunk line) and a branch electrode 15A (branch line) extending from the stem electrode 15B corresponding to the teeth of a comb tooth.
  • the cross-sections of the branch electrodes 14A and 15A are shown as the cross-sections of the comb-tooth electrodes 14 and 15, respectively.
  • the number of branch electrodes 14A and 15A is substantially determined by the relationship between the pixel pitch, the width of each branch electrode 14A and 15A, and the electrode spacing between adjacent branch electrodes 14A and 15A.
  • Each of the branch electrodes 14A and 15A may be linear, or may be formed in a V shape or a zigzag shape.
  • the substrate 20 is a counter substrate, and includes a solid electrode 22 (fourth electrode) on the insulating substrate 21.
  • the solid electrode 22 is formed on the insulating substrate 21 in a solid shape over almost the entire surface of the insulating substrate 21 facing the substrate 10 so as to cover the display region (the region surrounded by the sealant) in the substrate 20. Has been.
  • the display device 1 is a transmissive display device, and the substrates 10 and 20 include a transparent substrate such as a glass substrate as the insulating substrates 11 and 21, for example.
  • the method for forming (laminating) these electrodes is not particularly limited, and various conventionally known methods such as sputtering, vacuum deposition, and plasma CVD can be applied. Further, the method of patterning the comb electrodes 14 and 15 among these electrodes is not particularly limited, and a known patterning method such as photolithography can be used.
  • the insulating layer 13 may be an inorganic insulating film made of an inorganic insulating material such as silicon nitride or silicon dioxide, and is an organic insulating film made of an organic insulating material (resin material) such as an acrylic resin. Also good.
  • the film thickness of the insulating layer 13 depends on the type of the insulating layer 13 (for example, whether it is an inorganic insulating film or an organic insulating film), but is set within a range of 1000 to 30000 mm, for example.
  • the film thickness of the insulating layer 13 may be set as appropriate according to the type of the insulating layer 13 and is not particularly limited. However, the thinner one is better for the shape anisotropic member 32 in the light modulation layer 30 described later. It is preferable because the display panel 2 can be thinned while moving. However, from the viewpoint of preventing insulation failure due to lattice defects and film thickness unevenness, the film thickness of the insulating layer 13 is preferably 1000 mm or more.
  • the necessary configuration is not limited to this.
  • the shape of the shape anisotropic member 32 (for example, flakes), which will be described later, be larger than the electrode width, thereby making it difficult to create a flake gap on the comb electrode having a weak lateral electric field. Can be obtained.
  • the shape anisotropic member 32 is a response member having shape anisotropy that rotates or deforms according to the direction of the electric field.
  • the shape anisotropic member 32 has an area of a projected image of the shape anisotropic member 32 (the substrates 10 and 20 when viewed from the normal direction of the substrates 10 and 20) in plan view. Is a member that changes in accordance with the direction in which the electric field is applied to the light modulation layer 30.
  • the projected area ratio (maximum projected area: minimum projected area) is preferably 2: 1 or more.
  • the shape of the shape anisotropic member 32 for example, a flake shape, a columnar shape, or an elliptical sphere shape can be adopted.
  • the material of the shape anisotropic member 32 may be a metal, a semiconductor, a dielectric, or a composite material thereof. A dielectric multilayer film or a cholesteric resin can also be used.
  • aluminum flakes used for general coating can be used.
  • the shape anisotropic member 32 may be colored. For example, aluminum flakes having a diameter of 20 ⁇ m and a thickness of 0.3 ⁇ m can be used as the shape anisotropic member 32.
  • general aluminum is easy to make a passive aluminum oxide (dielectric). Therefore, in the following description, when simply described as “aluminum flakes” or “Al flakes”, aluminum flakes in which an aluminum oxide film is formed on the surface, such as commercially available general aluminum flakes, are used. It shall be shown.
  • the thickness of the shape anisotropic member 32 is not particularly limited, but the transmittance can be increased as the thickness of the shape anisotropic member 32 is reduced. Accordingly, the thickness of the shape anisotropic member 32 is preferably at least smaller than the electrode interval (interelectrode distance) of the comb-tooth electrodes 14 and 15 (for example, 4 ⁇ m or less), and is equal to or less than the wavelength of light (for example, More preferably, it is 0.5 ⁇ m or less.
  • the thickness is preferably 1 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the medium 31 has a low volatility in consideration of the process of sealing in the cell. Further, the viscosity of the medium 31 is related to responsiveness, and is preferably 5 mPa ⁇ s or less. Further, in order to prevent sedimentation of the shape anisotropic member 32, the viscosity is 0.5 mPa ⁇ s or more. preferable.
  • the solid electrode 22 on the substrate 20 is electrically connected to the power supply circuit 61 via the relay circuit 51 (second relay circuit).
  • a wiring 52 for applying a voltage to the solid electrode 22 is provided between the solid electrode 22 and the relay circuit 51.
  • the relay circuits 41 and 51, the power supply circuit 61, and the wirings 42 to 44 and 52 to 54 function as an electric field application direction changing circuit that changes the direction of the electric field applied to the light modulation layer 30, and the solid electrode 12 It functions as a voltage application unit that selectively applies a voltage to 22 and the comb electrodes 14 and 15, respectively.
  • the relay circuits 41 and 51 are switching circuits (selection) for selecting (switching) an electrode to which a voltage is applied from the solid electrodes 12 and 22 and the comb-tooth electrodes 14 and 15 provided on the substrates 10 and 20. Circuit).
  • the reflection plane of the flakes is oriented parallel to the substrate 10, and incident light is reflected by the reflection plane and does not pass through the surface opposite to the incident light.
  • light incident on the light modulation layer 30 from the backlight 3 is blocked by the horizontally oriented flakes.
  • the voltage is applied from the power supply circuit 61 to the solid electrodes 12 and 22 using a relay circuit in a state where a certain voltage that is equal to or greater than the threshold value at which the flakes are horizontally oriented is applied. If the electrodes are switched to the comb electrodes 14 and 15, the flakes can be switched from the vertical orientation to the horizontal orientation only by changing the electrode to which the voltage is applied.
  • the major axis direction of the flakes is rotated in a direction perpendicular to the comb electrodes 14 and 15 when viewed from the substrate normal direction by applying a voltage between the comb electrodes 14 and 15. At this time, by applying a voltage greater than the threshold value between the comb electrodes 14 and 15, the flakes are attached to the substrate 10 as shown in FIG. 1 (b) and FIG. 3 (b). It is horizontally oriented so that it sticks.
  • the light incident on the light modulation layer 30 from the backlight 3 is The light is completely blocked by the flakes and does not transmit (pass) through the light modulation layer 30.
  • the flakes are switched to the horizontal orientation, that is, the voltage (threshold value) applied between the comb electrodes 14 and 15 so that the flakes are oriented parallel to the substrates 10 and 20 is flakes (shape anisotropic member 32). ), The material (material) of the medium 31, the electrode spacing (inter-electrode distance) of the comb electrodes 14 and 15, the thickness (cell thickness) of the light modulation layer 30, and the like.
  • FIG. 5 is a figure which shows the microscope picture which image
  • FIG. 5C is a view showing a photomicrograph of the orientation state of flakes in a plan view when the voltage applied between the electrodes 14 and 15 is relatively low.
  • FIG. It is a figure which shows the microscope picture which image
  • the shape anisotropic member 32 that is, in this case As the flake thickness is thinner, the transmittance can be increased.
  • the solid electrodes 12 and 22 are formed on each of the opposed substrates as described above, there is no weak electric field region as in Patent Document 1 when the vertical electric field is formed.
  • the flakes are vertically aligned without agglomeration.
  • the solid electrode 12 may be divided for each pixel.
  • the solid electrode 12 is connected to a switching element such as a TFT other than the comb electrode 14, and a signal corresponding to the video signal is applied.
  • the display device 1 includes a display panel 2 and a drive circuit (not shown), and reflects external light incident on the display panel 2.
  • This is a reflective display device that performs display.
  • FIG. 8A is a cross-sectional view of the main part of the display panel 2 showing the light traveling state in FIG. 7A
  • FIG. 8B is the light traveling in FIG. 7B. It is principal part sectional drawing of the display panel 2 which shows a state.
  • the relay circuits 41 and 51 and the power supply circuit 61 are not shown.
  • 7B and FIG. 8B also show a state in which the flakes are oriented so as to stick to the substrate 70 as an example.
  • shape anisotropy is achieved by reversibly switching the vertical electric field generated between the solid electrodes 72 and 22 and the horizontal electric field generated between the comb-tooth electrodes 74 and 75 as in the first embodiment.
  • the direction of the member 32 is switched reversibly.
  • flakes are formed to have a mean particle size (D50) of, for example, 20 ⁇ m or less, or the surface of the flakes is formed to be uneven so as to have light scattering properties, By making the shape violently having irregularities, the reflected light is scattered and white display can be obtained.
  • D50 mean particle size
  • the thickness of the colored layer may be appropriately set according to the material of the colored layer, and is not particularly limited. For example, a thickness in the range of 1 ⁇ m to 10 ⁇ m provides sufficient colorability. Is preferable.
  • the flakes are accumulated from the observer side. Observe as you do. Therefore, in this case, an uneven surface is formed on the surface of the substrate 70 by the plurality of accumulated flakes, and a display with strong scattering can be obtained.
  • FIG. 9A and 9B are cross-sectional views showing a schematic configuration of another display device 1 according to the present embodiment.
  • FIG. 9A shows a light absorption state
  • FIG. (B) shows a light reflection state.
  • FIG. 10 (a) is a cross-sectional view of the main part of the display panel 2 showing the light traveling state in FIG. 9 (a), and FIG. 10 (b) is the light in FIG. 9 (b). It is principal part sectional drawing of the display panel 2 which shows the advancing state.
  • the relay circuits 41 and 51 and the power supply circuit 61 are not shown.
  • 9B and FIG. 10B also show a state in which the flakes are oriented so as to stick to the substrate 70 as an example.
  • the substrate 10 on which the comb electrodes 14 and 15 are provided is arranged on the display surface side which is the viewer side. 10 shows a case where the substrate 20 facing 10 is arranged on the back side as viewed from the observer.
  • the light absorption layer 23 is the same as the light absorption layer 76 except that the light absorption layer 23 is provided below the solid electrode 22 in the substrate 20. Accordingly, here, the description of the light absorption layer 76 is applied to the light absorption layer 23 as it is, and the description of the light absorption layer 23 is omitted.
  • the flakes shape anisotropic contained in the medium 31 are arranged.
  • the amount of the sexual member 32 is large and the surface of the substrate 10 can be covered with the flakes when the flakes are horizontally oriented, that is, for example, when the flakes are laterally oriented in the medium 31
  • the viewers see the same plane (same surface) by the reflective surfaces of the flakes. A reflective surface) is observed. For this reason, a display with high specularity (mirror reflection light, mirror reflection display) can be obtained.
  • FIG. 11A to 11C are cross-sectional views showing a schematic configuration of still another display device 1 according to the present embodiment.
  • FIG. 11A shows a light absorption state
  • FIG. 11B shows a light reflection state due to scattering
  • FIG. 11B shows a light reflection state due to mirror reflection.
  • the display panel 2 in the present modification includes a pair of substrates 10 and 70 disposed opposite to each other, and a light modulation layer 30 disposed between the pair of substrates 10 and 70, and voltage is applied.
  • the relay circuit 80/90 (switch circuit) and the power supply circuit 61 which switch the direction of the electric field applied to the light modulation layer 30 by selecting the electrode to apply are provided.
  • the pair of substrates 10 and 70 facing each other is an active matrix substrate such as a TFT substrate.
  • the substrate 70 provided with the light absorption layer 76 on the lower side of the solid electrode 72 is arranged on the back side as viewed from the observer, and the light absorption layer Is provided on the display surface side which is the viewer side.
  • the relay circuit 80 used in the second modification includes a first relay circuit unit 81 (first switch circuit unit) and a second relay circuit unit that are electrically connected to each other. 82 (second switch circuit portion).
  • the solid electrode 12 on the substrate 10 is electrically connected to the power supply circuit 61 via the relay circuit 90, that is, the third relay circuit unit 91 and the fourth relay circuit unit 92.
  • a wiring 93 for applying a voltage to the solid electrode 12 is provided between the solid electrode 12 and the relay circuit 90.
  • the comb electrodes 74 and 75 are electrically connected to the power supply circuit 61 via the second relay circuit section 82 in the relay circuit 80 and the fourth relay circuit section 92 in the relay circuit 90, respectively. Between the comb electrode 74 and the first relay circuit portion 81 in the relay circuit 80, a wiring 84 for applying a voltage to the comb electrode 74 is provided. A wiring 94 for applying a voltage to the comb electrode 75 is provided between the comb electrode 75 and the third relay circuit portion 91 in the relay circuit 90.
  • the comb electrodes 14 and 15 are electrically connected to the power supply circuit 61 via the second relay circuit section 82 in the relay circuit 80 and the fourth relay circuit section 92 in the relay circuit 90, respectively. Between the comb electrode 14 and the second relay circuit portion 82 in the relay circuit 80, a wiring 85 for applying a voltage to the comb electrode 14 is provided. Further, a wiring 95 for applying a voltage to the comb electrode 15 is provided between the comb electrode 15 and the fourth relay circuit portion 92 in the relay circuit 90.
  • a wiring 86 that connects the second relay circuit section 82 and the power supply circuit 61 is provided between the second relay circuit section 82 and the power supply circuit 61 in the relay circuit 80.
  • a wiring 96 that connects the fourth relay circuit section 92 and the power supply circuit 61 is provided between the fourth relay circuit section 92 and the power supply circuit 90.
  • the relay circuit 80 is switched so that the power circuit 61 and the comb electrode 74 are connected, and the relay circuit 90 is switched between the power circuit 61 and the comb electrode 75. Is switched so that a horizontal electric field in a direction parallel to the substrate 70 is applied to the light modulation layer 30.
  • FIGS. 12A to 12C the relay circuits 80 and 90 and the power supply circuit 61 are not shown.
  • 11 (b) and FIG. 12 (b) show, for example, a state in which the flakes are oriented so as to stick to the substrate 70.
  • FIG. 11 (c) and FIG. 12 (c) As an example, a state in which the flakes are oriented so as to stick to the substrate 10 is shown.
  • the voltages applied to the solid electrodes 12, 72 and the comb-shaped electrodes 14, 15, 74, 75 are as follows.
  • the solid electrodes 12 and 22 and the comb electrodes 14 and 15 described above for example, when a voltage is applied to the solid electrodes 12 and 72, the comb electrodes 14, 15, 74, and 75 are insulated,
  • the solid electrodes 12 and 72 and the comb electrodes 74 and 75 are insulated, and when applying a voltage to the comb electrodes 74 and 75, the solid electrodes 12 and 72 and the comb electrodes
  • the tooth electrodes 14 and 15 can be set to be insulated.
  • the light absorption layer 76 is made into a transparent layer, or the light absorption layer 76 is abbreviate
  • the substrates 20 and 70 are transparent substrates, the external light incident on the light modulation layer 30 can be reflected by the shape anisotropic member 32 also on the back side (substrate 70 side). Is possible. In this case, when the shape anisotropic member 32 is horizontally oriented, the reflected color or black of the shape anisotropic member 32 is observed.
  • Such a display device 1 and a display panel 2 are suitable for a show window, for example.
  • FIG. 14A and 14B are sectional views showing a schematic configuration of the display device 1 according to the present embodiment.
  • FIG. 14A shows a light transmission state
  • FIG. ) Indicates a light reflection state.
  • the display device 1 includes a display panel 2, a backlight 3 that irradiates light to the display panel 2, and a drive circuit (not shown).
  • a so-called transflective display device that performs display by transmitting light emitted from the backlight 3 through the display panel 2 and reflecting external light incident on the light modulation layer 30. is there.
  • the present embodiment the case where the substrate 10 is disposed on the back side of the display panel 2 and the substrate 20 is disposed on the display surface side (observer side) will be described as an example. As shown in FIGS. 1 and 2, the present embodiment is not limited to this.
  • the display device 1 uses transparent electrodes for the solid electrodes 12 and 22 and the comb electrodes 14 and 15 on the substrates 10 and 20, and uses a transparent substrate for the insulating substrates 11 and 21. Then, as shown in FIG. 14A, when a voltage is applied between the uniform solid electrodes 12 and 22 facing each other, flakes are caused by a dielectrophoresis phenomenon, a Coulomb force, or a force explained from the viewpoint of electric energy. Rotate vertically so that its long axis is parallel to the lines of electric force. As a result, the light incident on the light modulation layer 30 from the backlight 3 is transmitted (passed) through the light modulation layer 30 and emitted to the viewer side, as shown in FIG. In this way, transmissive display is realized.
  • the transflective display device 1 according to the present embodiment is not limited to the above configuration, and may have the following configuration.
  • the display device 1 performs transmissive display using backlight light in a relatively dark place such as indoors (transmission mode), while reflective display using external light in a relatively bright place such as outdoors. (Reflection mode). Thereby, a display with a high contrast ratio can be realized regardless of the surrounding brightness. In other words, the display device 1 can display under any lighting (in an optical environment) regardless of whether it is indoors or outdoors, and is therefore suitable for mobile devices such as mobile phones, PDAs (Personal Digital Assistance), and digital cameras. .
  • each pixel of the display panel 2 is formed with a reflective display unit used in the reflective mode and a transmissive display unit used in the transmissive mode.
  • a transparent electrode made of ITO or the like is formed in the transmissive display portion, and a reflective electrode made of aluminum or the like is formed in the reflective display portion.
  • a transparent electrode made of ITO or the like is formed in the transmissive display portion.
  • a solid electrode 22 made of ITO or the like facing these electrodes is formed on the substrate 20 on the display surface side.
  • the light modulation layer 30 is provided with a shape anisotropic member 32, and the shape anisotropic member 32 is formed of a material that does not reflect visible light.
  • FIG. 15A and 15B are cross-sectional views showing a schematic configuration of the display device 1 according to the present embodiment.
  • FIG. 15A shows a vertical electric field applied state
  • FIG. b shows a horizontal electric field application state.
  • the display panel 2 is disposed between the substrate 110 (first substrate), the substrate 120 (second substrate), the substrate 130 (third substrate), and the substrates 110 and 120.
  • the information display light modulation layer 4 is provided, and at least relay circuits 151 and 152 (switch circuits) and a power supply circuit 161 are provided.
  • the substrate 110 is disposed on the back side of the display panel 2, the substrate 130 is disposed on the display surface side (observer side), and the substrate 120 is disposed between the substrate 110 and the substrate 120.
  • the display panel 2 has a large number of pixels arranged in a matrix.
  • the description of the insulating substrate 11, the solid electrode 12, the insulating layer 13, and the comb-tooth electrodes 14 and 15 in the first embodiment is the same as the insulating substrate 111, the solid electrode 112, the insulating layer 113, the comb.
  • the tooth electrodes 114 and 115 can be read and applied.
  • the electrode portions 14L and 15L, the space portions 14S and 15S, the stem electrodes 14B and 15B, and the branch electrodes 14A and 15A in the comb electrodes 14 and 15 will be described.
  • the electrode portions 114L in the comb electrodes 114 and 115 will be described. Needless to say, it can be replaced with 115L, space portions 114S and 115S, stem electrodes 114B and 115B, and branch electrodes 114A and 115A.
  • the number of comb electrodes 114 and 115 is omitted, and the comb electrodes 114 and 115 shown in the cross-section of the branch electrode are provided on each color pixel.
  • the number of teeth (branch electrodes 114A and 115A) of the comb electrodes 114 and 115 provided in one pixel depends on the pixel pitch and the comb. It is determined in relation to the L / S of each of the tooth electrodes 114 and 115.
  • the substrate 120 includes solid electrodes 122 and 123 on the front and back surfaces of an insulating substrate 121 made of a transparent substrate such as glass.
  • the solid electrode 122 is formed in a solid shape over almost the entire surface of the insulating substrate 121 facing the substrate 110.
  • the insulating substrate 121 and the solid electrodes 122 and 123 can be designed similarly to the insulating substrate 21 and the solid electrode 22 in the display panel 2 shown in FIGS. Therefore, the description of the insulating substrate 121 and the solid electrodes 122 and 123 is omitted here.
  • the substrate 130 is an active matrix substrate, and includes various signal lines (scanning signal lines, data signal lines, etc.), switching elements such as TFTs (thin film transistors), and insulating films (not shown) on the insulating substrate 131.
  • a lower layer electrode made of a solid electrode 132, an insulating layer 133, an upper layer electrode made of comb-tooth electrodes 134 and 135, and a color filter layer 140 are laminated in this order.
  • the description of the insulating substrate 131, the solid electrode 132, the insulating layer 133, and the comb-tooth electrodes 134 and 135 is also omitted.
  • the number of comb-tooth electrodes 134 and 135 is omitted as in the comb-tooth electrodes 114 and 115, and the cross-section of the branch electrode is shown in each color pixel.
  • the comb electrodes 134 and 135 are shown one by one, like the comb electrodes 14, 15, 114, and 115, the teeth of the comb electrodes 134 and 135 provided in one pixel (branch electrode 134A).
  • the number of 135A) is determined based on the relationship between the pixel pitch and the L / S of each of the comb electrodes 134 and 135.
  • flakes obtained by adding a dye or pigment to a transparent resin for example, red (R), green (G), and blue (B) flakes can be used. These flakes are separated and arranged by striped ribs 143 for each color.
  • a method of separately coating a mixture of flakes and a medium using an inkjet can be used.
  • Each color region is partitioned by ribs 143 so as to correspond to each pixel.
  • the relay circuits 151 and 152 are switch circuits that switch the direction of an electric field applied to the color filter layer 140 that is a light modulation layer by selecting an electrode to which a voltage is applied.
  • the solid electrode 132 on the substrate 130 is electrically connected to the power supply circuit 161 via the relay circuit 151 (first relay circuit).
  • a wire 153 for applying a voltage to the solid electrode 132 is provided between the solid electrode 132 and the relay circuit 151.
  • the comb electrodes 134 and 135 are electrically connected to the power supply circuit 161 via the relay circuits 151 and 152, respectively. Between the comb electrode 134 and the relay circuit 151, a wiring 155 for applying a voltage to the comb electrode 134 is provided. In addition, a wiring 156 for applying a voltage to the comb electrode 135 is provided between the comb electrode 135 and the relay circuit 152.
  • a wiring 157 that connects the relay circuit 151 and the power supply circuit 161 is provided between the relay circuit 151 and the power supply circuit 161.
  • a wiring 158 that connects the relay circuit 152 and the power supply circuit 161 is provided between the relay circuit 152 and the power supply circuit 161.
  • the electrodes to which the voltage is applied are switched among the solid electrodes 123 and 132 and the comb electrodes 134 and 135 using the relay circuits 151 and 152.
  • the relay circuits 151 and 152, the power supply circuit 161, and the wirings 153 to 158 function as an electric field application direction changing circuit that changes the direction of the electric field applied to the color filter layer 140, and the solid electrodes 123 and 132 and the combs. It functions as a voltage application unit that selectively applies a voltage to each of the tooth electrodes 134 and 135.
  • the relay circuits 151 and 152 are switching circuits (selection) for selecting (switching) an electrode to which a voltage is applied from the solid electrodes 123 and 132 and the comb electrodes 134 and 135 provided on the substrates 120 and 130. Circuit).
  • the relay circuit 151 is switched so that the power supply circuit 161 and the solid electrode 132 are connected, and the relay circuit 152 is connected to the power supply circuit 161 and the solid electrode 123.
  • a vertical electric field in the vertical direction is applied to the substrates 120 and 130 in the color filter layer 140 (light modulation layer).
  • the relay circuit 151 is switched so that the power circuit 161 and the comb electrode 134 are connected, and the relay circuit 152 is switched between the power circuit 161 and the comb electrode 135. Is switched so that a horizontal electric field in a direction parallel to the substrates 120 and 130 is applied to the color filter layer 140 (light modulation layer).
  • the information display light modulation layer 4 may have the same configuration as the light modulation layer 30 described in the first to third embodiments, or may be a layer made of a general display medium such as a liquid crystal layer.
  • a pixel electrode may be provided instead of the comb electrodes 114 and 115 and the solid electrode 112.
  • ⁇ Color display> When color display is performed on the display device 1 and the display panel 2 as described above, the flakes are horizontally oriented so that light incident on the color filter layer 140 is transmitted through the flakes of each color. On the other hand, when performing monochrome display, flakes are vertically oriented so that light incident on the color filter layer 140 reaches the viewer directly. In this way, for example, when performing transmissive display, color display can be performed, and when displaying monochrome content such as an electronic book, loss of light due to the color filter can be suppressed. Therefore, the power consumption of the backlight can be reduced. In addition, when performing a reflective display, color display can be performed, and in a dark and poorly visible environment, black and white display can be performed to display with emphasis on brightness.
  • the display device 1 that can switch between color display and black-and-white display can be realized.
  • the insulating substrate 121 and the solid electrode 123 in the substrate 120, the substrate 130, and the color filter layer 140 made of a light modulation layer sandwiched therebetween are used alone or as described above as a color filter element.
  • it can be used as a color filter element integrated display panel integrated with an information display panel.
  • the color filter layer 140 is not limited to the above configuration, and further, a shape anisotropic member colored in red, a shape anisotropic member colored in green, a shape anisotropic member colored in blue, It includes at least part of a shape anisotropic member colored in cyan (C), a shape anisotropic member colored in magenta (M), and a shape anisotropic member colored in yellow (Y). Also good. In addition to this, the color filter layer 140 may be provided with a region not including the shape anisotropic member.
  • Embodiments 1 to 4 differences from Embodiments 1 to 4 will be mainly described, and the same components as those described in Embodiments 1 to 4 have the same functions. A number is assigned and description thereof is omitted.
  • the display panel 2 includes a pair of substrates 170 and 20 disposed opposite to each other, and a light modulation layer 30 disposed between the pair of substrates 170 and 20, and a voltage.
  • the relay circuit 181 switch circuit
  • the power supply circuit 61 which switch the direction of the electric field applied to the light modulation layer 30 by selecting the electrode to which is applied.
  • the substrate 170 is disposed on the back side of the display panel 2 and the substrate 20 is disposed on the display surface side (observer side) will be described as an example.
  • the form is not limited to this.
  • the configurations of the substrates 10 and 20 and the configuration of the light modulation layer 30 are the same as those of the substrates 10 and 20 and the light shown in FIGS. The same as the modulation layer 30.
  • the substrate 170 is an active matrix substrate.
  • the substrate 170 is provided with various signal lines (scanning signal lines, data signal lines, etc.), switching elements such as TFTs (thin film transistors), and insulating films (not shown) on the insulating substrate 171, and solid electrodes on the insulating films.
  • the lower layer electrode 172 (first electrode), the insulating layer 173, and the upper layer electrode 174 (second electrode) are stacked in this order.
  • the solid electrode 172 is formed in a solid shape on the insulating substrate 171 so as to cover the display area of the substrate 170 over almost the entire surface of the insulating substrate 171 facing the substrate 20.
  • the insulating layer 173 is formed in a solid shape over the entire display area of the substrate 170 so as to cover the solid electrode 172.
  • the configurations of the insulating substrate 171, the solid electrode 172, and the insulating layer 173 are the same as those of the insulating substrate 11, the solid electrode 12, and the insulating layer 13 shown in FIGS.
  • the cross section of the branch electrode 174A is shown as the cross section of the comb electrode 174.
  • the number of teeth (branch electrode 14A) of the comb-teeth electrode 14 provided in one pixel is not particularly limited, and is determined based on the relationship between the pixel pitch and each L / S in the comb-teeth electrode 174.
  • L indicates the electrode width between the adjacent branch electrodes 174A in the electrode portion 174
  • S indicates the width of the space portion 174B.
  • the number of branch electrodes 174A is substantially determined by the relationship between the pixel pitch, the width of the branch electrode 174A, the electrode spacing between adjacent branch electrodes 174A, and the like.
  • the solid electrode 172 is a common electrode and is electrically connected to common wiring formed around the display area.
  • the comb electrode 174 is a pixel electrode and is a drain electrode (not shown) connected to a signal line (scanning signal line, data signal line) and a switching element such as a TFT, and a signal corresponding to a video signal is applied.
  • a signal line scanning signal line, data signal line
  • a switching element such as a TFT
  • the solid electrode 22 in the substrate 20 according to the present embodiment is electrically connected to the power supply circuit 61 via the relay circuit 181.
  • a wiring 182 for applying a voltage to the solid electrode 22 is provided between the solid electrode 22 and the relay circuit 181.
  • a wiring 184 that connects the relay circuit 181 and the power supply circuit 61 is provided.
  • a wiring 54 that connects the relay circuit 51 and the power circuit 61 is provided.
  • the relay circuit 181 is used to switch the electrode to which the voltage is applied between the solid electrode 22 on the substrate 20 and the comb electrode 174 on the substrate 170.
  • the relay circuit 181, the power supply circuit 61, and each of the wirings 62 182 to 184 function as an electric field application direction changing circuit that changes the direction of the electric field applied to the light modulation layer 30, and the solid electrode 22 and the comb teeth
  • Each of the electrodes 174 functions as a voltage application unit that selectively applies a voltage.
  • the relay circuit 181 functions as a switching circuit (selection circuit) that selects (switches) an electrode to which a voltage is applied from the solid electrode 22 and the comb electrode 174 provided on the substrates 20 and 170.
  • the relay circuit 181 is switched so that the power supply circuit 61 and the solid electrode 22 are connected, and a voltage is applied between the solid electrodes 22 and 172 to thereby modulate the light.
  • a vertical electric field perpendicular to the substrates 20 and 170 is applied to the layer 30.
  • the relay circuit 181 is switched so that the power supply circuit 61 and the comb electrode 174 are connected, and a voltage is applied between the comb electrode 174 and the solid electrode 172. As a result, a lateral electric field in a direction parallel to the substrate 170 is applied to the light modulation layer 30.
  • the relay circuit 181 may be switched based on the input switching signal, for example, by inputting a switching signal for switching an electrode to which a voltage is applied from a signal source (not shown), or manually switched. Also good.
  • FFS Flexible Field Switching
  • the material and the formation method of these layers can be the same material and the formation method as the corresponding layers in the first embodiment.
  • the same material and forming method as those of the comb electrode 14 in the first embodiment can be used.
  • the electrode width of the comb-tooth electrode 174 is L
  • the distance between the electrodes is S
  • the cell gap (thickness of the light modulation layer 30) is D
  • the electrode interval S is set to the electrode. Display is performed by making a so-called fringe electric field smaller than the width L and the cell gap D.
  • the layer thickness of each layer can be set to the same layer thickness, electrode width, and electrode interval as the corresponding layers in the first embodiment, but is set so as to satisfy the above conditions.
  • each electrode is selectively selected.
  • the circuit configuration for switching to can be simplified.
  • a reflective display device that includes the display panel 2 and a drive circuit (not shown) and reflects external light incident on the display panel 2 to perform display is taken as an example. Will be described. However, as described in the first to fifth embodiments, the present embodiment is not limited to this.
  • the display panel 2 includes a pair of substrates 70 and 20 disposed opposite to each other, and a light modulation layer 30 disposed between the pair of substrates 70 and 20, and a switch Circuits 191 and 192 and power supply circuits 201 and 202 are provided.
  • the substrate 70 is disposed on the back side of the display panel 2 and the substrate 20 is disposed on the display surface side (observer side) will be described as an example.
  • the form is not limited to this.
  • the comb electrode 74 on the substrate 70 is electrically connected to the power supply circuit 201 via the switch circuit 191 (first switch circuit).
  • a wiring 194 for applying a voltage to the comb electrode 75 is provided.
  • a wiring 195 that connects the switch circuit 191 and the power supply circuit 201 is provided between the switch circuit 191 and the power supply circuit 201.
  • a wiring 196 that connects the switch circuit 192 and the power supply circuit 201 is provided between the switch circuit 192 and the power supply circuit 201.
  • the solid electrode 72 on the substrate 70 and the solid electrode 22 on the substrate 20 are electrically connected to the power supply circuit 202 via wirings 211 and 212, respectively.
  • the switch circuits 191 and 192 switch whether or not to apply a lateral electric field to the light modulation layer 30 by switching whether or not the voltage from the power supply circuit 201 is applied to the comb electrodes 74 and 75.
  • the switch circuits 191 and 192, the power supply circuit 201, and the wirings 193 to 196 function as an electric field application direction changing circuit that changes the direction of the electric field applied to the light modulation layer 30, and It functions as a voltage application circuit that selectively applies a voltage to the comb electrodes 74 and 75 when changing the direction of the applied electric field.
  • the light modulation layer when the light modulation layer is driven (that is, when a voltage is applied to the display panel 2, in other words, when the power of the display panel 2 is turned on).
  • a constant voltage is always applied to the solid electrodes 72 and 22 from the power supply circuit 202, so that a vertical electric field having a constant strength is always applied to the light modulation layer 30 by the solid electrodes 72 and 22.
  • the presence / absence of a lateral electric field applied to the light modulation layer 30 and, as a preferred mode, the magnitude of the lateral electric field is controlled by the 191 and 192 and the power supply circuit 201.
  • a voltage that generates a transverse electric field stronger than the longitudinal electric field is applied to the comb electrodes 74 and 75.
  • the switch circuits 191 and 192 are both closed to turn on the power, and the comb electrodes 74 and 75 generate a transverse electric field stronger than the longitudinal electric field.
  • the direction of the flakes is determined by the balance of strength between the vertical electric field and the horizontal electric field. Therefore, by applying a lateral electric field that is sufficiently strong with respect to the longitudinal electric field, the flakes can be horizontally oriented so as to stick to the substrate 70.
  • FIG. 18B the case where the flakes are horizontally oriented so as to stick to the substrate 70 is illustrated.
  • the flakes are oriented in the vertical electric field and the horizontal direction as described above. Since it is determined by the balance of strength with the electric field, by adjusting (controlling) the magnitude of the horizontal electric field when the horizontal electric field is applied, in other words, the magnitude of the voltage applied to the comb electrodes 74 and 75, An effect of facilitating halftone display can also be obtained.
  • the comb teeth are selected.
  • the electric field formed by the voltages applied to the solid electrodes 72 and 22 and the comb-tooth electrodes 74 and 75 depends on the material used and the details. Depending on the configuration, for example, it is desirable to set the voltage to 0.01 to 0.1 V / ⁇ m and 0.2 to 1 V / ⁇ m, respectively.
  • a vertical electric field having a constant strength is always applied to the light modulation layer 30 by the solid electrodes 72 and 22 and a mode in which incident light is reflected (during reflection display) is selected.
  • the configuration is such that a lateral electric field stronger than the vertical electric field is applied by the comb electrodes 74 and 75, the present embodiment is not limited to this.
  • a lateral electric field having a constant strength is always applied to the light modulation layer 30 by the comb electrodes 74 and 75, and the incident light is transmitted (see Embodiment 1) or absorbed (see Embodiment 1). Only when “2” is selected, a vertical electric field stronger than the horizontal electric field may be applied by the solid electrodes 72 and 22.
  • one of the vertical electric field and the horizontal electric field is always applied to the light modulation layer 30, and the other electric field is stronger than the one electric field.
  • a configuration may be adopted in which presence or absence of application of an electric field is switched.
  • a solid electrode is applied only to a mode in which a lateral electric field having a constant strength is always applied to the light modulation layer 30 by the comb-shaped electrodes 74 and 75 as described above and the incident light is transmitted or absorbed.
  • a vertical electric field stronger than the horizontal electric field is applied by 72 and 22
  • the electric field formed by the voltages applied to the solid electrodes 72 and 22 and the comb-tooth electrodes 74 and 75 depends on the material used and the detailed configuration. However, it is desirable to set the voltage to 0.5 to 1 V / ⁇ m and 0.2 to 0.4 V / ⁇ m, respectively.
  • the comb electrode is provided only on one of the substrates.
  • the comb electrode is provided on both substrates sandwiching the light modulation layer 30. It is good also as a structure which changes the board
  • Embodiments 1 to 6 differences from Embodiments 1 to 6 are mainly described, and the same components as those described in Embodiments 1 to 6 have the same functions. A number is assigned and description thereof is omitted.
  • the display panel 2 the backlight 3 that irradiates the display panel 2 with light (see FIGS. 1A and 1B), and a drive circuit (not shown)
  • a transmissive display device that performs display by transmitting light emitted from the backlight 3 through the display panel 2 will be described.
  • the present embodiment is not limited to this.
  • the configurations of the substrates 10 and 20 in the display device 1 according to the present embodiment are the same as those in the first embodiment shown in FIGS. This is the same as the substrates 10 and 20 in the display device 1 according to the above.
  • a dielectric is used for at least a part of the shape anisotropic member 32, whereas in this embodiment, a shape anisotropic member 32 (metal piece) made of only metal is used. To do.
  • the metal used for the shape anisotropic member 32 may be one kind or a composite material of two or more kinds of metals.
  • metal piece for example, aluminum flakes used for painting or the like can be selected.
  • aluminum flakes used for painting or the like can be selected.
  • general aluminum is easy to make a passive aluminum oxide.
  • Aluminum oxide is a dielectric, and the surface-oxidized aluminum flakes are no longer flakes of only the original metal.
  • a coated metal flake for example, a dielectric coated metal flake whose surface is covered with a dielectric film, for example, as shown in the first embodiment, it behaves differently from a metal-only flake.
  • the metal used for the shape anisotropic member 32 according to the present embodiment it is desirable to use a metal that has high reflectivity and is difficult to make a passive state.
  • An example of such a metal is silver.
  • the projected area ratio (maximum projected area: minimum projected area), shape, specific gravity, thickness, and the like of the shape anisotropic member 32 are the same as those of the shape anisotropic member 32 according to the first embodiment. Therefore, the description thereof is omitted here.
  • the relay circuits 41 and 51 when a switching signal for switching an electrode to which a voltage is applied is input to the relay circuits 41 and 51 from a signal source (not shown), for example, the relay circuit is based on the input switching signal.
  • the electrode to which the voltage is applied is switched to the opposite side to that in the first embodiment between the transmissive display and the reflective display.
  • the relay circuits 41 and 51 are switched based on the input switching signal, for example, when a switching signal for switching the electrode to which the voltage is applied is input from a signal source (not shown). It may be switched manually.
  • the flake When a metal piece having visible light reflectivity is used as the flakes, as shown in FIG. 31A, when a voltage is applied to the comb electrodes 14 and 15 that are interleaved with each other and on the same plane, The flakes are oriented so that their long axes are perpendicular to the substrates 10 and 20 in the vicinity of the comb electrodes 14 and 15 due to the migration phenomenon, Coulomb force, or force explained from the viewpoint of electric energy (longitudinal orientation). To do. For this reason, the flake has a reflection plane perpendicular to the substrates 10 and 20.
  • the incident light incident on the light modulation layer 30 from the backlight 3 is directly transmitted through the light modulation layer 30 or reflected by the reflection surface of the flakes, and then the surface opposite to the incident light incident side. Is transmitted toward the display surface side.
  • the flakes rotate so that the major axis thereof intersects the electric field lines perpendicularly.
  • the flakes are oriented (lateral orientation) so that their reflection planes are parallel to the substrates 10 and 20.
  • the incident light that has entered the light modulation layer 30 from the backlight 3 is reflected by the reflection plane of the flakes and is not transmitted to the display surface side that is the surface opposite to the incident light incident side.
  • light incident on the light modulation layer 30 from the backlight 3 is blocked by the horizontally oriented flakes.
  • 32 (a) to 32 (d) show a lateral electric field applied to the light modulation layer 30 in the display device 1 using flakes made of only metal or flakes made of dielectric coating metal as the shape anisotropic member 32, respectively. It is a graph which shows the result of having calculated the electric-power line and equipotential line when applying.
  • Y is the thickness direction of the light modulation layer 30 (that is, the thickness direction of the substrates 10 and 20).
  • X represents the distance in the direction orthogonal to the thickness direction of the light modulation layer 30 (that is, the in-plane direction of the substrate, that is, the left-right direction in FIGS. 31A and 31B). .
  • FIG. 32 show the case where silver flakes are used as flakes made of only metal whose surface is not covered with a dielectric
  • (c) and (d) of FIG. As a dielectric-coated metal flake, a case where a flake in which silver (metal) is covered with dielectric silica is used is shown.
  • 32A and 32C show a state in which a horizontal electric field is applied to the light modulation layer 30 in a state where the flakes are horizontally oriented
  • FIGS. Shows a state in which a lateral electric field is applied to the light modulation layer 30 in a state where the flakes are vertically oriented.
  • the state in which the flakes are horizontally or vertically oriented here refers to a state in which the flakes are placed so that the major axis direction of the flakes is horizontal or vertical in the initial state (when no electric field is applied).
  • the comb electrode 15 on the lower substrate 10 is set to 0 V, and an alternating current (1.5 V, 60 Hz) is applied between the comb electrode 14 and the comb electrode 15. Applied.
  • FIG. 32 (a) and 32 (b) are compared.
  • the lines of electric force are arranged at equal intervals without greatly distorting so that they intersect perpendicularly to the flakes. It can be seen from a) that the lines of electric force are greatly distorted. That is, FIG. 32A is an energetically unstable state, and the flakes move to the vertically oriented state of FIG. 32B.
  • the solid electrodes 12 and 22 are omitted. However, when the solid electrodes 12 and 22 are present, the solid electrodes 12 and 22 are provided in the same manner as in FIGS. Depending on the flake material, the movement of the flake orientation changes.
  • the flakes can be horizontally oriented in a vertical electric field and vertically oriented in a horizontal electric field.
  • 33 (a) and 33 (b) are main part cross-sectional views schematically showing the behavior of flakes when an electric field is applied to the light modulation layer 30 in the present embodiment, respectively.
  • 34A and 34B schematically show the behavior of flakes when an electric field is applied to the light modulation layer 30 when flakes made of a dielectric or dielectric coating metal are used.
  • FIG. 34A shows a partial cross-sectional view
  • FIG. 34B shows a time when a vertical electric field is applied
  • not only flake aggregation during vertical electric field formation can be prevented, but also light leakage does not occur during the horizontal orientation of flakes, thereby preventing a decrease in contrast. can do.
  • shape anisotropic member 32 is made of only metal.
  • the present embodiment is not limited to this, and if the shape anisotropic member 32 that is horizontally oriented by a vertical electric field and vertically oriented by a horizontal electric field is obtained, the shape anisotropic member 32 may be other It may be made of a material.
  • the driving method according to the present embodiment can be applied in general when such a shape anisotropic member 32 is used.
  • the shape anisotropic member 32 made of only metal is used as the shape anisotropic member 32 (for example, flakes), the shape anisotropic member 32 is horizontally oriented by a vertical electric field, and This is a point in which the shape anisotropic member 32 is vertically oriented.
  • FIGS. 35A and 35B are cross-sectional views showing a schematic configuration of the reflective display device 1 according to this modification, and FIG. 35A shows a light absorption state.
  • 35 (b) shows a light reflection state.
  • the display device 1 shown in FIGS. 35 (a) and 35 (b) uses a shape anisotropic member 32 made of only metal, and the shape anisotropic member 32 is horizontally oriented by a vertical electric field, and the shape is different by a horizontal electric field. Except for the point in which the isotropic member 32 is vertically oriented, the second embodiment is the same as the display device 1 shown in FIGS. 7A and 7B.
  • a see-through display panel 2 can be realized as shown in FIGS.
  • the see-through display panel 2 is similarly provided. It goes without saying that it can be realized.
  • FIGS. 37 (a) and 37 (b) are cross-sectional views showing a schematic configuration of the transflective display device 1 according to the present modification, and FIG. 37A shows a light transmission state.
  • FIG. 37B shows a light reflection state.
  • the display device 1 shown in FIGS. 37 (a) and 37 (b) uses a shape anisotropic member 32 made of only metal, and the shape anisotropic member 32 is horizontally oriented by a vertical electric field, and the shape is different by a horizontal electric field. Except for the point that the isotropic member 32 is vertically oriented, the third embodiment is the same as the display device 1 shown in FIGS. 14 (a) and 14 (b).
  • FIGS. 38A and 38B are cross-sectional views showing a schematic configuration of the display device 1 that performs color display according to the present modification, and FIG. 38A shows a light transmission state.
  • FIG. 38B shows a light reflection state.
  • the display device 1 shown in FIGS. 38A and 38B uses the shape anisotropic member 142 made of only metal, and the shape anisotropic member 142 is horizontally oriented by the vertical electric field, and the shape is changed by the horizontal electric field. Except for the point in which the isotropic member 142 is vertically oriented, the fourth embodiment is the same as the display device 1 shown in FIGS. 15A and 15B.
  • color display corresponding to the structural color of the shape anisotropic member 142 can be performed by changing the type of the metal material used for the shape anisotropic member 142.
  • FIG. 39A and 39B are cross-sectional views illustrating a schematic configuration of the display device 1 that performs FFS driving according to this modification, and FIG. 39A illustrates a light transmission state.
  • FIG. 39B shows a light reflection state.
  • the display device 1 shown in FIGS. 39 (a) and 39 (b) uses a shape anisotropic member 32 made of only metal, and the shape anisotropic member 32 is horizontally oriented by a vertical electric field, and the shape is different by a horizontal electric field. Except for the fact that the isotropic member 32 is vertically oriented, the fifth embodiment is the same as the display device 1 shown in FIGS. 16 (a) and 16 (b).
  • Modification 6 of display device 40A and 40B are cross-sectional views showing a schematic configuration of the reflective display device 1 according to this modification, and FIG. 40A shows a light absorption state. 40 (b) shows a light reflection state.
  • the display device 1 shown in FIGS. 40 (a) and 40 (b) also uses the shape anisotropic member 32 made of only metal, and the shape anisotropic member 32 is horizontally oriented by the vertical electric field, and is shaped by the horizontal electric field.
  • the anisotropic member 32 is vertically oriented.
  • the direction of the flakes is determined by the balance of the strength between the vertical electric field and the horizontal electric field. For this reason, for example, by using a switch circuit, one of the vertical electric field and the horizontal electric field is always applied to the light modulation layer 30, and the electric field of the other electric field is stronger than the one electric field. It is good also as a structure which switches the presence or absence of application.
  • the shape anisotropic member 32 is vertically oriented by a vertical electric field to be in a light absorption state, and the shape anisotropic member 32 is horizontally oriented by a horizontal electric field to be in a light reflection state. For this reason, in the sixth embodiment, for example, only when a vertical electric field of constant strength is always applied by the solid electrodes 72 and 22 and a mode in which incident light is reflected (during reflection display) is selected, the comb electrode 74/75, a horizontal electric field stronger than the vertical electric field was applied.
  • the solid electrodes 72 and 22 are used only when a mode in which a lateral electric field of constant strength is always applied by the comb electrodes 74 and 75 and the incident light is reflected (during reflective display) is selected.
  • a vertical electric field stronger than the horizontal electric field will be described as an example.
  • the display panel 2 according to the present embodiment is replaced with the switch circuits 191 and 192 and the wirings 193 to 196, 211, and 212 shown in FIGS. ), Switch circuits 221 and 222 and wirings 223 to 228 are provided.
  • the solid electrode 22 on the substrate 20 is electrically connected to the power supply circuit 202 via the switch circuit 221 (first switch circuit).
  • the solid electrode 72 on the substrate 70 is electrically connected to the power supply circuit 202 via the switch circuit 222 (second switch circuit).
  • a wiring 223 for applying a voltage to the solid electrode 22 is provided.
  • a wiring 224 for applying a voltage to the solid electrode 22 is provided.
  • a wiring 225 that connects the switch circuit 221 and the power supply circuit 202 is provided between the switch circuit 221 and the power supply circuit 202.
  • a wiring 226 that connects the switch circuit 222 and the power supply circuit 202 is provided between the switch circuit 222 and the power supply circuit 202.
  • the comb electrodes 74 and 75 on the substrate 70 are electrically connected to the power supply circuit 201 via wirings 227 and 228, respectively.
  • Embodiments 1 to 7 differences from Embodiments 1 to 7 are mainly described, and the same components as those described in Embodiments 1 to 7 have the same functions. A number is assigned and description thereof is omitted.
  • the display device 1 includes a DC voltage applying unit.
  • the shape anisotropic member 32 when the shape anisotropic member 32 is horizontally oriented, the shape anisotropic member is applied to the solid electrode on the substrate on the side to which the shape anisotropic member 32 is pasted by the DC voltage applying means.
  • a direct current voltage is applied between the solid electrodes provided on the pair of substrates so that a direct current voltage having a polarity opposite to the polarity of the charge charged on the pair 32 is applied.
  • FIG. 40 (a) and 40 (b) are cross-sectional views showing a schematic configuration of the reflective display device 1 according to the present embodiment.
  • FIG. 40 (a) shows a light absorption state
  • FIG. (B) shows a light reflection state.
  • the display device 1 shown in FIGS. 40A and 40B is electrically connected to a power supply circuit 231 as a DC voltage applying means between the solid electrode 12 on the substrate 10 and the solid electrode 22 on the substrate 20.
  • a power supply circuit 231 as a DC voltage applying means between the solid electrode 12 on the substrate 10 and the solid electrode 22 on the substrate 20.
  • 9A and 9B in Embodiment 2 except that the switch circuit 232 and the wiring 233 are provided, and the shape anisotropic member 32 includes negatively charged metal flakes. It has the same configuration as the display device 1 shown in b).
  • DC voltage application means is provided on the solid electrodes 12 and 22 on the upper and lower substrates 10 and 20, and as shown in FIG. That is, a positive DC voltage is applied to the upper solid electrode 12 as a DC offset voltage at the same time as an AC voltage is applied between the solid electrodes 12 and 22. Accordingly, the shape anisotropic member 32 that is negatively charged by dielectrophoresis can be drawn toward the upper substrate 10 side. Therefore, even when metal flakes are used as the shape anisotropic member 32, the shape anisotropic member 32 can be laterally oriented so as to stick to one of the pair of substrates 10 and 20. At this time, it can be horizontally oriented so as to stick to the upper substrate 10 against gravity.
  • the magnitude relationship between the magnitude of the AC voltage applied between the solid electrodes 12 and 22 and the magnitude of the DC voltage is not particularly limited.
  • the DC voltage may remain applied when a lateral electric field is applied, but may not be applied as shown in FIG.
  • the shape anisotropic member 32 is vertically oriented by the transverse electric field.
  • the shape anisotropic member 32 is present on the side of the substrate 20 facing the comb electrodes 14 and 15, the substantial transverse electric field is weak. Become. For this reason, it is preferable to orient the shape anisotropic member 32 so that it sticks to the board
  • the relay circuits 41 and 51, the power supply circuit 61, and the wirings 42 to 44 and 52 to 54 function as an electric field application direction changing circuit that changes the direction of the electric field applied to the light modulation layer 30.
  • the direction of the electric field applied to the light modulation layer 30 is changed, it functions as a voltage application circuit that selectively applies an AC voltage to the solid electrodes 12 and 22.
  • a switching circuit selection circuit in which the relay circuits 41 and 51 select (switch) an electrode to which an AC voltage is applied from the solid electrodes 12 and 22 and the comb-tooth electrodes 14 and 15 provided on the substrates 10 and 20.
  • the power supply circuit 231, the switch circuit 232, and the wiring 233 function as DC voltage application means.
  • the display device 1 when the display device 1 is a reflection type as described above, regular reflection or scattering is performed on the back side of the display panel 2 instead of the light absorption layer (the light absorption layer 76 or the light absorption layer 23).
  • the light absorption layer the light absorption layer 76 or the light absorption layer 23.
  • a reflective light reflecting layer is provided and irregularities are formed on the flakes, a structural color display by the flakes can be performed in the horizontal orientation, and a reflective display by the reflective layer can be performed in the vertical orientation.
  • FIG. 41 (a) and 41 (b) are cross-sectional views showing a schematic configuration of the reflective display device 1 according to this modification.
  • FIG. 41 (a) shows a light absorption state
  • FIG. (B) shows a light reflection state.
  • the shape anisotropic member 32 can be laterally oriented by a lateral electric field and simultaneously attracted to the upper substrate 10 by electrophoresis.
  • the shape anisotropic member 32 is present on the substrate 20 side facing the comb electrodes 14 and 15, the substantial transverse electric field is weakened. For this reason, it is preferable to orient the shape anisotropic member 32 so that it sticks to the board
  • the shape anisotropic member 32 is oriented so as to be attached to the upper substrate 10 by the lateral electric field by the comb electrodes 14 and 15 while being collected on the upper substrate 10 side by a DC voltage. Can do. For this reason, according to this modification, the shape anisotropic member 32 can be efficiently attached to the upper substrate 10.
  • the DC voltage when a vertical electric field is applied, the DC voltage may be applied, but as shown in FIG. 41A, the DC voltage may not be applied.
  • the relay circuits 41 and 51, the power supply circuit 61, and the wirings 42 to 44 and 52 to 54 function as an electric field application direction changing circuit that changes the direction of the electric field applied to the light modulation layer 30.
  • the relay circuits 41 and 51 select (switch) an electrode to which an AC voltage is applied from the solid electrodes 12 and 22 and the comb-tooth electrodes 14 and 15 provided on the substrates 10 and 20.
  • the power circuit 231, the switch circuit 232, and the wiring 233 function as a DC voltage application unit.
  • a case where a DC voltage applying unit is provided in the display device 1 shown in FIGS. 9A and 9B in the second embodiment is mainly given as an example. explained. However, the present embodiment is not limited to this, and the same modification may be made to the other display device 1 described in the second embodiment or the display device 1 described in the other embodiment. .
  • the comb electrode is provided on one of the pair of substrates, the deformation can be performed by the same method as described above.
  • a modified example in which comb electrodes are provided on a pair of substrates will be described.
  • FIG. 42 (a) to (c) are cross-sectional views showing a schematic configuration of the display device 1 according to this modification.
  • FIG. 42 (a) shows a light absorption state
  • FIG. Indicates a light reflection state by scattering
  • FIG. 42B shows a light reflection state by mirror reflection.
  • the display device 1 shown in FIGS. 42A to 42C has a DC voltage application means between the solid electrode 12 on the substrate 10 and the solid electrode 72 on the substrate 70 as shown in FIGS. And the switch circuit 242 and the wiring 243 electrically connected to the power supply circuit 241 are provided.
  • the second embodiment has the same configuration as that of the display device 1 shown in FIGS. 11A to 11C except that a negatively charged dielectric coating flake is provided.
  • an AC voltage is applied between the comb electrodes 74 and 75 in the lower substrate 70, and at the same time, the power supply circuit 241, the switch circuit 242, and the wiring 243 are applied.
  • a positive DC voltage is applied as a DC offset voltage to the solid electrode 72 on the lower substrate 70.
  • the shape anisotropic member 32 can be oriented so as to stick to the lower substrate 70 by the lateral electric field by the comb electrodes 74 and 75 while being collected on the lower substrate 70 side by the DC voltage. .
  • the AC voltage is applied between the comb electrodes 14 and 15 on the upper substrate 10, and at the same time, the power supply circuit 231, the switch circuit 232, and the wiring By 233, a positive DC voltage is applied as a DC offset voltage to the solid electrode 12 in the upper substrate 10.
  • the shape anisotropic member 32 can be oriented so as to stick to the upper substrate 10 by the lateral electric field by the comb electrodes 14 and 15 while being collected on the upper substrate 10 side by a DC voltage.
  • the magnitude of the DC voltage (DC) applied between the solid electrodes 12 and 72 is the AC voltage (AC) applied between the comb electrodes 14 and 15 or between the comb electrodes 74 and 75. ) May be the same, large or small.
  • the magnitude of the DC voltage is larger than the magnitude of the AC voltage, it is desirable to prevent the voltage difference from becoming extremely large, and it is more desirable to have the same level.
  • the DC voltage when the longitudinal electric field is applied, the DC voltage may be applied, but as shown in FIG. 42A, the DC voltage may not be applied.
  • the relay circuits 80 and 90, the power supply circuit 61, and the wirings 83 to 86 and 93 to 96 change the direction of the electric field applied to the light modulation layer 30. While functioning as an application direction changing circuit, it functions as a voltage application unit that selectively applies an AC voltage to the solid electrodes 12 and 72, the comb electrodes 14 and 15, and the comb electrodes 74 and 75, respectively. Further, the relay circuits 80 and 90 select an electrode to which an AC voltage is applied from the solid electrodes 12 and 72, the comb electrodes 14 and 15 and the comb electrodes 74 and 75 provided on the substrates 10 and 70. It functions as a (switching) switching circuit (selection circuit), and as described above, the power supply circuits 231 and 241, the switch circuits 232 and 242, and the wirings 233 and 243 function as DC voltage application means.
  • FIG. 43 (a) to 43 (d) are cross-sectional views showing a schematic configuration of the display device 1 according to this modification.
  • FIG. 43 (a) shows a light reflection state due to scattering
  • FIG. c) shows a light reflection state by mirror reflection
  • (b) and (d) in FIG. 43 show a light absorption state.
  • an alternating voltage is applied between the comb-tooth electrodes 74 and 75 on the substrate 70 on the side to which the shape anisotropic member 32 is attached, whereby the comb
  • the shape anisotropic member 32 can be vertically oriented by a lateral electric field generated by the tooth electrodes 74 and 75.
  • the magnitude relationship between the magnitude of the AC voltage applied between the solid electrodes 12 and 72 and the magnitude of the DC voltage is not particularly limited.
  • the AC voltage is applied only between the comb electrodes 14 and 15 in the substrate 10 on the side to which the shape anisotropic member 32 is attached.
  • An alternating voltage may be applied between the comb-tooth electrodes 14 and 15 and between the comb-tooth electrodes 74 and 75 on the substrates 10 and 70.
  • the shape anisotropic member 32 is positively charged, and a negative DC voltage is applied to the upper solid electrode 12 as a DC offset voltage. Also good.
  • the negative side of the power supply circuit 62 may be connected to the solid electrode 12 and the positive side may be connected to the solid electrode 22.
  • the shape anisotropic member 32 is attached to the substrate 10 by making the polarity of the electric charge charged to the solid electrode 12 and the polarity of the electric charge charged to the shape anisotropic member 32 different from each other. Can be made.
  • the thickness (cell thickness) of the light modulation layer is preferably a thickness sufficient for the flakes to be longitudinally oriented, for example, as shown in FIG. 1 (b), but is not limited thereto. However, the thickness may be such that it remains at an intermediate angle (oblique orientation).
  • 19 (a) and 19 (b) are cross-sectional views showing a schematic configuration when the cell thickness is reduced in the display panel 2 shown in FIGS. 8 (a) and 8 (b).
  • the black light absorption layer 76 is provided on the back side of the display panel 2
  • the medium 31 having a refractive index of 1.5 is used for the light modulation layer 30.
  • the cell thickness is set so that the angle ⁇ between the normal direction of the display panel surface and the normal direction of the flake surface is 42 degrees or more, as shown in FIG. Thereby, since the light reflected by the flakes is not emitted at least directly from the substrate on the viewer side, black display can be appropriately performed.
  • 21 (a) and 21 (b) are cross-sectional views showing a method for manufacturing a display panel in which a part of flakes is fixed to a substrate.
  • the insulating layer 16 may be an inorganic insulating film made of an inorganic insulating material such as silicon nitride or silicon dioxide, or an organic insulating film made of an organic insulating material (resin material) such as an acrylic resin. Also good.
  • the thickness of the insulating layer 16 is not particularly limited as long as it can be insulated so that the comb electrodes 14 and 15 and the flakes do not conduct.
  • the thickness of the substrate 10 increases as the thickness of the insulating layer 16 increases, reducing the thickness of the insulating layer 16 to such an extent that sufficient insulation between the comb electrodes 14 and 15 and the flakes can be ensured. This is desirable for reducing the thickness of the panel 2.
  • an aluminum layer is formed on the insulating layer 16 by vapor deposition so as to cover the first resist layer, and the aluminum is fixed to the substrate as shown in FIG.
  • the second resist layer is patterned.
  • this composite layer is etched with an etching solution made of, for example, phosphoric acid, nitric acid, and acetic acid so that the aluminum in the hatched portion in FIG. 21 (a) is removed.
  • an etching solution made of, for example, phosphoric acid, nitric acid, and acetic acid so that the aluminum in the hatched portion in FIG. 21 (a) is removed.
  • a part of the substrate 10 (specifically, the branch electrodes 14A and 15A in the comb-tooth electrodes 14 and 15) is obtained.
  • An aluminum molded product fixed to can be obtained.
  • the size (length, diameter) of the spacer is designed to be smaller than the length of the movable portion 32a of the flake (shape anisotropic member 32). Also good. For example, as shown in FIG. 19A, when the flakes are oriented obliquely when a vertical electric field is applied, the size of the spacer and the length d of the movable part 32a are appropriately set so as to obtain the angle ⁇ described above. That's fine.
  • the flakes are deformed as shown in FIG. 20A by applying a vertical electric field to the light modulation layer 30 by the solid electrodes 12 and 22 as in the first embodiment, and the light transmission state It can be.
  • the flakes are restored to the original shape as shown in FIG. By being deformed so as to stick to 10, it can be in a light blocking state.
  • a part (one end) of the shape anisotropic member 32 may be fixed by a string, a wire, or the like, and the flake may be rotated about the fixed end. .
  • the shape anisotropic member 32 since a part (for example, one end) of the shape anisotropic member 32 is fixed, a smaller amount of shape anisotropy is obtained as compared with the case where the shape anisotropic member 32 is dispersed in the medium 31.
  • the display area of the substrate 10 can be more reliably covered with the member 32, and when the shape anisotropic member 32 is laterally oriented, a good light blocking state or light reflecting state can be realized.
  • the insulating layer 16 is formed over the entire surface of the substrate 10 and then the surface of the insulating layer 16 is planarized.
  • the flattening is not necessarily essential. When flattening is not performed, flakes having an uneven surface can be formed. In this case, flakes having a high light scattering property can be formed.
  • flakes having a bowl shape can also be used.
  • FIGS. 8 (a) and 8 (b) are cross-sectional views showing a schematic configuration when bowl-shaped flakes are used in the display panel 2 shown in FIGS. 8 (a) and 8 (b).
  • (A) * (b) is sectional drawing which shows schematic structure at the time of using bowl-shaped flakes in the display panel 2 shown to (a) * (b) of FIG.
  • FIGS. 22A and 22B and FIGS. 23A and 23B the configurations shown in FIGS. 8A and 8B and FIGS. 10A and 10B are shown. Compared with the case of using flat (planar) flakes, the light scattering property can be improved.
  • the shape anisotropic member may be formed in a fiber shape.
  • 24 (a) and 24 (b) are cross-sectional views showing a schematic configuration when fiber flakes are used in the display panel 2 shown in FIGS. 10 (a) and 10 (b).
  • FIG. 25 is a perspective view showing a schematic configuration of a shape anisotropic member in which a reflective film is formed on a transparent cylindrical glass.
  • the fiber-like shape anisotropic member (referred to as a fiber) has a configuration in which a reflective film (metal, or metal and resin coat) is formed on transparent cylindrical glass. it can.
  • FIG. 24A shows a state in which the fiber is vertically oriented by applying a vertical electric field to the light modulation layer 30 to perform reflection display (white display).
  • the external light is scattered and reflected by the reflection film of the fiber, resulting in white display.
  • FIG. 24B shows a state in which a transmissive display (black display) is performed by laterally orienting the fiber by applying a lateral electric field to the light modulation layer 30.
  • a transmissive display black display
  • the external light is reflected by the fiber and then travels toward the substrate 10 and is absorbed by the light absorption layer 23, so that black display is obtained.
  • the method of applying an electric field to the light modulation layer is not limited to the configuration in which the shape anisotropic member is switched between the vertical alignment and the horizontal alignment, but is switched between the vertical alignment and the diagonal alignment, or switched between the horizontal alignment and the diagonal alignment. It is good also as a structure.
  • the degree of flake orientation can be controlled by, for example, the magnitude of the voltage applied between the electrodes as described above.
  • the light transmittance can be set by selecting the magnitude of the voltage applied to each electrode (in other words, the magnitude of the electric field applied to the light modulation layer) and the size and shape of the shape anisotropic member. By controlling, halftone display can be performed.
  • FIG. 26A is a diagram showing the light reflection characteristics of the conventional color filter
  • FIG. 26B is a diagram showing the light reflection characteristics of the color filter of the present invention.
  • a solid electrode and a comb-like electrode made of a conductive electrode film such as ITO or an aluminum vapor deposition layer may be formed as an electrode on the entire inner surface of the substrate sandwiching the drive layer.
  • the electrodes may be patterned so that passive display is possible.
  • an active matrix substrate such as a TFT substrate may be provided on at least one substrate.
  • a comb-tooth electrode is formed on at least one of the pair of substrates arranged opposite to each other with the light modulation layer interposed therebetween, on a solid electrode via an insulating film.
  • the comb electrode may be formed for each pixel, and can be individually controlled by a switching element such as a TFT.
  • the display panel and the display device are mainly described as examples of the light modulation panel and the light modulation device.
  • the light modulation panel and the light modulation device include a display panel and a light modulation device.
  • the present invention is not limited to a display device, and is applied to various uses such as an optical switch, an illumination element, the above-described color filter element, etc. that change the light transmittance or need to color the transmitted light. be able to.
  • the light modulation panel according to each of the above-described embodiments can be applied to a switching panel for 2D / 3D display, for example.
  • a light modulation panel having the same configuration as that of the reflective display panel 2 described in Embodiment 2 is installed as a switching panel on the front surface of a normal liquid crystal display panel.
  • flakes colored in black are arranged in a stripe shape, and in the case of 2D display, the flakes are vertically aligned so that an image displayed on the entire surface of the liquid crystal display panel can be visually recognized.
  • the flakes are horizontally oriented to form stripes, and the right image and the left image are displayed on the liquid crystal display panel to be recognized as a stereoscopic image.
  • a liquid crystal display device capable of switching between 2D display and 3D display can be realized.
  • the above-described configuration can also be applied to a multi-view display liquid crystal display device such as a dual view.
  • the light modulation panel according to the first aspect of the present invention is a light modulation panel including a pair of substrates disposed to face each other, and a light modulation layer sandwiched between the pair of substrates,
  • the light modulation layer includes a plurality of shape anisotropic members that change the area of a projected image viewed from the normal direction of the substrate by rotating or deforming according to the direction of an electric field, and a medium.
  • Each of the substrates includes a solid electrode, and at least one of the pair of substrates is provided with at least one comb-like electrode on the solid electrode via an insulating layer. And an electric field application direction changing circuit for changing the direction of the electric field applied to the light modulation layer.
  • the light modulation panel is provided with a pair of opposed uniform solid electrodes on a pair of opposed substrates.
  • a uniform vertical electric field that is, the pair of substrates Due to the uniform electric field in the direction perpendicular to the substrate, there is no weak electric field region as in Patent Document 1, and the shape anisotropic member does not aggregate.
  • At least one comb-like electrode is provided on at least one of the pair of substrates, and the comb-shaped electrode is parallel to the pair of substrates.
  • a transverse electric field in any direction can be formed. For this reason, a spacer having a very complicated configuration is not required to provide an electrode for applying a lateral electric field as in Patent Document 2, and a simple configuration can be achieved.
  • the light modulation panel according to aspect 2 of the present invention is the light modulation panel according to aspect 1, wherein the electric field application direction changing circuit selects an electrode to which a voltage is applied from the electrodes provided on the pair of substrates. It is preferable that a selection circuit is provided.
  • the direction of the electric field applied to the light modulation layer can be easily changed by selecting an electrode to which a voltage is applied from among the electrodes provided on the pair of substrates by a selection circuit. Can do.
  • the light modulation panel according to aspect 4 of the present invention is the light modulation panel according to aspect 3, in which the shape anisotropic member has a charging property, and the selection circuit is between the solid electrodes provided on the pair of substrates, and Selecting an electrode to which an AC voltage is applied so that an AC voltage is applied between any one of the comb-shaped electrodes provided on the same substrate among the pair of substrates;
  • DC voltage application means for applying a DC voltage between the solid electrodes provided on the pair of substrates so that a DC voltage having a polarity opposite to the polarity of the charge charged to the shape anisotropic member is applied.
  • the shape anisotropic member When aligning the direction parallel to the substrate surface of the substrate, it is preferred to paste the shape anisotropy member on one substrate out of the pair of substrates
  • the shape anisotropic member when the shape anisotropic member is horizontally oriented, the shape anisotropy is applied to any one of the pair of substrates regardless of the type of the shape anisotropic member.
  • a member can be affixed efficiently.
  • the light modulation panel according to aspect 5 of the present invention is the light modulation panel according to aspect 2, wherein the selection circuit is provided between the solid electrodes provided on the pair of substrates and on the same substrate of the pair of substrates. It is preferable to select an electrode to which a voltage is applied so that a voltage is applied between any one of the comb-like electrode and the solid electrode.
  • the direction of the electric field applied to the light modulation layer can be easily changed by selecting an electrode to which a voltage is applied from among the electrodes provided on the pair of substrates by the selection circuit.
  • a longitudinal electric field is applied to the light modulation layer (for example, when the shape anisotropic member is vertically oriented by the vertical electric field and the shape anisotropic member is horizontally oriented by the transverse electric field, the above-mentioned shape difference is applied.
  • a lateral electric field is applied to the light modulation layer (for example, the shape anisotropic member is longitudinally aligned in the vertical electric field and the horizontal direction is applied).
  • the shape anisotropic member is laterally oriented by an electric field, the configuration of the selection circuit for selectively switching each of the electrodes when the shape anisotropic member is laterally oriented) is simplified. be able to.
  • the light modulation panel according to aspect 6 of the present invention is the light modulation panel according to aspect 1, wherein the plurality of comb-like electrodes are provided on at least one of the pair of substrates, and the light modulation layer is driven (that is, When a voltage is applied to the light modulation panel, in other words, when the light modulation panel is powered on, the electric field generated between the solid electrodes provided on the light modulation layer and the pair of substrates, respectively.
  • the electric field generated between any one of the comb-shaped electrodes provided on the same substrate is always applied, and the electric field application direction is changed.
  • a voltage application that selectively applies a voltage that generates an electric field stronger than the electric field generated between the one electrode to the other electrode. Equipped with circuit It is preferred that.
  • the electric field applied to the light modulation layer is selectively applied between the other electrodes by selectively applying an electric field stronger than the electric field generated between the one electrode by the voltage application circuit.
  • the direction can be easily changed.
  • the direction of the shape anisotropic member is determined by the balance of strength between the vertical electric field and the horizontal electric field. For this reason, halftone display is facilitated by adjusting (controlling) the magnitude of the voltage applied between the other electrodes.
  • the light modulation panel is preferably a display panel.
  • the light transmittance can be changed by changing the direction of the electric field applied to the light modulation layer. Further, since the polarizing plate of the liquid crystal display panel can be omitted as compared with the liquid crystal display device, the light use efficiency can be improved. Therefore, a display panel with high light utilization efficiency can be realized with a simple configuration.
  • the shape anisotropic member is preferably made of a reflective material.
  • the incident light incident on the light modulation layer is formed when the shape anisotropic member is vertically aligned (for example, the shape anisotropic member is vertically aligned by a vertical electric field and the shape anisotropic member is horizontally aligned by a horizontal electric field.
  • the light modulation layer is directly transmitted or reflected by the reflecting surface of the shape anisotropic member that is oriented obliquely with respect to the substrate surfaces of the pair of substrates. Then, the light is transmitted through the light modulation layer toward the substrate opposite to the incident light incident side. For this reason, depending on the configuration of the substrate opposite to the incident light incident side, the light transmitted through the light modulation layer is absorbed or transmitted through the substrate, whereby transmissive display is performed.
  • the shape anisotropic member is horizontally oriented (for example, when the shape anisotropic member is vertically oriented by a vertical electric field and when the shape anisotropic member is horizontally oriented by a horizontal electric field, a horizontal electric field is applied). Since the shape anisotropic member is horizontally oriented parallel to the substrate, the light incident on the light modulation layer is reflected by the reflection surface of the light modulation layer. Thereby, when light enters the light modulation layer from the side opposite to the viewer side, the light is blocked, and when light enters from the viewer side, reflection display is performed.
  • the reflective material include metals.
  • the light modulation panel according to Aspect 9 of the present invention is the light modulation panel according to Aspect 8, wherein the thickness of the light modulation layer is smaller than the length of the major axis of the shape anisotropic member, and the shape anisotropic member is the above. It is preferable that the light reflected by the shape anisotropic member is set to a value that is not directly emitted to the display surface side when it is obliquely oriented at a maximum angle with respect to the pair of substrates.
  • the thickness of the light modulation layer can be reduced, the light modulation panel can be thinned. Furthermore, since the movement of the shape anisotropic member accompanying voltage application can be restricted, it can be driven at higher speed.
  • the light modulation panel according to aspect 10 of the present invention is the light modulation panel according to aspect 8 or 9, wherein the light modulation panel has a colored layer formed on a substrate opposite to the display surface of the pair of substrates. Also good.
  • the light modulation panel according to aspect 11 of the present invention is the light modulation panel according to aspect 8 or 9, wherein the pair of substrates are transparent substrates, and the shape anisotropic member is formed on a substrate surface of the pair of substrates. See-through display may be performed by orienting in a direction perpendicular to the direction.
  • a see-through display panel that can observe the side opposite to the side where the viewer is present can be realized.
  • a display panel is suitable for a show window, for example.
  • the electrodes to which a voltage is applied are arranged between the comb-shaped electrodes provided on one of the pair of substrates and the other.
  • the shape anisotropic member can be switched and oriented so as to stick to the one substrate side or the other substrate side.
  • substrate can be changed.
  • the shape anisotropic member when the shape anisotropic member is oriented along the substrate opposite to the observer (that is, the back side), the observer observes that the shape anisotropic member is deposited from the observer side. Therefore, an uneven surface is formed by a plurality of shape anisotropic members, and a display with strong scattering can be obtained.
  • each shape anisotropic member when the shape anisotropic member is oriented along the substrate side on the observer side, from the observer side, the reflection surface of each shape anisotropic member causes the same plane (a flat reflection surface). ) Is observed to form. For this reason, a display with high specularity (mirror reflection) can be obtained.
  • shape anisotropic member when the shape anisotropic member is oriented parallel to the pair of substrates (lateral orientation), colored display can be performed by the shape anisotropic member.
  • the light modulation panel according to aspect 14 of the present invention is the light modulation panel according to any one of the above aspects 1 to 8, wherein the light modulation layer functions as a color filter, and the plurality of shape anisotropic members are made of a transparent resin. It is preferable that a shape anisotropic member colored in red, a shape anisotropic member colored in green, and a shape anisotropic member colored in blue are included.
  • the said light modulation panel can be used individually as a color filter element, or as a display panel integrated with a color filter element.
  • the light modulation panel according to aspect 15 of the present invention is the light modulation panel according to any one of the aspects 1 to 14, wherein the shape anisotropic member is applied when a voltage is applied between the solid electrodes provided on the pair of substrates. Oriented in a direction perpendicular to the substrate surfaces of the pair of substrates and parallel to the substrate surfaces of the pair of substrates when a voltage is applied between electrodes provided on the same substrate of the pair of substrates It is preferable to orient.
  • the light modulation panel according to aspect 16 of the present invention is the light modulation panel according to aspect 15, wherein the shape anisotropic member is a dielectric film metal, semiconductor, dielectric, dielectric multilayer film in which a dielectric film is formed on a metal surface. Or a cholesteric resin.
  • the shape anisotropic member is a dielectric film metal, semiconductor, dielectric, dielectric multilayer film in which a dielectric film is formed on a metal surface. Or a cholesteric resin.
  • the shape anisotropic member can be vertically oriented by a vertical electric field and can be horizontally oriented by a horizontal electric field.
  • the light modulation panel according to aspect 17 of the present invention is the light modulation panel according to any one of the aspects 1 to 12, wherein the shape anisotropic member is applied when a voltage is applied between the solid electrodes provided on the pair of substrates. Oriented in a direction parallel to the substrate surfaces of the pair of substrates, and a direction perpendicular to the substrate surfaces of the pair of substrates when a voltage is applied between electrodes provided on the same substrate of the pair of substrates It is preferable to orient.
  • the weak electric field region as in Patent Document 1 does not exist, and the shape anisotropic member can be laterally oriented without agglomeration. That is, in this case, no light leakage occurs because the shape anisotropic member does not aggregate during the formation of the vertical electric field.
  • the flake orientation cannot be controlled three-dimensionally as described above, whereas the comb-teeth shape is used as described above.
  • the shape anisotropic member is vertically oriented as a result of taking an electrically stable orientation. Therefore, according to the above configuration, the orientation of the shape anisotropic member can be controlled three-dimensionally, and the main surface of the shape anisotropic member is perpendicular to the pair of substrates. The orientation of the shape anisotropic member can be controlled.
  • Patent Document 1 in addition to the problem that the plate-like particles aggregate when forming the vertical electric field as described above, the plate-like particles are horizontally oriented so that their long axes are parallel to the pair of substrates. There is a problem that light leakage sometimes occurs and the contrast may be lowered.
  • the shape anisotropic member is made of only a metal.
  • the shape anisotropic member By forming the shape anisotropic member only with metal, as described above, the shape anisotropic member can be horizontally oriented by a vertical electric field and vertically oriented by a horizontal electric field.
  • the shape anisotropic member is made of only metal, light interference caused by, for example, a dielectric is eliminated. Therefore, the color of light does not change depending on the direction of the shape anisotropic member, and the viewing angle characteristics are improved. Further, since light absorption by the dielectric or the like is eliminated, the reflectance is improved. Further, by forming the shape anisotropic member only with metal, light leakage does not occur from a portion such as a dielectric when the shape anisotropic member is horizontally oriented and aligned in parallel with the substrate. For this reason, contrast is improved.
  • the light modulation panel according to aspect 19 of the present invention is the light modulation panel according to any one of the aspects 1 to 18, wherein a part of the shape anisotropic member is a part of the other substrate in at least one of the pair of substrates. It is preferable to be fixed to the opposite surface.
  • the shape anisotropic member is dispersed in the medium when the shape anisotropic member is horizontally oriented.
  • a good light blocking state or light reflecting state can be realized with a smaller amount of shape anisotropic member.
  • the light modulation panel according to aspect 20 of the present invention is the light modulation panel according to any one of the aspects 1 to 19, wherein the shape anisotropic member is formed in at least one of a flake shape, a columnar shape, and an oval shape. It is preferable.
  • the light modulation panel according to aspect 21 of the present invention is the light modulation panel according to any one of the above aspects 1 to 20, wherein the shape anisotropic member is formed in a flake shape and has an uneven surface. It can also be.
  • the light modulation device preferably includes the light modulation panel according to any one of the above aspects 1 to 21.
  • the light modulation device includes, in the above aspect 22, further comprising a backlight for irradiating the light to the light modulation panel, reflecting the external light and performing display, and the backlight.
  • a transflective display device that performs display by switching between the reflective display mode and the transmissive display mode, and includes a transmissive display mode that performs display by transmitting irradiated light.
  • the display may be performed by reflecting the external light reflected by the shape anisotropic member, and in the transmissive display mode, display may be performed by the light from the backlight passing through the light modulation layer.
  • the present invention provides a display panel, a display device, an optical switch, a lighting element, a color filter element, etc. used in a display such as a television, and the like, which change the light transmittance or need to color the transmitted light. Can be used for applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

 光変調パネルは、ベタ電極(12)上に絶縁層(13)を介して櫛歯電極(14・15)が設けられた基板(10)と、ベタ電極(22)を備えた基板(20)と、形状異方性部材(32)を媒体(31)に分散させてなる光変調層(30)と、光変調層(30)に印加する電界の方向を変更する電界印加方向変更回路とを備えている。

Description

光変調パネルおよび光変調装置
 本発明は、光変調パネルおよび光変調装置に関するものである。
 入射光の散乱、反射および吸収を制御する光変調装置には、高いコントラストと高い光利用効率とが求められる。
 電界を印加することで光の透過率を変化させる光変調装置としては、一対の基板間に光変調層として液晶層を挟持してなる液晶パネルがよく知られている。液晶パネルは、非常に高いコントラストが得られることから、表示パネルとして好適に用いられている。
 しかしながら、バックライトから液晶パネルに入射された光の一部は、液晶パネルを透過する間に吸収あるいは反射される。特に、液晶パネルには、光の透過を制御するために、特定方向の偏光成分のみを透過させる偏光板が、一対の基板における液晶層との対向面とは反対側にそれぞれ設けられている。このため、液晶パネルに入射した光は、その一部のみが偏光板を通過し、大部分の光は、偏光板によって吸収される。このため、この偏光板の光の吸収による光の損失が、光の利用効率を低下させる大きな要因となっている。
 そこで、近年、偏光板を必要としない、液晶パネルとは異なる光変調装置の開発が進められている。
 図27の(a)・(b)は、特許文献1に記載の光変調装置の動作原理を説明する断面図であり、図27の(a)は、光吸収状態の断面図を示し、図27の(b)は、光反射状態の断面図を示す。
 図27の(a)・(b)に示すように、特許文献1に記載の光変調装置は、一対の基板311・321と、両基板311・321間に導入された、金属色を有する板状粒子331を分散してなる誘電性液体330とを有する光変調セル301を備えている。これら一対の基板311・321のうち、一方の基板311には、少なくとも表示すべきパターン全部を覆うベタ状のパターン電極312が設けられている。また、他方の基板321には、櫛歯状のセグメント電極322が設けられている。
 図27の(a)に示す状態では、パターン電極312は、開閉器SW11により零電位に設定されている。この状態で、セグメント電極322に接続された開閉器SW21・SW22・SW31・SW32を電源E1・E2のプラス側に接続することにより、セグメント電極322に電源E1・E2から電圧が加えられる。
 これにより、基板321に垂直な方向の電界が発生し、板状粒子331が、基板321に垂直な方向に配向する。この状態でセグメント電極322の配設領域に光が入射すると、入射光は、板状粒子331によって殆ど吸収され、黒表示なる。
 一方、図27の(b)に示すように、開閉器SW11を開放し、所要のセグメントに対応する、開閉器SW21・SW22に接続されたセグメント電極322間に、開閉器SW21を電源E1のプラス側、開閉器SW22を電源E1のマイナス側に接続すると、開閉器SW21・SW22に接続されたセグメント電極322間に、基板321に平行な方向の電界が生じ、板状粒子331が、基板321に平行に配列する。
 これにより、開閉器SW21・SW22に接続されたセグメント電極322の配設領域に入射した光は、板状粒子331により反射されるので、開閉器SW21・SW22に接続されたセグメント電極322の配設領域では、板状粒子331に固有の色が表示される。
 また、図28の(a)・(b)は、特許文献2に記載の光変調装置の動作原理を説明する説明図であり、図28の(a)は、光透過状態の断面図を示し、図28の(b)は、光反射状態の断面図を示す。
 図28の(a)・(b)に示すように、特許文献2に記載の光変調装置は、互いに対向配置された、電極412が設けられた絶縁性透明材料からなるプレート411と、電極422が設けられた基板421と、プレート411と基板421との間の隙間を一定に維持するリブ状のスペーサ431・432を備えている。
 特許文献2に記載の光変調装置は、絶縁性流体に複数の異方反射性粒子441が懸濁された粒子懸濁442を収容するための少なくとも1つのコンパートメント401を備え、各コンパートメント401は、それぞれ、プレート411、基板421およびスペーサ431・432により規定されている。
 各スペーサ431・432の側面には、電極451・452が設けられており、各電極451・452は、パッシベーション層461・462により、プレート411および基板421に設けられた電極412・422から分離されている。
 特許文献2によれば、電極412と電極422とを接続するスイッチ471を閉状態とし、スペーサ431とスペーサ432とを接続するスイッチ472を開状態として粒子懸濁442の飽和電位以上の第1電圧V1を電極412・422に印加することで、プレート411および基板421に垂直な電界が形成される。これにより、コンパートメント401内の異方反射性粒子441がプレート411および基板421に垂直に配向して、粒子懸濁442が光透過状態になる。
 一方、電極412と電極422とを接続するスイッチ471を開状態とし、スペーサ431とスペーサ432とを接続するスイッチ472を閉状態として粒子懸濁442の飽和電位以上の第2電圧V2を電極451・452に印加することでプレート411および基板421に平行な電界が印加される。これにより、コンパートメント401内の異方反射性粒子441がプレート411および基板421に平行に配向して、粒子懸濁442が光反射状態になる。
 このような光変調装置では、光の反射と吸収とによりコントラストが良好な表示を行うことができるとともに、偏光板を使用しないため、液晶パネルと比較して、光利用効率を高めることができる。
日本国公開特許公報「特開昭49-79194号公報(1974年7月31日公開)」 日本国公開特許公報「特開2007-506151号公報(2007年3月15日公開)」
 しかしながら、特許文献1に示すようにベタ状のパターン電極312と櫛歯状のセグメント電極322との間に電圧を印加すると、光変調セル301内に不均一な電場が発生する。
 このため、板状粒子331が、その材質により、弱電場あるいは強電場領域に凝集してしまう。以下に、図29を用いて具体的に説明する。
 図29は、上記パターン電極312とセグメント電極322との間に電圧を印加したときの電気力線を示す図である。
 図29に示す斜線部分は、弱電場領域となる領域である。図29に示すような電場の分布においては、例えば、板状粒子331の誘電率を、媒体である誘電性液体330の誘電率よりも小さくした場合、板状粒子331が、誘電泳動力により上記弱電場領域に凝集してしまう。
 また、上記したように特許文献2は、リブ状のスペーサ431・432の側面の電極451・452により粒子懸濁442に横電界を印加して異方反射性粒子441をプレート411および基板421に平行な状態に戻しており、このように横電界を印加するための電極451・452を設けるために、非常に複雑な構成のスペーサ431・432を必要とする。また、電極間距離が長いため、非常に高電圧であると考えられる。
 通常、スペーサは公知のように樹脂をフォトリソ工程によりパターニングしたフォトスペーサやビーズを散布したスペーサのような単純な構成である。
 しかしながら、特許文献2では、スペーサ431・432の側面にITO(インジウム錫酸化物)をコーティングし、パターニングする必要があるとともに、それらが基板421上の電極451・452とショートしないようにパッシベーション層461・462を形成し、パターニングする必要がある。さらに、明記されていないが、これらの電極451・452を、取り出し電極やTFT(薄膜トランジスタ)に接続させる手段も必要とされる。
 また、上記したようにスペーサ431・432の側面に設けられた電極451・452間に発生する横電界では、3次元で考えると、板状粒子331の配向を制御できないという問題がある。
 板状粒子331に横電界を印加すると、板状粒子331は、その長軸が電気力線に沿うように回転する。しかしながら3次元で考えると、このときの配向は、図30に示すように、必ずしも板状粒子331の板面(フレーク面)が、プレート411および基板421に平行になるようには制限されない。
 本発明は、上記問題点に鑑みなされたものであり、その目的は、簡素で、かつ、高いコントラストで高い光利用効率が得られる光変調パネルを提供することにある。
 本発明の一態様にかかる光変調パネルは、上記の課題を解決するために、互いに対向配置された一対の基板と、上記一対の基板間に挟持された光変調層とを備えた光変調パネルであって、上記光変調層は、電界の方向に応じて回転または変形することで上記基板の法線方向から見た投影像の面積が変化する複数の形状異方性部材と、媒体とを含み、上記一対の基板は、それぞれベタ状の電極を備え、上記一対の基板のうち少なくとも一方の基板には、上記ベタ状の電極上に、絶縁層を介して、少なくとも1つの櫛歯状の電極が設けられており、上記光変調層に印加する電界の方向を変更する電界印加方向変更回路をさらに備えている。
 また、本発明の一態様にかかる光変調装置は、上記光変調パネルを備えている。
 本発明の一態様にかかる光変調パネルおよび光変調装置は、以上のように、対向する一対の基板に、対向する均一なベタ状の電極を備えているので、これらベタ状の電極間に電圧を印加すると、均一な縦電界を得ることができるとともに、上記一対の基板のうち少なくとも一方の基板上に少なくとも1つの櫛歯状の電極が設けられていることで、該櫛歯状の電極により、上記一対の基板に平行な方向の横電界を形成することができる。
 したがって、上記光変調パネルおよび光変調装置によれば、偏光板を必要とせず、簡素で、かつ、高いコントラストで高い光利用効率の光変調パネルおよび光変調装置を提供することができる。
(a)・(b)は、実施の形態1にかかる表示装置の概略構成を示す断面図である。 図1の(a)・(b)に示す櫛歯電極の概略構成を示す平面図である。 (a)は、図1の(a)における光の進行状態を示す表示パネルの要部断面図であり、(b)は、図1の(b)における光の進行状態を示す表示パネルの要部断面図である。 (a)・(b)は、図1に示す櫛歯電極間に形成される電気力線を示す断面図である。 (a)は、ベタ電極間に電圧を印加したときの平面視でのフレークの配向状態を撮影した顕微鏡写真を示す図であり、(b)は、櫛歯電極間に印加される電圧が相対的に低いときの平面視でのフレークの配向状態を撮影した顕微鏡写真を示す図であり、(c)は、櫛歯電極間に印加される電圧が相対的に高いときの平面視でのフレークの配向状態を撮影した顕微鏡写真を示す図である。 (a)・(b)は、実施の形態1にかかる他の表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態2にかかる表示装置の概略構成を示す断面図である。 (a)は、図7の(a)における光の進行状態を示す表示パネルの要部断面図であり、(b)は、図7の(b)における光の進行状態を示す表示パネルの要部断面図である。 (a)・(b)は、実施の形態2にかかる他の表示装置の概略構成を示す断面図である。 (a)は、図9の(a)における光の進行状態を示す表示パネルの要部断面図であり、(b)は、図9の(b)における光の進行状態を示す表示パネルの要部断面図である。 (a)~(c)は、実施の形態2にかかるさらに他の表示装置の概略構成を示す断面図である。 (a)は、図11の(a)における光の進行状態を示す表示パネルの要部断面図であり、(b)は、図11の(b)における光の進行状態を示す表示パネルの要部断面図であり、(c)は、図11の(c)における光の進行状態を示す表示パネルの要部断面図である。 (a)・(b)は、図7の(a)・(b)に示す表示パネルをシースルー型に構成したときの光の進行状態を示す表示パネルの要部断面図である。 (a)・(b)は、実施の形態3にかかる表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態4にかかる表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態5にかかる表示装置の概略構成を示す断面図である。 図16の(a)・(b)に示す櫛歯電極の概略構成を示す平面図である。 (a)・(b)は、実施の形態6にかかる表示装置の概略構成を示す断面図である。 (a)・(b)は、図8の(a)・(b)に示す表示パネルにおいて、セル厚を小さくした場合の概略構成を示す断面図である。 (a)・(b)は、図3の(a)・(b)に示す表示パネルにおいて、フレークの端部を基板に固定した場合の概略構成を示す断面図である。 (a)・(b)は、フレークの一部を基板に固定した表示パネルの製造方法を示す断面図である。 (a)・(b)は、図8の(a)・(b)に示す表示パネルにおいて、お椀型のフレークを用いた場合の概略構成を示す断面図である。 (a)・(b)は、図10の(a)・(b)に示す表示パネルにおいて、お椀型のフレークを用いた場合の概略構成を示す断面図である。 (a)・(b)は、図10の(a)・(b)に示す表示パネルにおいて、ファイバ状のフレークを用いた場合の概略構成を示す断面図である。 透明円柱状のガラスに反射膜を形成した形状異方性部材の概略構成を示す斜視図である。 (a)は従来のカラーフィルタにおける光の反射特性を示す図であり、(b)は本発明のカラーフィルタにおける光の反射特性を示す図である。 (a)・(b)は、特許文献1に記載の光変調装置の動作原理を説明する断面図である。 (a)・(b)は、特許文献2に記載の光変調装置の動作原理を説明する説明図である。 特許文献1におけるパターン電極とセグメント電極との間に電圧を印加したときの電気力線を示す図である。 特許文献2の問題点を模式的に説明する図である。 (a)・(b)は、実施の形態7にかかる表示装置の概略構成を示す断面図である。 (a)~(d)は、金属のみからなるフレークまたは誘電体被膜金属からなるフレークを使用した表示装置において、光変調層に、それぞれ横電界を印加したときの電気力線および等電位線を計算した結果を示すグラフである。 (a)・(b)は、実施の形態7において光変調層に電界を印加したときのフレークの挙動を模式的に示す要部断面図である。 (a)・(b)は、誘電体または誘電体被膜金属からなるフレークを用いた場合に、光変調層に電界を印加したときのフレークの挙動を模式的に示す要部断面図である。 (a)・(b)は、実施の形態7の変形例1にかかる反射型の表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態7の変形例2にかかる半透過型の表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態7の変形例3にかかるカラー表示を行う表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態7の変形例4にかかるFFS駆動を行う表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態7の変形例5にかかる反射型の表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態8にかかる表示装置の概略構成を示す断面図である。 (a)・(b)は、実施の形態8の変形例1にかかる表示装置の概略構成を示す断面図である。 (a)~(c)は、実施の形態8の変形例2にかかる表示装置の概略構成を示す断面図である。 (a)~(d)は、実施の形態8の変形例3にかかる表示装置の概略構成を示す断面図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施の形態1〕
 本発明の実施の一形態について図1の(a)・(b)~図6の(a)・(b)に基づいて説明すれば以下の通りである。
 以下、本実施の形態では、光変調装置として、表示装置を例に挙げて説明するが、本実施の形態は、これに限定されるものではない。
 <表示装置の概略構成>
 図1の(a)・(b)は、本実施の形態にかかる表示装置の概略構成を示す断面図であり、図1の(a)は、光透過状態を示し、図1の(b)は、光反射状態を示す。
 本実施の形態にかかる表示装置1は、図1の(a)・(b)に示すように、表示パネル2と、表示パネル2に光を照射するバックライト3と、図示しない駆動回路とを備え、バックライト3から出射された光を、表示パネル2を透過して表示を行う透過型の表示装置である。
 なお、バックライト3の構成は従来と同一である。したがって、バックライト3の構成については、その説明を省略する。バックライト3としては、例えば、エッジライト型や直下型の面光源装置等を適宜用いることができる。また、バックライト3の光源には、蛍光管やLED等を適宜用いることができる。
 表示パネル2は、互いに対向して配置された一対の基板10・20と、これら一対の基板10・20の間に配置された光変調層30とを備えているとともに、電圧を印加する電極を選択することで光変調層30に印加する電界の方向を切り替えるリレー回路41・51(スイッチ回路)および電源回路61を備えている。
 また、表示パネル2は、行列状に配列された多数の画素を有している。
 なお、以下では、主に、基板10(第1基板)がバックライト3側(背面側)に配され、基板20(第2基板)が表示面側(観察者側)に配されている場合を例に挙げて説明するが、後述するように、本実施の形態はこれに限定されるものではない。
 以下に、上記各構成について説明する。
 <基板10>
 基板10は、アクティブマトリクス基板である。基板10は、絶縁基板11上に、図示しない、各種信号線(走査信号線、データ信号線等)、TFT(薄膜トランジスタ)等のスイッチング素子、および絶縁膜を備え、その上に、ベタ電極12(第1の電極)からなる下層電極、絶縁層13、櫛歯電極14・15(第2および第3の電極、図2参照)からなる上層電極が、この順に積層された構成を有している。
 なお、各種信号線を駆動する駆動回路(走査信号線駆動回路、データ信号線駆動回路等)の構成は、従来と同一である。
 ベタ電極12は、絶縁基板11上に、基板10における表示領域(シール剤で囲まれた領域)を覆うように、絶縁基板11における基板20との対向面のほぼ全面に渡ってベタ状に形成されている。
 また、絶縁層13は、ベタ電極12を覆うように、基板10における表示領域全体にベタ状に形成されている。
 図2は、櫛歯電極14・15の概略構成を示す基板10の平面図である。
 櫛歯電極14は、図2に示すように、パターン化された電極部14L(電極ライン)とスペース部14S(電極非形成部)とを有する櫛歯状の電極であり、より具体的には、幹電極14B(幹ライン)と、櫛歯の歯にあたる、幹電極14Bから延びる枝電極14A(分岐ライン)とで構成されている。
 同様に、櫛歯電極15は、パターン化された電極部15L(電極ライン)とスペース部15S(電極非形成部)とを有する櫛歯状の電極であり、より具体的には、幹電極15B(幹ライン)と、櫛歯の歯にあたる、幹電極15Bから延びる枝電極15A(分岐ライン)とで構成されている。
 なお、図1の(a)・(b)では、櫛歯電極14・15の断面として、枝電極14A・15Aの断面がそれぞれ図示されている。
 1つの画素内に設けられる櫛歯電極14・15の歯(枝電極14A・15A)の数(m、n)は特に限定されず、画素ピッチと、櫛歯電極14・15におけるそれぞれのL/S(つまり、ライン(電極幅)/スペース(電極間隔))との関係等において決定される。なお、ここでは、Lは、電極部14L・15Lを構成する枝電極14A・15Aの電極幅を示し、Sは、スペース部14S・15Sの幅を示す。
 但し、スペース部14S・15Sの幅は、枝電極14A・15Aの幅よりも大きく設定されており、これら櫛歯電極14・15は、図1の(a)・(b)および図2に示すように、櫛歯の歯にあたる、各櫛歯電極14・15の枝電極14A(14A1、14A2、…14Am;mは1以上の整数)と枝電極15A(15A1、15A2、…15An;nは1以上の整数)とが互いに噛み合うように交互に配置されている。
 したがって、枝電極14A・15Aの数は、実質的に、画素ピッチと、各枝電極14A・15Aの幅および隣り合う枝電極14A・15A間の電極間隔との関係等において決定される。
 なお、各枝電極14A・15Aは、それぞれ、直線状であってもよく、V字状あるいはジグザグ状に形成されていてもよい。
 櫛歯電極14・15のうち一方の櫛歯電極14(第2の電極)は、共通電極であり、表示領域の周囲に形成された共通配線に電気的に接続されている。
 また、他方の櫛歯電極15(第3の電極)は画素電極であり、図示しないドレイン電極で、信号線(走査信号線、データ信号線)およびTFT等のスイッチング素子に接続されており、映像信号に応じた信号が印加される。
 <基板20>
 基板20は対向基板であり、絶縁基板21上に、ベタ電極22(第4の電極)を備えている。
 ベタ電極22は、絶縁基板21上に、基板20における表示領域(シール剤で囲まれた領域)を覆うように、絶縁基板21における基板10との対向面のほぼ全面に渡ってベタ状に形成されている。
 <基板10・20における各層の材料並びにその形成方法>
 次に、上記基板10・20における各層の材料並びにその形成方法の一例について説明する。
 前述したように、本実施の形態にかかる表示装置1は、透過型の表示装置であり、基板10・20は、絶縁基板11・21として、例えばガラス基板等の透明基板を備えている。
 また、基板10・20における各電極、つまり、ベタ電極12・22および櫛歯電極14・15は、例えば、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、酸化亜鉛、酸化スズ等の透明導電膜により形成されている。
 これら電極を形成(積層)する方法は特に限定されるものではなく、スパッタリング法、真空蒸着法、プラズマCVD法等、従来公知の各種方法を適用することができる。また、これら電極のうち櫛歯電極14・15をパターン形成する方法も特に限定されるものではなく、フォトリソグラフィ等の公知のパターニング方法を用いることができる。
 これら電極の膜厚は特に限定されるものではないが、好適には100Å~2000Åの範囲内において設定される。
 また、絶縁層13は、例えば、窒化ケイ素や二酸化ケイ素等の無機絶縁材料からなる無機絶縁膜であってもよく、アクリル系樹脂等の有機絶縁材料(樹脂材料)からなる有機絶縁膜であってもよい。
 なお、絶縁層13の膜厚は、隣り合う電極部14L・15L間の電極間隔(すなわち、櫛歯電極14・15からなる上層電極のスペースとなる、隣り合う枝電極14A・15A間の距離)よりも小さい。
 絶縁層13の膜厚は、絶縁層13の種類(例えば無機絶縁膜であるか有機絶縁膜であるか等)にもよるが、例えば、1000Å~30000Åの範囲内において設定される。
 絶縁層13の膜厚は、絶縁層13の種類に応じて適宜設定すればよく、特に限定されるものではないが、薄い方が、後述する光変調層30における形状異方性部材32がよく動くとともに、表示パネル2の薄型化を図ることができることから好ましい。但し、格子欠陥による絶縁性不良および膜厚ムラの防止の観点からは、絶縁層13の膜厚は、1000Å以上であることが好ましい。
 絶縁層13を形成(積層)する方法は、特に限定されるものではなく、スパッタリング法、真空蒸着法、プラズマCVD、塗布等、用いる絶縁材料等に応じて、従来公知の各種方法を適用することができる。
 上述したように、ベタ電極/絶縁層/櫛歯電極からなる積層体は、例えば、導電性の電極膜からなるベタ状電極上に、上述したような無機物や樹脂等の絶縁層を形成し、その上に再度、導電性の電極膜を形成し、感光性樹脂等の公知のフォトレジストにより、上記電極膜をパターニングおよびエッチングし、上記フォトレジストを剥離して櫛歯電極を形成することで、得ることができる。
 また、セル構成の一例としては、例えば、粒径6μmのフレークを用いたとき、櫛歯電極14・15としては、電極幅3μm、電極間隔5μmであり、セル厚を50μmとして構成することができる。
 但し、必要な構成としては、これに限定されるものではない。しかしながら、好ましくは、電極幅よりも、後述する形状異方性部材32(例えばフレーク)の粒径を大きくすることで、横電界の弱い櫛歯電極上に、フレークの隙間を作り難い横配向状態を得ることができる。
 <光変調層30>
 光変調層30は、基板10・20間に設けられ、媒体31と、媒体31に含有される複数の形状異方性部材32とを備えている。
 光変調層30は、例えば、基板10と基板20とを、スペーサ(図示せず)を介してシール剤(図示せず)によって貼り合わせ、両基板10・20間の空隙に、形状異方性部材32を含む媒体31を封入することにより形成される。
 光変調層30の厚み(セル厚)は、形状異方性部材32の長軸方向の長さにより設定され、例えば、80μmに設定される。
 <形状異方性部材32>
 形状異方性部材32は、電界の方向に応じて回転または変形する、形状異方性を有する応答部材である。表示特性的には、形状異方性部材32は、平面視における(つまり、基板10・20の法線方向から見たときの)形状異方性部材32の投影像の面積(基板10・20への投影面積)が、光変調層30に電界を印加する方向に応じて変化する部材である。なお、上記投影面積比(最大投影面積:最小投影面積)は、2:1以上であることが好ましい。
 形状異方性部材32の形状並びに材質は、上述したように、電界の印加方向に応じて平面視における形状異方性部材32の投影像の面積が変化するものであれば、特に制限されない。
 形状異方性部材32の形状としては、例えば、フレーク状、円柱状、あるいは楕円球状等を採用することができる。また、形状異方性部材32の材質は、金属、半導体、誘電体、あるいは、これらの複合材料を採用することができる。また、誘電体多層膜またはコレステリック樹脂を用いることもできる。さらに、形状異方性部材32に金属を用いた場合は、一般の塗装に用いられるアルミニウムフレークを用いることができる。また、形状異方性部材32は着色されていてもよい。例えば、形状異方性部材32として、直径20μm、厚み0.3μmのアルミニウムフレークを用いることができる。
 なお、一般的なアルミニウムは、不動態である酸化アルミニウム(誘電体)を作り易い。このため、以下の説明において、単に「アルミニウムフレーク」または「Alフレーク」と記載した場合には、市販の一般的なアルミニウムフレークのように、表面に酸化アルミニウム被膜が形成されている状態のアルミニウムフレークを示すものとする。
 本実施の形態では、金属として、アルミニウムフレークのように、表面が誘電体被膜(不動態被膜)で覆われた誘電体被膜金属(不導体被膜金属)を用いる場合を例に挙げて説明する。なお、表面が誘電体被膜(不動態被膜)で覆われていない、金属のみからなるフレークを用いる場合については、後述する実施の形態において説明する。
 また、形状異方性部材32の比重は、11g/cm以下であることが好ましく、3g/cm以下さらには媒体31と同等の比重であることがより好ましい。これは、形状異方性部材32の比重が媒体31に比べて大きく異なる場合、形状異方性部材32が沈降または浮遊するという問題が生じるためである。
 また、形状異方性部材32の厚みは、特に限定されるものではないが、形状異方性部材32の厚みが薄いほど、透過率を高めることができる。したがって、形状異方性部材32の厚みは、少なくとも櫛歯電極14・15の電極間隔(電極間距離)より小さい(例えば、4μm以下である)ことが好ましく、光の波長以下である(例えば、0.5μm以下である)ことがより好ましい。
 例えば、上記形状異方性部材32としてフレークを用いたときは、その厚みが1μm以下であることが好ましく、0.1μm以下であることがより好ましい。
 <媒体31>
 媒体31は、可視光領域において透過性を有する材料であり、可視光領域において概ね吸収のない液体や、それらを色素で着色したもの等を用いることができる。また、媒体31の比重は、形状異方性部材32と同等であることが好ましい。
 また、媒体31は、セル内に封止する工程を考慮すると揮発性の低いものであることが好ましい。また、媒体31の粘度は、応答性に関与するものであり、5mPa・s以下であることが好ましく、さらに形状異方性部材32の沈降を防ぐために、0.5mPa・s以上であることが好ましい。
 また、媒体31は、単一の物質で形成されていてもよく、複数の物質の混合物で形成されていてもよい。例えば、炭酸プロピレンやNMP(Nメチル2ピロリドン)やフルオロカーボンやシリコーンオイル等を用いることができる。
 <リレー回路41・51および電源回路61>
 基板10におけるベタ電極12は、リレー回路41(第1のリレー回路)を介して電源回路61に電気的に接続されている。ベタ電極12とリレー回路41との間には、ベタ電極12に電圧を印加するための配線42が設けられている。
 また、基板20におけるベタ電極22は、リレー回路51(第2のリレー回路)を介して電源回路61に電気的に接続されている。ベタ電極22とリレー回路51との間には、ベタ電極22に電圧を印加するための配線52が設けられている。
 また、櫛歯電極14・15は、それぞれ、リレー回路41・51を介して電源回路61に電気的に接続されている。櫛歯電極14とリレー回路41との間には、櫛歯電極14に電圧を印加するための配線43が設けられている。また、櫛歯電極15とリレー回路51との間には、櫛歯電極15に電圧を印加するための配線53が設けられている。
 さらに、リレー回路41と電源回路61との間には、リレー回路41と電源回路61とを繋ぐ配線44が設けられている。リレー回路51と電源回路61との間には、リレー回路51と電源回路61とを繋ぐ配線54が設けられている。
 本実施の形態では、リレー回路41・51を用いてベタ電極12・22および櫛歯電極14・15のうち電圧を印加する電極を切り替える。
 すなわち、リレー回路41・51、電源回路61、および各配線42~44・52~54は、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、ベタ電極12・22および櫛歯電極14・15にそれぞれ選択的に電圧を印加する電圧印加部として機能する。また、上記リレー回路41・51は、上記基板10・20に設けられたベタ電極12・22および櫛歯電極14・15のなかから、電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能する。
 例えば、図1の(a)に示すように、リレー回路41を、電源回路61とベタ電極12とが接続されるように切り替えるとともに、リレー回路51を、電源回路61とベタ電極22とが接続されるように切り替えることで、光変調層30に基板10・20に垂直方向の縦電界が印加される。
 一方、図1の(b)に示すように、リレー回路41を、電源回路61と櫛歯電極14とが接続されるように切り替えるとともに、リレー回路51を、電源回路61と櫛歯電極15とが接続されるように切り替えることで、光変調層30に、基板10・20に平行方向の横電界が印加される。
 リレー回路41・51は、例えば、図示しない信号源から、電圧を印加する電極を切り替える切替信号が入力されることで、入力された切替信号に基づいて切り替えられてもよく、手動により切り替えられてもよい。
 <表示パネル2の表示方法(駆動方法)>
 次に、光変調層30による光の透過率の制御方法並びに表示パネル2の表示方法について具体的に説明する。なお、ここでは、形状異方性部材32としてフレーク状の形状異方性部材(以下、単に「フレーク」と記す)を用いた場合を例に挙げて説明する。
 図3の(a)は、図1の(a)における光の進行状態を示す表示パネル2の要部断面図であり、図3の(b)は、図1の(b)における光の進行状態を示す表示パネル2の要部断面図である。なお、図3の(a)・(b)では、リレー回路41・51および電源回路61については、図示を省略している。また、図1の(b)および図3の(b)では、一例として、フレークが基板10に貼り付くように配向した様子を示している。
 本実施の形態によれば、上述したように、ベタ電極12・22間に発生する縦電界と、櫛歯電極14・15間に発生する横電界とを可逆的に切り替えることで、形状異方性部材32の向きを可逆的に切り替える。
 例えば、図1の(a)に示すように、対向する均一なベタ電極12・22間に電圧を印加すると、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークは、その長軸が電気力線に平行になるように回転する。すなわち、フレークは、その長軸が基板10・20に垂直になるように配向(縦配向)する。これにより、バックライト3から光変調層30へ入射された光は、図3の(a)に示すように、光変調層30を透過(通過)して、観察者側に出射される。
 このとき、例えばフレークとして、アルミニウムフレーク等の金属片のように、可視光反射性のある材料を用いれば、反射平面が基板10・20に垂直になるように縦配向することで、光変調層30に入射した入射光は、光変調層30内を直接透過するか、もしくは、フレークの反射面で反射した後に、入射光の入射側とは反対側の面、つまり、表示面側に向かって透過する。
 一方、図1の(b)に示すように、互いに交互に入り組んでおり同一平面上にある櫛歯電極14・15に、一定以上の電圧を印加すると、フレークは、電気泳動力やクーロン力で説明される力により、櫛歯電極14・15間付近において、基板10に貼り付くように配向(横配向)する。
 このような横配向によれば、フレークの反射平面は基板10に平行に配向しており、入射光は、該反射平面で反射して入射光と反対側の面には透過しない。これにより、バックライト3から光変調層30へ入射された光は、上記横配向したフレークにより遮断される。
 なお、フレークの配向の程度は、印加電圧の大きさにより制御することができる。バックライト3から光変調層30へ入射された光は、印加電圧に応じて、その少なくとも一部が、フレークにより遮断される。これにより、バックライト3から光変調層30に入射された光の透過率(透過光量)を変化させることができる。
 なお、フレークを縦配向から横配向に切り替える場合、上記ベタ電極12・22間に印加する電圧と櫛歯電極14・15間に印加する電圧とを、それぞれに最適な電圧値となるように、それぞれ異なる電圧値に設定してもよい。
 しかしながら、簡便には、電源回路61から、ベタ電極12・22間に、フレークが横配向する閾値以上のある一定の電圧を印加している状態で、リレー回路を用いて、上記電圧を印加する電極を櫛歯電極14・15に切り替えれば、電圧を印加する電極を変更するだけで、フレークを、縦配向から横配向に切り替えることができる。
 図4の(a)・(b)は、櫛歯電極14・15間に形成される電気力線を示す断面図であり、図4の(a)は、櫛歯電極14・15間に印加される電圧が高いとき、図4の(b)は、櫛歯電極14・15間に印加される電圧が低いときを示す。
 図4の(a)・(b)に示すように、櫛歯電極14・15間に形成される電気力線による電気エネルギーの大きさは、櫛歯電極14・15間に印加される電圧の大きさに依存する。
 図4の(a)に示すように、櫛歯電極14・15間に印加される電圧が高いとき、例えば0.4V/μmの電圧を印加したとき、フレークは、エネルギー的に低い電気力線に完全に平行になるように配向する。
 一方、櫛歯電極14・15間に印加される電圧が相対的に低いとき、例えば0.2V/μmの電圧を印加したときには、フレークは、基板10・20の法線方向から見て電極に垂直な方向に配向しており、基板(具体的には、上記電圧が高いときにフレークが貼り付く、櫛歯電極14・15形成側の基板10)に貼り付かないものが多く含まれる。この理由は、上記配向は、基板に貼り付く配向に次いで準安定な配向であるため、低い電圧では基板に貼り付く配向に到達しないためであると考えられる。
 フレークの長軸方向は、櫛歯電極14・15間に電圧を印加することで、基板法線方向から見て櫛歯電極14・15に垂直な方向に回転する。このとき、櫛歯電極14・15間に、閾値以上の大きさの電圧を印加することで、図1の(b)および図3の(b)に示すように、フレークは、基板10に貼り付くように横配向する。
 図3の(b)に示すように、フレークが、その長軸が基板10・20に平行になるように横配向している状態では、バックライト3から光変調層30へ入射された光は、フレークにより完全に遮断され、光変調層30を透過(通過)しない。
 なお、フレークが横配向に切り替わる、つまり、フレークが、基板10・20に平行に配向するために櫛歯電極14・15間に印加される電圧(閾値)は、フレーク(形状異方性部材32)の形状および材質、媒体31の材質(材料)、櫛歯電極14・15の電極間隔(電極間距離)、光変調層30の厚み(セル厚)等により、予め決定される。
 したがって、図1の(a)・(b)および図3の(a)・(b)に示すようにフレークを回転させて横配向と縦配向とで切り替える場合、櫛歯電極14・15に、予め設定された、閾値以上の電圧を印加すればよい。
 上記閾値としては、上記したように、形状異方性部材32の形状および材質、光変調層30の厚み(セル厚)等にもよるが、例えば、0.3V/μm~1V/μmの値である。
 図5の(a)は、ベタ電極12・22間に電圧を印加したときの平面視でのフレークの配向状態を撮影した顕微鏡写真を示す図であり、図5の(b)は、櫛歯電極14・15間に印加される電圧が相対的に低いときの平面視でのフレークの配向状態を撮影した顕微鏡写真を示す図であり、図5の(c)は、櫛歯電極14・15間に印加される電圧が相対的に高いときの平面視でのフレークの配向状態を撮影した顕微鏡写真を示す図である。
 なお、ここでは、媒体31に炭酸プロピレンを使用し、形状異方性部材32に、直径6μm、厚み0.1μmのアルミニウムフレークを使用し、セル厚を79μmに設定した。また、ベタ電極12・22には、膜厚1000ÅのITOを使用し、絶縁層には、膜厚1000Å窒化ケイ素を使用し、櫛歯電極14・15には、膜厚1000ÅのITOを使用した。なお、櫛歯電極14・15の電極幅は、それぞれ3μmとした。また、隣り合う枝電極14A・15A間の電極間隔は、5μmとした。
 図5の(a)では、ベタ電極12・22間に、3Vの交流電圧(縦電界)を印加した。
 また、図5の(b)では、リレー回路41・51を切り替えて、櫛歯電極14・15間に、0.2V/μmの交流電圧(横電界)を印加した。
 図5の(c)では、櫛歯電極14・15間に、0.4V/μmの交流電圧(横電界)を印加した。
 なお、周波数は、何れも場合にも、60Hzとした。
 図5の(a)に示すように、ベタ電極12・22間に電圧を印加した場合、フレークの端面が観察されることから、前述したように、形状異方性部材32、つまり、この場合にはフレークの厚みが薄いほど、透過率を高めることができる。
 <フレークが縦配向している状態における各電極の電位>
 フレークが縦配向している状態における、ベタ電極12・22に対する櫛歯電極14・15の電位は、例えば、櫛歯電極14・15が、絶縁層13および駆動層である光変調層30における電圧降下を考慮し、櫛歯電極14・15のない同一平面上と同レベルとなるように設定することができる。
 また、別の方法として、櫛歯電極14・15の電位は、ある特定の電位に設定せず、絶縁された状態とすることができる。このとき、導体であるベタ電極12の前後、言い換えれば、ベタ電極12と櫛歯電極14・15との間に電位差は発生せず、櫛歯電極14・15が存在しないときと同様の電気力線が形成される。
 <フレークが横配向している状態における各電極の電位>
 フレークが横配向している状態における、櫛歯電極14・15に対するベタ電極12・22の電位は、例えば、0V等、櫛歯電極14・15に印加する電位の中間値に設定することができる。
 また、別の例としては、ベタ電極12・22の電位は、ある特定の電位に設定せず、絶縁された状態とすることができる。但し、この場合、外部の帯電等にフレークが影響を受けるおそれがある。
 <効果>
 上述したように、本実施の形態によれば、対向する一対の基板10・20に、対向する均一なベタ電極12・22を備えていることで、これらベタ電極12・22間に電圧を印加すると、均一な縦電界によりフレークが縦配向する。また、櫛歯電極14・15間に電圧を印加することで、フレークを完全に横配向させることができる。
 特に、本実施の形態によれば、上記各電極に、上述した電位を与えることにより、ベタ電極12・22に電圧を印加すると、概ね均一な電界を得ることができる。
 本実施の形態によれば、対向配置された基板それぞれに上記したようにベタ電極12・22が形成されていることで、縦電界形成時に、特許文献1のような弱電場領域が存在せず、フレークが凝集することなく、縦配向する。
 また、特許文献2のように横電界を印加するための電極をスペーサに設けた場合、前述したように、三次元的にフレークの配向を制御することができないのに対し、本実施の形態のように櫛歯電極により横電界を印加した場合、フレークは、電気的に安定な配向をとった結果、横配向する。このため、本実施の形態によれば、三次元的にフレークの配向を制御することができ、フレーク面を基板と平行になるようにフレークの配向を制御することができる。
 したがって、本実施の形態によれば、偏光板を必要とせず、簡素で、かつ、高いコントラストで高い光利用効率の表示パネル2および表示装置1を提供することができる。
 <基板配置の変形例>
 図6の(a)・(b)は、本実施の形態にかかる他の表示装置1の概略構成を示す断面図であり、図6の(a)は、光透過状態を示し、図6の(b)は、光反射状態を示す。
 なお、図1の(a)・(b)では、櫛歯電極14・15が設けられた基板10が、バックライト3側に配され、基板10に対向する基板20が表示面側に配されている場合を例に挙げて説明した。しかしながら、本実施の形態はこれに限定されるものではなく、図6の(a)・(b)に示すように、基板20がバックライト3側に配され、基板10が表示面側に配されていてもよい。この場合は、図6の(b)に示すように、フレーク(形状異方性部材32)が貼り付く基板が、図1の(a)・(b)に示すように基板10・20を配置した場合とは逆になる。
 <ベタ電極12の変形例>
 なお、本実施の形態では、ベタ電極12が、絶縁基板11における基板20との対向面のほぼ全面に渡ってベタ状に形成されている場合を例に挙げて説明した。
 しかしながら、ベタ電極12は、画素毎に区切られていてもよい。この場合、ベタ電極12は、櫛歯電極14とは別のTFT等のスイッチング素子に接続されており、映像信号に応じた信号が印加される。
 このように、上記ベタ電極12は、光変調装置が表示装置であり、複数の表示領域(画素領域)を備えている場合、各表示領域(各画素領域)において、ベタ状に形成されていればよい。
 〔実施の形態2〕
 本発明の他の実施の形態について、図7の(a)・(b)~図13の(a)・(b)に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1との相違点について説明するものとし、実施の形態1で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <表示装置の概略構成>
 図7の(a)・(b)は、本実施の形態にかかる表示装置1の概略構成を示す断面図であり、図7の(a)は、光吸収状態を示し、図7の(b)は、光反射状態を示す。
 本実施の形態にかかる表示装置1は、図7の(a)・(b)に示すように、表示パネル2と、図示しない駆動回路とを備え、表示パネル2に入射された外光を反射して表示を行う反射型の表示装置である。
 表示パネル2は、互いに対向して配置された一対の基板70・20と、これら一対の基板70・20の間に配置された光変調層30とを備えているとともに、電圧を印加する電極を選択することで光変調層30に印加する電界の方向を切り替えるリレー回路41・51および電源回路61を備えている。
 なお、本実施の形態でも、表示パネル2は、行列状に配列された多数の画素を有しているものとする。また、以下では、主に、基板70(第1基板)が背面側に配され、基板20(第2基板)が表示面側(観察者側)に配されている場合を例に挙げて説明するが、後述するように、本実施の形態はこれに限定されるものではない。
 上述したように、本実施の形態にかかる表示装置1は、反射型の表示装置であることから、表示面側の基板における絶縁基板および電極がそれぞれ透明基板および透明電極で形成されていれば、背面側における絶縁基板および電極は、必ずしも透明である必要はなく、非透明であってもよい。そのような絶縁基板および電極は、特に限定されるものではなく、公知の表示装置において絶縁基板および電極に用いられている一般的な材料を使用することができる。一例として、上記電極には、例えばアルミ蒸着層を用いることができる。
 なお、以下の説明では、基板10・20における絶縁基板11・21、ベタ電極12・22、櫛歯電極14・15に、実施の形態1と同じく、透明基板および透明電極を使用する場合を例に挙げて説明する。
 図7の(a)・(b)に示す表示パネル2は、基板10に代えて基板70を用いたことを除けば、図1の(a)・(b)に示す表示パネル2と同様の構成を有している。
 基板70は、図1の(a)・(b)に示す基板10におけるベタ電極12の下層に、光吸収層として光吸収層76が設けられていることを除けば、図1の(a)・(b)に示す表示パネル2と同様の構成を有している。
 すなわち、本実施の形態にかかる基板70は、絶縁基板71上に、図示しない、各種信号線(走査信号線、データ信号線等)、TFT等のスイッチング素子、および絶縁膜を備え、その上に、光吸収層76、ベタ電極72(第1の電極)からなる下層電極、絶縁層73、櫛歯電極74・75(第2および第3の電極)からなる上層電極が、この順に積層された構成を有している。
 なお、絶縁基板71、ベタ電極72、絶縁層73、櫛歯電極74・75は、説明の便宜上、番号を変更しているが、それぞれ、図1の(a)・(b)に示す表示パネル2における絶縁基板11、ベタ電極12、絶縁層13、櫛歯電極14・15と同じである。
 したがって、本実施の形態では、実施の形態1における、絶縁基板11、ベタ電極12、絶縁層13、櫛歯電極14・15の説明を、そのまま絶縁基板71、ベタ電極72、絶縁層73、櫛歯電極74・75に読み替えて適用することができる。
 なお、勿論、櫛歯電極14・15における、電極部14L・15L、スペース部14S・15S、幹電極14B・15B、枝電極14A・15Aの説明を、櫛歯電極74・75における、電極部74L・75L、スペース部74S・75S、幹電極74B・75B、枝電極74A・75Aと読み替えて適用することができることは、言うまでもない。
 したがって、本実施の形態では、これら絶縁基板71、ベタ電極72、絶縁層73、櫛歯電極74・75に対する説明を省略する。
 <光吸収層76および表示パネル2の表示方法(駆動方法)>
 光吸収層76は、該光吸収層76に入射された光のうち、少なくとも一定範囲の波長の光を吸収する性質を有している。光吸収層76は、着色されていてもよく、例えば黒色に着色されている。
 ここで、上記表示パネル2の表示方法について具体的に説明する。なお、本実施の形態でも、形状異方性部材32としてフレークを用いた場合を例に挙げて説明する。
 図8の(a)は、図7の(a)における光の進行状態を示す表示パネル2の要部断面図であり、図8の(b)は、図7の(b)における光の進行状態を示す表示パネル2の要部断面図である。なお、図8の(a)・(b)でも、リレー回路41・51および電源回路61については、図示を省略している。また、図7の(b)および図8の(b)でも、一例として、フレークが基板70に貼り付くように配向した様子を示している。
 本実施の形態でも、実施の形態1同様、ベタ電極72・22間に発生する縦電界と、櫛歯電極74・75間に発生する横電界とを可逆的に切り替えることで、形状異方性部材32の向きを可逆的に切り替える。
 図7の(a)に示すように、対向する均一なベタ電極72・22間に電圧を印加すると、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークは、その長軸が電気力線に平行になるように回転して縦配向する。
 このため、図8の(a)に示すように、光変調層30に入射した外光は、光変調層30を透過(通過)し、光吸収層76に吸収される。これにより、観察者からは、光吸収層76の黒色が観察される(黒表示)。
 一方、図7の(b)に示すように、互いに交互に入り組んでおり同一平面上にある櫛歯電極74・75に、一定以上の電圧を印加すると、フレークは、図1の(a)・(b)に示す表示パネル2と同様に、電気泳動力やクーロン力で説明される力により、櫛歯電極74・75間付近において、基板70に貼り付くように横配向する。このため、図8の(b)に示すように、光変調層30に入射した外光は、フレークにより、入射光の入射側、つまり、表示面側に反射される。これにより、反射表示を実現できる。
 このように、表示パネル2の背面側(つまり、観察者から見て背面側の基板70におけるベタ電極72の裏面側)に着色層(光吸収層76)を設けると、フレークが横配向のときはフレークの反射色が観察され、縦配向のときは着色層が観察される。例えば、着色層を、上述したように黒色とし、フレークを金属片としたときは、横配向のときに金属片の反射が得られ、縦配向のときは黒表示が得られる。
 さらに、このとき、フレーク(金属片)を例えば平均粒径(D50)が20μm以下のサイズに形成したり、フレークの表面を、光散乱性を有するように凹凸状に形成したり、フレークの輪郭を、凹凸を有する激しい形状にすることにより、反射光が散乱し、白表示を得ることができる。
 上記着色層(光吸収層76)の材料としては、特に限定されるものではないが、例えば、黒色レジスト等が挙げられる。
 また、上記着色層の厚みは、着色層の材料等に応じて適宜設定すれよく、特に限定されるものではないが、例えば、1μm~10μmの範囲であることが、十分な着色性を得ることができることから好ましい。
 また、上記凹凸の大きさは、特に限定されるものではないが、上記凹凸をその上方から見たとき、つまり、平面視での凸部の底面の最大幅(径)および凹部の最大開口幅(径)が0.1μm~50μmの範囲内であり、上記凸部および凹部の高さ(深さ)が0.1μm~10μmの範囲内であることが、十分な散乱を得ることができることから好ましい。
 なお、上記平均径は、レーザ回折・散乱法により測定することができる。また、凹凸の大きさは、共焦点レーザ顕微鏡により測定することができる。
 なお、上述したように、図8の(b)では、フレークが基板70に貼り付くように配向した様子を示している。
 このように、観察者から見て背面側に、櫛歯電極74・75を有する基板70を設け、フレークを、この背面側の基板70側に配向させる構成では、観察者側からはフレークが堆積しているように観察される。このため、この場合、基板70の表面に、堆積した複数のフレークにより凹凸面が形成され、散乱の強い表示を得ることができる。
 <表示装置の変形例1>
 図9の(a)・(b)は、本実施の形態にかかる他の表示装置1の概略構成を示す断面図であり、図9の(a)は、光吸収状態を示し、図9の(b)は、光反射状態を示す。
 また、図10の(a)は、図9の(a)における光の進行状態を示す表示パネル2の要部断面図であり、図10の(b)は、図9の(b)における光の進行状態を示す表示パネル2の要部断面図である。なお、図10の(a)・(b)でも、リレー回路41・51および電源回路61については、図示を省略している。また、図9の(b)および図10の(b)でも、一例として、フレークが基板70に貼り付くように配向した様子を示している。
 図9の(a)・(b)および図10の(a)・(b)は、櫛歯電極14・15が設けられた基板10が、観察者側である表示面側に配され、基板10に対向する基板20が、観察者からみて背面側に配されている場合を示している。
 図9の(a)・(b)および図10の(a)・(b)に示す表示パネル2は、基板20におけるベタ電極22の下層に、光吸収層として光吸収層23が設けられていることを除けば、図6の(a)・(b)に示す表示パネル2と同様の構成を有している。
 すなわち、本変形例にかかる表示パネル2は、基板10が、図1の(a)・(b)および図6の(a)・(b)に示す表示パネル2に示す基板10と同様の構成を有している一方、基板20が、絶縁基板21上に、光吸収層23、ベタ電極22(第4の電極)が、この順に設けられている構成を有している。
 なお、上記光吸収層23は、基板20におけるベタ電極22の下層に設けられている点を除けば、光吸収層76と同じである。したがって、ここでは、光吸収層76の説明を、そのまま光吸収層23に読み替えて適用するものとし、光吸収層23に関する説明を省略する。
 このように、観察者側に櫛歯電極14・15を有する基板10を設け、フレークを、この観察者側の基板10側に配向させる構成では、媒体31中に含有されるフレーク(形状異方性部材32)の量が多く、フレークを横配向させたときに基板10の表面をフレークで覆うことができる場合、つまり、例えば、媒体31中に、フレークを横配向させたときに基板10における基板20との対向面を一層のフレークで覆うために必要な量を超える程度の量のフレークが含まれている場合、観察者側からは、それぞれのフレークの反射面により、同一平面(面一状の反射面)が形成されるように観察される。このため、鏡面性の高い表示(ミラー反射光、ミラー反射表示)を得ることができる。
 <表示装置の変形例2>
 図11の(a)~(c)は、本実施の形態にかかるさらに他の表示装置1の概略構成を示す断面図であり、図11の(a)は、光吸収状態を示し、図11の(b)は、散乱による光反射状態を示し、図11の(b)は、ミラー反射による光反射状態を示す。
 本変形例における表示パネル2は、互いに対向して配置された一対の基板10・70と、これら一対の基板10・70の間に配置された光変調層30とを備えているとともに、電圧を印加する電極を選択することで光変調層30に印加する電界の方向を切り替えるリレー回路80・90(スイッチ回路)および電源回路61を備えている。
 すなわち、本変形例では、対向する一対の基板10・70が、それぞれTFT基板等のアクティブマトリクス基板である場合を示している。
 この場合、図11の(a)~(c)に示すように、ベタ電極72の下側に光吸収層76が設けられた基板70が、観察者からみて背面側に配され、光吸収層が設けられていない基板10が、観察者側である表示面側に配される。
 なお、基板10および基板70については、既に説明済みであるため、ここでは、その説明を省略する。
 (リレー回路80・90)
 本変形例2で用いられるリレー回路80(第1のリレー回路)は、互いに電気的に接続された、第1のリレー回路部81(第1のスイッチ回路部)と、第2のリレー回路部82(第2のスイッチ回路部)とを備えている。
 同様に、本実施の形態で用いられるリレー回路90(第2のリレー回路)は、互いに電気的に接続された、第3のリレー回路部91(第3のスイッチ回路部)と、第4のリレー回路部92(第4のスイッチ回路部)とを備えている。
 基板70におけるベタ電極72は、リレー回路80、すなわち、第1のリレー回路部81および第2のリレー回路部82を介して、電源回路61に電気的に接続されている。ベタ電極72とリレー回路80との間には、ベタ電極72に電圧を印加するための配線83が設けられている。
 基板10におけるベタ電極12は、リレー回路90、すなわち、第3のリレー回路部91および第4のリレー回路部92を介して、電源回路61に電気的に接続されている。ベタ電極12とリレー回路90との間には、ベタ電極12に電圧を印加するための配線93が設けられている。
 櫛歯電極74・75は、それぞれ、リレー回路80における第2のリレー回路部82、リレー回路90における第4のリレー回路部92を介して、電源回路61に電気的に接続されている。櫛歯電極74とリレー回路80における第1のリレー回路部81との間には、櫛歯電極74に電圧を印加するための配線84が設けられている。また、櫛歯電極75とリレー回路90における第3のリレー回路部91との間には、櫛歯電極75に電圧を印加するための配線94が設けられている。
 櫛歯電極14・15は、それぞれ、リレー回路80における第2のリレー回路部82、リレー回路90における第4のリレー回路部92を介して、電源回路61に電気的に接続されている。櫛歯電極14とリレー回路80における第2のリレー回路部82との間には、櫛歯電極14に電圧を印加するための配線85が設けられている。また、櫛歯電極15とリレー回路90における第4のリレー回路部92との間には、櫛歯電極15に電圧を印加するための配線95が設けられている。
 さらに、リレー回路80における第2のリレー回路部82と電源回路61との間には、該第2のリレー回路部82と電源回路61とを繋ぐ配線86が設けられている。リレー回路90における第4のリレー回路部92と電源回路61との間には、該第4のリレー回路部92と電源回路61とを繋ぐ配線96が設けられている。
 本実施の形態では、リレー回路80・90を用いて、ベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75のうち電圧を印加する電極を切り替える。
 すなわち、リレー回路80・90、電源回路61、および各配線83~86・93~96は、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、ベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75にそれぞれ選択的に電圧を印加する電圧印加部として機能する。また、上記リレー回路80・90は、上記基板10・70に設けられたベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75のなかから、電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能する。
 例えば、図11の(a)に示すように、リレー回路80(第1のリレー回路部81および第2のリレー回路部82)を、電源回路61とベタ電極72とが接続されるように切り替えるとともに、リレー回路90(第3のリレー回路部91および第4のリレー回路部92)を、電源回路61とベタ電極12とが接続されるように切り替えることで、光変調層30に基板10・70に垂直方向の縦電界が印加される。
 これにより、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークは、その長軸が電気力線に平行になるように回転して縦配向する。
 また、図11の(b)に示すように、リレー回路80を、電源回路61と櫛歯電極74とが接続されるように切り替えるとともに、リレー回路90を、電源回路61と櫛歯電極75とが接続されるように切り替えることで、光変調層30に、基板70に平行方向の横電界が印加される。
 このように、背面側の基板70における、互いに交互に入り組んでおり同一平面上にある櫛歯電極74・75に、一定以上の電圧を印加すると、フレークは、電気泳動力やクーロン力で説明される力により、この櫛歯電極74・75間付近において、基板70に貼り付くように配向(横配向)する。
 また、図11の(c)に示すように、リレー回路80を、電源回路61と櫛歯電極14とが接続されるように切り替えるとともに、リレー回路90を、電源回路61と櫛歯電極15とが接続されるように切り替えることで、光変調層30に、基板10に平行方向の横電界が印加される。
 このように、表示面側の基板10における、互いに交互に入り組んでおり同一平面上にある櫛歯電極14・15に、一定以上の電圧を印加すると、フレークは、電気泳動力やクーロン力で説明される力により、この櫛歯電極14・15間付近において、基板10に貼り付くように配向(横配向)する。
 なお、本実施の形態でも、リレー回路80・90における、第1のリレー回路部81、第2のリレー回路部82、第3のリレー回路部91、第4のリレー回路部92は、例えば、図示しない信号源から、電圧を印加する電極を切り替える切替信号が入力されることで、入力された切替信号に基づいて切り替えられてもよく、手動により切り替えられてもよい。
 (本変形例2における表示パネル2の表示方法(駆動方法))
 図12の(a)は、図11の(a)における光の進行状態を示す表示パネル2の要部断面図であり、図12の(b)は、図11の(b)における光の進行状態を示す表示パネル2の要部断面図であり、図12の(c)は、図11の(c)における光の進行状態を示す表示パネル2の要部断面図である。
 なお、図12の(a)~(c)でも、リレー回路80・90および電源回路61については、図示を省略している。また、図11の(b)および図12の(b)では、一例として、フレークが基板70に貼り付くように配向した様子を示しており、図11の(c)および図12の(c)では、一例として、フレークが基板10に貼り付くように配向した様子を示している。
 なお、以下では、形状異方性部材32としてアルミニウム(Al)フレークを用いた場合を例に挙げて説明する。
 上述したように、対向する均一なベタ電極12・72間に電圧を印加すると、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークは、その長軸が電気力線に平行になるように回転して縦配向する。
 このため、図12の(a)に示すように、光変調層30に入射した外光は、光変調層30を透過(通過)し、光吸収層76に吸収される。これにより、観察者からは、光吸収層76の黒色が観察される(黒表示)。
 これに対し、図12の(b)のように、フレークを背面側の基板70側に配向させる構成では、観察者側からはフレークが堆積しているように観察されるため、複数のフレークにより凹凸面が形成され、散乱の強い表示(散乱光、白色表示)を得ることができる。
 一方、図12の(c)のように、フレークを観察者側の基板10側に配向させる構成では、媒体31中に含有されるフレーク(形状異方性部材32)の量が多く、フレークを横配向させたときに基板10の表面をフレークで覆うことができる場合、観察者側からは、それぞれのフレークの反射面により、同一平面(面一状の反射面)が形成されるように観察される。このため、鏡面性の高い表示(ミラー反射光、ミラー反射表示)を得ることができる。
 このように、フレークが横配向時に貼り付く基板を切り替えることで、上記基板10から出射される光の特性を変更することができる。
 したがって、本変形例に示すように電圧を印加する電極を切り替えることで、例えば背面側に黒色の光吸収層76を配置することにより、黒色(図12の(a)に示す縦配向状態)と、白色(図12の(b)に示す横配向状態)と、ミラー反射(図12の(c)に示す横配向状態)とを切り替えることができる表示装置1を実現することができる。
 以上のように、本実施の形態によれば、反射表示(横配向)の際に、電圧を印加する電極を切り替えることにより、形状異方性部材32(ここでは、Alフレーク)を、表示面側の基板側あるいは背面側の基板側に切り替えて配向させることができる。
 なお、このように表示面側の基板10および背面側の基板70にそれぞれ櫛歯電極を設ける場合、各ベタ電極12・72および櫛歯電極14・15・74・75に印加される電圧は、上述のベタ電極12・22および櫛歯電極14・15によるものと同様に、例えばベタ電極12・72に電圧を印加するときは櫛歯電極14・15・74・75を絶縁させておき、櫛歯電極14・15に電圧を印加するときはベタ電極12・72および櫛歯電極74・75を絶縁させておき、櫛歯電極74・75に電圧を印加するときはベタ電極12・72および櫛歯電極14・15を絶縁させておくように設定することができる。
 <表示装置の変形例3>
 また、図13の(a)・(b)は、図7の(a)・(b)に示す表示パネル2をシースルー型に構成したときの光の進行状態を示す表示パネル2の要部断面図である。
 図13の(a)に示すように、図7の(a)・(b)に示す表示装置1において、光吸収層76を透明層とするか、あるいは、光吸収層76を省略して、基板20・70を透明基板とした場合には、背面側(基板70側)においても、光変調層30に入射された外光を形状異方性部材32により反射させることができるため、反射表示が可能となる。この場合、形状異方性部材32が横配向しているときは、形状異方性部材32の反射色または黒が観察される。
 また、図13の(b)に示すように、形状異方性部材32を縦配向させた場合は、観察者は、表示パネル2を介して、観察者がいる側と反対側を観察することができるため、いわゆるシースルーの表示パネルを実現することができる。このような表示装置1および表示パネル2は、例えばショーウインドウに好適である。
 なお、ここでは、一例として、図13の(a)・(b)に示すように、図7の(a)・(b)に示す表示装置1において、光吸収層76を透明層とした場合あるいは光吸収層76を省略した場合を例に挙げて説明したが、本実施の形態は、これに限定されるものではない。
 図9の(a)・(b)に示す表示パネル2、あるいは、図11の(a)~(c)に示す表示パネル2においても、光吸収層76あるいは光吸収層23を透明層とするか、あるいは、光吸収層76を省略して、光変調層30を挟持する一対の基板を透明基板とすることで、シースルーの表示パネルを実現することができる。
 <その他の変形例>
 また、図7の(a)・(b)、図9の(a)・(b)、および図11の(a)~(c)における表示面側の基板(例えば、図9の(a)・(b)および図11の(a)~(b)における基板10)に、例えば、基板11とベタ電極12との間にカラーフィルタを形成する等して、カラーフィルタを設けた場合には、図9の(b)および図11の(c)に示すようにフレークを観察者側の基板70に配向させる構成にすると、光変調層30とカラーフィルタの間に発生する視差を抑制することができる。この結果、高品位のカラー表示を実現することができる。
 また、本実施の形態にかかる表示装置1は、表示パネル2の背面側に、光吸収層(光吸収層76あるいは光吸収層23)の代わりに、正反射や散乱反射する光反射層を設け、フレークを着色部材で形成して、横配向のときはフレークによる着色表示を行い、縦配向のときは反射層による反射表示を行う構成としてもよい。
 また、本実施の形態にかかる表示装置1は、例えば、携帯電話機等の非表示面(通常の画像表示面ではないボディ面等)に設置することもできる。このような携帯電話機において、表示装置1の各電極を透明電極で構成すれば、フレークを縦配向させることにより、非表示面に携帯電話機のボディ(本体)の色を表示させることができる一方、フレークを横配向させることにより、非表示面にフレークの着色を表示させる、あるいは外光を反射させることができる。なお、フレークを横配向させて、鏡(ミラー反射)として利用することもできる。
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図14の(a)・(b)に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1、2との相違点について説明するものとし、実施の形態1、2で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <表示装置の概略構成>
 図14の(a)・(b)は、本実施の形態にかかる表示装置1の概略構成を示す断面図であり、図14の(a)は、光透過状態を示し、図14の(b)は、光反射状態を示す。
 本実施の形態にかかる表示装置1は、図14の(a)・(b)に示すように、表示パネル2と、表示パネル2に光を照射するバックライト3と、図示しない駆動回路とを備え、バックライト3から出射された光を、表示パネル2を透過して表示を行うとともに、光変調層30に入射された外光を反射して表示を行う、いわゆる半透過型の表示装置である。
 本実施の形態にかかる表示パネル2は、一例として、互いに対向して配置された一対の基板10・20と、これら一対の基板10・20間に配置された光変調層30とを備えている。
 なお、本実施の形態では、基板10が表示パネル2の背面側に配され、基板20が表示面側(観察者側)に配されている場合を例に挙げて説明するが、実施の形態1、2に示したように、本実施の形態は、これに限定されるものではない。
 なお、図14の(a)・(b)に示すように、基板10・20の構成は、実施の形態1に記載の基板10・20と同じである。
 また、光変調層30および形状異方性部材32の構成は、実施の形態2に示した通りである。なお、本実施の形態でも、形状異方性部材32の一例として、フレーク(Alフレーク)を用いた場合を例に挙げて説明する。
 本実施の形態にかかる表示装置1は、基板10・20におけるベタ電極12・22および櫛歯電極14・15に透明電極を使用するとともに、絶縁基板11・21に透明基板を使用していることで、図14の(a)に示すように、対向する均一なベタ電極12・22間に電圧を印加すると、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークが、その長軸が電気力線に平行になるように回転して縦配向する。これにより、バックライト3から光変調層30へ入射された光は、図14の(a)に示すように、光変調層30を透過(通過)して、観察者側に出射される。このようにして、透過表示が実現される。
 一方、図14の(b)に示すように、互いに交互に入り組んでおり同一平面上にある櫛歯電極14・15に、一定以上の電圧を印加すると、フレークは、電気泳動力やクーロン力で説明される力により、櫛歯電極14・15間付近において、基板10に貼り付くように横配向する。このため、光変調層30に入射した外光は、フレークにより、入射光の入射側(表示面側)に反射される。これにより、反射表示が実現される。
 なお、本実施の形態にかかる半透過型の表示装置1は、上記の構成に限定されるものではなく、以下の構成としてもよい。
 表示装置1は、屋内等の比較的に暗い場所では、バックライト光を利用して透過表示を行う(透過モード)一方、屋外等の比較的に明るい場所では、外光を利用して反射表示を行う(反射モード)。これにより、周囲の明るさに拘らず、コントラスト比の高い表示を実現できる。すなわち、表示装置1は、屋内外を問わず、あらゆる照明下(光環境下)での表示が可能であるため、携帯電話、PDA(Personal Digital Assistance)、デジタルカメラ等のモバイル機器に好適である。
 このような表示装置1では、表示パネル2の各画素に、反射モードに使用される反射表示部と、透過モードに使用される透過表示部とが形成される。表示パネル2の背面側の基板10には、櫛歯電極14・15として、透過表示部にITO等からなる透明電極が形成され、反射表示部にアルミニウム等からなる反射電極が形成されるとともに、ベタ電極12として、ITO等からなる透明電極が形成される。一方、表示面側の基板20には、これら電極に対向するITO等からなるベタ電極22が形成される。光変調層30には、形状異方性部材32が配され、形状異方性部材32は、可視光を反射しない性質の材料で形成される。
 また、表示装置1は、周囲の明るさを検出するセンサを備え、周囲の明るさに応じて、透過表示モードと反射表示モードを切り替える構成とすることができる。この場合、反射表示モードにおいてはバックライトを消灯することができるため、消費電力を低減することができる。
 以上のように、本実施の形態にかかる表示装置1は、反射表示モードと透過表示モードとを切り替えて表示を行う構成を有している。したがって、本実施の形態でも、実施の形態1、2と同様の変形が可能であることは、言うまでもない。
 〔実施の形態4〕
 本発明のさらに他の実施の形態について、図15の(a)・(b)に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1~3との相違点について説明するものとし、実施の形態1~3で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <表示装置の概略構成>
 図15の(a)・(b)は、本実施の形態にかかる表示装置1の概略構成を示す断面図であり、図15の(a)は、縦電界印加状態を示し、図15の(b)は、横電界印加状態を示す。
 本実施の形態にかかる表示装置1は、図15の(a)・(b)に示すように、表示パネル2と、表示パネル2に光を照射するバックライト3と、図示しない駆動回路とを備え、カラー表示を行う表示装置である。
 本実施の形態にかかる表示パネル2は、基板110(第1の基板)と、基板120(第2の基板)と、基板130(第3の基板)と、基板110・120間に配置された情報表示用光変調層4とを備えているとともに、少なくとも、リレー回路151・152(スイッチ回路)および電源回路161を備えている。
 基板110は表示パネル2の背面側に配され、基板130は表示面側(観察者側)に配され、基板120は、基板110と基板120との間に配されている。また、表示パネル2は、行列状に配列された多数の画素を有している。
 <基板110>
 基板110は、アクティブマトリクス基板であり、絶縁基板111上に、図示しない、各種信号線(走査信号線、データ信号線等)、TFT(薄膜トランジスタ)等のスイッチング素子、および絶縁膜を備え、その上に、ベタ電極112からなる下層電極、絶縁層113、櫛歯電極114・115からなる上層電極が、この順に積層された構成を有している。
 なお、絶縁基板111、ベタ電極112、絶縁層113、櫛歯電極114・115は、説明の便宜上、番号を変更しているが、それぞれ、図1の(a)・(b)に示す表示パネル2における絶縁基板11、ベタ電極12、絶縁層13、櫛歯電極14・15と同じである。
 したがって、本実施の形態では、実施の形態1における、絶縁基板11、ベタ電極12、絶縁層13、櫛歯電極14・15の説明を、そのまま絶縁基板111、ベタ電極112、絶縁層113、櫛歯電極114・115に読み替えて適用することができる。
 なお、勿論、櫛歯電極14・15における、電極部14L・15L、スペース部14S・15S、幹電極14B・15B、枝電極14A・15Aの説明を、櫛歯電極114・115における、電極部114L・115L、スペース部114S・115S、幹電極114B・115B、枝電極114A・115Aと読み替えて適用することができることは、言うまでもない。
 したがって、本実施の形態では、これら絶縁基板111、ベタ電極112、絶縁層113、櫛歯電極114・115に対する説明を省略する。
 なお、図15の(a)・(b)では、図示の便宜上、櫛歯電極114・115の数を省略し、各色の画素に、枝電極の断面で示される櫛歯電極114・115をそれぞれ1つずつ図示しているが、櫛歯電極14・15と同様に、1つの画素内に設けられる櫛歯電極114・115の歯(枝電極114A・115A)の数は、画素ピッチと、櫛歯電極114・115におけるそれぞれのL/Sとの関係等において決定される。
 <基板120>
 基板120は、ガラス等の透明基板からなる絶縁基板121の表面および裏面に、それぞれベタ電極122・123を備えている。
 ベタ電極122は、絶縁基板121における、基板110との対向面のほぼ全面に渡ってベタ状に形成されている。
 また、ベタ電極123は、絶縁基板121における、基板130との対向面のほぼ全面に渡ってベタ状に形成されている。
 なお、絶縁基板121、ベタ電極122・123は、それぞれ、図1の(a)・(b)に示す表示パネル2における絶縁基板21、ベタ電極22と同様の設計とすることができる。したがって、ここでは、絶縁基板121およびベタ電極122・123の説明を省略する。
 <基板130>
 基板130は、アクティブマトリクス基板であり、絶縁基板131上に、図示しない、各種信号線(走査信号線、データ信号線等)、TFT(薄膜トランジスタ)等のスイッチング素子、および絶縁膜を備え、その上に、ベタ電極132からなる下層電極、絶縁層133、櫛歯電極134・135からなる上層電極、カラーフィルタ層140が、この順に積層された構成を有している。
 なお、絶縁基板131、ベタ電極132、絶縁層133、櫛歯電極134・135は、絶縁基板111、ベタ電極112、絶縁層113、櫛歯電極114・115同様、それぞれ、図1の(a)・(b)に示す表示パネル2における絶縁基板11、ベタ電極12、絶縁層13、櫛歯電極14・15と同じである。
 したがって、本実施の形態では、これら絶縁基板131、ベタ電極132、絶縁層133、櫛歯電極134・135についても、その説明を省略する。
 なお、図15の(a)・(b)では、図示の便宜上、櫛歯電極114・115同様、櫛歯電極134・135の数を省略し、各色の画素に、枝電極の断面で示される櫛歯電極134・135をそれぞれ1つずつ図示しているが、櫛歯電極14・15・114・115と同様に、1つの画素内に設けられる櫛歯電極134・135の歯(枝電極134A・135A)の数は、画素ピッチと、櫛歯電極134・135におけるそれぞれのL/Sとの関係等において決定される。
 <カラーフィルタ層140>
 カラーフィルタ層140は、光変調層であり、媒体141と、媒体141に含有される複数の形状異方性部材142と、各画素に対応する領域を仕切るためのリブ143とを備えている。
 形状異方性部材142には、透明樹脂に色素染料または顔料を入れたフレーク、例えば、赤色(R)、緑色(G)、および青色(B)のフレークを用いることができる。これらのフレークは、色毎に、ストライプ状のリブ143で仕切られて配置されている。
 製造方法としては、例えば、フレークと媒体の混合物を、インクジェットを用いて塗り分ける等の手法を用いることができる。なお、各色の領域は、各画素に対応するようにリブ143により仕切られている。
 <リレー回路151・152および電源回路161>
 リレー回路151・152は、電圧を印加する電極を選択することで光変調層であるカラーフィルタ層140に印加する電界の方向を切り替えるスイッチ回路である。
 基板130におけるベタ電極132は、リレー回路151(第1のリレー回路)を介して電源回路161に電気的に接続されている。ベタ電極132とリレー回路151との間には、ベタ電極132に電圧を印加するための配線153が設けられている。
 また、基板120におけるベタ電極123は、リレー回路152(第2のリレー回路)を介して電源回路161に電気的に接続されている。ベタ電極123とリレー回路152との間には、ベタ電極123に電圧を印加するための配線154が設けられている。
 また、櫛歯電極134・135は、それぞれ、リレー回路151・152を介して電源回路161に電気的に接続されている。櫛歯電極134とリレー回路151との間には、櫛歯電極134に電圧を印加するための配線155が設けられている。また、櫛歯電極135とリレー回路152との間には、櫛歯電極135に電圧を印加するための配線156が設けられている。
 さらに、リレー回路151と電源回路161との間には、リレー回路151と電源回路161とを繋ぐ配線157が設けられている。リレー回路152と電源回路161との間には、リレー回路152と電源回路161とを繋ぐ配線158が設けられている。
 本実施の形態では、リレー回路151・152を用いてベタ電極123・132および櫛歯電極134・135のうち電圧を印加する電極を切り替える。
 すなわち、リレー回路151・152、電源回路161、および各配線153~158は、カラーフィルタ層140に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、ベタ電極123・132および櫛歯電極134・135にそれぞれ選択的に電圧を印加する電圧印加部として機能する。また、上記リレー回路151・152は、上記基板120・130に設けられたベタ電極123・132および櫛歯電極134・135のなかから、電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能する。
 例えば、図15の(a)に示すように、リレー回路151を、電源回路161とベタ電極132とが接続されるように切り替えるとともに、リレー回路152を、電源回路161とベタ電極123とが接続されるように切り替えることで、カラーフィルタ層140(光変調層)に、基板120・130に垂直方向の縦電界が印加される。
 一方、図15の(b)に示すように、リレー回路151を、電源回路161と櫛歯電極134とが接続されるように切り替えるとともに、リレー回路152を、電源回路161と櫛歯電極135とが接続されるように切り替えることで、カラーフィルタ層140(光変調層)に、基板120・130に平行方向の横電界が印加される。
 リレー回路151・152は、例えば、図示しない信号源から、電圧を印加する電極を切り替える切替信号が入力されることで、入力された切替信号に基づいて切り替えられる。
 <情報表示用光変調層4>
 情報表示用光変調層4は、実施の形態1~3に示した光変調層30と同一の構成としてもよいし、液晶層等の、一般的な表示媒体からなる層としてもよい。なお、情報表示用光変調層4を液晶層等としたときは、櫛歯電極114・115およびベタ電極112の代わりに画素電極を設けてもよい。
 情報表示用光変調層4として光変調層30を設ける場合には、ベタ電極112・122、櫛歯電極114・115のうち電圧を印加する電極を選択することで光変調層30、つまり、情報表示用光変調層4に印加する電界の方向を切り替えるリレー回路(図示せず)を設ければよい。
 なお、上述したように、ベタ電極112・122、櫛歯電極114・115は、それぞれ、ベタ電極12・22、櫛歯電極14・15と同じ構成を有している。
 したがって、ベタ電極112・122、櫛歯電極114・115のうち電圧を印加する電極を選択することで情報表示用光変調層4に印加する電界の方向を切り替えるリレー回路としては、図1の(a)・(b)に示すリレー回路41・51と同様のリレー回路を用いることができる。
 同様に、ベタ電極112・122および櫛歯電極114・115に電圧を印加する電圧供給源である電源回路および各リレー回路とベタ電極112・122および櫛歯電極114・115とを繋ぐ配線並びに各リレー回路と電源回路とを繋ぐ配線としては、図1の(a)・(b)に示す電源回路61、および配線42~44・52~54と同様の構成とすることができる。
 <カラー表示>
 このような表示装置1および表示パネル2においてカラー表示を行う場合には、フレークを横配向させて、カラーフィルタ層140に入射する光が各色のフレークを透過するようにする。一方、白黒表示を行う場合は、フレークを縦配向させて、カラーフィルタ層140に入射する光が直接観察者に到達するようにする。こうすることで、例えば透過型の表示を行う場合には、カラー表示を行うことができるとともに、電子書籍のような白黒のコンテンツを表示する際は、カラーフィルタによる光の損失を抑えることができるためバックライトの消費電力を低減させることができる。また、反射型の表示を行う場合は、カラー表示を行うことができるとともに、暗く視認性の悪い環境では白黒表示とすることで明度を重視した表示を行うことができる。
 このように、上記構成によれば、カラー表示と白黒表示とを切り替えることができる表示装置1を実現することができる。
 また、上記基板120における絶縁基板121およびベタ電極123と、基板130と、その間に挟持された、光変調層からなるカラーフィルタ層140とは、カラーフィルタ素子として、単独で、もしくは、上記したように、情報表示用のパネルと一体化されたカラーフィルタ素子一体型の表示パネルとして用いることができる。
 なお、カラーフィルタ層140は、上記構成に限定されず、さらに、赤色に着色された形状異方性部材、緑色に着色された形状異方性部材、青色に着色された形状異方性部材、シアン(C)に着色された形状異方性部材、マゼンタ(M)に着色された形状異方性部材、および黄色(Y)に着色された形状異方性部材の少なくとも一部を含んでいてもよい。さらに、これに加えて、カラーフィルタ層140に、形状異方性部材を含まない領域を設けてもよい。すなわち、表示画像の色再現範囲を考慮すると、複数の形状異方性部材142は、透明樹脂からなり、少なくとも、赤色(R)に着色された形状異方性部材と、緑色(G)に着色された形状異方性部材と、青色(B)に着色された形状異方性部材とを含んで構成されていることが好ましい。
 なお、このように光変調層30をカラーフィルタとして用いる場合にも、実施の形態1~3と同様の変形が可能であることは、言うまでもない。
 〔実施の形態5〕
 本発明のさらに他の実施の形態について、図16の(a)・(b)および図17に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1~4との相違点について説明するものとし、実施の形態1~4で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <表示装置の概略構成>
 図16の(a)・(b)は、本実施の形態にかかる表示装置1の概略構成を示す断面図であり、図16の(a)は、光透過状態を示し、図16の(b)は、光反射状態を示す。
 なお、図16の(a)・(b)では、表示パネル2と、表示パネル2に光を照射するバックライト3と、図示しない駆動回路とを備え、バックライト3から出射された光を、表示パネル2を透過して表示を行う透過型の表示装置を例に挙げて説明する。しかしながら、実施の形態1~4に示したように、本実施の形態は、これに限定されるものではない。
 本実施の形態にかかる表示パネル2は、互いに対向して配置された一対の基板170・20と、これら一対の基板170・20間に配置された光変調層30とを備えているとともに、電圧を印加する電極を選択することで光変調層30に印加する電界の方向を切り替えるリレー回路181(スイッチ回路)および電源回路61を備えている。
 なお、本実施の形態では、基板170が表示パネル2の背面側に配され、基板20が表示面側(観察者側)に配されている場合を例に挙げて説明するが、本実施の形態は、これに限定されるものではない。
 なお、図16の(a)・(b)に示すように、基板10・20の構成および光変調層30の構成は、図1の(a)・(b)に示す基板10・20および光変調層30と同じである。
 <基板170>
 基板170は、アクティブマトリクス基板である。基板170は、は、絶縁基板171上に、図示しない、各種信号線(走査信号線、データ信号線等)、TFT(薄膜トランジスタ)等のスイッチング素子、および絶縁膜を備え、その上に、ベタ電極172(第1の電極)からなる下層電極、絶縁層173、櫛歯電極174(第2の電極)からなる上層電極が、この順に積層された構成を有している。
 ベタ電極172は、絶縁基板171上に、基板170における表示領域を覆うように、絶縁基板171における基板20との対向面のほぼ全面に渡ってベタ状に形成されている。
 また、絶縁層173は、ベタ電極172を覆うように、基板170における表示領域全体にベタ状に形成されている。
 なお、絶縁基板171、ベタ電極172、絶縁層173の構成は、図1の(a)・(b)に示す絶縁基板11、ベタ電極12、絶縁層13と同じである。
 図17は、櫛歯電極174の概略構成を示す基板170の平面図である。
 櫛歯電極174は、図17に示すように、パターン化された電極部174L(電極ライン)とスペース部174S(電極非形成部)とを有する櫛歯状の電極であり、より具体的には、幹電極174B(幹ライン)と、櫛歯の歯にあたる、幹電極174Bから延びる枝電極174A(分岐ライン)とで構成されている。
 なお、図16の(a)・(b)では、櫛歯電極174の断面として、枝電極174Aの断面がそれぞれ図示されている。
 1つの画素内に設けられる櫛歯電極14の歯(枝電極14A)の数は特に限定されず、画素ピッチと、櫛歯電極174におけるそれぞれのL/Sとの関係等において決定される。なお、ここでは、Lは、電極部174における隣り合う枝電極174A間の電極幅を示し、Sは、スペース部174Bの幅を示す。
 したがって、枝電極174Aの数は、実質的に、画素ピッチと、枝電極174Aの幅および隣り合う枝電極174A間の電極間隔との関係等において決定される。
 なお、枝電極174Aは、それぞれ、直線状であってもよく、V字状あるいはジグザグ状に形成されていてもよい。
 上記ベタ電極172は共通電極であり、表示領域の周囲に形成された共通配線に電気的に接続されている。
 また、櫛歯電極174は画素電極であり、図示しないドレイン電極で、信号線(走査信号線、データ信号線)およびTFT等のスイッチング素子に接続されており、映像信号に応じた信号が印加される。
 <リレー回路181および電源回路61>
 本実施の形態にかかる基板20におけるベタ電極22は、リレー回路181を介して電源回路61に電気的に接続されている。ベタ電極22とリレー回路181との間には、ベタ電極22に電圧を印加するための配線182が設けられている。
 また、櫛歯電極174は、リレー回路181を介して電源回路61に電気的に接続されている。櫛歯電極174とリレー回路181との間には、櫛歯電極174に電圧を印加するための配線183が設けられている。
 リレー回路181と電源回路61との間には、リレー回路181と電源回路61とを繋ぐ配線184が設けられている。リレー回路51と電源回路61との間には、リレー回路51と電源回路61とを繋ぐ配線54が設けられている。
 一方、ベタ電極172は、配線62を介して電源回路61と電気的に接続されている。
 本実施の形態では、リレー回路181を用いて、基板20におけるベタ電極22と基板170における櫛歯電極174との間で、電圧を印加する電極を切り替える。
 すなわち、リレー回路181、電源回路61、および上記各配線62・182~184は、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、ベタ電極22および櫛歯電極174に、それぞれ選択的に電圧を印加する電圧印加部として機能する。また、上記リレー回路181は、上記基板20・170に設けられたベタ電極22および櫛歯電極174のなかから、電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能する。
 例えば、図16の(a)に示すように、リレー回路181を、電源回路61とベタ電極22とが接続されるように切り替えてベタ電極22・172間に電圧を印加することで、光変調層30に基板20・170に垂直方向の縦電界が印加される。
 一方、図16の(b)に示すように、リレー回路181を、電源回路61と櫛歯電極174とが接続されるように切り替えて櫛歯電極174とベタ電極172との間に電圧を印加することで、光変調層30に、基板170に平行方向の横電界が印加される。
 なお、リレー回路181は、例えば、図示しない信号源から、電圧を印加する電極を切り替える切替信号が入力されることで、入力された切替信号に基づいて切り替えられてもよく、手動により切り替えられてもよい。
 <表示パネル2の表示方法(駆動方法)>
 以上のように、本実施の形態によれば、上述したように、ベタ電極22・172間に発生する縦電界と、ベタ電極172と櫛歯電極174との間に発生する横電界(いわゆるフリンジ電界)とを可逆的に切り替えることで、形状異方性部材32の向きを可逆的に切り替える。
 すなわち、本実施の形態にかかる表示パネル2および表示装置1では、横配向を形成するための電界印加方法として、FFS(Fringe Field Switching)駆動を行っている。
 本実施の形態でも、例えば、図16の(a)に示すように、対向する均一なベタ電極72・172間に電圧を印加すると、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークは、その長軸が電気力線に平行になるように回転してフレークが縦配向する。これにより、バックライト3から光変調層30へ入射された光は、図16の(a)に示すように、光変調層30を透過(通過)して、観察者側に出射される。
 一方、図16の(b)に示すように、同一基板上(この場合は基板170上)に設けられたベタ電極172と櫛歯電極174との間に一定以上の電圧を印加すると、フレークは、電気泳動力やクーロン力で説明される力により、櫛歯電極174間付近において、基板170に貼り付くように横配向する。これにより、バックライト3から光変調層30へ入射された光は、フレークにより遮断される。
 このように、本実施の形態でも、電圧を印加する電極を切り替えることで、バックライト3から光変調層30に入射された光の透過率(透過光量)を変化させることができる。
 なお、このように横配向を形成するための電界印加方法としてFFS駆動を行う場合、各電極に印加される電圧は、絶縁層173の材料および層厚や、櫛歯電極174の電極間距離にもよるが、1V~10Vとなるように設定することが望ましい。
 <表示パネル2における各層の設計>
 次に、本実施の形態にかかる表示パネル2における各層の設計条件の一例について説明する。
 前述したように、基板10・20の構成および光変調層30の構成は、図1の(a)・(b)に示す基板10・20および光変調層30と同じである。また、絶縁基板171、ベタ電極172、絶縁層173の構成は、図1の(a)・(b)に示す絶縁基板11、ベタ電極12、絶縁層13と同じである。
 したがって、これらの層の材料並びに形成方法は、実施の形態1における対応する各層と同様の材料並びに形成方法を用いることができる。
 また、櫛歯電極174の材料並びに形成方法には、実施の形態1における櫛歯電極14と同様の材料並びに形成方法を用いることができる。
 但し、櫛歯電極174の電極幅をLとし、電極間距離をSとし、セルギャップ(光変調層30の厚み)をDとすると、上述したようにFFS駆動を行う場合、電極間隔Sを電極幅LやセルギャップDよりも小さくしていわゆるフリンジ電界を生じさせることで表示を行う。
 したがって、各層の層厚は、実施の形態1における対応する各層と同様の層厚、電極幅並びに電極間隔に設定することができるが、上記条件を満足するように設定される。
 本実施の形態によれば、縦配向時に概ね平均的な電圧を印加することができる一方、このように横配向を形成するための電圧印加方法としてFFS駆動を行うことで、各電極を選択的に切り替えるための回路構成を、簡素なものとすることができる。
 なお、本実施の形態では、背面側の基板に櫛歯電極14を設けた場合を例に挙げて説明したが、表示面側の基板に櫛歯電極を設ける構成としてもよく、背面側および表示面側の両基板に櫛歯電極を設ける構成としてもよいことは、言うまでもない。
 〔実施の形態6〕
 本発明のさらに他の実施の形態について、図18の(a)・(b)に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1~5との相違点について説明するものとし、実施の形態1~5で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <表示装置の概略構成>
 図18の(a)・(b)は、本実施の形態にかかる表示装置1の概略構成を示す断面図であり、図18の(a)は、光吸収状態を示し、図18の(b)は、光反射状態を示す。
 なお、図18の(a)・(b)では、表示パネル2と、図示しない駆動回路とを備え、表示パネル2に入射された外光を反射して表示を行う反射型の表示装置を例に挙げて説明する。しかしながら、実施の形態1~5に示したように、本実施の形態は、これに限定されるものではない。
 本実施の形態にかかる表示パネル2は、互いに対向して配置された一対の基板70・20と、これら一対の基板70・20間に配置された光変調層30とを備えているとともに、スイッチ回路191・192および電源回路201・202を備えている。
 なお、本実施の形態では、基板70が表示パネル2の背面側に配され、基板20が表示面側(観察者側)に配されている場合を例に挙げて説明するが、本実施の形態は、これに限定されるものではない。
 なお、図18の(a)・(b)に示すように、基板70・20の構成および光変調層30の構成は、図7の(a)・(b)に示す基板70・20および光変調層30と同じである。
 また、光変調層30および形状異方性部材32の構成も、実施の形態2に示した通りである。したがって、これらの構成については、説明を省略する。
 <スイッチ回路191・192および電源回路201・202>
 スイッチ回路191・192は、光変調層30に印加する電界の方向を切り替えるスイチ回路である。
 基板70における櫛歯電極74は、スイッチ回路191(第1のスイッチ回路)を介して電源回路201に電気的に接続されている。
 また、基板70における櫛歯電極75は、スイッチ回路192(第2のスイッチ回路)を介して電源回路201に電気的に接続されている。
 櫛歯電極74とスイッチ回路191との間には、櫛歯電極74に電圧を印加するための配線193が設けられている。
 櫛歯電極75とスイッチ回路191との間には、櫛歯電極75に電圧を印加するための配線194が設けられている。
 さらに、スイッチ回路191と電源回路201との間には、スイッチ回路191と電源回路201とを繋ぐ配線195が設けられている。スイッチ回路192と電源回路201との間には、スイッチ回路192と電源回路201とを繋ぐ配線196が設けられている。
 また、基板70におけるベタ電極72と基板20におけるベタ電極22とは、それぞれ、配線211・212を介して電源回路202に電気的に接続されている。
 スイッチ回路191・192は、櫛歯電極74・75に対する電源回路201からの電圧の印加の有無を切り替えることで、光変調層30に横電界を印加するか否かを切り替える。
 すなわち、スイッチ回路191・192、電源回路201、および上記各配線193~196は、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、上記光変調層30に印加する電界の方向を変更するときに櫛歯電極74・75に選択的に電圧を印加する電圧印加回路として機能する。
 <表示パネル2の表示方法(駆動方法)>
 本実施の形態にかかる表示パネル2および表示装置1では、光変調層駆動時(すなわち、上記表示パネル2に電圧を印加するとき、言い換えれば、上記表示パネル2の電源ON(オン)時)に、電源回路202からベタ電極72・22に常に一定の電圧を印加することで、ベタ電極72・22により光変調層30に一定の強さの縦電界を常に印加した状態とする一方、スイッチ回路191・192および電源回路201により、光変調層30に印加する横電界の有無、好ましい形態としては、横電界の大きさを制御する。
 この場合、櫛歯電極74・75には、上記縦電界よりも強い横電界を発生させる電圧が印加される。
 図18の(a)に示すようにスイッチ回路191・192をともに開状態として電源をオフ(OFF)すると、ベタ電極72・22により、光変調層30に概ね均一な縦電界を印加することができる。これにより、フレーク(形状異方性部材32)は、その長軸が電気力線に平行になるように回転して縦配向する。
 一方、図18の(b)に示すようにスイッチ回路191・192をともに閉状態として電源をオン(ON)して、櫛歯電極74・75により、上記縦電界よりも強い横電界を発生させた場合、フレーク(形状異方性部材32)の向きは、縦電界と横電界との強さのバランスによって決定される。したがって、縦電界に対して十分に強い横電界を印加することで、フレークが基板70に貼り付くように横配向させることができる。
 なお、図18の(b)では、フレークが基板70に貼り付くように横配向している場合について図示したが、本実施の形態によれば、上述したようにフレークの向きは縦電界と横電界との強さのバランスによって決定されることから、横電界印加時の横電界の大きさ、言い換えれば櫛歯電極74・75に印加される電圧の大きさを調整(制御)することで、中間調の表示が容易になるという効果を得ることもできる。
 なお、このように光変調層30に対し、ベタ電極72・22により一定強さの縦電界を常に印加し、入射した光を反射させるモード(反射表示時)が選択された場合のみ、櫛歯電極74・75により、上記縦電界よりも強い横電界を印加する場合、各ベタ電極72・22および櫛歯電極74・75に印加される電圧により形成される電界は、使用する材料や詳細な構成にもよるが、例えばそれぞれ0.01~0.1V/μmおよび0.2~1V/μmとなるように設定することが望ましい。
 また、本実施の形態では、光変調層30に対し、ベタ電極72・22により一定強さの縦電界を常に印加し、入射した光を反射させるモード(反射表示時)が選択された場合のみ、櫛歯電極74・75により、上記縦電界よりも強い横電界を印加する構成としたが、本実施の形態はこれに限定されるものではない。例えば、光変調層30に対し、櫛歯電極74・75により一定強さの横電界を常に印加し、入射した光を、透過させるモード(実施の形態1参照)あるいは吸収させるモード(実施の形態2参照)が選択された場合のみ、ベタ電極72・22により、上記横電界よりも強い縦電界を印加する構成としてもよい。
 すなわち、上述したように、例えばスイッチ回路を用いることにより、光変調層30に、縦電界および横電界のうち一方の電界を常に印加するとともに、他方の電界が、上記一方の電界よりも強くなるように電界の印加の有無を切り替える構成としてもよい。
 何れの場合にも、フレークの向きは縦電界と横電界との強さのバランスによって決定されることから、容易に中間調表示することができる。
 また、光変調層30に対し、上述したように櫛歯電極74・75により一定強さの横電界を常に印加し、入射した光を、透過あるいは吸収させるモードが選択された場合のみ、ベタ電極72・22により、上記横電界よりも強い縦電界を印加する場合、各ベタ電極72・22および櫛歯電極74・75に印加される電圧により形成される電界は、使用する材料や詳細な構成にもよるが、例えばそれぞれ0.5~1V/μmおよび0.2~0.4V/μmとなるように設定することが望ましい。
 また、本実施の形態でも、一方の基板にのみ櫛歯電極を設ける場合を例に挙げて説明したが、本実施の形態でも、光変調層30を挟持する両基板に櫛歯電極を設け、両基板における櫛歯電極に、上述したようなスイッチ回路を設けることで、フレークを横配向させたときにフレークが貼り付く基板を、上記一方の基板と他方の基板とで変更する構成としてもよい。
 〔実施の形態7〕
 本発明のさらに他の実施の形態について、図31の(a)・(b)~図40の(a)・(b)に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1~6との相違点について説明するものとし、実施の形態1~6で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <表示装置の概略構成>
 図31の(a)・(b)は、本実施の形態にかかる表示装置1の概略構成を示す断面図であり、図31の(a)は、光透過状態を示し、図31の(b)は、光反射状態を示す。
 なお、図31の(a)・(b)では、表示パネル2と、表示パネル2に光を照射するバックライト3(図1の(a)・(b)参照)と、図示しない駆動回路とを備え、バックライト3から出射された光を、表示パネル2を透過して表示を行う透過型の表示装置を例に挙げて説明する。しかしながら、実施の形態1~6に示したように、本実施の形態は、これに限定されるものではない。
 図31の(a)・(b)に示すように、本実施の形態にかかる表示装置1における基板10・20の構成は、図1の(a)・(b)に示す、実施の形態1にかかる表示装置1における基板10・20と同じである。
 本実施の形態にかかる表示装置1は、実施の形態1にかかる表示装置1とは、光変調層30における形状異方性部材32の材質および表示パネル2の表示方法(駆動方法)が異なる。
 <形状異方性部材32>
 実施の形態1では、形状異方性部材32の少なくとも一部に誘電体が使用されていたのに対し、本実施の形態では、金属のみからなる形状異方性部材32(金属片)を使用する。
 上記形状異方性部材32に用いられる金属としては、1種類であってもよく、2種類以上の金属の複合材料であってもよい。
 なお、上記金属片として、例えば塗装等に用いられるアルミニウムフレークを選択することは可能である。しかしながら、前述したように、一般的なアルミニウムは不動態である酸化アルミニウムを作り易い。酸化アルミニウムは誘電体であり、表面酸化されたアルミニウムフレークは、本来の金属のみのフレークではなくなってしまう。
 このため、一般的なアルミニウムフレークは、金属からなるフレークではあっても金属のみからなるフレークではなく、金属の表面に誘電体被膜(不動態被膜)が形成された誘電体被膜金属フレーク(不動態被膜金属フレーク、例えば、表面が誘電体被膜で覆われた誘電体被膜金属フレーク)として、例えば実施の形態1で示したように、金属のみのフレークとは異なる挙動を示す。
 このため、本実施の形態にかかる形状異方性部材32に用いられる金属としては、反射率が高く、不動態を作り難い金属を用いることが望ましい。そのような金属としては、例えば、銀が挙げられる。
 なお、本実施の形態でも、形状異方性部材32の投影面積比(最大投影面積:最小投影面積)、形状、比重、厚み等は、実施の形態1にかかる形状異方性部材32と同様であるため、ここでは、その説明を省略する。
 なお、以下、本実施の形態では、形状異方性部材32として、金属のみからなるフレークを用いた場合を例に挙げて説明する。
 <表示パネル2の表示方法(駆動方法)>
 本実施の形態でも、実施の形態1同様、ベタ電極12・22間に発生する縦電界と、櫛歯電極14・15間に発生する横電界とを可逆的に切り替えることで、形状異方性部材32の向きを可逆的に切り替える。
 しかしながら、誘電体と金属とでは、電界の方向に対する形状異方性部材32の回転の向きが逆になる。このため、形状異方性部材32として、上述したように金属のみからなるフレーク(金属片)を使用する場合、誘電体もしくは誘電体被膜金属からなるフレークを用いる場合とは、フレークを所望の向きに回転させるときの電界の方向を逆にする必要がある。このため、本実施の形態では、形状異方性部材32を所望の向きに回転させるときの電界の方向を、実施の形態1とは逆にしている。
 このため、本実施の形態では、リレー回路41・51に、例えば、図示しない信号源から、電圧を印加する電極を切り替える切替信号が入力されると、入力された切替信号に基づいて、リレー回路41・51により、透過表示時と反射表示時とで、電圧を印加する電極が、実施の形態1とは逆側に切り替えられる。
 なお、勿論、本実施の形態でも、リレー回路41・51は、例えば、図示しない信号源から、電圧を印加する電極を切り替える切替信号が入力されることで、入力された切替信号に基づいて切り替えられてもよく、手動により切り替えられてもよい。
 本実施の形態では、図31の(a)に示すように、透過表示時に、リレー回路41を、電源回路61と櫛歯電極14とが接続されるように切り替えるとともに、リレー回路51を、電源回路61と櫛歯電極15とが接続されるように切り替えるように設定することで、透過表示時に、光変調層30に、基板10・20に平行方向の横電界が印加される。
 フレークとして可視光反射性を有する金属片を使用した場合、図31の(a)に示すように、互いに交互に入り組んでおり同一平面上にある櫛歯電極14・15に電圧を印加すると、誘電泳動現象やクーロン力または電気エネルギー的な観点から説明される力により、フレークは、櫛歯電極14・15上付近において、その長軸が基板10・20に垂直になるように配向(縦配向)する。このため、フレークは、その反射平面が基板10・20に垂直になる。
 したがって、バックライト3から光変調層30に入射した入射光は、光変調層30内を直接透過するか、もしくは、フレークの反射面で反射した後に、入射光の入射側とは反対側の面である表示面側に向かって透過する。
 一方、図31の(b)に示すように、反射表示時に、リレー回路41を、電源回路61とベタ電極12とが接続されるように切り替えるとともに、リレー回路51を、電源回路61とベタ電極22とが接続されるように切り替えるように設定することで、反射表示時に、光変調層30に基板10・20に垂直方向の縦電界が印加される。
 このように、対向する均一なベタ電極12・22間に電圧を印加すると、フレークは、その長軸が電気力線と垂直に交わるように回転する。これにより、フレークは、その反射平面が基板10・20に平行になるように配向(横配向)する。このため、バックライト3から光変調層30に入射した入射光は、フレークの反射平面で反射し、入射光の入射側とは反対側の面である表示面側には透過しない。これにより、バックライト3から光変調層30へ入射された光は、上記横配向したフレークにより遮断される。
 <形状異方性部材32の動作の原理>
 ここで、形状異方性部材32の動作の原理について、図32の(a)~(d)を参照して以下に説明する。
 図32の(a)~(d)は、形状異方性部材32として、金属のみからなるフレークまたは誘電体被膜金属からなるフレークを使用した表示装置1において、光変調層30に、それぞれ横電界を印加したときの電気力線および等電位線を計算した結果を示すグラフである。
 なお、図32の(a)~(d)中、Yは、光変調層30の厚み方向(つまり、基板10・20の厚み方向である、図31の(a)・(b)中、上下方向)の距離を示し、Xは、光変調層30の厚み方向に直交する方向(つまり、基板面内方向である、図31の(a)・(b)中、左右方向)の距離を示す。
 図32の(a)・(b)は、表面が誘電体で覆われていない、金属のみからなるフレークとして、銀フレークを使用した場合を示し、図32の(c)・(d)は、誘電体被膜金属フレークとして、銀(金属)の周りが誘電体のシリカで覆われているフレークを使用した場合を示す。
 また、図32の(a)・(c)は、それぞれのフレークを横配向させた状態で、光変調層30に、それぞれ横電界を印加した状態を示し、図32の(b)・(d)は、それぞれのフレークを縦配向させた状態で、光変調層30に、それぞれ横電界を印加した状態を示している。なお、ここで言う、フレークを横配向あるいは縦配向させた状態とは、それぞれ、初期状態(電界無印加時)において、フレークの長軸方向が横向きあるいは縦向きになるようにフレークを設置した状態を示す。また、図32の(a)~(d)では、下側の基板10における櫛歯電極15を0Vとし、櫛歯電極14と櫛歯電極15との間に交流(1.5V、60Hz)を印加している。
 図32の(a)・(b)を比較すると、図32の(b)は電気力線がフレークに対して垂直に交わるように大きく歪むことなく等間隔に並んでいるが、図32の(a)は電気力線が大きく歪んでいることが判る。つまり、図32の(a)はエネルギー的に不安定な状態であり、フレークは図32の(b)の縦配向の状態に動く。
 一方、図32の(c)・(d)を比較すると、図32の(c)は電気力線がフレークに沿ってほぼ平行に並んでいるが、図32の(d)は電気力線が歪んでいることが判る。つまり、図32の(d)はエネルギー的に不安定な状態であり、フレークは、図32の(c)の横配向の状態に動く。
 また、図示はしないが、銀の周りが誘電体のシリカで覆われているフレークの代わりにシリカのみ(つまり、誘電体のみ)からなるフレークを用いた場合であっても、電気力線の結果は、図32の(c)・(d)と同様の傾向を示す。
 以上の結果から、フレークの材料によって、フレークの配向の向きが変わることが判る。
 なお、図32の(a)~(d)では、ベタ電極12・22を省略しているが、ベタ電極12・22がある場合にも、図32の(a)~(d)と同様に、フレーク材料によって、フレークの配向の動きが変わる。
 以上のように、本実施の形態のように金属のみからなるフレークを用いた場合、光変調層30に横電界を印加することで、図32の(b)に示すように、フレークが縦配向し、誘電体または誘電体被膜金属からなるフレークを用いた場合、光変調層30に横電界を印加することで、図32の(c)並びに実施の形態1に示したように、フレークが横配向する。
 <フレークを金属のみで形成するメリット>
 ここで、フレークを金属のみで形成するメリットについて説明する。本実施の形態によれば、金属の周りに誘電体がないため、光の干渉がなくなる。よって、フレークの向きによって光の色味が変わることがなくなり、視角特性が向上する。また、本実施の形態によれば、誘電体による光の吸収が無くなるため、反射率が向上する。さらに、フレークを金属のみで形成することで、フレークが横配向して基板に平行に並んでいる場合に、誘電体の部分から光漏れが生じることがない。このため、コントラストが向上する。
 さらに、フレークを金属のみで形成することで、上述したように、縦電界で横配向し、横電界で縦配向させることができる。
 <縦電界で金属フレークが横配向し、横電界で金属フレークが縦配向するメリット>
 ここで、上述したように、縦電界で金属フレークが横配向し、横電界で金属フレークが縦配向するメリットについて説明する。
 図33の(a)・(b)は、それぞれ、本実施の形態において光変調層30に電界を印加したときのフレークの挙動を模式的に示す要部断面図であり、図33の(a)は、縦電界印加時を示し、図33の(b)は、横電界印加時を示す。また、図34の(a)・(b)は、誘電体または誘電体被膜金属からなるフレークを用いた場合に、光変調層30に電界を印加したときのフレークの挙動を模式的に示す要部断面図であり、図34の(a)は、縦電界印加時を示し、図34の(b)は、横電界印加時を示す。
 図33の(a)・(b)および図34の(a)・(b)に示すように、縦電界と横電界とでは、電場の分布に違いがある。なお、図33の(a)・(b)および図34の(a)・(b)においては、簡略化のためフレークが存在しないときの電気力線の形状を示している。
 図33の(a)および図34の(a)に示すように、何れも対向配置された基板10・20にベタ電極12・22が形成されていることで、縦電界形成時に、それぞれベタ電極12・22に電圧を印加することで、概ね均一な電界を得ることができる。
 このため、縦電界形成時に、図33の(a)に示すようにフレークが横配向している場合であっても、図34の(a)に示すようにフレークが縦配向している場合であっても、特許文献1のような弱電場領域が存在せず、フレークが凝集することはない。このため、縦電界形成時に、図33の(a)に示すようにフレークが横配向している場合には、フレークが凝集しないので光漏れが生じず、図34の(a)に示すようにフレークが縦配向している場合には、フレークが凝集しないので光が透過する。
 一方、図33の(b)および図34の(b)に示すように横電界の場合、櫛歯電極74・75および櫛歯電極14・15付近で不均一な電界が生じる。この不均一な電界は、フレークを凝集させる原因となる。
 このため、誘電体または誘電体被膜金属からなるフレークのように縦電界で縦配向し、横電界で横配向するフレークを用いた場合、横電界形成時に、横配向したフレークが、図示した電気力線の対称性を崩さないような位置、すなわち電極間に凝集する場合がある。この場合、フレークの含有量にもよるが、フレークが凝集することでフレークの無いエリアが生じるおそれがある。そして、もしもそのようなエリアが発生した場合には、そこから光漏れが発生してしまう。
 しかしながら、本実施の形態のように、縦電界で横配向し、横電界で縦配向するフレークを用いた場合、図33の(b)に示すように、不均一な電界によってフレークが電極付近に凝集する場合、フレークは、縦配向した状態で電極付近に凝集する。なお、この場合にも、フレークが凝集することで一部光が透過しないエリアが生じる可能性はある。しかしながら、横配向の時の光漏れが無くなるため、コントラストの低下にはそれほど影響がない。
 特許文献1は、前述したように縦電界形成時に板状粒子331が凝集するという問題に加えて、図27の(b)に示すように板状粒子331を、その長軸が、上記一対の基板311・321に平行になるように横配向させた時に光漏れが生じ、コントラストが低下するおそれがあるという問題点を有している。
 本実施の形態によれば、実施の形態1同様、縦電界形成時のフレークの凝集を防止することができるのみならず、フレークの横配向時に光漏れが生じることがなく、コントラストの低下を防止することができる。
 <形状異方性部材の変形例>
 なお、本実施の形態では、形状異方性部材32が、金属のみからなる場合を例に挙げて説明した。しかしながら、本実施の形態はこれに限定されるものではなく、縦電界で横配向し、横電界で縦配向する形状異方性部材32が得られれば、上記形状異方性部材32が他の材料で形成されていてもよい。本実施の形態にかかる駆動方法は、そのような形状異方性部材32を用いた場合全般に適用が可能である。
 <表示装置の概略構成並びに表示方法(駆動方法)の変形例>
 また、本実施の形態では、上述したように、主に、実施の形態1との相違点を例に挙げて説明した。しかしながら、本実施の形態は、上記構成並びに駆動方法にのみ限定されるものではない。
 本実施の形態のポイントは、形状異方性部材32(例えばフレーク)として金属のみからなる形状異方性部材32を使用し、縦電界で形状異方性部材32を横配向させ、横電界で形状異方性部材32を縦配向させる点である。
 したがって、実施の形態2~6において、形状異方性部材32として金属のみからなる形状異方性部材32を使用し、形状異方性部材32を所望の向きに回転させるときの電界の方向、言い換えれば、電圧を印加する電極を、各実施の形態に記載の各表示モードで逆転させる(具体的には、各実施の形態におけるリレー回路あるいはスイッチ回路のスイッチ方向を各実施の形態における各図とは逆方向とする)ことで、実施の形態2~6に示すように、反射型の表示装置、半透過型の表示装置、カラー表示を行う表示装置、FFS駆動等を実現することができる。
 (表示装置の変形例1)
 例えば、図35の(a)・(b)は、本変形例にかかる反射型の表示装置1の概略構成を示す断面図であり、図35の(a)は、光吸収状態を示し、図35の(b)は、光反射状態を示す。図35の(a)・(b)に示す表示装置1は、金属のみからなる形状異方性部材32を使用し、縦電界で形状異方性部材32を横配向させ、横電界で形状異方性部材32を縦配向させる点を除けば、実施の形態2において図7の(a)・(b)に示す表示装置1と同様である。
 なお、本変形例でも、図13の(a)・(b)に示すようにシースルー型の表示パネル2を実現することができる。なお、図示はしないが、実施の形態2同様、他の反射型の表示装置1、例えば後述する変形例2に示す表示装置1を用いた場合にも、同様に、シースルー型の表示パネル2を実現することができることは、言うまでもない。
 (表示装置の変形例2)
 また、図36の(a)・(b)は、本変形例にかかる半透過型の表示装置1の概略構成を示す断面図であり、図37の(a)は、光透過状態を示し、図37の(b)は、光反射状態を示す。図37の(a)・(b)に示す表示装置1は、金属のみからなる形状異方性部材32を使用し、縦電界で形状異方性部材32を横配向させ、横電界で形状異方性部材32を縦配向させる点を除けば、実施の形態3において図14の(a)・(b)に示す表示装置1と同様である。
 (表示装置の変形例4)
 また、図38の(a)・(b)は、本変形例にかかるカラー表示を行う表示装置1の概略構成を示す断面図であり、図38の(a)は、光透過状態を示し、図38の(b)は、光反射状態を示す。図38の(a)・(b)に示す表示装置1は、金属のみからなる形状異方性部材142を使用し、縦電界で形状異方性部材142を横配向させ、横電界で形状異方性部材142を縦配向させる点を除けば、実施の形態4において図15の(a)・(b)に示す表示装置1と同様である。
 上述したように、フレークに凹凸を形成すると、横配向のときはフレークによる構造色表示を行うことができる。したがって、本変形例によれば、形状異方性部材142に使用する金属材料の種類を変更することで、形状異方性部材142の構造色に応じたカラー表示を行うことができる。
 (表示装置の変形例5)
 また、図39の(a)・(b)は、本変形例にかかるFFS駆動を行う表示装置1の概略構成を示す断面図であり、図39の(a)は、光透過状態を示し、図39の(b)は、光反射状態を示す。
 図39の(a)・(b)に示す表示装置1は、金属のみからなる形状異方性部材32を使用し、縦電界で形状異方性部材32を横配向させ、横電界で形状異方性部材32を縦配向させる点を除けば、実施の形態5において図16の(a)・(b)に示す表示装置1と同様である。
 (表示装置の変形例6)
 また、図40の(a)・(b)は、本変形例にかかる反射型の表示装置1の概略構成を示す断面図であり、図40の(a)は、光吸収状態を示し、図40の(b)は、光反射状態を示す。
 図40の(a)・(b)に示す表示装置1もまた、金属のみからなる形状異方性部材32を使用し、縦電界で形状異方性部材32を横配向させ、横電界で形状異方性部材32を縦配向させる。
 実施の形態6で説明したように、フレークの向きは縦電界と横電界との強さのバランスによって決定される。このため、例えばスイッチ回路を用いることにより、光変調層30に、縦電界および横電界のうち一方の電界を常に印加するとともに、他方の電界が、上記一方の電界よりも強くなるように電界の印加の有無を切り替える構成としてもよい。
 実施の形態6では、縦電界で形状異方性部材32を縦配向させて光吸収状態とし、横電界で形状異方性部材32を横配向させて光反射状態とした。このため、実施の形態6では、例えば、ベタ電極72・22により一定強さの縦電界を常に印加し、入射した光を反射させるモード(反射表示時)が選択された場合のみ、櫛歯電極74・75により、上記縦電界よりも強い横電界を印加する構成とした。
 以下、本変形例では、櫛歯電極74・75により一定強さの横電界を常に印加し、入射した光を反射させるモード(反射表示時)が選択された場合のみ、ベタ電極72・22により、上記横電界よりも強い縦電界を印加する場合を例に挙げて説明する。
 しかしながら、勿論、本変形例でも、例えば、光変調層30に対し、ベタ電極72・22により一定強さの縦電界を常に印加し、入射した光を吸収させるモードが選択された場合のみ、あるいは、基板70に代えて基板10を用いた場合には、入射した光を透過させるモードが選択された場合のみ、櫛歯電極74・75により、上記縦電界よりも強い横電界を印加する構成としてもよい。この場合、例えば上述した変形例1~5に示す各図から判るように、例えば図18の(a)・(b)において、スイッチ回路191・192におけるスイッチを逆向きに切り替えるように設計すればよい。
 以下では、実施の形態6との相違点についてのみ説明する。本実施の形態にかかる表示パネル2は、図18の(a)・(b)に示すスイッチ回路191・192および配線193~196・211・212に代えて、図40の(a)・(b)に示すように、スイッチ回路221・222および配線223~228を備えている。
 基板20におけるベタ電極22は、スイッチ回路221(第1のスイッチ回路)を介して電源回路202に電気的に接続されている。
 また、基板70におけるベタ電極72は、スイッチ回路222(第2のスイッチ回路)を介して電源回路202に電気的に接続されている。
 ベタ電極22とスイッチ回路221との間には、ベタ電極22に電圧を印加するための配線223が設けられている。
 ベタ電極72とスイッチ回路222との間には、ベタ電極22に電圧を印加するための配線224が設けられている。
 さらに、スイッチ回路221と電源回路202との間には、スイッチ回路221と電源回路202とを繋ぐ配線225が設けられている。スイッチ回路222と電源回路202との間には、スイッチ回路222と電源回路202とを繋ぐ配線226が設けられている。
 また、基板70における櫛歯電極74・75は、それぞれ、配線227・228を介して電源回路201に電気的に接続されている。
 すなわち、スイッチ回路221・222は、スイッチ回路191・192同様、光変調層30に印加する電界の方向を切り替えるスイッチ回路である。但し、本変形例では、スイッチ回路221・222は、ベタ電極22・72に対する電源回路202からの電圧の印加の有無を切り替えることで、光変調層30に横電界を印加するか否かを切り替える。本変形例では、スイッチ回路221・222、電源回路202、および配線223~226が、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、上記光変調層30に印加する電界の方向を変更するときにベタ電極22・72に選択的に電圧を印加する電圧印加回路として機能する。
 これにより、本変形例では、図40の(a)に示すように、光変調層駆動時(すなわち、上記表示パネル2に電圧を印加するとき、言い換えれば、上記表示パネル2の電源ON時)に、電源回路201から櫛歯電極74・75に常に一定の電圧を印加することで、櫛歯電極74・75により光変調層30に一定の強さの横電界を常に印加した状態とする一方、図40の(b)に示すように、スイッチ回路221・222および電源回路202により、光変調層30に印加する縦電界の有無、好ましい形態としては、縦電界の大きさを制御する。なお、この場合、上述したように、ベタ電極22・72には、上記横電界よりも強い縦電界を発生させる電圧が印加される。本変形例によれば、実施の形態6同様、容易に中間調表示することができる。
 〔実施の形態8〕
 本発明のさらに他の実施の形態について、図40の(a)・(b)ないし図43の(a)~(d)に基づいて説明すれば以下の通りである。
 なお、以下の説明では、主に、実施の形態1~7との相違点について説明するものとし、実施の形態1~7で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 本実施形態では、表示装置1が直流電圧印加手段を備えている場合について説明する。本実施形態では、形状異方性部材32を横配向させるときに、直流電圧印加手段により、一対の基板のうち形状異方性部材32を貼り付ける側の基板におけるベタ電極に形状異方性部材32に帯電している電荷の極性と逆極性の直流電圧が印加されるように、上記一対の基板に設けられたベタ電極間に直流電圧を印加する。
 以下、本実施の形態でも、形状異方性部材32として、フレークを用いた場合を例に挙げて説明する。
 <表示装置の概略構成>
 図40の(a)・(b)は、本実施の形態にかかる反射型の表示装置1の概略構成を示す断面図であり、図40の(a)は、光吸収状態を示し、図40の(b)は、光反射状態を示す。
 図40の(a)・(b)に示す表示装置1は、基板10におけるベタ電極12と基板20におけるベタ電極22との間に、直流電圧印加手段として、電源回路231に電気的に接続されたスイッチ回路232および配線233が設けられているとともに、形状異方性部材32として、マイナスに帯電した金属フレークを備えていることを除けば、実施の形態2において図9の(a)・(b)に示す表示装置1と同様の構成を有している。
 なお、図33の(a)・(b)~図39の(a)・(b)では、形状異方性部材32が横配向しているときに一対の基板のうち一方の基板に貼り付いている場合を例に挙げて図示した。しかしながら、形状異方性部材32として金属フレークを用いた場合、金属フレークは縦電界で横配向することから、誘電体被膜フレークを横電界で横配向させる場合とは異なり、縦電界を印加しただけでは一方の基板に貼り付くことはなく、通常は、図31の(b)に示すように横配向した状態で浮遊(なお、後述する変形例のように一端が固定されている場合には、固定されていない他端が浮いた状態で横配向)する。
 本実施の形態では、上述したように、上下の基板10・20におけるベタ電極12・22に直流電圧印加手段を設け、図36の(b)に示すように、縦電界印加時に、縦方向、つまり、ベタ電極12・22間に、交流電圧を印加するのと同時に、上側のベタ電極12に、直流オフセット電圧として、プラスの直流電圧を印加する。これにより、上側の基板10側に、誘電泳動により、マイナスに帯電させている形状異方性部材32を引き寄せることができる。したがって、形状異方性部材32として金属フレークを用いた場合であっても、形状異方性部材32を、一対の基板10・20のうち一方の基板10に貼り付くように横配向させることができるし、このとき、重力に逆らって、上側の基板10に貼り付くように横配向させることができる。
 なお、この場合、ベタ電極12・22間に印加される交流電圧の大きさと直流電圧の大きさとの大小関係は特に限定されない。
 なお、上記直流電圧は、横電界印加時には、印加したままでもよいが、図36の(a)に示すように無印加としてもよい。このとき、横電界により形状異方性部材32は縦配向するが、形状異方性部材32が櫛歯電極14・15に対向する基板20側に存在していると、実質の横電界が弱くなる。このため、形状異方性部材32は、櫛歯電極14・15を有する基板10側に貼り付くように配向させることが好ましい。
 上述した例では、リレー回路41・51、電源回路61、および配線42~44・52~54が、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、上記光変調層30に印加する電界の方向を変更するときにベタ電極12・22に選択的に交流電圧を印加する電圧印加回路として機能する。また、リレー回路41・51が、基板10・20に設けられたベタ電極12・22および櫛歯電極14・15のなかから、交流電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能し、電源回路231、スイッチ回路232、および配線233が、直流電圧印加手段として機能する。
 本実施の形態でも、上述したように表示装置1を反射型とする場合、表示パネル2の背面側に、光吸収層(光吸収層76あるいは光吸収層23)の代わりに、正反射や散乱反射する光反射層を設け、フレークに凹凸を形成すると、横配向のときはフレークによる構造色表示を行い、縦配向のときは反射層による反射表示を行う構成とすることができる。
 <表示装置の変形例1>
 上述した例では、形状異方性部材32として金属のみからなる形状異方性部材32を用いた場合について説明したが、形状異方性部材32として誘電体被膜フレークを用いる場合も同様である。
 図41の(a)・(b)は、本変形例にかかる反射型の表示装置1の概略構成を示す断面図であり、図41の(a)は、光吸収状態を示し、図41の(b)は、光反射状態を示す。
 形状異方性部材32としてマイナスに帯電した誘電体被膜フレークを用いる場合、図41の(b)に示すように、横方向、つまり、櫛歯電極14・15間に交流電圧を印加するのと同時に、上側のベタ電極12に、直流オフセット電圧としてプラスの直流電圧を印加する。
 これにより、形状異方性部材32を、横電界より横配向させると同時に、電気泳動により、上側の基板10に引き寄せることができる。
 本変形例でも、形状異方性部材32が櫛歯電極14・15に対向する基板20側に存在していると、実質の横電界が弱くなる。このため、形状異方性部材32は、櫛歯電極14・15を有する基板10側に貼り付くように配向させることが好ましい。
 本変形例によれば、形状異方性部材32を、直流電圧により上側の基板10側に集めつつ、櫛歯電極14・15による横電界より、上側の基板10に貼り付くように配向させることができる。このため、本変形例によれば、形状異方性部材32を、効率良く、上側の基板10に貼り付けることができる。
 なお、この場合、ベタ電極12・22間に印加される直流電圧(DC)の大きさは、櫛歯電極14・15間に印加される交流電圧(AC)の大きさに対し、同じであっても大きくても小さくても構わない。但し、電界方向が互いに異なることから、上記直流電圧の大きさが上記交流電圧の大きさよりも大きい場合には、電圧差が極端に大きくならないようにすることが望ましく、同程度(例えばAC=1.5V、DC=2V)とすることがより望ましい。
 なお、本変形例でも、縦電界を印加するときは直流電圧を印加したままでもよいが、図41の(a)に示すように、直流電圧を無印加にしてもよい。
 本変形例でも、リレー回路41・51、電源回路61、および配線42~44・52~54が、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、上記光変調層30に印加する電界の方向を変更するときにベタ電極12・22に選択的に交流電圧を印加する電圧印加回路として機能する。また、本変形例でも、リレー回路41・51が、基板10・20に設けられたベタ電極12・22および櫛歯電極14・15のなかから、交流電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能し、電源回路231、スイッチ回路232、および配線233が、直流電圧印加手段として機能する。
 なお、本実施の形態では、上述したように、主に、実施の形態2における図9の(a)・(b)に示す表示装置1に直流電圧印加手段を設けた場合を例に挙げて説明した。しかしながら、本実施の形態はこれに限定されるものではなく、実施の形態2に記載の他の表示装置1あるいは他の実施形態に記載の表示装置1に対し、同様の変形を行ってもよい。一対の基板のうち一方の基板に櫛歯電極を設ける場合、上述した方法と同様の方法により変形が可能である。以下では、一対の基板にそれぞれ櫛歯電極を設けた場合の変形例について説明する。
 <表示装置の変形例2>
 図42の(a)~(c)は、本変形例にかかる表示装置1の概略構成を示す断面図であり、図42の(a)は、光吸収状態を示し、図42の(b)は、散乱による光反射状態を示し、図42の(b)は、ミラー反射による光反射状態を示す。
 図42の(a)~(c)に示す表示装置1は、基板10におけるベタ電極12と基板70におけるベタ電極72との間に、直流電圧印加手段として、図41の(a)・(b)に示す電源回路231、スイッチ回路232、および配線233が設けられているとともに、電源回路241に電気的に接続されたスイッチ回路242および配線243が設けられており、形状異方性部材32として、マイナスに帯電した誘電体被膜フレークを備えていることを除けば、実施の形態2において図11の(a)~(c)に示す表示装置1と同様の構成を有している。
 本変形例では、図42の(b)に示すように、下側の基板70における櫛歯電極74・75間に交流電圧を印加するのと同時に、電源回路241、スイッチ回路242、および配線243により、下側の基板70におけるベタ電極72に、直流オフセット電圧としてプラスの直流電圧を印加する。
 これにより、形状異方性部材32を、直流電圧により下側の基板70側に集めつつ、櫛歯電極74・75による横電界より、下側の基板70に貼り付くように配向させることができる。
 また、本変形例では、図42の(c)に示すように、上側の基板10における櫛歯電極14・15間に交流電圧を印加するのと同時に、電源回路231、スイッチ回路232、および配線233により、上側の基板10におけるベタ電極12に、直流オフセット電圧としてプラスの直流電圧を印加する。
 これにより、形状異方性部材32を、直流電圧により上側の基板10側に集めつつ、櫛歯電極14・15による横電界より、上側の基板10に貼り付くように配向させることができる。
 したがって、本変形例によれば、形状異方性部材32を、効率良く、上側の基板10または下側の基板70に貼り付けることができる。
 なお、本変形例でも、ベタ電極12・72間に印加される直流電圧(DC)の大きさは、櫛歯電極14・15間または櫛歯電極74・75間に印加される交流電圧(AC)の大きさに対し、同じであっても大きくても小さくても構わない。但し、本変形例でも、上記直流電圧の大きさが上記交流電圧の大きさよりも大きい場合には、電圧差が極端に大きくならないようにすることが望ましく、同程度とすることがより望ましい。
 また、本変形例でも、縦電界を印加するときは直流電圧を印加したままでもよいが、図42の(a)に示すように、直流電圧を無印加にしてもよい。
 上述した例では、図11に示す表示装置1同様、リレー回路80・90、電源回路61、および各配線83~86・93~96が、光変調層30に印加する電界の方向を変更する電界印加方向変更回路として機能するとともに、ベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75にそれぞれ選択的に交流電圧を印加する電圧印加部として機能する。また、リレー回路80・90が、基板10・70に設けられたベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75のなかから、交流電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能し、上述したように、電源回路231・241、スイッチ回路232・242、および配線233・243が、直流電圧印加手段として機能する。
 本変形例によれば、実施の形態2同様、光吸収層76(着色層)による表示(例えば黒表示、図42の(a))、反射光の散乱による白表示(図42の(b))、ミラー反射によるミラー反射表示(図42の(b))を切り替えることができる。
 <表示装置の変形例3>
 図43の(a)~(d)は、本変形例にかかる表示装置1の概略構成を示す断面図であり、図43の(a)は、散乱による光反射状態を示し、図43の(c)は、ミラー反射による光反射状態を示し、図43の(b)・(d)は、光吸収状態を示す。
 図43の(a)~(d)に示す表示装置1は、形状異方性部材32として、マイナスに帯電した金属フレークを備えていることを除けば、図42の(a)~(c)に示す表示装置1と同様の構成を有している。
 本変形例では、図43の(a)に示すように、縦電界印加時に、ベタ電極12・72間に、交流電圧を印加するのと同時に、電源回路241、スイッチ回路242、および配線243により、下側の基板70におけるベタ電極72に、直流オフセット電圧としてプラスの直流電圧を印加する。これにより、下側の基板70側に、誘電泳動により、マイナスに帯電させている形状異方性部材32を引き寄せることができるので、該形状異方性部材32を、下側の基板70に貼り付くように横配向させることができる。
 そして、この状態から、図43の(b)に示すように、形状異方性部材32が貼り付いている側の基板70における櫛歯電極74・75間に交流電圧を印加することで、櫛歯電極74・75による横電界により、形状異方性部材32を縦配向させることができる。
 また、本変形例では、図43の(c)に示すように、縦電界印加時に、ベタ電極12・72間に、交流電圧を印加するのと同時に、電源回路231、スイッチ回路232、および配線233により、上側の基板10におけるベタ電極12に、直流オフセット電圧としてプラスの直流電圧を印加する。これにより、上側の基板10側に、誘電泳動により、マイナスに帯電させている形状異方性部材32を引き寄せることができるので、該形状異方性部材32を、上側の基板10に貼り付くように横配向させることができる。
 そして、この状態から、図43の(d)に示すように、形状異方性部材32が貼り付いている側の基板10における櫛歯電極14・15間に交流電圧を印加することで、櫛歯電極14・15による横電界により、形状異方性部材32を縦配向させることができる。
 なお、本変形例でも、上記直流電圧は、横電界印加時には、印加したままでもよいが、図43の(b)・(d)に示すように無印加としてもよい。
 なお、本変形例において、ベタ電極12・72間に印加される交流電圧の大きさと直流電圧の大きさとの大小関係は特に限定されない。
 また、図43の(c)・(d)では、形状異方性部材32が貼り付いている側の基板10における櫛歯電極14・15間にのみ交流電圧を印加する構成としたが、両基板10・70における、櫛歯電極14・15間および櫛歯電極74・75間に交流電圧を印加しても構わない。少なくとも、形状異方性部材32が貼り付いている側の基板における櫛歯電極に交流電圧を印加することで、形状異方性部材32が貼り付いていない側の基板における櫛歯電極に交流電圧を印加する場合と比較して、形状異方性部材32に効率良く横電界を印加することができるので、形状異方性部材32を効率良く縦配向させることができる。
 なお、本変形例でも、変形例2同様、リレー回路80・90、電源回路61、および各配線83~86・93~96が、電界印加方向変更回路として機能するとともに、ベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75にそれぞれ選択的に交流電圧を印加する電圧印加部として機能する。また、リレー回路80・90が、基板10・70に設けられたベタ電極12・72、櫛歯電極14・15、および櫛歯電極74・75のなかから、交流電圧を印加する電極を選択する(切り替える)切替回路(選択回路)として機能し、電源回路231・241、スイッチ回路232・242、および配線233・243が、直流電圧印加手段として機能する。
 <帯電極性の変形例>
 なお、本実施の形態では、形状異方性部材32をマイナスに帯電させ、上側のベタ電極12に、直流オフセット電圧として、プラスの直流電圧を印加する場合を例に挙げて説明した。しかしながら、形状異方性部材32は、媒体31中でマイナスの帯電性を有する部材であってもプラスの帯電性を有する部材であってもよい。
 例えば、図40の(a)・(b)に示す例の場合、形状異方性部材32をプラスに帯電させ、上側のベタ電極12に、直流オフセット電圧として、マイナスの直流電圧を印加してもよい。この場合、電源回路62のマイナス側をベタ電極12に接続し、プラス側をベタ電極22に接続すればよい。このようにベタ電極12に帯電する電荷の極性と、形状異方性部材32に帯電する電荷の極性とを互いに異ならせることで、形状異方性部材32を、基板10に貼り付くように配向させることができる。
 〔変形例〕
 なお、上記各実施の形態にかかる表示装置1は、上述した構成に限定されるものではなく、以下の構成とすることもできる。なお、以下の説明では、特定の基板の構成並びに特定の基板の配置を例に挙げて説明しているが、前述したように、基板の構成並びに配置は、種々変更することが可能である。
 (セル厚)
 光変調層の厚み(セル厚)は、例えば図1の(b)に示すように、フレークが縦配向するのに十分な厚みであることが好ましいが、これに限定されるものではなく、フレークがその中間的な角度(斜め配向)で留まる程度の厚みであってもよい。
 すなわち、セル厚は、フレークの長軸の長さよりも小さく、かつ、フレークが基板に対して最大の角度で斜めに配向したときに、フレークにより反射された光が表示面側に直接出射されない値に設定されていてもよい。
 これにより、光変調層30の厚みを薄くすることができるため、表示パネル2の薄型化を実現することができる。さらに、電圧印加に伴うフレークの動きを制限できるため、より高速に駆動することができる。
 図19の(a)・(b)は、図8の(a)・(b)に示す表示パネル2において、セル厚を小さくした場合の概略構成を示す断面図である。
 例えば表示パネル2の背面側に黒色の光吸収層76を設けた実施の形態2にかかる反射型の表示装置1において、光変調層30に屈折率が1.5の媒体31を用いたときは、セル厚を、図19の(b)に示すように、表示パネル面の法線方向とフレーク面の法線方向とのなす角度θが42度以上になるよう設定する。これにより、フレークで反射する光は、少なくとも直接観察者側の基板から出射されることがないため、適切に黒表示を行うことができる。
 (形状異方性部材の固定)
 形状異方性部材(例えばフレーク)は、光変調層の媒体中を自由に回転する構成に限定されるものではなく、その一部が、表示面側の基板または背面側の基板に固定されていてもよい。
 図20の(a)・(b)は、図3の(a)・(b)に示す表示パネル2において、フレークの端部を基板10に固定した場合の概略構成を示す断面図である。
 ここで、フレークの一部を基板10に固定した表示パネル2の製造方法の一例について説明する。
 図21の(a)・(b)は、フレークの一部を基板に固定した表示パネルの製造方法を示す断面図である。
 まず、図21の(a)に示すように、基板10上に、隣り合う枝電極14A・15A間を覆うように、基板10の全面に渡って、絶縁層16を成膜した後、例えばCMP(Chemical Mechanical Polishing;化学機械研磨)処理等により、上記絶縁層16の表面を平坦化する。
 なお、上記絶縁層16としては、窒化ケイ素や二酸化ケイ素等の無機絶縁材料からなる無機絶縁膜であってもよく、アクリル系樹脂等の有機絶縁材料(樹脂材料)からなる有機絶縁膜であってもよい。また、上記絶縁層16の厚みは、櫛歯電極14・15とフレークとが導通しないように絶縁することができれば、特に限定されるものではない。
 但し、絶縁層16の厚みが増すほど基板10の厚みが増すことから、櫛歯電極14・15とフレークとの十分な絶縁性が確保できる程度に絶縁層16の厚みを薄くすることが、表示パネル2の薄型化を図る上で、望ましい。
 その後、フレークの大きさに応じて、隣り合う枝電極14A・15A間を跨ぐようにパターニングしたレジスト層として、第1のレジスト層を形成する。
 次に、蒸着等により、上記絶縁層16上に、上記第1のレジスト層を覆うように、例えばアルミニウム層を形成し、図21の(a)に示すように、アルミニウムを基板と固定させる部分だけ上記第1のレジスト層より大きなレジスト層として、第2のレジスト層をパターン形成する。
 次に、この複合層を、例えばリン酸、硝酸、および酢酸よりなるエッチング液により、図21の(a)の斜線部のアルミニウムが除去されるようにエッチングする。
 さらに、例えばNMP(N-メチルピロリドン)により上記第1および第2のレジスト層を除去することにより、一部が基板10(具体的には櫛歯電極14・15における各枝電極14A・15A)に固定したアルミニウム成形物を得ることができる。
 そして、この基板10と、基板10に対向する基板20とを、媒体31を介して、例えば、図20の(a)・(b)および図21の(b)に示すフレーク(形状異方性部材32)の可動部32aの長さd以上の長さを有するスペーサ(図示せず)等により、フレークが縦配向できる基板間距離を確保して貼り合せることにより、フレークが可逆的に縦配向および横配向する、フレークの一部が基板10に固定された表示パネル2(図20の(a)・(b)参照)を製造することができる。
 但し、本変形例は、これに限定されるものではなく、スペーサの大きさ(長さ、径)は、フレーク(形状異方性部材32)の可動部32aの長さよりも小さく設計されていてもよい。例えば、図19の(a)に示すように縦電界印加時にフレークを斜めに配向させる場合、スペーサの大きさおよび可動部32aの長さdは、上述した角度θが得られるように適宜設定すればよい。
 上記表示パネル2では、実施の形態1同様、光変調層30に、ベタ電極12・22により縦電界を印加することで、フレークが図20の(a)に示すように変形し、光透過状態とすることができる。
 一方、光変調層30に、実施の形態1同様、櫛歯電極14・15により横電界を印加することで、図20の(a)に示すように、フレークが元の形状に復元され、基板10に貼り付くように変形することで、光遮断状態とすることができる。
 なお、他の構成として、例えば、形状異方性部材32(例えばフレーク)の一部(一端)が紐やワイヤー等により固定され、固定端を中心にして、フレークが軸回転する構成としてもよい。
 このように、形状異方性部材32の一部(例えば一端)が固定されていることで、形状異方性部材32を媒体31に分散させる場合と比較して、より少量の形状異方性部材32で、より確実に基板10の表示領域を覆うことができ、形状異方性部材32を横配向させたときに、良好な光遮断状態あるいは光反射状態を実現することができる。
 なお、本変形例では、図21の(a)に示すように、基板10の全面に渡って絶縁層16を成膜した後、上記絶縁層16の表面を平坦化する場合を例に挙げて説明したが、上記平坦化は、必ずしも必須ではない。平坦化を行わない場合、凹凸面を有するフレークを形成することができる。この場合、光散乱性が高いフレークを形成することができる。
 (お椀型の形状異方性部材)
 形状異方性部材としては、お椀型に形成された(凹凸面を有する)フレークを用いることもできる。
 図22の(a)・(b)は、図8の(a)・(b)に示す表示パネル2において、お椀型のフレークを用いた場合の概略構成を示す断面図であり、図23の(a)・(b)は、図10の(a)・(b)に示す表示パネル2において、お椀型のフレークを用いた場合の概略構成を示す断面図である。
 図22の(a)・(b)および図23の(a)・(b)の構成によれば、図8の(a)・(b)および図10の(a)・(b)に示す平坦型(平面型)のフレークを用いた場合と比較して、光散乱性を向上させることができる。
 (ファイバ状の形状異方性部材)
 また、形状異方性部材は、ファイバ状に形成されていてもよい。
 図24の(a)・(b)は、図10の(a)・(b)に示す表示パネル2において、ファイバ状のフレークを用いた場合の概略構成を示す断面図である。
 また、図25は、透明円柱状のガラスに反射膜を形成した形状異方性部材の概略構成を示す斜視図である。
 ファイバ状の形状異方性部材(ファイバと称す)は、例えば、図25に示すように、透明円柱状のガラスに反射膜(金属、または、金属および樹脂コート)を形成した構成とすることができる。
 図24の(a)は、光変調層30に縦電界を印加することによりファイバを縦配向させて、反射表示(白表示)を行う状態を示している。縦配向の場合は、外光がファイバの反射膜により散乱反射し、白表示となる。
 図24の(b)は、光変調層30に横電界を印加することによりファイバを横配向させて透過表示(黒表示)を行う状態を示している。横配向の場合は、外光がファイバにより反射された後、基板10方向へ進行し、光吸収層23に吸収されるため、黒表示となる。
 (電圧印加方法)
 光変調層への電界印加方法は、形状異方性部材を縦配向と横配向とで切り替える構成に限定されず、縦配向と斜め配向とで切り替える構成、あるいは、横配向と斜め配向とで切り替える構成としてもよい。
 すなわち、フレークの配向の程度は、前述したように、例えば、各電極間に印加される電圧の大きさにより制御することができる。
 また、例えば、大きさの異なるフレークを混在させることにより、フレークの大きさに応じて、各フレークの回転角度を変えることができる。
 したがって、例えば、各電極に印加される電圧の大きさ(言い換えれば、光変調層に印加される電界の大きさ)や、形状異方性部材のサイズや形状等の選択により、光透過率を制御することで、中間調表示を行うことができる。
 (拡散反射層)
 図26の(a)は従来のカラーフィルタにおける光の反射特性を示す図であり、図26の(b)は本発明のカラーフィルタにおける光の反射特性を示す図である。
 例えば実施の形態2にかかる反射型の表示装置では、フレークのサイズや形状や平面性の選択および濃度により、反射光の散乱特性を制御することが可能である。
 酸化チタン等の散乱により白色を表示させる、例えば微粒子電気泳動ディスプレイでは、その散乱は等方性に近い。このような散乱特性の表示にカラーフィルタを用いてカラー表示を行うと、図26の(a)に示すように、ある色画素で散乱し導光した光が、別の色画素のカラーフィルタにより吸収されてしまい、反射光のロスが大きい。これに対して、上記表示装置1によれば、図26の(b)に示すように、散乱状態に一定の指向性を持たすことが可能であるため、カラーフィルタを用いて、表示品位の高いカラー表示を行うことができる。
 (基板)
 また、上述した各実施の形態では、表示面側の基板および背面側の基板のうち少なくとも一方の基板に、アクティブマトリクス基板を用いた場合を例に挙げて説明した。しかしながら、上記表示パネル2の構成は、これに限定されるものではない。
 単純には、駆動層を挟持する基板の内側全面に、電極として、ITOやアルミ蒸着層等の導電性の電極膜からなるベタ状電極および櫛歯状電極を形成してもよく、セグメント表示やパッシブ表示可能なように電極をパターニングしてもよい。また、上述したように、TFT基板等のアクティブマトリクス基板を少なくとも一方の基板に設けてもよい。
 光変調層を挟んで対向配置された一対の基板のうち少なくとも一つの基板には、ベタ状の電極上に、絶縁膜を介して櫛歯電極が形成される。この櫛歯電極は、画素毎に形成されていてもよく、さらに、TFT等のスイッチング素子により、個々を制御することができる。
 (用途)
 なお、上述した各実施の形態では、光変調パネルおよび光変調装置として、主に、表示パネルおよび表示装置を例に挙げて説明したが、上記光変調パネルおよび光変調装置としては、表示パネルおよび表示装置に限定されるものではなく、例えば光スイッチや照明素子、前述したカラーフィルタ素子等、光の透過率を変更したり、透過光の着色を必要としたりするような種々の用途に適用することができる。
 また、上述した各実施の形態にかかる光変調パネルは、例えば、2D/3D表示用の切替パネルに適用することもできる。具体的には、通常の液晶表示パネルの前面に、切替パネルとして、例えば、実施の形態2に記載の反射型の表示パネル2と同じ構成を有する光変調パネルを設置する。このような光変調パネルは、黒色に着色されたフレークをストライプ状に配し、2D表示の際には、フレークを縦配向させて液晶表示パネルの全面に表示される画像を視認可能にし、3D表示の際には、フレークを横配向させてストライプを形成し、液晶表示パネルに右用画像および左用画像を表示して立体画像として認識させる。これにより、2D表示と3D表示とを切り替えることが可能な液晶表示装置を実現することができる。また、上記の構成は、デュアルビュー等のマルチビュー表示の液晶表示装置に適用することもできる。
 〔まとめ〕
 本発明の態様1にかかる光変調パネルは、以上のように、互いに対向配置された一対の基板と、上記一対の基板間に挟持された光変調層とを備えた光変調パネルであって、上記光変調層は、電界の方向に応じて回転または変形することで上記基板の法線方向から見た投影像の面積が変化する複数の形状異方性部材と、媒体とを含み、上記一対の基板は、それぞれベタ状の電極を備え、上記一対の基板のうち少なくとも一方の基板には、上記ベタ状の電極上に、絶縁層を介して、少なくとも1つの櫛歯状の電極が設けられており、上記光変調層に印加する電界の方向を変更する電界印加方向変更回路をさらに備えている。
 上記光変調パネルは、対向する一対の基板に、対向する均一なベタ状の電極を備えていることで、これらベタ状の電極間に電圧を印加すると、均一な縦電界(つまり、上記一対の基板に垂直な方向の均一な電界)により、特許文献1のような弱電場領域が存在せず、形状異方性部材が凝集することはない。
 また、上記光変調パネルは、上記一対の基板のうち少なくとも一方の基板上に少なくとも1つの櫛歯状の電極が設けられていることで、該櫛歯状の電極により、上記一対の基板に平行な方向の横電界を形成することができる。このため、特許文献2のように横電界を印加するための電極を設けるために非常に複雑な構成のスペーサを必要とせず、簡素な構成とすることができる。
 また、特許文献2のように横電界を印加するための電極をスペーサに設けた場合、前述したように、三次元的にフレークの配向を制御することができないのに対し、上記したように櫛歯状の電極により横電界を印加した場合、上記形状異方性部材は、電気的に安定な配向をとる。このため、上記の構成によれば、三次元的に上記形状異方性部材の配向を制御することができる。
 したがって、上記の構成によれば、簡素で、かつ、高いコントラストで高い光利用効率の光変調パネルを提供することができる。
 本発明の態様2にかかる光変調パネルは、上記態様1において、上記光変調パネルにおいて、上記電界印加方向変更回路は、上記一対の基板に設けられた電極のなかから電圧を印加する電極を選択する選択回路を備えていることが好ましい。
 本発明の態様3にかかる光変調パネルは、上記態様2において、上記櫛歯状の電極は、上記一対の基板のうち少なくとも一方の基板に複数設けられており、上記選択回路は、上記一対の基板に設けられたベタ状の電極間、および、上記一対の基板のうち同一の基板に設けられた櫛歯状の電極間のうち、何れか一方の電極間に電圧が印加されるように、電圧を印加する電極を選択することが好ましい。
 上記の各構成によれば、選択回路により上記一対の基板に設けられた電極のなかから電圧を印加する電極を選択することで、上記光変調層に印加する電界の方向を容易に変更することができる。
 本発明の態様4にかかる光変調パネルは、上記態様3において、上記形状異方性部材は帯電性を有し、上記選択回路は、上記一対の基板に設けられたベタ状の電極間、および、上記一対の基板のうち同一の基板に設けられた櫛歯状の電極間のうち、何れか一方の電極間に交流電圧が印加されるように、交流電圧を印加する電極を選択するとともに、上記形状異方性部材を上記一対の基板の基板面に対し平行な方向に配向させるときに、上記一対の基板のうち上記形状異方性部材を貼り付ける側の基板におけるベタ状の電極に、上記形状異方性部材に帯電する電荷の極性と逆極性の直流電圧が印加されるように、上記一対の基板に設けられたベタ状の電極間に直流電圧を印加する直流電圧印加手段をさらに備え、上記形状異方性部材を上記一対の基板の基板面に対し平行な方向に配向させるときに、上記一対の基板のうち何れか一方の基板に上記形状異方性部材を貼り付けることが好ましい。
 上記の構成によれば、上記形状異方性部材を横配向させるときに、上記形状異方性部材の種類に拘らず、上記一対の基板のうち何れか一方の基板に、上記形状異方性部材を効率良く貼り付けることができる。
 本発明の態様5にかかる光変調パネルは、上記態様2において、上記選択回路は、上記一対の基板に設けられたベタ状の電極間、および、上記一対の基板のうち同一の基板に設けられた櫛歯状の電極とベタ状の電極との間のうち、何れか一方の電極間に電圧が印加されるように、電圧を印加する電極を選択することが好ましい。
 この場合にも、選択回路により上記一対の基板に設けられた電極のなかから電圧を印加する電極を選択することで、上記光変調層に印加する電界の方向を容易に変更することができる。
 また、この場合、光変調層に縦電界を印加するとき(例えば、縦電界で形状異方性部材を縦配向させ、横電界で形状異方性部材を横配向させる場合には、上記形状異方性部材を縦配向させるとき)に概ね平均的な電圧を印加することができる一方、光変調層に横電界を印加するとき(例えば、縦電界で形状異方性部材を縦配向させ、横電界で形状異方性部材を横配向させる場合には、上記形状異方性部材を横配向させるとき)に、上記各電極を選択的に切り替えるための選択回路の構成を、簡素なものとすることができる。
 本発明の態様6にかかる光変調パネルは、上記態様1において、上記櫛歯状の電極は、上記一対の基板のうち少なくとも一方の基板に複数設けられており、光変調層駆動時(すなわち、光変調パネルに電圧を印加するとき、言い換えれば、光変調パネルの電源ON(オン)時)に、上記光変調層に、上記一対の基板にそれぞれ設けられたベタ状の電極間に発生する電界および上記一対の基板のうち同一の基板に設けられた櫛歯状の電極間に発生する電界のうち、何れか一方の電極間に発生する電界が常に印加されているとともに、上記電界印加方向変更回路は、上記光変調層に印加する電界の方向を変更するときに、上記一方の電極間に発生する電界よりも強い電界を発生させる電圧を、他方の電極間に選択的に印加する電圧印加回路を備えていることが好ましい。
 上記の各構成によれば、上記電圧印加回路により上記一方の電極間に発生する電界よりも強い電界を上記他方の電極間に選択的に印加することで、上記光変調層に印加する電界の方向を容易に変更することができる。
 また、この場合、上記形状異方性部材の向きは、縦電界と横電界との強さのバランスによって決定される。このため、上記他方の電極間に印加する電圧の大きさを調整(制御)することで、中間調の表示が容易になる。
 本発明の態様7にかかる光変調パネルは、上記態様1~6において、上記光変調パネルは、表示パネルであることが好ましい。
 上記の構成によれば、上記光変調層に印加する電界の方向を変更することにより、光の透過率を変化させることができる。また、液晶表示装置と比較して、液晶表示パネルの偏光板を省略できるため、光利用効率を高めることができる。よって、簡易な構成で光利用効率の高い表示パネルを実現することができる。
 本発明の態様8にかかる光変調パネルは、上記態様7において、上記形状異方性部材は、反射性を有する材料からなることが好ましい。
 この場合、上記光変調層に入射した入射光は、上記形状異方性部材の縦配向時(例えば、縦電界で形状異方性部材を縦配向させ、横電界で形状異方性部材を横配向させる場合には縦電界印加時)には、光変調層内を直接透過するか、もしくは、上記一対の基板の基板面に対し斜めに配向している形状異方性部材の反射面で反射した後に、入射光の入射側とは反対側の基板に向かって光変調層内を透過する。このため、入射光の入射側とは反対側の基板の構成に応じて、光変調層内を透過した光は、吸収されるか、もしくは基板を透過することで、透過表示が行われる。
 一方、上記形状異方性部材の横配向時(例えば、縦電界で形状異方性部材を縦配向させ、横電界で形状異方性部材を横配向させる場合には横電界印加時)には、上記形状異方性部材が上記基板に平行に横配向することで、上記光変調層内に入射された光は、上記光変調層の反射面で反射される。これにより、観察者側とは反対側から上記光変調層に光が入射した場合には光が遮断され、観察者側から光が入射した場合には反射表示が行われる。なお、上記反射性を有する材料としては、例えば金属が挙げられる。
 本発明の態様9にかかる光変調パネルは、上記態様8において、上記光変調層の厚みは、上記形状異方性部材の長軸の長さよりも小さく、かつ、上記形状異方性部材が上記一対の基板に対して最大の角度で斜めに配向したときに、上記形状異方性部材により反射された光が、表示面側に直接出射されない値に設定されていることが好ましい。
 これにより、光変調層の厚みを薄くすることができるため、上記光変調パネルの薄型化を実現することができる。さらに、電圧印加に伴う形状異方性部材の動きを制限できるため、より高速に駆動することができる。
 本発明の態様10にかかる光変調パネルは、上記態様8または9において、上記光変調パネルは、上記一対の基板のうち、表示面側とは反対側の基板に、着色層が形成されていてもよい。
 これにより、上記形状異方性部材が上記一対の基板に平行に配向(横配向)しているときは形状異方性部材の反射色が観察され、上記一対の基板に垂直な方向(法線方向)に配向(縦配向)しているときは着色層が観察される。
 本発明の態様11にかかる光変調パネルは、上記態様8または9において、上記光変調パネルは、上記一対の基板が透明基板であり、上記形状異方性部材を、上記一対の基板の基板面に対し垂直な方向に配向させることで、シースルー表示を行ってもよい。
 この場合、上記形状異方性部材が上記一対の基板に平行に配向(横配向)しているときは形状異方性部材の反射色または黒が観察され、上記一対の基板に垂直な方向(法線方向)に配向(縦配向)しているときは、観察者がいる側と反対側を観察することができるシースルーの表示パネルを実現することができる。このような表示パネルは、例えばショーウインドウに好適である。
 本発明の態様12にかかる光変調パネルは、上記態様8~11の何れかにおいて、上記一対の基板は、それぞれ、上記ベタ状の電極上に、上記絶縁層を介して上記櫛歯状の電極を備えていることが好ましい。
 上記の構成によれば、上記形状異方性部材を横配向させる際に、電圧を印加する電極を、上記一対の基板のうち一方の基板に設けられた櫛歯状の電極間と、他方の基板に設けられた櫛歯状の電極間とで切り替えることにより、上記形状異方性部材を、上記一方の基板側または他方の基板側に貼り付くように切り替えて配向させることができる。これにより、上記基板から出射される光の特性を変更することができる。
 例えば、上記形状異方性部材を、観察者とは反対側(すなわち、背面側)の基板に沿って配向させる場合、観察者側からは上記形状異方性部材が堆積しているように観察されるため、複数の形状異方性部材により凹凸面が形成され、散乱の強い表示を得ることができる。
 一方、上記形状異方性部材を、観察者側の基板側に沿って配向させる場合、観察者側からは、それぞれの形状異方性部材の反射面により、同一平面(面一状の反射面)が形成されるように観察される。このため、鏡面性の高い表示(ミラー反射)を得ることができる。
 本発明の態様13にかかる光変調パネルは、上記態様8~12の何れかにおいて、上記形状異方性部材が着色されていてもよい。
 これにより、上記形状異方性部材が上記一対の基板に平行に配向(横配向)しているときに、上記形状異方性部材により着色表示を行うことができる。
 本発明の態様14にかかる光変調パネルは、上記態様1~8の何れかにおいて、上記光変調層は、カラーフィルタとして機能し、上記複数の形状異方性部材は、透明樹脂からなり、少なくとも、赤色に着色された形状異方性部材と、緑色に着色された形状異方性部材と、青色に着色された形状異方性部材とを含んでいることが好ましい。
 これにより、カラー表示を行うことができる。上記の構成によれば、上記光変調パネルは、カラーフィルタ素子として、単独で、もしくは、カラーフィルタ素子一体型の表示パネルとして用いることができる。
 本発明の態様15にかかる光変調パネルは、上記態様1~14の何れかにおいて、上記形状異方性部材は、上記一対の基板に設けられたベタ状の電極間に電圧を印加したときに上記一対の基板の基板面に対し垂直な方向に配向し、上記一対の基板のうち同一の基板に設けられた電極間に電圧を印加したときに上記一対の基板の基板面に対し平行な方向に配向することが好ましい。
 この場合、縦電界形成時に、特許文献1のような弱電場領域が存在せず、上記形状異方性部材を、凝集させることなく、縦配向させることができる。すなわち、この場合、形状異方性部材が凝集しないので光が透過する。
 また、上記光変調パネルは、前述したように上記一対の基板のうち少なくとも一方の基板上に少なくとも1つの櫛歯状の電極が設けられていることで、該櫛歯状の電極により、上記一対の基板に平行な方向の横電界を形成することができるので、上記形状異方性部材を、その長軸が、上記一対の基板に平行になるように横配向させることができる。
 特許文献2のように横電界を印加するための電極をスペーサに設けた場合、前述したように、三次元的にフレークの配向を制御することができないのに対し、上記したように櫛歯状の電極により横電界を印加した場合、上記形状異方性部材は、電気的に安定な配向をとった結果、横配向する。このため、上記の構成によれば、三次元的に上記形状異方性部材の配向を制御することができ、上記形状異方性部材の主面が上記一対の基板に平行になるように上記形状異方性部材の配向を制御することができる。
 したがって、上記の構成によれば、簡素で、かつ、高いコントラストで高い光利用効率の光変調パネルを提供することができる。
 本発明の態様16にかかる光変調パネルは、上記態様15において、上記形状異方性部材は、金属の表面に誘電体被膜が形成された誘電体被膜金属、半導体、誘電体、誘電体多層膜、またはコレステリック樹脂により形成されていることが好ましい。
 上記の構成によれば、上述したように、上記形状異方性部材を、縦電界で縦配向させ、横電界で横配向させることができる。
 本発明の態様17にかかる光変調パネルは、上記態様1~12の何れかにおいて、上記形状異方性部材は、上記一対の基板に設けられたベタ状の電極間に電圧を印加したときに上記一対の基板の基板面に対し平行な方向に配向し、上記一対の基板のうち同一の基板に設けられた電極間に電圧を印加したときに上記一対の基板の基板面に対し垂直な方向に配向することが好ましい。
 この場合、特許文献1のような弱電場領域が存在せず、上記形状異方性部材を、凝集させることなく、横配向させることができる。すなわち、この場合、縦電界形成時に、形状異方性部材が凝集しないので光漏れが生じない。
 また、上記光変調パネルは、前述したように上記一対の基板のうち少なくとも一方の基板上に少なくとも1つの櫛歯状の電極が設けられていることで、該櫛歯状の電極により、上記一対の基板に平行な方向の横電界を形成することができるので、上記形状異方性部材を、その長軸が、上記一対の基板に垂直になるように縦配向させることができる。
 特許文献2のように横電界を印加するための電極をスペーサに設けた場合、前述したように、三次元的にフレークの配向を制御することができないのに対し、上記したように櫛歯状の電極により横電界を印加した場合、上記形状異方性部材は、電気的に安定な配向をとった結果、縦配向する。このため、上記の構成によれば、三次元的に上記形状異方性部材の配向を制御することができ、上記形状異方性部材の主面が上記一対の基板に垂直になるように上記形状異方性部材の配向を制御することができる。
 したがって、上記の構成によれば、簡素で、かつ、高いコントラストで高い光利用効率の光変調パネルを提供することができる。
 また、特許文献1は、前述したように縦電界形成時に板状粒子が凝集するという問題に加えて、板状粒子を、その長軸が、一対の基板に平行になるように横配向させた時に光漏れが生じ、コントラストが低下するおそれがあるという問題点を有している。
 しかしながら、上記の構成によれば、縦電界形成時の形状異方性部材の凝集を防止することができるだけでなく、形状異方性部材の横配向時に光漏れが生じることがないので、コントラストの低下を防止することができる。
 本発明の態様18にかかる光変調パネルは、上記態様17において、上記形状異方性部材は、金属のみからなることが好ましい。
 上記形状異方性部材を金属のみで形成することで、上述したように、上記形状異方性部材を、縦電界で横配向させ、横電界で縦配向させることができる。
 上記形状異方性部材が金属のみからなることで、例えば誘電体等による、光の干渉がなくなる。よって、形状異方性部材の向きによって光の色味が変わることがなくなり、視角特性が向上する。また、誘電体等による光の吸収が無くなるため、反射率が向上する。さらに、形状異方性部材を金属のみで形成することで、形状異方性部材が横配向して基板に平行に並んでいる場合に、誘電体等の部分から光漏れが生じることがない。このため、コントラストが向上する。
 本発明の態様19にかかる光変調パネルは、上記態様1~18の何れかにおいて、上記形状異方性部材は、その一部が、上記一対の基板のうち少なくとも一方の基板における他方の基板との対向面に固定されていることが好ましい。
 このように、上記形状異方性部材の一部が固定されていることで、上記形状異方性部材を横配向させたときに、上記形状異方性部材を媒体に分散させる場合と比較して、より少量の形状異方性部材で、良好な光遮断状態あるいは光反射状態を実現することができる。
 本発明の態様20にかかる光変調パネルは、上記態様1~19の何れかにおいて、上記形状異方性部材は、フレーク状、円柱状、および楕円球状のうち少なくとも一種の形状に形成されていることが好ましい。
 本発明の態様21にかかる光変調パネルは、上記態様1~20の何れかにおいて、上記光変調パネルでは、上記形状異方性部材は、フレーク状に形成されているとともに、凹凸面を有する構成とすることもできる。
 これにより、散乱の強い表示を得ることができる。
 また、本発明の態様22にかかる光変調装置は、上記態様1~21の何れかの光変調パネルを備えていることが好ましい。
 これにより、簡素で、かつ、高いコントラストで高い光利用効率の光変調装置を提供することができる。
 本発明の態様23にかかる光変調装置は、上記態様22において、上記光変調パネルに光を照射するバックライトをさらに備え、外光を反射して表示を行う反射表示モードと、上記バックライトから照射された光を透過して表示を行う透過表示モードとを含み、上記反射表示モードと透過表示モードとを切り替えて表示を行う半透過型の表示装置であって、上記反射表示モードでは、入射された外光を上記形状異方性部材で反射することにより表示を行い、上記透過表示モードでは、上記バックライトの光が上記光変調層を通過することにより表示を行う構成としてもよい。
 本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、また、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、テレビ等のディスプレイに用いられる表示パネル、表示装置、光スイッチ、照明素子、カラーフィルタ素子等、光の透過率を変更したり、透過光の着色を必要としたりするような種々の用途に利用することができる。
1  表示装置
2  表示パネル
3  バックライト
4  情報表示用光変調層
10,20,70,110,120,130,170  基板
11,21,71,111,121,131,171  絶縁基板
12,22,72,112,122,123,132,172  ベタ電極
13,73,113,133,173  絶縁層
14,15,74,75,114,115,134,135,174,175 櫛歯電極
14A,15A,74A,75A,114A,115A,174A  枝電極
14B,15B,74B,75B,114B,115B,174B  幹電極
14L,15L,74L,75L,114L,115L,174L  電極部
14S,15S,74S,75S,114S,115S,174S  スペース部
16  絶縁層
23,76  光吸収層
30  光変調層
31,141  媒体
32,142  形状異方性部材
32a  可動部
41,51,80,90,151,152,181  リレー回路(電界印加方向変更回路)
42~44・52~54,62,153~158,182~184,193~196,223~226  配線(電界印加方向変更回路)
233,243  配線(直流印加手段)
211,212,227,228  配線
61,161  電源回路(電界印加方向変更回路)
232,242  電源回路(直流印加手段)
81  第1のリレー回路部(電界印加方向変更回路)
82  第2のリレー回路部(電界印加方向変更回路)
83~86・93~96  配線(電界印加方向変更回路)
91  第3のリレー回路部(電界印加方向変更回路)
92  第4のリレー回路部(電界印加方向変更回路)
140  カラーフィルタ層(光変調層)
143  リブ
161,201,202  電源回路(電界印加方向変更回路)
191,192,221,222  スイッチ回路(電界印加方向変更回路)
232,242  スイッチ回路(直流印加手段)

Claims (19)

  1.  互いに対向配置された一対の基板と、上記一対の基板間に挟持された光変調層とを備えた光変調パネルであって、
     上記光変調層は、電界の方向に応じて回転または変形することで上記基板の法線方向から見た投影像の面積が変化する複数の形状異方性部材と、媒体とを含み、
     上記一対の基板は、それぞれベタ状の電極を備え、
     上記一対の基板のうち少なくとも一方の基板には、上記ベタ状の電極上に、絶縁層を介して、少なくとも1つの櫛歯状の電極が設けられており、
     上記光変調層に印加する電界の方向を変更する電界印加方向変更回路をさらに備えていることを特徴とする光変調パネル。
  2.  上記電界印加方向変更回路は、上記一対の基板に設けられた電極のなかから電圧を印加する電極を選択する選択回路を備えていることを特徴とする請求項1に記載の光変調パネル。
  3.  上記櫛歯状の電極は、上記一対の基板のうち少なくとも一方の基板に複数設けられており、
     上記選択回路は、上記一対の基板に設けられたベタ状の電極間、および、上記一対の基板のうち同一の基板に設けられた櫛歯状の電極間のうち、何れか一方の電極間に電圧が印加されるように、電圧を印加する電極を選択することを特徴とする請求項2に記載の光変調パネル。
  4.  上記形状異方性部材は帯電性を有し、
     上記選択回路は、上記一対の基板に設けられたベタ状の電極間、および、上記一対の基板のうち同一の基板に設けられた櫛歯状の電極間のうち、何れか一方の電極間に交流電圧が印加されるように、交流電圧を印加する電極を選択するとともに、
     上記形状異方性部材を上記一対の基板の基板面に対し平行な方向に配向させるときに、上記一対の基板のうち上記形状異方性部材を貼り付ける側の基板におけるベタ状の電極に、上記形状異方性部材に帯電する電荷の極性と逆極性の直流電圧が印加されるように、上記一対の基板に設けられたベタ状の電極間に直流電圧を印加する直流電圧印加手段をさらに備え、
     上記形状異方性部材を上記一対の基板の基板面に対し平行な方向に配向させるときに、上記一対の基板のうち何れか一方の基板に上記形状異方性部材を貼り付けることを特徴とする請求項3に記載の光変調パネル。
  5.  上記選択回路は、上記一対の基板に設けられたベタ状の電極間、および、上記一対の基板のうち同一の基板に設けられた櫛歯状の電極とベタ状の電極との間のうち、何れか一方の電極間に電圧が印加されるように、電圧を印加する電極を選択することを特徴とする請求項2に記載の光変調パネル。
  6.  上記櫛歯状の電極は、上記一対の基板のうち少なくとも一方の基板に複数設けられており、
     光変調層駆動時に、上記光変調層に、上記一対の基板にそれぞれ設けられたベタ状の電極間に発生する電界および上記一対の基板のうち同一の基板に設けられた櫛歯状の電極間に発生する電界のうち、何れか一方の電極間に発生する電界が常に印加されているとともに、
     上記電界印加方向変更回路は、上記光変調層に印加する電界の方向を変更するときに、上記一方の電極間に発生する電界よりも強い電界を発生させる電圧を、他方の電極間に選択的に印加する電圧印加回路を備えていることを特徴とする請求項1に記載の光変調パネル。
  7.  表示パネルであることを特徴とする請求項1~6の何れか1項に記載の光変調パネル。
  8.  上記形状異方性部材は、反射性を有する材料からなることを特徴とする請求項7に記載の光変調パネル。
  9.  上記光変調層の厚みは、上記形状異方性部材の長軸の長さよりも小さく、かつ、上記形状異方性部材が上記一対の基板に対して最大の角度で斜めに配向したときに、上記形状異方性部材により反射された光が、表示面側に直接出射されない値に設定されていることを特徴とする請求項8に記載の光変調パネル。
  10.  上記一対の基板のうち、表示面側とは反対側の基板に、着色層が形成されていることを特徴とする請求項8または9に記載の光変調パネル。
  11.  上記一対の基板は透明基板であり、上記形状異方性部材を、上記一対の基板の基板面に対し垂直な方向に配向させることで、シースルー表示を行うことを特徴とする請求項8または9に記載の光変調パネル。
  12.  上記一対の基板は、それぞれ、上記ベタ状の電極上に、上記絶縁層を介して上記櫛歯状の電極を備えていることを特徴とする請求項8~11の何れか1項に記載の光変調パネル。
  13.  上記形状異方性部材が着色されていることを特徴とする請求項8~12の何れか1項に記載の光変調パネル。
  14.  上記光変調層は、カラーフィルタとして機能し、
     上記複数の形状異方性部材は、透明樹脂からなり、少なくとも、赤色に着色された形状異方性部材と、緑色に着色された形状異方性部材と、青色に着色された形状異方性部材とを含んでいることを特徴とする請求項1~8の何れか1項に記載の光変調パネル。
  15.  上記形状異方性部材は、上記一対の基板に設けられたベタ状の電極間に電圧を印加したときに上記一対の基板の基板面に対し垂直な方向に配向し、上記一対の基板のうち同一の基板に設けられた電極間に電圧を印加したときに上記一対の基板の基板面に対し平行な方向に配向することを特徴とする請求項1~14の何れか1項に記載の光変調パネル。
  16.  上記形状異方性部材は、上記一対の基板に設けられたベタ状の電極間に電圧を印加したときに上記一対の基板の基板面に対し平行な方向に配向し、上記一対の基板のうち同一の基板に設けられた電極間に電圧を印加したときに上記一対の基板の基板面に対し垂直な方向に配向することを特徴とする請求項1~12の何れか1項に記載の光変調パネル。
  17.  上記形状異方性部材は、金属のみからなることを特徴とする請求項16に記載の光変調パネル。
  18.  上記形状異方性部材は、その一部が、上記一対の基板のうち少なくとも一方の基板における他方の基板との対向面に固定されていることを特徴とする請求項1~17の何れか1項に記載の光変調パネル。
  19.  請求項1~18の何れか1項に記載の光変調パネルを備えていることを特徴とする光変調装置。
PCT/JP2013/057857 2012-03-19 2013-03-19 光変調パネルおよび光変調装置 WO2013141248A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/386,201 US9291812B2 (en) 2012-03-19 2013-03-19 Light-modulating panel and light modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012062561 2012-03-19
JP2012-062561 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013141248A1 true WO2013141248A1 (ja) 2013-09-26

Family

ID=49222705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057857 WO2013141248A1 (ja) 2012-03-19 2013-03-19 光変調パネルおよび光変調装置

Country Status (2)

Country Link
US (1) US9291812B2 (ja)
WO (1) WO2013141248A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087911A1 (ja) * 2013-12-13 2015-06-18 シャープ株式会社 光変調装置及び表示装置
WO2015152008A1 (ja) * 2014-04-02 2015-10-08 シャープ株式会社 光学装置
WO2016002569A1 (ja) * 2014-06-30 2016-01-07 シャープ株式会社 反射型表示装置
WO2016063880A1 (ja) * 2014-10-24 2016-04-28 シャープ株式会社 表示装置
WO2016104229A1 (ja) * 2014-12-22 2016-06-30 シャープ株式会社 光変調装置及び表示装置
WO2016158814A1 (ja) * 2015-04-03 2016-10-06 シャープ株式会社 光変調装置及び表示装置
US10372009B2 (en) 2015-08-11 2019-08-06 Sharp Kabushiki Kaisha Optical device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108899A1 (ja) * 2012-01-19 2013-07-25 シャープ株式会社 表示パネルおよび表示装置
US9304369B2 (en) * 2012-05-16 2016-04-05 Sharp Kabushiki Kaisha Display panel and display device
WO2014085896A1 (en) * 2012-12-07 2014-06-12 Robert Bosch Gmbh Multiple beam shaping illumination system
CN103383510B (zh) * 2013-07-09 2016-08-10 京东方科技集团股份有限公司 一种液晶面板和显示装置
JP6583803B2 (ja) * 2016-03-28 2019-10-02 パナソニックIpマネジメント株式会社 エレクトロクロミック装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713206A (ja) * 1993-06-18 1995-01-17 Tokyo Jiki Insatsu Kk 書換え可能型表示媒体
JP2000171783A (ja) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003107438A (ja) * 2000-09-12 2003-04-09 Canon Inc 液晶素子
JP2005156811A (ja) * 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd 表示装置
JP2005173112A (ja) * 2003-12-10 2005-06-30 Fuji Photo Film Co Ltd 表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314400B2 (ja) 1972-12-01 1978-05-17
US4046456A (en) * 1976-04-22 1977-09-06 Honeywell Inc. Electro-optic cell with transverse electric field
US4753517A (en) * 1979-04-30 1988-06-28 Imo Delaval Incorporated Electrooptical light gating methods and apparatus
US4707244A (en) * 1986-01-21 1987-11-17 Beckman Industrial Corporation Solid state sensor element
GB0322230D0 (en) 2003-09-23 2003-10-22 Koninkl Philips Electronics Nv Suspended particle device
TWI329214B (en) * 2003-12-18 2010-08-21 Sharp Kk Display element and display device, driving method of display element, and program
JP4813842B2 (ja) * 2005-07-29 2011-11-09 株式会社 日立ディスプレイズ 液晶表示装置
JP4453694B2 (ja) * 2006-10-31 2010-04-21 セイコーエプソン株式会社 液晶装置及び電子機器
US8698988B2 (en) * 2007-01-09 2014-04-15 Japan Display West Inc. Liquid crystal device having viewing angle control pixels
JP5315136B2 (ja) * 2009-06-05 2013-10-16 株式会社ジャパンディスプレイ 液晶表示装置
JP5184492B2 (ja) * 2009-11-19 2013-04-17 株式会社ジャパンディスプレイイースト 液晶表示装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713206A (ja) * 1993-06-18 1995-01-17 Tokyo Jiki Insatsu Kk 書換え可能型表示媒体
JP2000171783A (ja) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003107438A (ja) * 2000-09-12 2003-04-09 Canon Inc 液晶素子
JP2005156811A (ja) * 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd 表示装置
JP2005173112A (ja) * 2003-12-10 2005-06-30 Fuji Photo Film Co Ltd 表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087911A1 (ja) * 2013-12-13 2015-06-18 シャープ株式会社 光変調装置及び表示装置
WO2015152008A1 (ja) * 2014-04-02 2015-10-08 シャープ株式会社 光学装置
WO2016002569A1 (ja) * 2014-06-30 2016-01-07 シャープ株式会社 反射型表示装置
WO2016063880A1 (ja) * 2014-10-24 2016-04-28 シャープ株式会社 表示装置
WO2016104229A1 (ja) * 2014-12-22 2016-06-30 シャープ株式会社 光変調装置及び表示装置
WO2016158814A1 (ja) * 2015-04-03 2016-10-06 シャープ株式会社 光変調装置及び表示装置
US10197856B2 (en) 2015-04-03 2019-02-05 Sharp Kabushiki Kaisha Optical modulator and display device
US10372009B2 (en) 2015-08-11 2019-08-06 Sharp Kabushiki Kaisha Optical device

Also Published As

Publication number Publication date
US20150043053A1 (en) 2015-02-12
US9291812B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
WO2013141248A1 (ja) 光変調パネルおよび光変調装置
CN103513465B (zh) 2d/3d可切换的液晶棱镜及显示装置
JP5732348B2 (ja) 表示装置
TWI480640B (zh) Liquid crystal display device
WO2014002788A1 (ja) 表示パネルおよび表示装置
US8610845B2 (en) Display device having color filter and polymer-dispersed liquid crystal (PDLC) layer
JP2010511196A (ja) 面内スイッチング電気泳動カラーディスプレイ
WO2013141051A1 (ja) 表示パネル及び表示装置
TW200400400A (en) Liquid crystal display device
JP2011095407A (ja) 表示素子
TWI292840B (en) Liquid crystal display device
US9304369B2 (en) Display panel and display device
CN112987349B (zh) 宽窄视角可切换的显示面板及制作方法和显示装置
CN112987350B (zh) 宽窄视角可切换的显示面板及显示装置
WO2013172374A1 (ja) 表示装置
JP5906321B2 (ja) 光学装置およびそれを備えた表示装置
WO2013108899A1 (ja) 表示パネルおよび表示装置
WO2013129373A1 (ja) 表示パネルおよび表示装置
US20140347615A1 (en) Display device
WO2012090838A1 (ja) 液晶パネル、及び、液晶ディスプレイ
WO2016031638A1 (ja) 液晶表示装置
CN114675441A (zh) 宽窄视角分区域可切换的显示面板及驱动方法、显示装置
KR20070066014A (ko) 고분자 분산형 액정 표시 장치
WO2014034930A1 (ja) 表示パネル、表示装置、および表示パネルの製造方法
WO2016063880A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14386201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP