WO2013140777A1 - Focus control device and imaging device - Google Patents

Focus control device and imaging device Download PDF

Info

Publication number
WO2013140777A1
WO2013140777A1 PCT/JP2013/001810 JP2013001810W WO2013140777A1 WO 2013140777 A1 WO2013140777 A1 WO 2013140777A1 JP 2013001810 W JP2013001810 W JP 2013001810W WO 2013140777 A1 WO2013140777 A1 WO 2013140777A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
lens
unit
focus lens
evaluation value
Prior art date
Application number
PCT/JP2013/001810
Other languages
French (fr)
Japanese (ja)
Inventor
本庄 謙一
充義 岡本
剛治 澁野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013140777A1 publication Critical patent/WO2013140777A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Definitions

  • the present disclosure relates to a focus control device that continues to focus on a moving subject, and an imaging device equipped with the focus control device.
  • Patent Document 1 discloses a technique for obtaining a focus position of a focus lens using position data of the focus lens and time data corresponding to each position data.
  • the conventional method is based on the premise that the position of the focus lens is fixed at a predetermined time. That is, it is difficult to accurately control the focus lens position from a certain time to the next time after a unit time has elapsed. For this reason, with the conventional method, it is difficult to accurately perform an autofocus operation on a moving subject.
  • the present disclosure is intended to provide a focus control device and an imaging device capable of improving the accuracy of the autofocus operation even when the subject moves toward or away from the camera.
  • a focus control device includes a focus lens that changes a focus state of a subject image, a drive unit that drives the focus lens in the optical axis direction, a position detection unit that detects the position of the focus lens, An image sensor that generates image data by exposure at timing, an AF evaluation value calculation unit that calculates an AF evaluation value from the image data, a focus determination unit that determines a focus state based on the AF evaluation value, and a focus determination And a control unit that controls the drive unit at predetermined control cycles based on the determination result by the unit and the focus lens position detected by the position detection unit.
  • the control unit controls the drive unit to move the focus lens at a constant speed over the entire predetermined control cycle.
  • the camera system includes a camera body and an interchangeable lens unit that can be attached to the camera body.
  • the camera body is exposed at a predetermined timing to generate an image data, an AF evaluation value calculation unit that calculates an AF evaluation value from the image data, and an in-focus state that determines an in-focus state based on the AF evaluation value A determination unit; and a camera control unit that transmits a command for controlling the operation of the interchangeable lens unit to the interchangeable lens unit based on a determination result of the focus determination unit.
  • the interchangeable lens unit includes a focus lens that changes the focus state of the subject image, a drive unit that drives the focus lens in the optical axis direction, a position detection unit that detects the position of the focus lens, and a command received from the camera body. And a lens control hand unit for controlling the drive unit for each predetermined control cycle based on the focus lens position detected by the position detection unit.
  • the lens control unit controls the drive unit to move the focus lens at a constant speed over the entire predetermined control cycle.
  • FIG. 1 is a block diagram showing a configuration of a camera system according to Embodiment 1 of the present invention.
  • the camera system 1 includes a camera body 100 and an interchangeable lens unit 200 that can be attached to and detached from the camera body 100.
  • the camera system 1 can perform a contrast autofocus operation based on image data generated by the CCD image sensor 110.
  • the present disclosure provides a camera system that performs a contrast autofocus operation with high accuracy.
  • the camera body 100 includes a CCD image sensor 110, a liquid crystal monitor 120, a camera controller 140, a body mount 150, a power source 160, and a card slot 170.
  • the camera controller 140 controls the components including the CCD image sensor 110 and the like to control the entire camera body 100 in response to an instruction from an operation member such as the release button 130.
  • the camera controller 140 transmits a vertical synchronization signal to the timing generator 112. In parallel with this, the camera controller 140 generates an exposure synchronization signal based on the vertical synchronization signal.
  • the camera controller 140 transmits the generated exposure synchronization signal as a timing signal to the lens controller 240 via the body mount 150 and the lens mount 250.
  • the camera controller 140 uses the DRAM 141 as a work memory during control operations and image processing operations.
  • the CCD image sensor 110 captures a subject image incident through the interchangeable lens unit 200 and generates an image signal.
  • the generated image signal is converted into a digital signal by the AD converter 111, and image data is generated.
  • the image data digitized by the AD converter 111 is subjected to various image processing by the camera controller 140.
  • the various image processes referred to here include, for example, gamma correction processing, white balance correction processing, scratch correction processing, YC conversion processing, electronic zoom processing, JPEG compression processing, and the like.
  • the camera controller 140 uses, for example, an image processing method called segmentation, and performs segmentation using, for example, a person's head and face as a target area, and converts the person's head and face area.
  • the relative size on the liquid crystal monitor 120 can be calculated by extraction.
  • the image processing method called segmentation is a target region from an image as described in the paper “Graph Cut for Image Segmentation by Repeating Smoothing” in the “Image Recognition and Understanding Symposium (MIRU2007)”. This is a known technique for extracting.
  • the CCD image sensor 110 operates at a timing controlled by the timing generator 112.
  • the CCD image sensor 110 performs a still image capturing operation, a through image capturing operation, and the like.
  • the through image is an image captured by the CCD image sensor 110 and is not recorded on the memory card 171.
  • the through image is mainly a moving image, and is displayed on the liquid crystal monitor 120 in order to determine a composition for capturing a still image.
  • the liquid crystal monitor 120 displays an image indicated by the image data processed by the camera controller 140.
  • the liquid crystal monitor 120 can selectively display a moving image and a still image.
  • a memory card 171 can be mounted in the card slot 170.
  • the card slot 170 controls the memory card 171 based on control from the camera controller 140.
  • the memory card 171 can store image data generated by image processing of the camera controller 140.
  • the memory card 171 can store a JPEG image file.
  • the memory card 171 can output image data or an image file stored therein.
  • the image data or image file output from the memory card 171 is subjected to image processing by the camera controller 140.
  • the camera controller 140 decompresses the image data or image file acquired from the memory card 171 and generates display image data.
  • the power source 160 supplies power for consumption by the camera system 1.
  • the power source 160 may be, for example, a dry battery or a rechargeable battery. Moreover, the power supplied from the outside by the power cord may be supplied to the camera system 1.
  • the body mount 150 can be mechanically and electrically connected to the lens mount 250 of the interchangeable lens unit 200.
  • the body mount 150 can transmit and receive data to and from the interchangeable lens unit 200 via the lens mount 250.
  • the body mount 150 transmits the exposure synchronization signal received from the camera controller 140 to the lens controller 240 via the lens mount 250. Further, other control signals received from the camera controller 140 are transmitted to the lens controller 240 via the lens mount 250.
  • the body mount 150 transmits a signal received from the lens controller 240 via the lens mount 250 to the camera controller 140.
  • the body mount 150 supplies the power received from the power supply 160 to the entire interchangeable lens unit 200 via the lens mount 250.
  • the interchangeable lens unit 200 includes an optical system, a lens controller 240, and a lens mount 250.
  • the optical system of the interchangeable lens unit 200 includes a zoom lens 210, an OIS lens 220, and a focus lens 230.
  • the zoom lens 210 is a lens for changing the magnification of a subject image formed by the optical system of the interchangeable lens unit 200.
  • the zoom lens 210 is composed of one or a plurality of lenses.
  • the drive mechanism 211 includes a zoom ring or the like that can be operated by the user, transmits the operation by the user to the zoom lens 210, and moves the zoom lens 210 along the optical axis direction of the optical system.
  • the detector 212 detects the drive amount in the drive mechanism 211.
  • the lens controller 240 can grasp the zoom magnification in the optical system by acquiring the detection result in the detector 212.
  • the OIS lens 220 is a lens for correcting blurring of a subject image formed by the optical system of the interchangeable lens unit 200.
  • the OIS lens 220 moves in a direction that cancels out the blur of the camera system 1, thereby reducing the blur of the subject image on the CCD image sensor 110.
  • the OIS lens 220 is composed of one or a plurality of lenses.
  • the actuator 221 drives the OIS lens 220 in a plane perpendicular to the optical axis of the optical system under the control of the OIS IC 223.
  • the actuator 221 can be realized by a magnet and a flat coil, for example.
  • the position detection sensor 222 is a sensor that detects the position of the OIS lens 220 in a plane perpendicular to the optical axis of the optical system.
  • the position detection sensor 222 can be realized by a magnet and a Hall element, for example.
  • the OIS IC 223 controls the actuator 221 based on the detection result of the position detection sensor 222 and the detection result of a shake detector such as a gyro sensor.
  • the OIS IC 223 obtains the detection result of the shake detector from the lens controller 240. Further, the OIS IC 223 transmits a signal indicating the state of the optical image blur correction process to the lens controller 240.
  • the focus lens 230 is a lens for changing the focus state of the subject image formed on the CCD image sensor 110 by the optical system.
  • the focus lens 230 is composed of one or a plurality of lenses.
  • the focus motor 233 drives the focus lens 230 to advance and retract along the optical axis of the optical system based on the control of the lens controller 240. Thereby, the focus state of the subject image formed on the CCD image sensor 110 by the optical system can be changed.
  • the focus motor 233 can be a DC motor.
  • the focus motor is not limited to this, and can be realized by a stepping motor, a servo motor, an ultrasonic motor, or the like.
  • the first encoder 231 and the second encoder 232 are encoders that generate signals indicating the driving state of the focus lens 230.
  • the first encoder 231 and the second encoder 232 can be realized by, for example, a rotor and a photocoupler attached to the rotation shaft of the focus motor 233.
  • the rotor is a disk body having holes opened at predetermined intervals.
  • the photocoupler emits detection light from one surface of the rotor and receives light from the other surface. Therefore, when the rotor rotates, the on / off states of the photocouplers are switched to each other.
  • the lens controller 240 includes a counter 243 therein, and the counter 243 counts the number of times the photocoupler is switched on / off.
  • the first encoder 231 and the second encoder 232 are out of phase. Therefore, it is possible to determine the moving direction of the focus lens 230 when the state of the first encoder 231 is switched from off to on. That is, the state of the second encoder 232 when the state of the first encoder 231 is switched from off to on includes an on state and an off state. Therefore, when the state of the first encoder 231 is switched from OFF to ON when the state of the second encoder 232 is ON, the counter 243 determines that this is normal rotation and counts it as “+1”. When the state of the first encoder 231 is switched from OFF to ON while the encoder 232 is OFF, this is determined as reverse rotation and counted as “ ⁇ 1”. By adding this count number, the lens controller 240 can grasp the amount of movement of the focus lens 230.
  • the lens controller 240 controls the entire interchangeable lens unit 200 such as the OIS IC 223 and the focus motor 233 based on the control signal from the camera controller 140. In addition, signals are received from the detector 212, the OIS IC 223, the first encoder 231, the second encoder 232, and the like, and transmitted to the camera controller 140. The lens controller 240 performs the transmission / reception with the camera controller 140 via the lens mount 250 and the body mount 150. The lens controller 240 uses the DRAM 241 as a work memory at the time of control. The flash memory 242 stores programs and parameters used when the lens controller 240 is controlled.
  • the focus motor 233 is an example of a drive unit.
  • the configuration including the first encoder 231, the second encoder 232, and the counter 243 is an example of a position detection unit.
  • the CCD image sensor 110 is an example of an image sensor.
  • the camera controller 140 is an example of an AF evaluation value calculation unit, a focus determination unit, and a movement determination unit.
  • the lens controller 240 is an example of a lens control unit.
  • the camera system 1 is an example of an imaging device.
  • FIG. 2 is a sequence diagram for explaining the imaging preparation operation of the camera system 1.
  • the power supply 160 supplies power to the interchangeable lens unit 200 via the body mount 150 and the lens mount 250.
  • the camera controller 140 requests authentication information of the interchangeable lens unit 200 from the lens controller 240 (S12).
  • the authentication information of the interchangeable lens unit 200 includes information regarding whether or not the interchangeable lens unit 200 is mounted and information regarding whether or not an accessory is mounted.
  • the lens controller 240 responds to the lens authentication request from the camera controller 140 (S13).
  • the camera controller 140 requests the lens controller 240 to perform an initialization operation (S14).
  • the lens controller 240 performs initialization operations such as resetting the aperture and resetting the OIS lens 220.
  • the lens controller 240 returns to the camera controller 140 that the lens initialization operation has been completed (S15).
  • the camera controller 140 requests lens data from the lens controller 240 (S16).
  • the lens data is stored in the flash memory 242. Therefore, the lens controller 240 reads the lens data from the flash memory 242 and sends it back to the camera controller 140 (S17).
  • the lens data is characteristic values unique to the interchangeable lens unit 200 such as a lens name, F number, focal length, focus lens drive speed upper limit value, and focus image plane movement amount.
  • the camera controller 140 grasps the lens data of the interchangeable lens unit 200 attached to the camera body 100, the camera controller 140 is ready for imaging.
  • the camera controller 140 periodically requests lens state data indicating the state of the interchangeable lens unit 200 from the lens controller 240 (S18).
  • the lens state data includes, for example, zoom magnification information by the zoom lens 210, position information of the focus lens 230, aperture value information, and the like.
  • the lens controller 240 returns the requested lens state data to the camera controller 140 (S19).
  • the camera system 1 can operate in a control mode in which an image indicated by image data generated by the CCD image sensor 110 is displayed on the liquid crystal monitor 120 as a through image.
  • This control mode is called “live view mode”.
  • the live view mode the through image is displayed as a moving image on the liquid crystal monitor 120, so that the user can determine the composition for capturing a still image while viewing the liquid crystal monitor 120.
  • the user can select whether to set the live view mode.
  • a contrast method is suitable as a method of autofocus operation in the live view mode. This is because in the live view mode, the image data is constantly generated by the CCD image sensor 110, so that it is easy to perform a contrast autofocus operation using the image data.
  • the camera controller 140 When performing the contrast autofocus operation, the camera controller 140 requests contrast AF data from the lens controller 240 (S20).
  • the contrast AF data is necessary for the contrast autofocus operation, and includes, for example, the communication cycle between the camera body and the lens, the focus drive speed, the focus shift amount, the image magnification, and the contrast AF availability information. .
  • FIG. 3 is a diagram for explaining the basic operation of the single AF control according to the present embodiment.
  • the camera controller 140 receives a user half-press operation of the release button 130 and executes a single AF control operation.
  • the focus motor 233 continues to drive the focus lens 230 in one direction from the infinite end or the closest end.
  • the camera controller 140 instructs the lens controller 240 to drive the focus lens 230 through the body mount 150 and the lens mount 250 and continues to calculate the AF evaluation value periodically in accordance with the drive of the focus lens 230.
  • a method for calculating the AF evaluation value a method is known in which a luminance signal is obtained from image data generated by the CCD image sensor 110 and a high frequency component in the screen of the luminance signal is integrated.
  • the camera controller 140 instructs the lens controller 240 to continue driving the focus lens 230 in one direction as long as the AF evaluation value continues to rise.
  • the camera controller 140 determines that the in-focus position has passed. Then, the camera controller 140 instructs the lens controller 240 to rotate the focus motor 233 in the reverse direction, and drives the focus lens 230 in the reverse direction so far to move it to the in-focus position.
  • the camera controller 140 instructs the lens controller 240 to fix the focus lens 230 at the in-focus position.
  • the moving body tracking AF control operation is a control operation that continuously detects the movement of the subject and continuously adjusts the focus lens 230 so that the movement is focused on the detected subject.
  • the user can set which subject in the image is detected for tracking.
  • the moving body tracking AF control operation is performed when the user presses the release button 130 halfway. This operation mode is controlled and recognized by the camera controller 140. It should be noted that the operation may be performed continuously before the user presses the release button 130 halfway.
  • FIG. 4 is a diagram for explaining an in-focus position calculation algorithm of moving object tracking AF in the present embodiment.
  • a subject a focus lens 230, and a CCD image sensor 110 are schematically shown.
  • FIG. 4D and FIG. 4E show the subject S displayed on the liquid crystal display 170 in the respective states of FIG. 4A and FIG. The state is also shown. Further, it is assumed that the transition time from the state of FIG. 4A to the state of FIG. 4B is T [s].
  • FIG. 4C will be described later.
  • Condition (2) The vertical size of the CCD image sensor is 13 mm.
  • Condition (3) In FIG. 4A, the subject is captured within a range of 1 m above and below.
  • Condition (4) The subject is moving at 7 m / s.
  • FIG. 5 is a diagram for explaining the principle of detecting the segment range of the moving object tracking AF in the present embodiment.
  • 4D to 4F show the state of the subject S displayed on the liquid crystal monitor 120.
  • FIG. 5 (a) to 5 (c) show the detailed states of FIGS. 4 (d) to 4 (f) and explain the principle of detecting the segment of the head of the subject S and calculating the segment range.
  • FIG. 5A shows a state in which the subject is in focus
  • FIG. 5B shows a state in which the subject is focused on the subject while approaching the camera by ⁇ a, as in FIG. 4B.
  • the size (vertical direction) of the head of the subject S recognized using segmentation is detected as the segment range h0 with respect to the vertical imaging range L of the liquid crystal monitor 120. It shows a state.
  • FIG. 5B shows a state in which the subject S is focused as in FIG. 4B, and segmentation is used for the vertical imaging range L of the liquid crystal monitor 120.
  • the state of detecting the size (vertical direction) of the head of the subject S recognized as the segment range h1 is shown.
  • the camera controller 140 recognizes the values a0, a1, b0, and b1.
  • K0 and k1 are also segment range ratios using segmentation, and are similarly known values in the camera controller 140. Therefore, the above relational expression holds in any of FIGS. 4A, 5A, 4B, and 5B as long as the subject is in focus.
  • FIG. 4C shows a state where the subject is not focused in the state of the focus lens position shown in FIG.
  • FIG. 4F shows a state of the subject S displayed on the liquid crystal display 170 in the case of FIG.
  • the camera controller 140 recognizes the values of k0, a0, a1, b0, and b1.
  • a2 can be expressed by all known numerical values, a2 can be accurately obtained.
  • a2 (a0 / k2) ⁇ (b1 / b0)
  • ⁇ b1 ⁇ (b1 2 / a1 2 ) ⁇ ⁇ a1
  • ⁇ a1 a2 ⁇ a1.
  • the size of the subject is detected using segmentation or the like, and the size of the subject captured in the past by the CCD image sensor and the current CCD image sensor are captured. Compare the size of the subject. This makes it possible to determine whether the subject is in focus or not in focus. In the out-of-focus state, the camera controller 140 can calculate the amount of movement of the focus lens 230 for focusing.
  • the present embodiment it is possible to calculate the amount of movement of the focus lens for maintaining the in-focus state with respect to the subject moving in the camera direction.
  • By performing drive control of the focus lens using the calculated movement amount it is possible to perform a moving body tracking AF control operation that maintains a focused state for a subject moving in the camera direction.
  • FIG. 6 is a timing chart for explaining the operation of the moving object tracking method of the camera system 1 according to the present embodiment.
  • FIG. 7 is a graph showing temporal changes in the focus lens position in the camera system 1 according to the present embodiment.
  • the control period T is a communication period between the camera body 100 and the interchangeable lens unit 200, and is equal to the period of the exposure synchronization signal. That is, the elapsed time from time t0 to time t1, the elapsed time from time t1 to time t2,..., The elapsed time from time t8 to time t9 is T.
  • T the elapsed time from time t0 to time t1
  • time t2 the elapsed time from time t1 to time t2
  • the elapsed time from time t8 to time t9 is T.
  • a solid line X is an actual drive profile of the focus lens 230 when driven according to the moving body tracking AF control of the present embodiment
  • a broken line Y is the focus lens 230 for maintaining the in-focus state. It is an ideal drive profile indicating the position.
  • the camera controller 140 is operating in the live view mode.
  • the camera controller 140 periodically generates a CCDVD signal (hereinafter referred to as “vertical synchronization signal”) as shown in FIG. 6A.
  • the camera controller 140 generates an exposure synchronization signal based on the vertical synchronization signal as shown in FIG. 6C. Since the camera controller 140 knows in advance the exposure start timing and the exposure end timing on the basis of the vertical synchronization signal, the camera controller 140 can generate the exposure synchronization signal.
  • the camera controller 140 outputs a vertical synchronization signal to the timing generator 112 and outputs an exposure synchronization signal to the lens controller 240.
  • the lens controller 240 acquires position information of the focus lens 230 in synchronization with the exposure synchronization signal. This operation will be described later.
  • the timing generator 112 periodically generates a readout signal (not shown) of the CCD image sensor 110 and an electronic shutter drive signal as shown in FIG. 6B based on the vertical synchronization signal.
  • the timing generator 112 drives the CCD image sensor 110 based on the readout signal and the electronic shutter drive signal. That is, the CCD image sensor 110 reads out pixel data generated by a large number of photoelectric conversion elements (not shown) in the CCD image sensor 110 to a vertical transfer unit (not shown) according to the read signal.
  • the read signal and the vertical synchronization signal coincide with each other, but this is not an essential matter in implementing the present invention. That is, the vertical synchronization signal and the readout signal may be shifted. In short, it is only necessary that the vertical synchronization signal and the readout signal are synchronized.
  • the CCD image sensor 110 performs an electronic shutter operation in accordance with the electronic shutter drive signal. Thereby, the CCD image sensor 110 can sweep out unnecessary charges to the outside.
  • the electronic shutter drive signal is composed of a plurality of signal groups that are periodically transmitted within a short time. For example, the electronic shutter drive signal transmits five signals as a group.
  • the CCD image sensor 110 performs one electronic shutter operation on one signal while a group of electronic shutter drive signals are being transmitted. Increasing the number of signals included in the group of electronic shutter drive signals can surely sweep out the charges accumulated in the CCD image sensor 110, but the drive method of the CCD image sensor 110 becomes complicated.
  • the CCD image sensor 110 sweeps out the electric charge by the electronic shutter drive signal, and reads the pixel data to the vertical transfer unit (not shown) by the read signal. Therefore, during the period from the last signal of the group of electronic shutter drive signals to the vertical synchronization signal, the exposure operation is performed for the image data for the through image (see FIG. 6C).
  • the camera controller 140 monitors whether or not the release button 130 is half-pressed. In FIG. 6, it is assumed that the release button 130 is half-pressed at time t0. Then, the camera controller 140 sends an AF start command to the lens controller 240 as shown in FIG. 6D.
  • the AF start command is a command indicating that the contrast autofocus operation is started, and at the same time, is a command indicating that the moving body tracking AF control operation is started in the present embodiment.
  • the camera controller 140 transmits a linear drive start command to the lens controller 240 as shown in FIG. 6E.
  • the linear drive start command is such that the focus lens 230 reaches the target position just after the arrival time specified by the target position specifying command (described later) has elapsed since the start of driving the focus lens 230.
  • the lens controller 240 Upon receiving this linear drive start command, the lens controller 240 prepares to drive the focus lens 230 linearly (linearly) during the control period T.
  • the camera controller 140 periodically transmits a lens position acquisition command to the lens controller 240 as shown in FIG. 6H.
  • the lens controller 240 transmits the number of pulses (position information of the focus lens 230) stored in the DRAM 241 to the camera controller 140 in a state associated with the exposure synchronization signal.
  • the camera controller 140 stores the number of pulses corresponding to the position information of the focus lens 230 in the DRAM 241. While the focus motor 233 is driven in accordance with an instruction from the camera controller 140, the number of pulses of the counter 243 at the time when the exposure synchronization signal is switched from off to on and the exposure synchronization signal is switched from on to off.
  • the number of pulses of the counter 243 at the time is sequentially stored in the DRAM 241.
  • the image data generated by exposure during the exposure period by the CCD image sensor 110 and then converted by the AD converter 111 is transmitted to the camera controller 140.
  • the camera controller 140 calculates an AF evaluation value for autofocus operation based on the received image data.
  • the calculated AF evaluation value is stored in the DRAM 141 in a state associated with the exposure synchronization signal.
  • the lens position information acquired from the lens controller 240 is also associated with the exposure synchronization signal. Therefore, the camera controller 140 can store the AF evaluation value in association with the lens position information.
  • the camera controller 140 calculates the segment range of the subject by segmentation based on the received image data. Therefore, as shown in FIG. 6J, the exposure synchronization signal, the lens position information acquired from the lens controller 240, the AF evaluation value acquired from the CCD image sensor 110, and the segment range information are associated with each other and stored in the DRAM 141.
  • the camera controller 140 instructs the lens controller 240 to perform drive control of the focus lens 230 so as to maintain an in-focus state with respect to a subject that approaches or moves away from the camera system 1. Specifically, the camera controller 140 uses the position information of the focus lens 230, the AF evaluation value, and the segment range information to maintain the focused state for the moving subject by the target position designation command shown in FIG. 6F. Thus, the drive of the focus lens 230 is controlled.
  • the target position designation command is a command for notifying the interchangeable lens unit 200 of a target position (or movement amount) for moving the focus lens 230 and a time (arrival time) until the focus lens 230 reaches the target position. is there.
  • the interchangeable lens unit 200 drives the focus lens 230 at a constant speed (linear drive) so that the focus lens 230 reaches the target position when the designated movement time has elapsed from the start of driving the focus lens 230.
  • the arrival time designated by the target position designation command is a period of the control cycle T.
  • FIG. 6F At time t2, a target position designation command for designating the focus lens position p4 as a target position is transmitted from the camera controller 140 to the lens controller 240.
  • the focus lens 230 is moved so as to maintain the focused state at the time t4 from the focused state at the time t0.
  • the amount of movement of the subject in the period T (corresponding to ⁇ a in the above description) and the subject for focusing on the period T
  • the amount of movement of the focus lens 230 (corresponding to ⁇ b in the above description) is determined.
  • the amount of movement of the subject is 4 ⁇ ⁇ a.
  • the amount of movement of the focus lens 230 that can be focused at time t4 is 4 ⁇ ⁇ b
  • the camera controller 140 calculates the movement amount of the focus lens 230 using the segment range information of the subject calculated using the image data exposed in each of the periods b and c shown in FIG. 6C. To do.
  • a target position designation command for designating the focus lens position p5 is transmitted from the camera controller 140 to the lens controller 240.
  • the in-focus state is maintained at the time t5 from the in-focus state at the time t4. It is necessary to move the focus lens 230. From the segment range information of the subject calculated in the period b and the period c shown in FIG. 6C, the amount of movement of the subject during the period T (corresponding to ⁇ a in the above description) and the subject during the period T are matched. A moving amount of the focus lens 230 for focusing (corresponding to ⁇ b in the above description) is determined. At time t5, since T minutes have elapsed from the focused time t4, the amount of movement of the subject is ⁇ a.
  • the amount of movement of the focus lens 230 that can be focused at time t5 is ⁇ b
  • FIG. 7 shows an example of a change in the lens position when the focus lens 230 is linearly driven every period T in this way.
  • the focus lens 230 is linearly driven every period T, so that the in-focus state is always maintained for a subject that approaches or moves away from the camera system 1 after time t4.
  • the focus lens 230 can be driven and controlled. Therefore, even in continuous shooting operation, after time t4, it is possible to acquire image data that maintains the in-focus state even if the subject that approaches or moves away from the digital camera is exposed at an arbitrary timing. . For this reason, it is possible to acquire image data in which a focused state is always maintained in moving image shooting.
  • the position of the focus lens 230 that maintains the in-focus position may be obtained in consideration of each time required to drive the focus lens 230 at 240. Such control can further improve the focusing accuracy in the moving object tracking AF control according to the present embodiment.
  • the movement amount of the focus lens 230 may be corrected by the shift.
  • the autofocus operation is started after half-pressing the release button 130, but the trigger for starting the autofocus operation is not limited to this.
  • the concept of this embodiment can be applied to a configuration in which an autofocus operation is always performed on a subject regardless of the operation of the release button 130.
  • the camera body 100 can be mounted with an interchangeable lens unit including a focus lens and a drive unit that drives the focus lens.
  • the camera body 100 includes a CCD image sensor 110 that performs exposure at a predetermined timing to generate image data, and a camera controller 140 that calculates an AF evaluation value from the image data and determines an in-focus state based on the AF evaluation value.
  • the camera controller 140 transmits a command for controlling the focus motor 233 of the interchangeable lens unit 200 every predetermined control period (T) based on the determination result of the in-focus state and the position of the focus lens.
  • the command includes a linear drive start command that instructs the interchangeable lens unit 200 to move the focus lens 230 at a constant speed over a predetermined control period.
  • the interchangeable lens unit 200 of the present embodiment includes a focus lens 230 that changes the focus state of the subject image, a focus motor 233 that drives the focus lens 230 in the optical axis direction, and an encoder that detects the position of the focus lens 230 ( Position detection units) 231, 232, a lens mount 250 that receives a command for driving the focus lens 230 from the camera body 100, a command received from the camera body 100, and a focus lens position detected by the position detection unit And a lens controller 240 for controlling the focus motor 233 every predetermined control period (T).
  • the lens controller 240 controls the focus motor 233 so as to move the focus lens 230 at a constant speed over the entire predetermined control cycle.
  • the focus lens 230 can be driven at a constant speed over the entire control period (T), and the focus lens 230 can be moved linearly as shown by the solid line X in FIG. Accordingly, the focus lens 230 can be moved along an ideal driving profile (dashed line Y) that gives a focused state, and a focused state can be more accurately obtained for a subject that approaches or moves away from the camera system 1. Can be maintained.
  • the focus control device detects the position of the focus lens 230 that changes the focus state of the subject image, the focus motor 233 that drives the focus lens 230 in the optical axis direction, and the position of the focus lens 230.
  • a focus controller 230 that controls the focus motor 233 every predetermined control period (T) based on the focus lens position and the focus lens 230 so as to move at a constant speed over the entire predetermined control period.
  • T predetermined control period
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the configuration including the zoom lens 210 and the OIS lens 220 is illustrated, but these are not essential components for the idea of the present disclosure. That is, the idea of the present disclosure can be applied to a camera system equipped with a single focus lens that does not have a zoom function. The idea of the present disclosure can also be applied to a camera system equipped with an interchangeable lens that does not have a camera shake correction function.
  • the camera body that does not include the movable mirror is exemplified, but the configuration of the camera body is not limited to this.
  • the camera body may include a movable mirror or a prism for separating the subject image.
  • the movable mirror may be provided not in the camera body but in various adapters mounted between the camera body and the lens.
  • the lens-interchangeable camera system has been described.
  • the idea of the present disclosure can be applied to a camera in which a camera body and a lens are integrated.
  • the functions of the lens controller and the camera controller described above may be realized by a single controller.
  • the position of the focus lens 230 is not detected directly, but is detected indirectly by detecting the rotation angle of the rotation shaft of the focus motor 233.
  • the position of the focus lens 230 may be detected directly or indirectly by detecting the position of a mechanism member that is linked to the focus lens 230.
  • the detection of the focus lens position only needs to be able to identify the position of the focus lens as a result, and includes both the direct detection of the lens position and the indirect detection of the lens position.
  • a phase difference detection sensor may be provided in the camera system, and the camera controller 140 may determine an in-focus state based on an output from the phase difference detection sensor and execute an autofocus operation.
  • a phase difference autofocus operation and a contrast autofocus operation may be selectively executed.
  • the concept of the present disclosure can be applied when performing a contrast-type autofocus operation.
  • the exposure synchronization signal of the CCD image sensor 110 is used as the timing signal transmitted from the camera controller 140 to the lens controller 240.
  • the timing signal is not limited to the exposure synchronization signal.
  • the timing signal may be a signal correlated with the exposure synchronization signal (for example, a signal having the same period and shifted phase).
  • the vertical synchronization signal and the electronic shutter drive signal for the CCD image sensor 110 may be transmitted to the lens controller 240 as timing signals. Thereby, since the camera controller 140 does not need to transmit an exposure synchronization signal, the control can be facilitated.
  • the lens controller 240 reads the pulse value of the counter 243 based on the electronic shutter drive signal and the vertical synchronization signal according to the notified specification.
  • the focus lens 230 is described as a single lens, but the focus lens may be composed of a plurality of lenses. Further, it may be configured as a focus lens group that is independently driven by a plurality of motors. Furthermore, the amount of movement of the focus lens 230 in the optical axis direction corresponds to the amount of movement of the in-focus position to the CCD image sensor 110. However, the moving amount of the in-focus position to the CCD image sensor 110 may be increased or decreased with respect to the unit moving amount of the focus lens 230 in the optical axis direction. In this case, information regarding the amount of movement of the in-focus position of the CCD image sensor 110 with respect to the unit movement amount of the focus lens 230 may be notified in advance from the lens controller 240 to the camera controller 140.
  • a linear drive start command for instructing linear drive of the focus lens 230 is transmitted from the camera body 100 to the interchangeable lens unit 200.
  • the linear drive start command is not always necessary.
  • information for instructing linear drive of the focus lens 230 may be transmitted from the camera body 100 to the interchangeable lens unit 200.
  • a flag for instructing linear drive of the focus lens 230 may be designated in the target position designation command.
  • the lens controller 240 refers to the flag of the target position designation command and determines whether or not the focus lens 230 is linearly driven.
  • the target position and information regarding the driving speed of the focus lens may be designated.
  • the lens controller 240 performs linear drive of the focus lens 230 at a speed based on information related to the drive speed designated by the target position designation command.
  • the information regarding the driving speed specified by the target position specifying command may be the value of the driving speed itself, or information that can calculate the driving speed.
  • a CCD image sensor is shown as an example of an image sensor, but the image sensor is not limited to this.
  • Other imaging sensors such as a CMOS image sensor can be used.
  • the idea of the present disclosure can be applied not only to the above-described camera system but also to various imaging devices having an autofocus function, such as a digital still camera and a movie.
  • the present disclosure can be applied to an imaging apparatus having an autofocus function, such as a digital still camera or a movie.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

A focus control device equipped with: a focus lens that changes the focused state of an imaging subject; a drive unit for driving the focus lens in the direction of the light axis; a position detection unit that detects the position of the focus lens; an imaging element that carries out exposure with a prescribed timing to generate image data; an AF evaluation value calculation unit that calculates an AF evaluation value from the image data; a focus determination unit that determines the focused state on the basis of the AF evaluation value; and a control unit that controls the drive unit in prescribed control periods on the basis of the determination result from the focus determination unit and the focus lens position detected by the position detection unit. The control unit controls the drive unit such that the focus lens moves with a constant speed for all of the prescribed control periods.

Description

焦点制御装置および撮像装置Focus control device and imaging device
 本開示は、動きのある被写体に合焦させ続ける焦点制御装置、及び焦点制御装置を搭載した撮像装置に関する。 The present disclosure relates to a focus control device that continues to focus on a moving subject, and an imaging device equipped with the focus control device.
 従来のカメラで用いられる焦点制御において、カメラに近づくあるいは遠ざかる被写体に対して、焦点ずれが発生するという課題がある。このように焦点ずれが発生するという課題を解決するものとして、特許文献1に開示の技術がある。特許文献1は、フォーカスレンズの位置データと、各位置データに対応する時間データとを用いて、フォーカスレンズの合焦位置を求める技術が開示されている。 In the focus control used in a conventional camera, there is a problem that a focus shift occurs with respect to a subject that approaches or moves away from the camera. As a technique for solving the problem of occurrence of defocus as described above, there is a technique disclosed in Patent Document 1. Patent Document 1 discloses a technique for obtaining a focus position of a focus lens using position data of the focus lens and time data corresponding to each position data.
特開2008-175886号公報JP 2008-175886 A
 従来の方法では、予め決められた時点においてフォーカスレンズの位置が確定されることを前提としている。すなわち、ある時刻から単位時間だけ経過した次の時刻までの間のフォーカスレンズ位置を正確に制御することは困難である。このため、従来の方法では、動いている被写体に対しては、精度よくオートフォーカス動作を行うことが困難である。 The conventional method is based on the premise that the position of the focus lens is fixed at a predetermined time. That is, it is difficult to accurately control the focus lens position from a certain time to the next time after a unit time has elapsed. For this reason, with the conventional method, it is difficult to accurately perform an autofocus operation on a moving subject.
 本開示は、カメラに被写体が近づくあるいは遠ざかるような動きのある場合でも、オートフォーカス動作の精度を向上することが可能な焦点制御装置および撮像装置を提供することを目的とする。 The present disclosure is intended to provide a focus control device and an imaging device capable of improving the accuracy of the autofocus operation even when the subject moves toward or away from the camera.
 本開示に係る焦点制御装置は、被写体像のフォーカス状態を変化させるフォーカスレンズと、フォーカスレンズを光軸方向に駆動するための駆動部と、フォーカスレンズの位置を検出する位置検出部と、所定のタイミングで露光して画像データを生成する撮像素子と、画像データからAF評価値を算出するAF評価値算出部と、AF評価値に基づき合焦状態を判定する合焦判定部と、合焦判定部による判定結果と、位置検出部により検出されたフォーカスレンズ位置とに基づいて、所定の制御周期毎に駆動部を制御する制御部と、を備える。制御部は、所定の制御周期全体に亘って、フォーカスレンズを一定速度で移動させるように前記駆動部を制御する。 A focus control device according to the present disclosure includes a focus lens that changes a focus state of a subject image, a drive unit that drives the focus lens in the optical axis direction, a position detection unit that detects the position of the focus lens, An image sensor that generates image data by exposure at timing, an AF evaluation value calculation unit that calculates an AF evaluation value from the image data, a focus determination unit that determines a focus state based on the AF evaluation value, and a focus determination And a control unit that controls the drive unit at predetermined control cycles based on the determination result by the unit and the focus lens position detected by the position detection unit. The control unit controls the drive unit to move the focus lens at a constant speed over the entire predetermined control cycle.
 本開示に係るカメラシステムは、カメラ本体と、カメラ本体に装着可能な交換レンズユニットとを備える。カメラ本体は、所定のタイミングで露光して、画像データを生成する撮像素子と、画像データからAF評価値を算出するAF評価値算出部と、AF評価値に基づき合焦状態を判定する合焦判定部と、合焦判定部の判定結果に基づき、交換レンズユニットの動作を制御するためのコマンドを交換レンズユニットに送信するカメラ制御部とを備える。交換レンズユニットは、被写体像のフォーカス状態を変化させるフォーカスレンズと、フォーカスレンズを光軸方向に駆動するための駆動部と、フォーカスレンズの位置を検出する位置検出部と、カメラ本体から受信したコマンドと、位置検出部により検出されたフォーカスレンズ位置とに基づいて、所定の制御周期毎に駆動部を制御するレンズ制御手部とを備える。レンズ制御部は、所定の制御周期全体に亘って、フォーカスレンズを一定速度で移動させるように駆動部を制御する。 The camera system according to the present disclosure includes a camera body and an interchangeable lens unit that can be attached to the camera body. The camera body is exposed at a predetermined timing to generate an image data, an AF evaluation value calculation unit that calculates an AF evaluation value from the image data, and an in-focus state that determines an in-focus state based on the AF evaluation value A determination unit; and a camera control unit that transmits a command for controlling the operation of the interchangeable lens unit to the interchangeable lens unit based on a determination result of the focus determination unit. The interchangeable lens unit includes a focus lens that changes the focus state of the subject image, a drive unit that drives the focus lens in the optical axis direction, a position detection unit that detects the position of the focus lens, and a command received from the camera body. And a lens control hand unit for controlling the drive unit for each predetermined control cycle based on the focus lens position detected by the position detection unit. The lens control unit controls the drive unit to move the focus lens at a constant speed over the entire predetermined control cycle.
 本開示の構成により、カメラに被写体が近づくあるいは遠ざかるような動きのある場合でも、被写体の追従性が向上し、オートフォーカス動作の精度を向上することができる。 With the configuration of the present disclosure, even when the subject moves toward or away from the camera, the followability of the subject is improved and the accuracy of the autofocus operation can be improved.
本発明の実施の形態に係るカメラシステムの構成を示すブロック図The block diagram which shows the structure of the camera system which concerns on embodiment of this invention 本発明の実施の形態に係るカメラシステムの撮像準備動作を説明するための信号送受信フロー図Signal transmission / reception flowchart for explaining the imaging preparation operation of the camera system according to the embodiment of the present invention 本発明の実施の形態に係るシングルAF制御の基本動作説明図Basic operation explanatory diagram of single AF control according to the embodiment of the present invention 本発明の実施の形態における動体追尾AFの合焦位置演算アルゴリズム説明図Explanatory drawing of algorithm for calculating focus position of moving object tracking AF in the embodiment of the present invention 本発明の実施の形態における動体追尾AFのセグメント範囲検出原理図Segment range detection principle diagram of moving object tracking AF in the embodiment of the present invention 本発明の実施の形態に係るカメラシステムの動体追尾方式の動作を説明するためのタイミングチャートTiming chart for explaining the operation of the moving body tracking method of the camera system according to the embodiment of the present invention 本発明の実施の形態に係るフォーカスレンズ位置の時間変化を示す図The figure which shows the time change of the focus lens position which concerns on embodiment of this invention
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。 The inventor (s) provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is intended to limit the subject matter described in the claims. Not what you want.
(実施の形態1)
 以下、本発明の焦点制御装置をカメラに適用した一実施の形態について、図面を用いて詳細に説明する。
(Embodiment 1)
Hereinafter, an embodiment in which a focus control apparatus of the present invention is applied to a camera will be described in detail with reference to the drawings.
(1.構成)
(1-1.概要)
 図1は、本発明の実施の形態1に係るカメラシステムの構成を示すブロック図である。カメラシステム1は、カメラボディ100とそれに着脱可能な交換レンズユニット200とから構成される。カメラシステム1は、CCDイメージセンサ110で生成された画像データに基づいて、コントラスト方式のオートフォーカス動作が可能である。本開示は、精度よくコントラスト方式のオートフォーカス動作を行うカメラシステムを提供する。
(1. Configuration)
(1-1. Overview)
FIG. 1 is a block diagram showing a configuration of a camera system according to Embodiment 1 of the present invention. The camera system 1 includes a camera body 100 and an interchangeable lens unit 200 that can be attached to and detached from the camera body 100. The camera system 1 can perform a contrast autofocus operation based on image data generated by the CCD image sensor 110. The present disclosure provides a camera system that performs a contrast autofocus operation with high accuracy.
(1-2.カメラボディの構成)
 カメラボディ100は、CCDイメージセンサ110と、液晶モニタ120と、カメラコントローラ140と、ボディマウント150と、電源160と、カードスロット170とを備える。
(1-2. Configuration of camera body)
The camera body 100 includes a CCD image sensor 110, a liquid crystal monitor 120, a camera controller 140, a body mount 150, a power source 160, and a card slot 170.
 カメラコントローラ140は、レリーズ釦130等の操作部材からの指示に応じて、CCDイメージセンサ110等を含む構成要素を制御して、カメラボディ100全体を制御する。カメラコントローラ140は、垂直同期信号をタイミング発生器112に送信する。これと並行して、カメラコントローラ140は、垂直同期信号に基づいて、露光同期信号を生成する。カメラコントローラ140は、生成した露光同期信号を、ボディマウント150及びレンズマウント250を介して、タイミング信号としてレンズコントローラ240に送信する。カメラコントローラ140は、制御動作や画像処理動作の際に、DRAM141をワークメモリとして使用する。 The camera controller 140 controls the components including the CCD image sensor 110 and the like to control the entire camera body 100 in response to an instruction from an operation member such as the release button 130. The camera controller 140 transmits a vertical synchronization signal to the timing generator 112. In parallel with this, the camera controller 140 generates an exposure synchronization signal based on the vertical synchronization signal. The camera controller 140 transmits the generated exposure synchronization signal as a timing signal to the lens controller 240 via the body mount 150 and the lens mount 250. The camera controller 140 uses the DRAM 141 as a work memory during control operations and image processing operations.
 CCDイメージセンサ110は、交換レンズユニット200を介して入射される被写体像を撮像して画像信号を生成する。生成された画像信号は、ADコンバータ111でデジタル信号に変換され、画像データが生成される。ADコンバータ111でデジタル化された画像データは、カメラコントローラ140で様々な画像処理が施される。ここで言う様々な画像処理とは、例えば、ガンマ補正処理、ホワイトバランス補正処理、キズ補正処理、YC変換処理、電子ズーム処理、JPEG圧縮処理等を含む。 The CCD image sensor 110 captures a subject image incident through the interchangeable lens unit 200 and generates an image signal. The generated image signal is converted into a digital signal by the AD converter 111, and image data is generated. The image data digitized by the AD converter 111 is subjected to various image processing by the camera controller 140. The various image processes referred to here include, for example, gamma correction processing, white balance correction processing, scratch correction processing, YC conversion processing, electronic zoom processing, JPEG compression processing, and the like.
 また、本実施の形態におけるカメラコントローラ140は、一例としてセグメンテーションという画像処理の手法を用いて、例えば人の頭部や顔を対象となる領域としてセグメンテーションを行い、人の頭部や顔の領域を抽出して、液晶モニタ120上での相対的な大きさを演算することができる。セグメンテーションという画像処理の手法とは「画像の認識・理解シンポジウム(MIRU2007)」における論文「平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット」に記載されているように、画像から対象となる領域を抽出する公知の手法である。 In addition, the camera controller 140 according to the present embodiment uses, for example, an image processing method called segmentation, and performs segmentation using, for example, a person's head and face as a target area, and converts the person's head and face area. The relative size on the liquid crystal monitor 120 can be calculated by extraction. The image processing method called segmentation is a target region from an image as described in the paper “Graph Cut for Image Segmentation by Repeating Smoothing” in the “Image Recognition and Understanding Symposium (MIRU2007)”. This is a known technique for extracting.
 CCDイメージセンサ110は、タイミング発生器112で制御されるタイミングで動作する。CCDイメージセンサ110は、静止画像の撮像動作、スルー画像の撮像動作等を行う。ここで、スルー画像とは、CCDイメージセンサ110により撮像された画像であって、メモリーカード171に記録されない画像である。スルー画像は、主に動画像であり、静止画像の撮像のための構図を決めるために液晶モニタ120に表示される。 The CCD image sensor 110 operates at a timing controlled by the timing generator 112. The CCD image sensor 110 performs a still image capturing operation, a through image capturing operation, and the like. Here, the through image is an image captured by the CCD image sensor 110 and is not recorded on the memory card 171. The through image is mainly a moving image, and is displayed on the liquid crystal monitor 120 in order to determine a composition for capturing a still image.
 液晶モニタ120は、カメラコントローラ140により画像処理された画像データが示す画像を表示する。液晶モニタ120は、動画像と静止画像を選択的に表示可能である。 The liquid crystal monitor 120 displays an image indicated by the image data processed by the camera controller 140. The liquid crystal monitor 120 can selectively display a moving image and a still image.
 カードスロット170は、メモリーカード171を装着可能である。カードスロット170は、カメラコントローラ140からの制御に基づいてメモリーカード171を制御する。メモリーカード171は、カメラコントローラ140の画像処理により生成された画像データを格納可能である。例えば、メモリーカード171は、JPEG画像ファイルを格納できる。また、メモリーカード171は、内部に格納する画像データ又は画像ファイルを出力できる。メモリーカード171から出力された画像データ又は画像ファイルは、カメラコントローラ140で画像処理される。例えば、カメラコントローラ140は、メモリーカード171から取得した画像データ又は画像ファイルを伸張して表示用画像データを生成する。 In the card slot 170, a memory card 171 can be mounted. The card slot 170 controls the memory card 171 based on control from the camera controller 140. The memory card 171 can store image data generated by image processing of the camera controller 140. For example, the memory card 171 can store a JPEG image file. The memory card 171 can output image data or an image file stored therein. The image data or image file output from the memory card 171 is subjected to image processing by the camera controller 140. For example, the camera controller 140 decompresses the image data or image file acquired from the memory card 171 and generates display image data.
 電源160は、カメラシステム1で消費するための電力を供給する。電源160は、例えば、乾電池であってもよいし、充電池であってもよい。また、電源コードにより外部から供給される電力をカメラシステム1に供給するものであってもよい。 The power source 160 supplies power for consumption by the camera system 1. The power source 160 may be, for example, a dry battery or a rechargeable battery. Moreover, the power supplied from the outside by the power cord may be supplied to the camera system 1.
 ボディマウント150は、交換レンズユニット200のレンズマウント250と機械的及び電気的に接続可能である。ボディマウント150は、レンズマウント250を介して、交換レンズユニット200との間で、データを送受信可能である。ボディマウント150は、カメラコントローラ140から受信した露光同期信号をレンズマウント250を介してレンズコントローラ240に送信する。また、カメラコントローラ140から受信したその他の制御信号をレンズマウント250を介してレンズコントローラ240に送信する。また、ボディマウント150は、レンズマウント250を介してレンズコントローラ240から受信した信号をカメラコントローラ140に送信する。また、ボディマウント150は、電源160から受けた電力をレンズマウント250を介して交換レンズユニット200全体に供給する。 The body mount 150 can be mechanically and electrically connected to the lens mount 250 of the interchangeable lens unit 200. The body mount 150 can transmit and receive data to and from the interchangeable lens unit 200 via the lens mount 250. The body mount 150 transmits the exposure synchronization signal received from the camera controller 140 to the lens controller 240 via the lens mount 250. Further, other control signals received from the camera controller 140 are transmitted to the lens controller 240 via the lens mount 250. The body mount 150 transmits a signal received from the lens controller 240 via the lens mount 250 to the camera controller 140. The body mount 150 supplies the power received from the power supply 160 to the entire interchangeable lens unit 200 via the lens mount 250.
(1-3.交換レンズユニットの構成)
 交換レンズユニット200は、光学系と、レンズコントローラ240と、レンズマウント250とを備える。交換レンズユニット200の光学系は、ズームレンズ210と、OISレンズ220と、フォーカスレンズ230とを含む。
(1-3. Configuration of interchangeable lens unit)
The interchangeable lens unit 200 includes an optical system, a lens controller 240, and a lens mount 250. The optical system of the interchangeable lens unit 200 includes a zoom lens 210, an OIS lens 220, and a focus lens 230.
 ズームレンズ210は、交換レンズユニット200の光学系で形成される被写体像の倍率を変化させるためのレンズである。ズームレンズ210は、1枚又は複数枚のレンズで構成される。駆動機構211は、使用者が操作可能なズームリング等を含み、使用者による操作をズームレンズ210に伝え、ズームレンズ210を光学系の光軸方向に沿って移動させる。検出器212は、駆動機構211における駆動量を検出する。レンズコントローラ240は、この検出器212における検出結果を取得することにより、光学系におけるズーム倍率を把握することができる。 The zoom lens 210 is a lens for changing the magnification of a subject image formed by the optical system of the interchangeable lens unit 200. The zoom lens 210 is composed of one or a plurality of lenses. The drive mechanism 211 includes a zoom ring or the like that can be operated by the user, transmits the operation by the user to the zoom lens 210, and moves the zoom lens 210 along the optical axis direction of the optical system. The detector 212 detects the drive amount in the drive mechanism 211. The lens controller 240 can grasp the zoom magnification in the optical system by acquiring the detection result in the detector 212.
 OISレンズ220は、交換レンズユニット200の光学系で形成される被写体像のぶれを補正するためのレンズである。OISレンズ220は、カメラシステム1のぶれを相殺する方向に移動することにより、CCDイメージセンサ110上の被写体像のぶれを小さくする。OISレンズ220は、1枚又は複数枚のレンズで構成される。アクチュエータ221は、OIS用IC223からの制御を受けて、光学系の光軸に垂直な面内でOISレンズ220を駆動する。アクチュエータ221は、例えば、マグネットと平板コイルとで実現可能である。位置検出センサ222は、光学系の光軸に垂直な面内におけるOISレンズ220の位置を検出するセンサである。位置検出センサ222は、例えば、マグネットとホール素子で実現可能である。OIS用IC223は、位置検出センサ222の検出結果及びジャイロセンサなどのぶれ検出器の検出結果に基づいて、アクチュエータ221を制御する。OIS用IC223は、レンズコントローラ240からぶれ検出器の検出結果を得る。また、OIS用IC223は、レンズコントローラ240に対して、光学的像ぶれ補正処理の状態を示す信号を送信する。 The OIS lens 220 is a lens for correcting blurring of a subject image formed by the optical system of the interchangeable lens unit 200. The OIS lens 220 moves in a direction that cancels out the blur of the camera system 1, thereby reducing the blur of the subject image on the CCD image sensor 110. The OIS lens 220 is composed of one or a plurality of lenses. The actuator 221 drives the OIS lens 220 in a plane perpendicular to the optical axis of the optical system under the control of the OIS IC 223. The actuator 221 can be realized by a magnet and a flat coil, for example. The position detection sensor 222 is a sensor that detects the position of the OIS lens 220 in a plane perpendicular to the optical axis of the optical system. The position detection sensor 222 can be realized by a magnet and a Hall element, for example. The OIS IC 223 controls the actuator 221 based on the detection result of the position detection sensor 222 and the detection result of a shake detector such as a gyro sensor. The OIS IC 223 obtains the detection result of the shake detector from the lens controller 240. Further, the OIS IC 223 transmits a signal indicating the state of the optical image blur correction process to the lens controller 240.
 フォーカスレンズ230は、光学系でCCDイメージセンサ110上に形成される被写体像のフォーカス状態を変化させるためのレンズである。フォーカスレンズ230は、1枚又は複数枚のレンズで構成される。 The focus lens 230 is a lens for changing the focus state of the subject image formed on the CCD image sensor 110 by the optical system. The focus lens 230 is composed of one or a plurality of lenses.
 フォーカスモータ233は、レンズコントローラ240の制御に基づいて、フォーカスレンズ230が光学系の光軸に沿って進退するよう駆動する。これにより、光学系でCCDイメージセンサ110上に形成される被写体像のフォーカス状態を変化させることができる。フォーカスモータ233は、本実施の形態1では、DCモータを用いることができる。但し、フォーカスモータは、これに限定されず、ステッピングモータやサーボモータ、超音波モータなどによっても実現できる。 The focus motor 233 drives the focus lens 230 to advance and retract along the optical axis of the optical system based on the control of the lens controller 240. Thereby, the focus state of the subject image formed on the CCD image sensor 110 by the optical system can be changed. In the first embodiment, the focus motor 233 can be a DC motor. However, the focus motor is not limited to this, and can be realized by a stepping motor, a servo motor, an ultrasonic motor, or the like.
 第1エンコーダ231及び第2エンコーダ232は、フォーカスレンズ230の駆動状態を示す信号を生成するエンコーダである。第1エンコーダ231及び第2エンコーダ232は、例えば、フォーカスモータ233の回転軸に取り付けられた回転子とフォトカプラとで実現可能である。ここで、回転子は、所定間隔で孔が開いた円盤体である。フォトカプラは、回転子の一方面から検出用光を発し、他方面から受光する。そのため、回転子が回転することにより、フォトカプラのオン/オフ状態が相互に切り替わる。レンズコントローラ240は、内部にカウンタ243を設けており、このカウンタ243は、フォトカプラからのオン/オフ状態の切り替え回数をカウントする。第1エンコーダ231と第2エンコーダ232とは、位相がずれている。そのため、第1エンコーダ231の状態がオフからオンに切り替わったときのフォーカスレンズ230の移動方向を判別することができる。すなわち、第1エンコーダ231の状態がオフからオンに切り替わったときの第2エンコーダ232の状態としては、オンの状態とオフの状態とがある。そこで、カウンタ243は、第2エンコーダ232の状態がオンのときに、第1エンコーダ231の状態がオフからオンに切り替わった場合、これを正転と判断して「+1」とカウントし、第2エンコーダ232の状態がオフのときに、第1エンコーダ231の状態がオフからオンに切り替わった場合、これを逆転と判断して「-1」とカウントする。このカウント数を加算することにより、レンズコントローラ240は、フォーカスレンズ230の移動量を把握できる。 The first encoder 231 and the second encoder 232 are encoders that generate signals indicating the driving state of the focus lens 230. The first encoder 231 and the second encoder 232 can be realized by, for example, a rotor and a photocoupler attached to the rotation shaft of the focus motor 233. Here, the rotor is a disk body having holes opened at predetermined intervals. The photocoupler emits detection light from one surface of the rotor and receives light from the other surface. Therefore, when the rotor rotates, the on / off states of the photocouplers are switched to each other. The lens controller 240 includes a counter 243 therein, and the counter 243 counts the number of times the photocoupler is switched on / off. The first encoder 231 and the second encoder 232 are out of phase. Therefore, it is possible to determine the moving direction of the focus lens 230 when the state of the first encoder 231 is switched from off to on. That is, the state of the second encoder 232 when the state of the first encoder 231 is switched from off to on includes an on state and an off state. Therefore, when the state of the first encoder 231 is switched from OFF to ON when the state of the second encoder 232 is ON, the counter 243 determines that this is normal rotation and counts it as “+1”. When the state of the first encoder 231 is switched from OFF to ON while the encoder 232 is OFF, this is determined as reverse rotation and counted as “−1”. By adding this count number, the lens controller 240 can grasp the amount of movement of the focus lens 230.
 レンズコントローラ240は、カメラコントローラ140からの制御信号に基づいて、OIS用IC223やフォーカスモータ233などの交換レンズユニット200全体を制御する。また、検出器212、OIS用IC223、第1エンコーダ231、第2エンコーダ232などから信号を受信して、カメラコントローラ140に送信する。レンズコントローラ240は、カメラコントローラ140との送受信の際には、レンズマウント250及びボディマウント150を介して行う。レンズコントローラ240は、制御の際、DRAM241をワークメモリとして使用する。また、フラッシュメモリ242は、レンズコントローラ240の制御の際に使用するプログラムやパラメータを保存する。 The lens controller 240 controls the entire interchangeable lens unit 200 such as the OIS IC 223 and the focus motor 233 based on the control signal from the camera controller 140. In addition, signals are received from the detector 212, the OIS IC 223, the first encoder 231, the second encoder 232, and the like, and transmitted to the camera controller 140. The lens controller 240 performs the transmission / reception with the camera controller 140 via the lens mount 250 and the body mount 150. The lens controller 240 uses the DRAM 241 as a work memory at the time of control. The flash memory 242 stores programs and parameters used when the lens controller 240 is controlled.
 フォーカスモータ233は、駆動部の一例である。第1エンコーダ231、第2エンコーダ232及びカウンタ243からなる構成は、位置検出部の一例である。CCDイメージセンサ110は、撮像素子の一例である。カメラコントローラ140は、AF評価値算出部、合焦判定部及び移動判定部の一例である。レンズコントローラ240はレンズ制御部の一例である。カメラシステム1は、撮像装置の一例である。 The focus motor 233 is an example of a drive unit. The configuration including the first encoder 231, the second encoder 232, and the counter 243 is an example of a position detection unit. The CCD image sensor 110 is an example of an image sensor. The camera controller 140 is an example of an AF evaluation value calculation unit, a focus determination unit, and a movement determination unit. The lens controller 240 is an example of a lens control unit. The camera system 1 is an example of an imaging device.
(2.動作)
(2-1.撮像準備動作)
 まず、撮像準備のためのカメラシステム1の動作を説明する。図2は、カメラシステム1の撮像準備動作を説明するためのシーケンス図である。
(2. Operation)
(2-1. Imaging preparation operation)
First, the operation of the camera system 1 for imaging preparation will be described. FIG. 2 is a sequence diagram for explaining the imaging preparation operation of the camera system 1.
 カメラボディ100に交換レンズユニット200を装着した状態で、使用者が、カメラボディ100の電源をオンすると、電源160は、ボディマウント150及びレンズマウント250を介して、交換レンズユニット200に電力を供給する(S11)。次に、カメラコントローラ140は、レンズコントローラ240に対して、交換レンズユニット200の認証情報を要求する(S12)。ここで、交換レンズユニット200の認証情報には、交換レンズユニット200が装着されているか否かに関する情報及びアクセサリーが装着されているか否かに関する情報が含まれる。レンズコントローラ240は、カメラコントローラ140からのレンズ認証要求に応答する(S13)。 When the user turns on the power of the camera body 100 with the interchangeable lens unit 200 mounted on the camera body 100, the power supply 160 supplies power to the interchangeable lens unit 200 via the body mount 150 and the lens mount 250. (S11). Next, the camera controller 140 requests authentication information of the interchangeable lens unit 200 from the lens controller 240 (S12). Here, the authentication information of the interchangeable lens unit 200 includes information regarding whether or not the interchangeable lens unit 200 is mounted and information regarding whether or not an accessory is mounted. The lens controller 240 responds to the lens authentication request from the camera controller 140 (S13).
 次に、カメラコントローラ140は、レンズコントローラ240に対して、初期化動作をするよう要求する(S14)。これを受けて、レンズコントローラ240は、絞りのリセット、OISレンズ220のリセット等の初期化動作を行う。そして、レンズコントローラ240は、カメラコントローラ140に対して、レンズ初期化動作が完了した旨を返信する(S15)。 Next, the camera controller 140 requests the lens controller 240 to perform an initialization operation (S14). In response to this, the lens controller 240 performs initialization operations such as resetting the aperture and resetting the OIS lens 220. Then, the lens controller 240 returns to the camera controller 140 that the lens initialization operation has been completed (S15).
 次に、カメラコントローラ140は、レンズコントローラ240に対して、レンズデータを要求する(S16)。レンズデータは、フラッシュメモリ242に格納されている。そこで、レンズコントローラ240は、フラッシュメモリ242からレンズデータを読み出して、カメラコントローラ140に返信する(S17)。ここで、レンズデータとは、レンズ名称、Fナンバー、焦点距離、フォーカスレンズ駆動速度上限値、フォーカス像面移動量等の交換レンズユニット200特有の特性値である。 Next, the camera controller 140 requests lens data from the lens controller 240 (S16). The lens data is stored in the flash memory 242. Therefore, the lens controller 240 reads the lens data from the flash memory 242 and sends it back to the camera controller 140 (S17). Here, the lens data is characteristic values unique to the interchangeable lens unit 200 such as a lens name, F number, focal length, focus lens drive speed upper limit value, and focus image plane movement amount.
 カメラコントローラ140が、カメラボディ100に装着されている交換レンズユニット200のレンズデータを把握すると、撮像可能な状態になる。この状態では、カメラコントローラ140は、レンズコントローラ240に対して、交換レンズユニット200の状態を示すレンズ状態データを定期的に要求する(S18)。レンズ状態データは、例えば、ズームレンズ210によるズーム倍率情報、フォーカスレンズ230の位置情報、絞り値情報などが含まれる。この要求に応えて、レンズコントローラ240は、カメラコントローラ140に対して、要求されたレンズ状態データを返信する(S19)。 When the camera controller 140 grasps the lens data of the interchangeable lens unit 200 attached to the camera body 100, the camera controller 140 is ready for imaging. In this state, the camera controller 140 periodically requests lens state data indicating the state of the interchangeable lens unit 200 from the lens controller 240 (S18). The lens state data includes, for example, zoom magnification information by the zoom lens 210, position information of the focus lens 230, aperture value information, and the like. In response to this request, the lens controller 240 returns the requested lens state data to the camera controller 140 (S19).
 また、この状態では、カメラシステム1は、CCDイメージセンサ110で生成した画像データが示す画像をスルー画像として液晶モニタ120に表示する制御モードで動作し得る。この制御モードを「ライブビューモード」という。ライブビューモードでは、スルー画像が動画で液晶モニタ120に表示されるので、使用者は、液晶モニタ120を見ながら静止画像を撮像するための構図を決めることができる。ライブビューモードに設定するかどうかは使用者が選択可能である。ライブビューモードの他に、使用者が選択できる制御モードとして、交換レンズユニット200からの被写体像を光学ビューファインダー(図示省略)に導く制御モードもある。この制御モードを実現するためには、被写体像を光学ビューファインダー(図示省略)に導くための可動ミラー等が必要である。ライブビューモードにおけるオートフォーカス動作の方式としては、コントラスト方式が適している。ライブビューモードでは、定常的に、CCDイメージセンサ110で画像データを生成しているので、その画像データを用いたコントラスト方式のオートフォーカス動作をするのが容易だからである。 In this state, the camera system 1 can operate in a control mode in which an image indicated by image data generated by the CCD image sensor 110 is displayed on the liquid crystal monitor 120 as a through image. This control mode is called “live view mode”. In the live view mode, the through image is displayed as a moving image on the liquid crystal monitor 120, so that the user can determine the composition for capturing a still image while viewing the liquid crystal monitor 120. The user can select whether to set the live view mode. In addition to the live view mode, there is also a control mode for guiding the subject image from the interchangeable lens unit 200 to an optical viewfinder (not shown) as a control mode that can be selected by the user. In order to realize this control mode, a movable mirror or the like for guiding a subject image to an optical viewfinder (not shown) is required. A contrast method is suitable as a method of autofocus operation in the live view mode. This is because in the live view mode, the image data is constantly generated by the CCD image sensor 110, so that it is easy to perform a contrast autofocus operation using the image data.
 コントラスト方式のオートフォーカス動作を行う際には、カメラコントローラ140は、レンズコントローラ240に対して、コントラストAF用データを要求する(S20)。コントラストAF用データは、コントラスト方式のオートフォーカス動作の際に必要なデータであり、例えば、カメラボディ-レンズ間の通信周期、フォーカス駆動速度、フォーカスシフト量、像倍率、コントラストAF可否情報などを含む。 When performing the contrast autofocus operation, the camera controller 140 requests contrast AF data from the lens controller 240 (S20). The contrast AF data is necessary for the contrast autofocus operation, and includes, for example, the communication cycle between the camera body and the lens, the focus drive speed, the focus shift amount, the image magnification, and the contrast AF availability information. .
(2-2.コントラスト方式のオートフォーカス動作)
 次に、コントラストAF制御動作について説明する。図3は、本実施の形態に係るシングルAF制御の基本動作を説明した図である。カメラコントローラ140は、使用者のレリーズ釦130の半押し操作を受け付けて、シングルAF制御動作を実行する。
(2-2. Contrast autofocus operation)
Next, the contrast AF control operation will be described. FIG. 3 is a diagram for explaining the basic operation of the single AF control according to the present embodiment. The camera controller 140 receives a user half-press operation of the release button 130 and executes a single AF control operation.
 フォーカスモータ233は、フォーカスレンズ230を無限端あるいは至近端から一方向に駆動し続ける。カメラコントローラ140は、ボディマウント150とレンズマウント250を通じてレンズコントローラ240にフォーカスレンズ230の駆動を指示し、フォーカスレンズ230の駆動に合わせて周期的にAF評価値を算出し続ける。なお、AF評価値の算出方法として、CCDイメージセンサ110で生成された画像データから輝度信号を求め、輝度信号の画面内における高周波成分を積算して求める方法が知られている。 The focus motor 233 continues to drive the focus lens 230 in one direction from the infinite end or the closest end. The camera controller 140 instructs the lens controller 240 to drive the focus lens 230 through the body mount 150 and the lens mount 250 and continues to calculate the AF evaluation value periodically in accordance with the drive of the focus lens 230. As a method for calculating the AF evaluation value, a method is known in which a luminance signal is obtained from image data generated by the CCD image sensor 110 and a high frequency component in the screen of the luminance signal is integrated.
 カメラコントローラ140は、AF評価値が上昇し続ける限りフォーカスレンズ230を一方向に駆動し続けるようにレンズコントローラ240に指示を出す。AF評価値の上昇が止まり、下降が開始すると、カメラコントローラ140は合焦位置を通過したと判断する。そして、カメラコントローラ140はフォーカスモータ233を逆回転させるようにレンズコントローラ240に指示してフォーカスレンズ230を今までとは逆方向に駆動し、合焦位置に移動させる。フォーカスレンズ230の合焦位置への移動が完了すると、カメラコントローラ140は、レンズコントローラ240に、フォーカスレンズ230を該合焦位置に固定するように指示する。 The camera controller 140 instructs the lens controller 240 to continue driving the focus lens 230 in one direction as long as the AF evaluation value continues to rise. When the AF evaluation value stops increasing and starts decreasing, the camera controller 140 determines that the in-focus position has passed. Then, the camera controller 140 instructs the lens controller 240 to rotate the focus motor 233 in the reverse direction, and drives the focus lens 230 in the reverse direction so far to move it to the in-focus position. When the movement of the focus lens 230 to the in-focus position is completed, the camera controller 140 instructs the lens controller 240 to fix the focus lens 230 at the in-focus position.
(2-3.動体追尾AF制御の基本原理)
 本実施の形態における動体追尾AF制御動作の基本原理を説明する。動体追尾AF制御動作は、被写体の動きを追尾検出し、該動きを追尾検出された被写体に合焦するようにフォーカスレンズ230を調節し続ける制御動作である。使用者は、画像中のいずれの被写体の動きを追尾検出するかを設定することができる。動体追尾AF制御動作は、一例として、使用者がレリーズ釦130を半押しして動作するものとする。本動作モードはカメラコントローラ140で制御・認識される。なお、使用者がレリーズ釦130を半押しする前から動作する、常時動作にしてもかまわない。
(2-3. Basic Principle of Moving Object Tracking AF Control)
The basic principle of the moving body tracking AF control operation in this embodiment will be described. The moving body tracking AF control operation is a control operation that continuously detects the movement of the subject and continuously adjusts the focus lens 230 so that the movement is focused on the detected subject. The user can set which subject in the image is detected for tracking. As an example, the moving body tracking AF control operation is performed when the user presses the release button 130 halfway. This operation mode is controlled and recognized by the camera controller 140. It should be noted that the operation may be performed continuously before the user presses the release button 130 halfway.
 図4は、本実施の形態における動体追尾AFの合焦位置演算アルゴリズムを説明するための図である。同図において、被写体、フォーカスレンズ230、CCDイメージセンサ110を模式的に示している。被写体Sがカメラ1に向かって近づいて来る場合、図4(a)に示す状態から図4(b)に示す状態に推移する。図4(d)と図4(e)は、図4(a)と図4(b)のそれぞれの状態において液晶ディスプレイ170に表示された被写体Sを示し、これは、被写体Sに対する合焦の状態をも示している。また、図4(a)の状態から図4(b)の状態への遷移時間は、T[s]であるとする。図4(c)については後述する。 FIG. 4 is a diagram for explaining an in-focus position calculation algorithm of moving object tracking AF in the present embodiment. In the figure, a subject, a focus lens 230, and a CCD image sensor 110 are schematically shown. When the subject S approaches the camera 1, the state shown in FIG. 4 (a) is changed to the state shown in FIG. 4 (b). FIG. 4D and FIG. 4E show the subject S displayed on the liquid crystal display 170 in the respective states of FIG. 4A and FIG. The state is also shown. Further, it is assumed that the transition time from the state of FIG. 4A to the state of FIG. 4B is T [s]. FIG. 4C will be described later.
 より具体的に原理を説明するために下記条件(1)~(4)で示す具体値を用いて説明する。
 条件(1)焦点距離f=150mm,絞り値F=5.6のレンズを使用
    なお、ズームレンズ210は動作させないものとするため記載を省略。
 条件(2)CCDイメージセンサの縦方向のサイズは13mm
 条件(3)図4(a)では被写体を上下1mの範囲で捉えている
 条件(4)被写体が7m/sで向かってくる
In order to explain the principle more concretely, explanation will be made using specific values indicated by the following conditions (1) to (4).
Condition (1) Use of a lens with a focal length f = 150 mm and an aperture value F = 5.6 Note that the zoom lens 210 is omitted because it is not operated.
Condition (2) The vertical size of the CCD image sensor is 13 mm.
Condition (3) In FIG. 4A, the subject is captured within a range of 1 m above and below. Condition (4) The subject is moving at 7 m / s.
 これらの条件において、被写体からフォーカスレンズ230までの距離をa0、フォーカスレンズ230からCCDイメージセンサまでの距離をb0とすると、次式が成り立つ。
  a0:b0=1000:13
 焦点距離f=150[mm]と一般式1/f=1/a0+1/b0とから次式が求められる。
  a0=f・(1+1000/13)=11688.46154[mm]
  b0=151.95[mm]
 図4(a)の状態から図4(b)の状態へ時間T=1/30[s]が経過したとすると、次式が求められる。
  Δa=7000/30=233.3[mm]
  Δb=-(b0/a0)・Δa
  ∵Δ(1/b0)=Δ(1/f-1/a0)
Under these conditions, if the distance from the subject to the focus lens 230 is a0 and the distance from the focus lens 230 to the CCD image sensor is b0, the following equation is established.
a0: b0 = 1000: 13
The following formula is obtained from the focal length f = 150 [mm] and the general formula 1 / f = 1 / a0 + 1 / b0.
a0 = f · (1 + 1000/13) = 11688.46154 [mm]
b0 = 151.95 [mm]
If the time T = 1/30 [s] has elapsed from the state of FIG. 4A to the state of FIG. 4B, the following equation is obtained.
Δa = 7000/30 = 233.3 [mm]
Δb = − (b0 2 / a0 2 ) · Δa
∵Δ (1 / b0) = Δ (1 / f-1 / a0)
  よって、下記式が求まる。
 Δb=39.4[μm]
Therefore, the following formula is obtained.
Δb = 39.4 [μm]
 したがって7m/sで向かってくる被写体に対してはフォーカスレンズ230を1/30[s]において39.4[μm]の速度で駆動すれば、合焦状態を維持することができる。すなわち、フォーカスレンズ230からCCDイメージセンサまでの距離b1は次式のように求められる。
  b1=b0+Δb=151.9894[μm]
Therefore, for a subject coming at 7 m / s, the in-focus state can be maintained by driving the focus lens 230 at a speed of 39.4 [μm] at 1/30 [s]. That is, the distance b1 from the focus lens 230 to the CCD image sensor is obtained as follows.
b1 = b0 + Δb = 151.9894 [μm]
 なお、このとき被写体からフォーカスレンズ230までの距離a1は次式のように求められる。
  a1=a0+b0-b1=11688.42214[mm]
At this time, the distance a1 from the subject to the focus lens 230 is obtained as follows.
a1 = a0 + b0−b1 = 11168.42214 [mm]
 このとき、フォーカスレンズ230の光軸方向への単位移動量は、CCDイメージセンサへのピント位置移動量(像面移動量)と等しいものとすると、1/30[s]での像面移動量は0.42[Fδ]に相当する(但し、δ=16.7[μm])。 At this time, if the unit movement amount of the focus lens 230 in the optical axis direction is equal to the focus position movement amount (image plane movement amount) to the CCD image sensor, the image plane movement amount at 1/30 [s]. Corresponds to 0.42 [Fδ] (where δ = 16.7 [μm]).
 図5は本実施の形態における動体追尾AFのセグメント範囲の検出原理を説明するための図である。図4(d)~(f)は、液晶モニタ120に表示された被写体Sの様子を示している。図5(a)~(c)は、図4(d)~(f)の詳細な様子を示しており、被写体Sの頭部のセグメントを検出し、そのセグメント範囲を演算する原理を説明している。図5(a)は、図4(a)と同様に、被写体に対して合焦している状態を示している。図5(b)は、図4(b)と同様に、被写体がΔaだけカメラに近づいた状態で被写体に対して合焦している状態を示している。 FIG. 5 is a diagram for explaining the principle of detecting the segment range of the moving object tracking AF in the present embodiment. 4D to 4F show the state of the subject S displayed on the liquid crystal monitor 120. FIG. 5 (a) to 5 (c) show the detailed states of FIGS. 4 (d) to 4 (f) and explain the principle of detecting the segment of the head of the subject S and calculating the segment range. ing. FIG. 5A shows a state in which the subject is in focus, as in FIG. FIG. 5B shows a state in which the subject is focused on the subject while approaching the camera by Δa, as in FIG. 4B.
 図5(a)は、液晶モニタ120の縦方向の撮像範囲Lに対して、セグメンテーションを利用して認識された被写体Sの頭部の大きさ(縦方向)をセグメント範囲h0として検知している様子を示している。撮像範囲Lに対するセグメント範囲h0の比率はk0=h0/Lで表すことができる。図5(b)は、図4(b)と同様に、被写体Sに対して合焦している状態を示しており、液晶モニタ120の縦方向の撮像範囲Lに対して、セグメンテーションを利用して認識された被写体Sの頭部の大きさ(縦方向)をセグメント範囲h1として検知している様子を示している。撮像範囲Lに対するセグメント範囲h1の比率はk1=h1/Lで表すことができる。ここで、k0とk1との関係は、次式で表すことができる。
  k1=k0・(a0/a1)・(b1/b0)
In FIG. 5A, the size (vertical direction) of the head of the subject S recognized using segmentation is detected as the segment range h0 with respect to the vertical imaging range L of the liquid crystal monitor 120. It shows a state. The ratio of the segment range h0 to the imaging range L can be expressed as k0 = h0 / L. FIG. 5B shows a state in which the subject S is focused as in FIG. 4B, and segmentation is used for the vertical imaging range L of the liquid crystal monitor 120. The state of detecting the size (vertical direction) of the head of the subject S recognized as the segment range h1 is shown. The ratio of the segment range h1 to the imaging range L can be expressed as k1 = h1 / L. Here, the relationship between k0 and k1 can be expressed by the following equation.
k1 = k0 · (a0 / a1) · (b1 / b0)
 なお、前述のようにカメラコントローラ140は、a0,a1,b0,b1値を認識している。また、k0およびk1もセグメンテーションを利用したセグメント範囲の比率であり、同様にカメラコントローラ140にて既知の値である。したがって、上記の関係式は、図4(a)・図5(a)と図4(b)・図5(b)のいずれにおいても、被写体に対して合焦状態であれば成り立つ。 As described above, the camera controller 140 recognizes the values a0, a1, b0, and b1. K0 and k1 are also segment range ratios using segmentation, and are similarly known values in the camera controller 140. Therefore, the above relational expression holds in any of FIGS. 4A, 5A, 4B, and 5B as long as the subject is in focus.
 ここで、図4(b)に示すフォーカスレンズ位置の状態で、被写体Sに対して合焦していない状態を検討する。図4(c)は、図4(b)に示すフォーカスレンズ位置の状態で被写体に対して合焦していない状態を示している。図4(f)は、図4(c)の場合の液晶ディスプレイ170に表示される被写体Sの様子を示している。図4(c)において被写体Sとフォーカスレンズ230までの距離をa2(a2>a1、すなわち被写体が近づいた分がΔaより小さい)とすると、図5(c)におけるセグメント範囲h2の比率k2は次式で表すことができる。
  k2=k0・(a0/a2)・(b1/b0)
Here, a state where the subject S is not focused in the state of the focus lens position shown in FIG. FIG. 4C shows a state where the subject is not focused in the state of the focus lens position shown in FIG. FIG. 4F shows a state of the subject S displayed on the liquid crystal display 170 in the case of FIG. In FIG. 4C, if the distance between the subject S and the focus lens 230 is a2 (a2> a1, that is, the approached subject is smaller than Δa), the ratio k2 of the segment range h2 in FIG. It can be expressed by a formula.
k2 = k0. (a0 / a2). (b1 / b0)
 なお、カメラコントローラ140は、k0,a0,a1,b0,b1の値を認識している。k2は、図5(c)に示すようにセグメント範囲h2を検知することによって、k2=h2/Lで表すことができる。したがって、上式での未知数は被写体とフォーカスレンズ230までの距離a2である。しかし、a2は既知の数値で全て表すことができるため、a2を正確に求めることができる。
  a2=(a0/k2)・(b1/b0)
The camera controller 140 recognizes the values of k0, a0, a1, b0, and b1. k2 can be expressed as k2 = h2 / L by detecting the segment range h2 as shown in FIG. Therefore, the unknown in the above equation is the distance a2 between the subject and the focus lens 230. However, since a2 can be expressed by all known numerical values, a2 can be accurately obtained.
a2 = (a0 / k2) · (b1 / b0)
 フォーカスレンズ230を、CCDイメージセンサ110側に、下記式から求められるΔb1分だけ近づけることによって、被写体に対して合焦させることができる。
  Δb1=-(b1/a1)・Δa1
ここで、Δa1=a2-a1。
By bringing the focus lens 230 close to the CCD image sensor 110 side by Δb1 obtained from the following formula, the subject can be focused.
Δb1 = − (b1 2 / a1 2 ) · Δa1
Here, Δa1 = a2−a1.
 以上で説明したように、本実施の形態においては、セグメンテーションなどを用いて被写体の大きさを検知し、過去にCCDイメージセンサに撮像された被写体の大きさと現在のCCDイメージセンサに撮像されている被写体の大きさとを比較する。これによって、被写体に対して合焦状態にあるか非合焦状態にあるかを判定することができる。また、非合焦状態の場合には、合焦させるためのフォーカスレンズ230の移動量を、カメラコントローラ140において演算することができる。 As described above, in the present embodiment, the size of the subject is detected using segmentation or the like, and the size of the subject captured in the past by the CCD image sensor and the current CCD image sensor are captured. Compare the size of the subject. This makes it possible to determine whether the subject is in focus or not in focus. In the out-of-focus state, the camera controller 140 can calculate the amount of movement of the focus lens 230 for focusing.
 以上説明したように、本実施の形態においてはカメラ方向に動く被写体に対して合焦状態を維持するためのフォーカスレンズの移動量を演算することが可能となる。この演算した移動量を用いてフォーカスレンズを駆動制御することにより、カメラ方向に動く被写体に対して合焦状態を維持する動体追尾AF制御動作を行うことが可能となる。 As described above, in the present embodiment, it is possible to calculate the amount of movement of the focus lens for maintaining the in-focus state with respect to the subject moving in the camera direction. By performing drive control of the focus lens using the calculated movement amount, it is possible to perform a moving body tracking AF control operation that maintains a focused state for a subject moving in the camera direction.
(2-4.動体追尾AF制御動作)
 図6と図7を用いて、本実施の形態における動体追尾AF制御動作の詳細について、説明する。
(2-4. Moving object tracking AF control operation)
Details of the moving body tracking AF control operation in the present embodiment will be described with reference to FIGS. 6 and 7.
 図6は、本実施の形態に係るカメラシステム1の動体追尾方式の動作を説明するためのタイミングチャートである。図7は、本実施の形態に係るカメラシステム1におけるフォーカスレンズ位置の時間変化を示すグラフである。なお、制御周期Tは、カメラボディ100と交換レンズユニット200間の通信周期であり、これは露光同期信号の周期と等しい。すなわち、時刻t0から時刻t1までの経過時間、時刻t1~時刻t2までの経過時間・・・、時刻t8~時刻t9までの経過時間はそれぞれTとなる。図7において、実線Xは、本実施形態の動体追尾AF制御にしたがって駆動されたときのフォーカスレンズ230の実際の駆動プロファイルであり、破線Yは、合焦状態を維持するためのフォーカスレンズ230の位置を示す理想の駆動プロファイルである。 FIG. 6 is a timing chart for explaining the operation of the moving object tracking method of the camera system 1 according to the present embodiment. FIG. 7 is a graph showing temporal changes in the focus lens position in the camera system 1 according to the present embodiment. The control period T is a communication period between the camera body 100 and the interchangeable lens unit 200, and is equal to the period of the exposure synchronization signal. That is, the elapsed time from time t0 to time t1, the elapsed time from time t1 to time t2,..., The elapsed time from time t8 to time t9 is T. In FIG. 7, a solid line X is an actual drive profile of the focus lens 230 when driven according to the moving body tracking AF control of the present embodiment, and a broken line Y is the focus lens 230 for maintaining the in-focus state. It is an ideal drive profile indicating the position.
 カメラコントローラ140は、ライブビューモードで動作しているとする。この状態で、カメラコントローラ140は、図6Aに示すように、CCDVD信号(以下、「垂直同期信号」と称す)を定期的に生成する。また、カメラコントローラ140は、これと並行して、垂直同期信号に基づいて、図6Cに示すように、露光同期信号を生成する。カメラコントローラ140は、垂直同期信号を基準にして、露光開始タイミングと露光終了タイミングとを予め把握しているために、露光同期信号を生成することができる。カメラコントローラ140は、垂直同期信号をタイミング発生器112に出力し、露光同期信号をレンズコントローラ240に出力する。レンズコントローラ240は、露光同期信号に同期してフォーカスレンズ230の位置情報を取得する。この動作については後述する。 Suppose that the camera controller 140 is operating in the live view mode. In this state, the camera controller 140 periodically generates a CCDVD signal (hereinafter referred to as “vertical synchronization signal”) as shown in FIG. 6A. In parallel with this, the camera controller 140 generates an exposure synchronization signal based on the vertical synchronization signal as shown in FIG. 6C. Since the camera controller 140 knows in advance the exposure start timing and the exposure end timing on the basis of the vertical synchronization signal, the camera controller 140 can generate the exposure synchronization signal. The camera controller 140 outputs a vertical synchronization signal to the timing generator 112 and outputs an exposure synchronization signal to the lens controller 240. The lens controller 240 acquires position information of the focus lens 230 in synchronization with the exposure synchronization signal. This operation will be described later.
 タイミング発生器112は、垂直同期信号に基づいて、CCDイメージセンサ110の読み出し信号(図示省略)と、図6Bに示すような電子シャッター駆動信号とを定期的に生成する。タイミング発生器112は、読み出し信号及び電子シャッター駆動信号に基づいて、CCDイメージセンサ110を駆動する。すなわち、CCDイメージセンサ110は、読み出し信号に応じて、CCDイメージセンサ110内に多数存在する光電変換素子(図示省略)で生成された画素データを垂直転送部(図示省略)に読み出す。本実施の形態では、読み出し信号と垂直同期信号とは一致しているが、本発明を実施する上で、このことは必須事項ではない。つまり、垂直同期信号と読み出し信号とがずれていてもよい。要するに、垂直同期信号と読み出し信号との同期がとれていればよい。 The timing generator 112 periodically generates a readout signal (not shown) of the CCD image sensor 110 and an electronic shutter drive signal as shown in FIG. 6B based on the vertical synchronization signal. The timing generator 112 drives the CCD image sensor 110 based on the readout signal and the electronic shutter drive signal. That is, the CCD image sensor 110 reads out pixel data generated by a large number of photoelectric conversion elements (not shown) in the CCD image sensor 110 to a vertical transfer unit (not shown) according to the read signal. In the present embodiment, the read signal and the vertical synchronization signal coincide with each other, but this is not an essential matter in implementing the present invention. That is, the vertical synchronization signal and the readout signal may be shifted. In short, it is only necessary that the vertical synchronization signal and the readout signal are synchronized.
 また、CCDイメージセンサ110は、電子シャッター駆動信号に応じて、電子シャッター動作を行う。これにより、CCDイメージセンサ110は、不要電荷を外部に掃き出すことができる。電子シャッター駆動信号は、短時間の間に定期的に発信される複数の信号群からなる。例えば、電子シャッター駆動信号は、5個の信号を一群として発信する。CCDイメージセンサ110は、一群の電子シャッター駆動信号が発信されている間、一つの信号に対して、一回の電子シャッター動作を行う。一群の電子シャッター駆動信号に含まれる信号数を増やせば、CCDイメージセンサ110内に蓄積した電荷を確実に掃き出すことができるが、CCDイメージセンサ110の駆動方法が煩雑になる。 Also, the CCD image sensor 110 performs an electronic shutter operation in accordance with the electronic shutter drive signal. Thereby, the CCD image sensor 110 can sweep out unnecessary charges to the outside. The electronic shutter drive signal is composed of a plurality of signal groups that are periodically transmitted within a short time. For example, the electronic shutter drive signal transmits five signals as a group. The CCD image sensor 110 performs one electronic shutter operation on one signal while a group of electronic shutter drive signals are being transmitted. Increasing the number of signals included in the group of electronic shutter drive signals can surely sweep out the charges accumulated in the CCD image sensor 110, but the drive method of the CCD image sensor 110 becomes complicated.
 従って、CCDイメージセンサ110は、電子シャッター駆動信号により電荷を掃き出し、読み出し信号により画素データを垂直転送部(図示省略)に読み出す。よって、一群の電子シャッター駆動信号の最後の信号から垂直同期信号までの期間において、スルー画像用の画像データのために露光動作を行うことになる(図6C参照)。 Therefore, the CCD image sensor 110 sweeps out the electric charge by the electronic shutter drive signal, and reads the pixel data to the vertical transfer unit (not shown) by the read signal. Therefore, during the period from the last signal of the group of electronic shutter drive signals to the vertical synchronization signal, the exposure operation is performed for the image data for the through image (see FIG. 6C).
 以上の状態で、カメラコントローラ140は、レリーズ釦130が半押しされるかどうかを監視する。今、図6において、時間t0にレリーズ釦130が半押しされたとする。すると、カメラコントローラ140は、図6Dに示すように、レンズコントローラ240に対して、AF開始コマンドを発信する。AF開始コマンドは、コントラスト方式のオートフォーカス動作を開始する旨を示すコマンドであると同時に、本実施の形態においては動体追尾AF制御動作を開始する旨を示すコマンドでもある。 In the above state, the camera controller 140 monitors whether or not the release button 130 is half-pressed. In FIG. 6, it is assumed that the release button 130 is half-pressed at time t0. Then, the camera controller 140 sends an AF start command to the lens controller 240 as shown in FIG. 6D. The AF start command is a command indicating that the contrast autofocus operation is started, and at the same time, is a command indicating that the moving body tracking AF control operation is started in the present embodiment.
 カメラコントローラ140は、図6Eに示すように、レンズコントローラ240に対して、リニア駆動開始コマンドを発信する。ここで、リニア駆動開始コマンドは、フォーカスレンズ230の駆動開始から目標位置指定コマンド(後述)で指定された到達時間だけ経過した時点ちょうどにフォーカスレンズ230が目標位置に到達するように、フォーカスレンズ230を一定速度で駆動(リニア駆動)させるモードに設定するためのコマンドである。このリニア駆動開始コマンドを受信すると、レンズコントローラ240は、フォーカスレンズ230を制御周期Tの間リニア(直線的)に駆動するように準備を行う。 The camera controller 140 transmits a linear drive start command to the lens controller 240 as shown in FIG. 6E. Here, the linear drive start command is such that the focus lens 230 reaches the target position just after the arrival time specified by the target position specifying command (described later) has elapsed since the start of driving the focus lens 230. Is a command for setting the mode to drive at a constant speed (linear drive). Upon receiving this linear drive start command, the lens controller 240 prepares to drive the focus lens 230 linearly (linearly) during the control period T.
 カメラコントローラ140では、図6Hに示すように、周期的に、レンズコントローラ240に対してレンズ位置取得コマンドを送信する。これを受けて、図6Gに示すように、レンズコントローラ240は、DRAM241に保存されたパルス数(フォーカスレンズ230の位置情報)を露光同期信号と関連付けた状態でカメラコントローラ140に送信する。カメラコントローラ140は、フォーカスレンズ230の位置情報に相当するパルス数をDRAM241に保存する。なお、フォーカスモータ233をカメラコントローラ140からの指示に応じて駆動している間、露光同期信号がオフからオンに切り替わった時点のカウンタ243のパルス数と、露光同期信号がオンからオフに切り替わった時点のカウンタ243のパルス数とが、順次DRAM241に保存される。 The camera controller 140 periodically transmits a lens position acquisition command to the lens controller 240 as shown in FIG. 6H. In response to this, as shown in FIG. 6G, the lens controller 240 transmits the number of pulses (position information of the focus lens 230) stored in the DRAM 241 to the camera controller 140 in a state associated with the exposure synchronization signal. The camera controller 140 stores the number of pulses corresponding to the position information of the focus lens 230 in the DRAM 241. While the focus motor 233 is driven in accordance with an instruction from the camera controller 140, the number of pulses of the counter 243 at the time when the exposure synchronization signal is switched from off to on and the exposure synchronization signal is switched from on to off. The number of pulses of the counter 243 at the time is sequentially stored in the DRAM 241.
 次に、CCDイメージセンサ110により露光期間中に露光されて生成され、その後ADコンバータ111により変換された画像データは、カメラコントローラ140に送信される。カメラコントローラ140は、受信した画像データに基づいて、オートフォーカス動作用のAF評価値を算出する。この算出したAF評価値は、露光同期信号と関連付けた状態でDRAM141に保存される。そして、レンズコントローラ240から取得したレンズ位置情報も露光同期信号と関連付けられている。そのため、カメラコントローラ140は、AF評価値をレンズ位置情報と関連付けて保存することができる。また、カメラコントローラ140は、受信した画像データに基づいて、セグメンテーションにより被写体のセグメント範囲を算出する。したがって、図6Jに示すように、露光同期信号と、レンズコントローラ240から取得したレンズ位置情報、CCDイメージセンサ110から取得したAF評価値およびセグメント範囲情報とは関連付けられてDRAM141に保存される。 Next, the image data generated by exposure during the exposure period by the CCD image sensor 110 and then converted by the AD converter 111 is transmitted to the camera controller 140. The camera controller 140 calculates an AF evaluation value for autofocus operation based on the received image data. The calculated AF evaluation value is stored in the DRAM 141 in a state associated with the exposure synchronization signal. The lens position information acquired from the lens controller 240 is also associated with the exposure synchronization signal. Therefore, the camera controller 140 can store the AF evaluation value in association with the lens position information. The camera controller 140 calculates the segment range of the subject by segmentation based on the received image data. Therefore, as shown in FIG. 6J, the exposure synchronization signal, the lens position information acquired from the lens controller 240, the AF evaluation value acquired from the CCD image sensor 110, and the segment range information are associated with each other and stored in the DRAM 141.
 動体追尾AF制御動作においては、カメラコントローラ140は、カメラシステム1に近づくあるいは遠ざかる被写体に対して合焦状態を維持するようにフォーカスレンズ230の駆動制御を行うようレンズコントローラ240に指示を出す。具体的には、カメラコントローラ140は、フォーカスレンズ230の位置情報、AF評価値、セグメント範囲情報を用いて、図6Fに示す目標位置指定コマンドにより、移動する被写体に対して合焦状態を維持するようにフォーカスレンズ230の駆動を制御する。目標位置指定コマンドは、フォーカスレンズ230を移動させる目標位置(または移動量)と、フォーカスレンズ230を目標位置に到達させるまでの時間(到達時間)とを交換レンズユニット200に通知するためのコマンドである。交換レンズユニット200は、フォーカスレンズ230の駆動開始から、指定された移動時間だけ経過した時点にフォーカスレンズ230が目標位置に到達するように、フォーカスレンズ230を一定速度で駆動(リニア駆動)する。本実施形態では、目標位置指定コマンドで指定する到達時間は、制御周期Tの期間とする。 In the moving body tracking AF control operation, the camera controller 140 instructs the lens controller 240 to perform drive control of the focus lens 230 so as to maintain an in-focus state with respect to a subject that approaches or moves away from the camera system 1. Specifically, the camera controller 140 uses the position information of the focus lens 230, the AF evaluation value, and the segment range information to maintain the focused state for the moving subject by the target position designation command shown in FIG. 6F. Thus, the drive of the focus lens 230 is controlled. The target position designation command is a command for notifying the interchangeable lens unit 200 of a target position (or movement amount) for moving the focus lens 230 and a time (arrival time) until the focus lens 230 reaches the target position. is there. The interchangeable lens unit 200 drives the focus lens 230 at a constant speed (linear drive) so that the focus lens 230 reaches the target position when the designated movement time has elapsed from the start of driving the focus lens 230. In the present embodiment, the arrival time designated by the target position designation command is a period of the control cycle T.
 図6を用いて、動体追尾AF制御動作の一例を説明する。例えば、先に説明したシングルAF制御によって時刻t0において合焦している状態を考える。図6Cに示す期間aおよび期間bのそれぞれにおいて露光されたそれぞれの画像データを用いて算出された被写体のセグメント範囲情報を用いて、先の動体追尾AFの合焦位置演算アルゴリズムの説明において示した方法で、カメラコントローラ140はフォーカスレンズ230の移動量を算出する。図6Fに示すように、時刻t2において、フォーカスレンズ位置p4を目標位置として指定する目標位置指定コマンドを、カメラコントローラ140からレンズコントローラ240に送信する。レンズコントローラ240は、時刻t3にて、カメラコントローラ140から送信された目標位置指定コマンドで指定された位置p4に従って、期間Tの間、位置p0から位置p4までフォーカスレンズ230をリニアに(一定速度で)駆動させる(図7の実線X(t3~t4の期間)参照)。すなわち、フォーカスレンズ230を次式で示される一定速度vで駆動させる。
  v=(p4-p0)/T
An example of the moving object tracking AF control operation will be described with reference to FIG. For example, consider a state in which focus is achieved at time t0 by the single AF control described above. As shown in the description of the focus position calculation algorithm of the moving object tracking AF, using the segment range information of the subject calculated using the image data exposed in each of the periods a and b shown in FIG. 6C. In this way, the camera controller 140 calculates the amount of movement of the focus lens 230. As shown in FIG. 6F, at time t2, a target position designation command for designating the focus lens position p4 as a target position is transmitted from the camera controller 140 to the lens controller 240. The lens controller 240 linearly moves the focus lens 230 from the position p0 to the position p4 during the period T according to the position p4 designated by the target position designation command transmitted from the camera controller 140 at time t3 (at a constant speed). (See the solid line X in FIG. 7 (period from t3 to t4)). That is, the focus lens 230 is driven at a constant speed v expressed by the following equation.
v = (p4-p0) / T
 ここで、フォーカスレンズ230の位置p4のカメラコントローラ140からレンズコントローラ240への送信に際して、時刻t0で合焦している状態から、時刻t4において合焦状態を維持するようにフォーカスレンズ230を移動させる必要がある。そこで、図6Cに示す期間aと期間bから算出された被写体のセグメント範囲情報から、期間Tにおける被写体の移動量(先の説明ではΔaに相当)と、期間Tにおける被写体に合焦させるためのフォーカスレンズ230の移動量(先の説明ではΔbに相当)とが決定される。時刻t4は、合焦状態にある時刻t0から4・T分時間が経過しているので、被写体の移動量は4・Δaとなる。したがって、時刻t4において合焦させることができるフォーカスレンズ230の移動量は4・Δbであり、時刻t4でのフォーカスレンズ230の位置p4は次式で与えられる。
  p4=p0+4・Δb
Here, during transmission from the camera controller 140 to the lens controller 240 at the position p4 of the focus lens 230, the focus lens 230 is moved so as to maintain the focused state at the time t4 from the focused state at the time t0. There is a need. Therefore, from the segment range information of the subject calculated from the period a and the period b shown in FIG. 6C, the amount of movement of the subject in the period T (corresponding to Δa in the above description) and the subject for focusing on the period T The amount of movement of the focus lens 230 (corresponding to Δb in the above description) is determined. At time t4, since 4 · T minutes have elapsed from time t0 in the in-focus state, the amount of movement of the subject is 4 · Δa. Therefore, the amount of movement of the focus lens 230 that can be focused at time t4 is 4 · Δb, and the position p4 of the focus lens 230 at time t4 is given by the following equation.
p4 = p0 + 4 · Δb
 次に、図6Cに示す期間bおよび期間cのそれぞれにおいて露光されたそれぞれの画像データを用いて算出された被写体のセグメント範囲情報を用いて、カメラコントローラ140は、フォーカスレンズ230の移動量を算出する。図6Fに示すように、フォーカスレンズ位置p5を指定する目標位置指定コマンドを、カメラコントローラ140からレンズコントローラ240に送信する。レンズコントローラ240は、カメラコントローラ140から受信した目標位置指定コマンドが指定するフォーカスレンズ位置p5に従って、期間Tの間、フォーカスレンズ230を、位置p4から位置p5までリニアに駆動させる(図7の実線X(t4~t5の期間)参照)。すなわち、フォーカスレンズ230を、次式で示される一定速度vで駆動させる。
  v=(p5-p4)/T
Next, the camera controller 140 calculates the movement amount of the focus lens 230 using the segment range information of the subject calculated using the image data exposed in each of the periods b and c shown in FIG. 6C. To do. As shown in FIG. 6F, a target position designation command for designating the focus lens position p5 is transmitted from the camera controller 140 to the lens controller 240. The lens controller 240 linearly drives the focus lens 230 from the position p4 to the position p5 during the period T according to the focus lens position p5 designated by the target position designation command received from the camera controller 140 (solid line X in FIG. 7). (Refer to the period from t4 to t5). That is, the focus lens 230 is driven at a constant speed v shown by the following equation.
v = (p5-p4) / T
 ここで、フォーカスレンズ230の位置p5を指定する目標位置指定コマンドのカメラコントローラ140からレンズコントローラ240への送信に際して、時刻t4で合焦している状態から、時刻t5において合焦状態を維持するようにフォーカスレンズ230を移動させる必要がある。図6Cに示す期間bと期間cにおいて算出された被写体のセグメント範囲情報から、期間Tの間での被写体の移動量(先の説明ではΔaに相当)と、期間Tの間での被写体に合焦させるためのフォーカスレンズ230の移動量(先の説明ではΔbに相当)が決定される。時刻t5は、合焦している時刻t4からT分時間が経過しているので、被写体の移動量はΔaとなる。したがって、時刻t5において合焦させることができるフォーカスレンズ230の移動量はΔbであり、時刻t5でのフォーカスレンズ230の位置p5は次式で与えられる。
  p5=p4+Δb=p0+5・Δb
Here, when the target position designation command for designating the position p5 of the focus lens 230 is transmitted from the camera controller 140 to the lens controller 240, the in-focus state is maintained at the time t5 from the in-focus state at the time t4. It is necessary to move the focus lens 230. From the segment range information of the subject calculated in the period b and the period c shown in FIG. 6C, the amount of movement of the subject during the period T (corresponding to Δa in the above description) and the subject during the period T are matched. A moving amount of the focus lens 230 for focusing (corresponding to Δb in the above description) is determined. At time t5, since T minutes have elapsed from the focused time t4, the amount of movement of the subject is Δa. Therefore, the amount of movement of the focus lens 230 that can be focused at time t5 is Δb, and the position p5 of the focus lens 230 at time t5 is given by the following equation.
p5 = p4 + Δb = p0 + 5 · Δb
 以降、同様にしてフォーカスレンズ230の位置を制御周期T毎にカメラコントローラ140からレンズコントローラ240に目標位置指定コマンドを送信することにより、p9まで移動させる。図7は、このようにしてフォーカスレンズ230を期間T毎でリニアに駆動したときのレンズ位置の変化の例を示している。 Thereafter, similarly, the position of the focus lens 230 is moved to p9 by transmitting a target position designation command from the camera controller 140 to the lens controller 240 every control cycle T. FIG. 7 shows an example of a change in the lens position when the focus lens 230 is linearly driven every period T in this way.
 図7を用いて説明したように、フォーカスレンズ230を期間T毎にリニアに駆動させることで時刻t4以降において、カメラシステム1に対して近づくあるいは遠ざかる被写体に対して常に合焦状態を維持するようにフォーカスレンズ230を駆動制御することができる。したがって、連写動作においても時刻t4以降であれば、デジタルカメラに対して近づくあるいは遠ざかる被写体に対して、任意のタイミングで露光を行っても合焦状態を維持した画像データを取得することができる。このため、動画撮影において、常に合焦状態を維持した画像データを取得することができる。 As described with reference to FIG. 7, the focus lens 230 is linearly driven every period T, so that the in-focus state is always maintained for a subject that approaches or moves away from the camera system 1 after time t4. In addition, the focus lens 230 can be driven and controlled. Therefore, even in continuous shooting operation, after time t4, it is possible to acquire image data that maintains the in-focus state even if the subject that approaches or moves away from the digital camera is exposed at an arbitrary timing. . For this reason, it is possible to acquire image data in which a focused state is always maintained in moving image shooting.
 なお、CCDイメージセンサ110で露光している時間やカメラコントローラ140でセグメント範囲情報などの評価値を演算し取得するまでの時間、カメラコントローラ140からレンズコントローラ240へのコマンドを送信する時間、レンズコントローラ240でフォーカスレンズ230を駆動するまでに要する時間の各時間を考慮して、合焦位置を維持するフォーカスレンズ230の位置を求めてもよい。このような制御によって、本実施の形態における動体追尾AF制御における合焦精度をさらに向上させることができる。 Note that the exposure time by the CCD image sensor 110, the time until the camera controller 140 calculates and obtains an evaluation value such as segment range information, the time for transmitting a command from the camera controller 140 to the lens controller 240, the lens controller The position of the focus lens 230 that maintains the in-focus position may be obtained in consideration of each time required to drive the focus lens 230 at 240. Such control can further improve the focusing accuracy in the moving object tracking AF control according to the present embodiment.
 また、図4(c)を用いて説明したように、合焦状態からずれた非合焦状態にある場合、フォーカスレンズ230の移動量をそのずれ分だけ補正すればよい。このような制御によって、カメラシステム1に対して近づくあるいは遠ざかる被写体の速度が変化した場合においても、本実施の形態においては、合焦状態を維持するように自動的に補正を行うことが可能である。 In addition, as described with reference to FIG. 4C, when the focus lens 230 is out of focus and is out of focus, the movement amount of the focus lens 230 may be corrected by the shift. In this embodiment, even when the speed of the subject that approaches or moves away from the camera system 1 is changed by such control, it is possible to automatically perform correction so as to maintain the in-focus state. is there.
 なお、本実施の形態では、レリーズ釦130の半押し後に、オートフォーカス動作を開始するとしたが、オートフォーカス動作の開始のトリガはこれに限定されない。レリーズ釦130の操作に関わらず、常に被写体に対してオートフォーカス動作を行うような構成に対しても、本実施形態の思想を適用できる。 In the present embodiment, the autofocus operation is started after half-pressing the release button 130, but the trigger for starting the autofocus operation is not limited to this. The concept of this embodiment can be applied to a configuration in which an autofocus operation is always performed on a subject regardless of the operation of the release button 130.
(3.効果、等)
 以上のように、本実施形態のカメラボディ100は、フォーカスレンズおよび前記フォーカスレンズを駆動する駆動部を備えた交換レンズユニットを装着可能である。カメラボディ100は、所定のタイミングで露光して、画像データを生成するCCDイメージセンサ110と、画像データからAF評価値を算出し、AF評価値に基づき合焦状態を判定するカメラコントローラ140とを備える。カメラコントローラ140は、合焦状態の判定結果およびフォーカスレンズの位置に基づいて、交換レンズユニット200のフォーカスモータ233を所定の制御周期(T)毎に制御するためのコマンドを送信する。そのコマンドは、所定の制御周期全体に亘って、フォーカスレンズ230を一定速度で移動させることを交換レンズユニット200に指示するリニア駆動開始コマンドを含む。
(3. Effect, etc.)
As described above, the camera body 100 according to the present embodiment can be mounted with an interchangeable lens unit including a focus lens and a drive unit that drives the focus lens. The camera body 100 includes a CCD image sensor 110 that performs exposure at a predetermined timing to generate image data, and a camera controller 140 that calculates an AF evaluation value from the image data and determines an in-focus state based on the AF evaluation value. Prepare. The camera controller 140 transmits a command for controlling the focus motor 233 of the interchangeable lens unit 200 every predetermined control period (T) based on the determination result of the in-focus state and the position of the focus lens. The command includes a linear drive start command that instructs the interchangeable lens unit 200 to move the focus lens 230 at a constant speed over a predetermined control period.
 本実施形態の交換レンズユニット200は、被写体像のフォーカス状態を変化させるフォーカスレンズ230と、フォーカスレンズ230を光軸方向に駆動するためのフォーカスモータ233と、フォーカスレンズ230の位置を検出するエンコーダ(位置検出部)231、232と、カメラボディ100から、フォーカスレンズ230を駆動するためのコマンドを受信するレンズマウント250と、カメラボディ100から受信したコマンドと、位置検出部により検出されたフォーカスレンズ位置とに基づいて、所定の制御周期(T)毎にフォーカスモータ233を制御するレンズコントローラ240とを備える。レンズコントローラ240は、所定の制御周期全体に亘ってフォーカスレンズ230を一定速度で移動させるようにフォーカスモータ233を制御する。 The interchangeable lens unit 200 of the present embodiment includes a focus lens 230 that changes the focus state of the subject image, a focus motor 233 that drives the focus lens 230 in the optical axis direction, and an encoder that detects the position of the focus lens 230 ( Position detection units) 231, 232, a lens mount 250 that receives a command for driving the focus lens 230 from the camera body 100, a command received from the camera body 100, and a focus lens position detected by the position detection unit And a lens controller 240 for controlling the focus motor 233 every predetermined control period (T). The lens controller 240 controls the focus motor 233 so as to move the focus lens 230 at a constant speed over the entire predetermined control cycle.
 上記の構成により、フォーカスレンズ230を制御周期(T)全体に亘って一定速度で駆動でき、図7の実線Xに示すようにフォーカスレンズ230を直線的に移動させることができる。これにより、フォーカスレンズ230を、合焦状態を与える理想の駆動プロフィール(破線Y)に沿って移動させることができ、カメラシステム1に対して近づくまたは遠ざかる被写体に対してより精度よく合焦状態を維持することができる。 With the above configuration, the focus lens 230 can be driven at a constant speed over the entire control period (T), and the focus lens 230 can be moved linearly as shown by the solid line X in FIG. Accordingly, the focus lens 230 can be moved along an ideal driving profile (dashed line Y) that gives a focused state, and a focused state can be more accurately obtained for a subject that approaches or moves away from the camera system 1. Can be maintained.
 なお、上記の実施形態において、焦点制御装置は、被写体像のフォーカス状態を変化させるフォーカスレンズ230と、フォーカスレンズ230を光軸方向に駆動するためのフォーカスモータ233と、フォーカスレンズ230の位置を検出するエンコーダ231、232と、所定のタイミングで露光して画像データを生成するCCDイメージセンサ110と、画像データからAF評価値を算出し、AF評価値に基づき合焦状態を判定し、その判定結果とフォーカスレンズ位置とに基づいて、所定の制御周期(T)毎にフォーカスモータ233を制御するカメラコントローラ140と、所定の制御周期全体に亘って、フォーカスレンズ230を一定速度で移動させるようにフォーカスモータ233を制御するレンズコントローラ240とで構成できる。 In the above embodiment, the focus control device detects the position of the focus lens 230 that changes the focus state of the subject image, the focus motor 233 that drives the focus lens 230 in the optical axis direction, and the position of the focus lens 230. Encoders 231 and 232 that perform exposure, CCD image sensor 110 that generates image data by exposure at a predetermined timing, AF evaluation values are calculated from the image data, an in-focus state is determined based on the AF evaluation values, and the determination result And a focus controller 230 that controls the focus motor 233 every predetermined control period (T) based on the focus lens position and the focus lens 230 so as to move at a constant speed over the entire predetermined control period. With the lens controller 240 that controls the motor 233 It can be formed.
(その他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, and it can also be set as a new embodiment. Therefore, other embodiments will be exemplified below.
 上記の実施の形態では、ズームレンズ210及びOISレンズ220を有する構成を例示したが、これらは、本開示の思想に必須の構成要素ではない。すなわち、ズーム機能を有することのない単焦点レンズを装着したカメラシステムにも本開示の思想は適用可能である。また、手振れ補正機能を有しない交換レンズを装着したカメラシステムに対しても、本開示の思想は適用可能である。 In the above-described embodiment, the configuration including the zoom lens 210 and the OIS lens 220 is illustrated, but these are not essential components for the idea of the present disclosure. That is, the idea of the present disclosure can be applied to a camera system equipped with a single focus lens that does not have a zoom function. The idea of the present disclosure can also be applied to a camera system equipped with an interchangeable lens that does not have a camera shake correction function.
 上記の実施の形態では、可動ミラーを備えないカメラボディを例示したが、カメラボディの構成はこれには限定されない。例えば、カメラボディは、可動ミラーを備えてもよいし、被写体像を分けるためのプリズムを備えてもよい。また、カメラボディ内ではなく、カメラボディとレンズ間に装着される各種のアダプター内に可動ミラーを備えてもよい。 In the above embodiment, the camera body that does not include the movable mirror is exemplified, but the configuration of the camera body is not limited to this. For example, the camera body may include a movable mirror or a prism for separating the subject image. Further, the movable mirror may be provided not in the camera body but in various adapters mounted between the camera body and the lens.
 上記の実施の形態では、レンズ交換式のカメラシステムを用いて説明したが、カメラボディとレンズとが一体となったカメラについても、本開示の思想は適用可能である。一体となったカメラの場合、上述のレンズコントローラとカメラコントローラの機能が1つのコントローラで実現されてもよい。 In the above-described embodiment, the lens-interchangeable camera system has been described. However, the idea of the present disclosure can be applied to a camera in which a camera body and a lens are integrated. In the case of an integrated camera, the functions of the lens controller and the camera controller described above may be realized by a single controller.
 上記実施の形態では、フォーカスレンズ230の位置を直接検出せず、フォーカスモータ233の回転軸の回転角を検出することにより、間接的に検出した。フォーカスレンズ230の位置は、直接的に検出してもよいし、フォーカスレンズ230に連動する機構部材の位置を検出することによって間接的に検出してもよい。例えば、フォーカスモータ233の駆動出力を何パルス送ったかを、ソフトウェア若しくは専用ICで管理することで、フォーカスレンズ230の位置検出を行うこともできる。要するに、本開示において、フォーカスレンズ位置の検出は、結果として、フォーカスレンズの位置を特定できればよく、レンズ位置の直接的な検出およびレンズ位置の間接的な検出の双方を含む。 In the above embodiment, the position of the focus lens 230 is not detected directly, but is detected indirectly by detecting the rotation angle of the rotation shaft of the focus motor 233. The position of the focus lens 230 may be detected directly or indirectly by detecting the position of a mechanism member that is linked to the focus lens 230. For example, it is possible to detect the position of the focus lens 230 by managing how many pulses of the drive output of the focus motor 233 are sent by software or a dedicated IC. In short, in the present disclosure, the detection of the focus lens position only needs to be able to identify the position of the focus lens as a result, and includes both the direct detection of the lens position and the indirect detection of the lens position.
 上記の実施の形態では、位相差検出センサを搭載しないカメラシステムを例示した。しかし、本開示の思想はこのような実施形態に限定されるものではない。カメラシステム内に位相差検出センサを設けてもよく、カメラコントローラ140は位相差検出センサからの出力に基づき合焦状態を判定し、オートフォーカス動作を実行してもよい。この場合、位相差方式のオートフォーカス動作とコントラスト方式のオートフォーカス動作を選択的に実行できるようにしてもよい。この場合、コントラスト方式のオートフォーカス動作を実行しているときに、本開示の思想が適用可能である。 In the above embodiment, a camera system not equipped with a phase difference detection sensor is exemplified. However, the idea of the present disclosure is not limited to such an embodiment. A phase difference detection sensor may be provided in the camera system, and the camera controller 140 may determine an in-focus state based on an output from the phase difference detection sensor and execute an autofocus operation. In this case, a phase difference autofocus operation and a contrast autofocus operation may be selectively executed. In this case, the concept of the present disclosure can be applied when performing a contrast-type autofocus operation.
 上記実施の形態では、カメラコントローラ140からレンズコントローラ240に送信されるタイミング信号として、CCDイメージセンサ110の露光同期信号を用いた。しかし、タイミング信号は露光同期信号には限定されない。例えば、タイミング信号は露光同期信号に相関のある信号(例えば、周期は同じで位相がずれた信号)であってもよい。または、CCDイメージセンサ110のための垂直同期信号と電子シャッター駆動信号とを、タイミング信号としてレンズコントローラ240に送信するようにしてもよい。これにより、カメラコントローラ140は、露光同期信号を送信する必要がないので、制御を容易にすることができる。ただし、この場合、電子シャッター駆動信号の仕様(電子シャッター駆動信号の1群内における発信間隔や発信数等)を予め、カメラコントローラ140からレンズコントローラ240に通知しておく必要がある。レンズコントローラ240は、通知された仕様に従って、電子シャッター駆動信号と垂直同期信号とに基づいて、カウンタ243のパルス値を読み出す。 In the above embodiment, the exposure synchronization signal of the CCD image sensor 110 is used as the timing signal transmitted from the camera controller 140 to the lens controller 240. However, the timing signal is not limited to the exposure synchronization signal. For example, the timing signal may be a signal correlated with the exposure synchronization signal (for example, a signal having the same period and shifted phase). Alternatively, the vertical synchronization signal and the electronic shutter drive signal for the CCD image sensor 110 may be transmitted to the lens controller 240 as timing signals. Thereby, since the camera controller 140 does not need to transmit an exposure synchronization signal, the control can be facilitated. However, in this case, it is necessary to notify the lens controller 240 of the specifications of the electronic shutter drive signal (such as the transmission interval and the number of transmissions within one group of the electronic shutter drive signal) in advance. The lens controller 240 reads the pulse value of the counter 243 based on the electronic shutter drive signal and the vertical synchronization signal according to the notified specification.
 本発明の実施の形態では、フォーカスレンズ230を単レンズとして説明したが、フォーカスレンズを複数レンズで構成してもよい。また、複数のモータにて独立で駆動するフォーカスレンズ群として構成してもよい。さらに、フォーカスレンズ230の光軸方向の移動量はCCDイメージセンサ110への合焦位置の移動量に対応するとした。しかし、フォーカスレンズ230の光軸方向の単位移動量に対してCCDイメージセンサ110への合焦位置の移動量が大きくなってもよいし、または、小さくなってもよい。この場合、レンズコントローラ240からカメラコントローラ140へ、フォーカスレンズ230の単位移動量に対するCCDイメージセンサ110の合焦位置の移動量に関する情報を予め通知すればよい。 In the embodiment of the present invention, the focus lens 230 is described as a single lens, but the focus lens may be composed of a plurality of lenses. Further, it may be configured as a focus lens group that is independently driven by a plurality of motors. Furthermore, the amount of movement of the focus lens 230 in the optical axis direction corresponds to the amount of movement of the in-focus position to the CCD image sensor 110. However, the moving amount of the in-focus position to the CCD image sensor 110 may be increased or decreased with respect to the unit moving amount of the focus lens 230 in the optical axis direction. In this case, information regarding the amount of movement of the in-focus position of the CCD image sensor 110 with respect to the unit movement amount of the focus lens 230 may be notified in advance from the lens controller 240 to the camera controller 140.
 上記の実施形態においては、フォーカスレンズ230のリニア駆動を指示するリニア駆動開始コマンドをカメラボディ100から交換レンズユニット200へ送信した。しかし、リニア駆動開始コマンドは必ずしも必要ではない。リニア駆動開始コマンドの代わりに、フォーカスレンズ230のリニア駆動を指示するための情報を、カメラボディ100から交換レンズユニット200へ送信してもよい。例えば、目標位置指定コマンドに、フォーカスレンズ230のリニア駆動を指示するフラグを指定できるようにしてもよい。この場合、レンズコントローラ240は、目標位置指定コマンドの当該フラグを参照し、フォーカスレンズ230のリニア駆動を行うか否かを判断する。 In the above embodiment, a linear drive start command for instructing linear drive of the focus lens 230 is transmitted from the camera body 100 to the interchangeable lens unit 200. However, the linear drive start command is not always necessary. Instead of the linear drive start command, information for instructing linear drive of the focus lens 230 may be transmitted from the camera body 100 to the interchangeable lens unit 200. For example, a flag for instructing linear drive of the focus lens 230 may be designated in the target position designation command. In this case, the lens controller 240 refers to the flag of the target position designation command and determines whether or not the focus lens 230 is linearly driven.
 また、目標位置指定コマンドにおいて、目標位置と、フォーカスレンズの駆動速度に関する情報とを指定してもよい。この場合、レンズコントローラ240は、目標位置指定コマンドで指定された駆動速度に関する情報に基づく速度でフォーカスレンズ230のリニア駆動を行う。なお、目標位置指定コマンドで指定される駆動速度に関する情報は、駆動速度の値そのものでもよいし、または、駆動速度を算出できるような情報でもよい。 Also, in the target position designation command, the target position and information regarding the driving speed of the focus lens may be designated. In this case, the lens controller 240 performs linear drive of the focus lens 230 at a speed based on information related to the drive speed designated by the target position designation command. Note that the information regarding the driving speed specified by the target position specifying command may be the value of the driving speed itself, or information that can calculate the driving speed.
 上記の実施形態では、撮像素子の一例としてCCDイメージセンサを示したが、撮像素子はこれに限定されない。CMOSイメージセンサ等、他の撮像センサを用いることができる。 In the above embodiment, a CCD image sensor is shown as an example of an image sensor, but the image sensor is not limited to this. Other imaging sensors such as a CMOS image sensor can be used.
 本開示の思想は、上述のカメラシステムのみならず、オートフォーカス機能を備えた種々の撮像装置、例えば、デジタルスチルカメラやムービーなどに適用可能である。 The idea of the present disclosure can be applied not only to the above-described camera system but also to various imaging devices having an autofocus function, such as a digital still camera and a movie.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、オートフォーカス機能を備えた撮像装置、例えば、デジタルスチルカメラやムービーなどに適用可能である。 The present disclosure can be applied to an imaging apparatus having an autofocus function, such as a digital still camera or a movie.

Claims (14)

  1.  被写体像のフォーカス状態を変化させるフォーカスレンズと、
     前記フォーカスレンズを光軸方向に駆動するための駆動部と、
     前記フォーカスレンズの位置を検出する位置検出部と、
     所定のタイミングで露光して画像データを生成する撮像素子と、
     前記画像データからAF評価値を算出するAF評価値算出部と、
     前記AF評価値に基づき合焦状態を判定する合焦判定部と、
     前記合焦判定部による判定結果と、前記位置検出部により検出されたフォーカスレンズ位置とに基づいて、所定の制御周期毎に前記駆動部を制御する制御部と、を備え、
     前記制御部は、前記所定の制御周期全体に亘って、前記フォーカスレンズを一定速度で移動させるように前記駆動部を制御する、
    焦点制御装置。
    A focus lens that changes the focus state of the subject image;
    A drive unit for driving the focus lens in the optical axis direction;
    A position detector for detecting the position of the focus lens;
    An image sensor that generates image data by exposing at a predetermined timing;
    An AF evaluation value calculation unit for calculating an AF evaluation value from the image data;
    A focus determination unit that determines a focus state based on the AF evaluation value;
    A control unit that controls the drive unit at predetermined control cycles based on the determination result by the focus determination unit and the focus lens position detected by the position detection unit;
    The control unit controls the driving unit to move the focus lens at a constant speed over the entire predetermined control cycle.
    Focus control device.
  2.  前記画像データにおける所定の領域の大きさの変化に基づいて被写体が近づいているか遠ざかっているかを判断する移動判断部をさらに含み、
     前記制御部は、前記AF評価値と、前記フォーカスレンズの位置と、前記移動判断部の判断結果とに基づいて、前記駆動部を制御する、
    請求項1記載の焦点制御装置。
    A movement determination unit for determining whether the subject is approaching or moving away based on a change in size of the predetermined area in the image data;
    The control unit controls the drive unit based on the AF evaluation value, the position of the focus lens, and the determination result of the movement determination unit.
    The focus control apparatus according to claim 1.
  3.  前記AF評価値算出部は、前記画像データに含まれる被写体像のコントラストに基づいて前記AF評価値を算出する、
    請求項1記載の焦点制御装置。
    The AF evaluation value calculation unit calculates the AF evaluation value based on a contrast of a subject image included in the image data;
    The focus control apparatus according to claim 1.
  4.  前記被写体像の位相差を検出する位相差検出部をさらに備え、
     前記合焦判定部は、前記位相差に基づき合焦状態を判定する、請求項1記載の焦点制御装置。
    A phase difference detection unit for detecting a phase difference of the subject image;
    The focus control apparatus according to claim 1, wherein the focus determination unit determines a focus state based on the phase difference.
  5.  カメラ本体と、前記カメラ本体に装着可能な交換レンズユニットとを備えたカメラシステムであって、
     前記カメラ本体は、
      所定のタイミングで露光して、画像データを生成する撮像素子と、
      前記画像データからAF評価値を算出するAF評価値算出部と、
      前記AF評価値に基づき合焦状態を判定する合焦判定部と、
     前記合焦判定部の判定結果に基づき、前記交換レンズユニットの動作を制御するためのコマンドを前記交換レンズユニットに送信するカメラ制御部とを備え、
    を備え、
     前記交換レンズユニットは、
      被写体像のフォーカス状態を変化させるフォーカスレンズと、
      前記フォーカスレンズを光軸方向に駆動するための駆動部と、
      前記フォーカスレンズの位置を検出する位置検出部と、
      前記カメラ本体から受信したコマンドと、前記位置検出部により検出されたフォーカスレンズ位置とに基づいて、所定の制御周期毎に前記駆動部を制御するレンズ制御手部と、を備え、
     前記レンズ制御部は、前記所定の制御周期全体に亘って、前記フォーカスレンズを一定速度で移動させるように前記駆動部を制御する、
    カメラシステム。
    A camera system comprising a camera body and an interchangeable lens unit attachable to the camera body,
    The camera body is
    An image sensor that generates image data by exposing at a predetermined timing;
    An AF evaluation value calculation unit for calculating an AF evaluation value from the image data;
    A focus determination unit that determines a focus state based on the AF evaluation value;
    A camera control unit that transmits a command for controlling the operation of the interchangeable lens unit to the interchangeable lens unit based on a determination result of the focus determination unit;
    With
    The interchangeable lens unit is
    A focus lens that changes the focus state of the subject image;
    A drive unit for driving the focus lens in the optical axis direction;
    A position detector for detecting the position of the focus lens;
    A lens control hand that controls the drive unit at predetermined control intervals based on a command received from the camera body and a focus lens position detected by the position detection unit;
    The lens control unit controls the drive unit to move the focus lens at a constant speed over the predetermined control period;
    Camera system.
  6.  前記画像データにおける所定の領域の大きさの変化に基づいて被写体が近づいているか遠ざかっているかを判断する移動判断部をさらに備え、
     前記レンズ制御部は、前記コマンドと、前記フォーカスレンズ位置と、前記移動判断部の判断結果とに基づいて、前記駆動部を制御する請求項5記載のカメラシステム。
    A movement determination unit that determines whether the subject is approaching or moving away based on a change in the size of the predetermined area in the image data;
    The camera system according to claim 5, wherein the lens control unit controls the drive unit based on the command, the focus lens position, and a determination result of the movement determination unit.
  7.  前記AF評価値算出部は、前記画像データに含まれる被写体像のコントラストに基づいて、AF評価値を算出する、請求項5記載のカメラシステム。 6. The camera system according to claim 5, wherein the AF evaluation value calculation unit calculates an AF evaluation value based on a contrast of a subject image included in the image data.
  8.  前記画像データにおける被写体像の位相差を検出する位相差検出部をさらに備え、
     前記合焦判定部は、前記位相差に基づき合焦状態を判定する、請求項5記載のカメラシステム。
    A phase difference detection unit for detecting a phase difference of the subject image in the image data;
    The camera system according to claim 5, wherein the focus determination unit determines a focus state based on the phase difference.
  9.  フォーカスレンズおよび前記フォーカスレンズを駆動する駆動部を備えた交換レンズユニットを装着可能なカメラ本体であって、
     所定のタイミングで露光して、画像データを生成する撮像素子と、
     前記画像データからAF評価値を算出するAF評価値算出部と、
     前記AF評価値に基づき合焦状態を判定する合焦判定部と、
     前記合焦判定部の判断結果および前記フォーカスレンズの位置に基づいて、前記交換レンズユニットの駆動部を所定の制御周期毎に制御するためのコマンドを送信する制御部と、を備え、
     前記コマンドは、前記所定の制御周期全体に亘って、前記フォーカスレンズを一定速度で移動させることを前記交換レンズユニットに指示するコマンドを含む、
    カメラ本体。
    A camera body capable of mounting an interchangeable lens unit having a focus lens and a drive unit for driving the focus lens,
    An image sensor that generates image data by exposing at a predetermined timing;
    An AF evaluation value calculation unit for calculating an AF evaluation value from the image data;
    A focus determination unit that determines a focus state based on the AF evaluation value;
    A control unit that transmits a command for controlling the drive unit of the interchangeable lens unit at predetermined control cycles based on the determination result of the focus determination unit and the position of the focus lens;
    The command includes a command for instructing the interchangeable lens unit to move the focus lens at a constant speed over the predetermined control period.
    The camera body.
  10.  前記AF評価値算出部は、前記画像データに含まれる被写体像のコントラストに基づいてAF評価値を算出する請求項9記載のカメラ本体。 The camera body according to claim 9, wherein the AF evaluation value calculation unit calculates an AF evaluation value based on a contrast of a subject image included in the image data.
  11.  前記画像データの所定の領域が以前に撮像した画像データの所定の領域よりも拡大しているか縮小しているかに基づいて、被写体が近づいているか遠ざかっているかを判断する移動判断部をさらに備え、
     前記制御部は、前記合焦判定部の判定結果と、前記フォーカスレンズの位置と、前記移動判断部の判断結果とに基づいて、前記交換レンズユニットの駆動部を制御する、請求項9記載のカメラ本体。
    A movement determination unit for determining whether the subject is approaching or moving away based on whether the predetermined region of the image data is larger or smaller than the predetermined region of the image data captured previously;
    The control unit according to claim 9, wherein the control unit controls the drive unit of the interchangeable lens unit based on a determination result of the focus determination unit, a position of the focus lens, and a determination result of the movement determination unit. The camera body.
  12.  前記画像データにおける被写体像の位相差を検出する位相差検出部をさらに備え、
     前記合焦判定部は、前記位相差に基づいて合焦状態を判定する、請求項9記載のカメラ本体。
    A phase difference detection unit for detecting a phase difference of the subject image in the image data;
    The camera body according to claim 9, wherein the focus determination unit determines a focus state based on the phase difference.
  13.  カメラ本体に装着可能な交換レンズユニットであって、
     被写体像のフォーカス状態を変化させるフォーカスレンズと、
     前記フォーカスレンズを光軸方向に駆動するための駆動部と、
     前記フォーカスレンズの位置を検出する位置検出部と、
     前記カメラ本体から、前記フォーカスレンズを駆動するためのコマンドを受信する受信部と、
     前記カメラ本体から受信したコマンドと、前記位置検出部により検出されたフォーカスレンズ位置とに基づいて、所定の制御周期毎に前記駆動部を制御するレンズ制御部と、を備え、
     前記レンズ制御部は、前記所定の制御周期全体に亘って前記フォーカスレンズを一定速度で移動させるように前記駆動部を制御する、
    た交換レンズユニット。
    An interchangeable lens unit that can be attached to the camera body,
    A focus lens that changes the focus state of the subject image;
    A drive unit for driving the focus lens in the optical axis direction;
    A position detector for detecting the position of the focus lens;
    A receiver for receiving a command for driving the focus lens from the camera body;
    A lens control unit that controls the drive unit at predetermined control cycles based on a command received from the camera body and a focus lens position detected by the position detection unit;
    The lens control unit controls the drive unit to move the focus lens at a constant speed over the predetermined control period;
    Interchangeable lens unit.
  14.  請求項1~4のうちいずれかに記載の焦点制御装置を備えた撮像装置。 An imaging device comprising the focus control device according to any one of claims 1 to 4.
PCT/JP2013/001810 2012-03-21 2013-03-15 Focus control device and imaging device WO2013140777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-063018 2012-03-21
JP2012063018A JP2015111170A (en) 2012-03-21 2012-03-21 Focus control device, camera system, camera body, conversion lens unit, and imaging device

Publications (1)

Publication Number Publication Date
WO2013140777A1 true WO2013140777A1 (en) 2013-09-26

Family

ID=49222258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001810 WO2013140777A1 (en) 2012-03-21 2013-03-15 Focus control device and imaging device

Country Status (2)

Country Link
JP (1) JP2015111170A (en)
WO (1) WO2013140777A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045068B2 (en) 2018-12-26 2022-03-31 株式会社AoyamaLab Delivery management server

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148218A (en) * 1986-12-12 1988-06-21 Nikon Corp Automatic focus adjusting device
JPH10133097A (en) * 1996-10-31 1998-05-22 Asahi Optical Co Ltd Camera equipped with automatic focusing device
JP2008052225A (en) * 2006-08-28 2008-03-06 Olympus Imaging Corp Camera, focus control method, and program
JP2012053315A (en) * 2010-09-02 2012-03-15 Canon Inc Automatic focus adjustment device and imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148218A (en) * 1986-12-12 1988-06-21 Nikon Corp Automatic focus adjusting device
JPH10133097A (en) * 1996-10-31 1998-05-22 Asahi Optical Co Ltd Camera equipped with automatic focusing device
JP2008052225A (en) * 2006-08-28 2008-03-06 Olympus Imaging Corp Camera, focus control method, and program
JP2012053315A (en) * 2010-09-02 2012-03-15 Canon Inc Automatic focus adjustment device and imaging apparatus

Also Published As

Publication number Publication date
JP2015111170A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5480515B2 (en) Camera system
JP5903608B2 (en) Camera system
US8724012B2 (en) Camera body and camera system using driving method information indicating capability of controlling focus lens
US8095000B2 (en) Camera system
JP5535080B2 (en) Camera system
JP5406830B2 (en) Camera system
JP5853197B2 (en) Interchangeable lens, camera body and camera system
JP5914886B2 (en) Imaging device
JP2011085928A (en) Focus adjusting apparatus and imaging device
JP2008276131A (en) Camera system
JP2009199047A (en) Imaging apparatus and lens apparatus
JP2010107711A (en) Focal point control device and imaging apparatus
WO2013140777A1 (en) Focus control device and imaging device
JP2010107714A (en) Camera system
JP6429485B2 (en) Imaging apparatus, communication control method, and imaging system
JP2010107712A (en) Focal point control device and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP