WO2013140733A1 - 帯域パワー算出装置及び帯域パワー算出方法 - Google Patents
帯域パワー算出装置及び帯域パワー算出方法 Download PDFInfo
- Publication number
- WO2013140733A1 WO2013140733A1 PCT/JP2013/001486 JP2013001486W WO2013140733A1 WO 2013140733 A1 WO2013140733 A1 WO 2013140733A1 JP 2013001486 W JP2013001486 W JP 2013001486W WO 2013140733 A1 WO2013140733 A1 WO 2013140733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- channel power
- signal
- band
- input signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 20
- 238000004364 calculation method Methods 0.000 claims abstract description 59
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- 238000010248 power generation Methods 0.000 claims abstract description 21
- 238000009499 grossing Methods 0.000 claims description 27
- 238000000605 extraction Methods 0.000 abstract description 4
- 239000000284 extract Substances 0.000 abstract 1
- 230000009466 transformation Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 206010002953 Aphonia Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/006—Measuring power factor
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/21—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being power information
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
Definitions
- the present invention relates to a band power calculation device and a band power calculation method.
- FFT Fast Fourier transform
- a technique for obtaining spectrum band power using FFT is used for noise removal (also referred to as a noise canceller or noise suppressor), voice band determination, voice detection or voice recognition.
- Non-patent document 1 is known as an example used to determine the bandwidth of an input signal in speech coding.
- FFT is performed on an input signal, a power spectrum is obtained and then added to a specified frequency to obtain a band power, and a band of the input signal is determined based on the value.
- Patent Document 1 and Patent Document 2 are known as examples used for noise removal. These perform FFT on the input signal, remove the noise on the spectrum, reflect the result in the spectrum, and convert it into the output signal by inverse FFT to reduce the noise. Patent Document 1 and Patent Document 2 are characterized in that a spectrum is obtained using FFT, the power spectrum is added to obtain a band power, and noise is analyzed. This band power is a parameter that can analyze the presence or absence of voice or the quality of sound in addition to analyzing noise. Thus, analysis can be performed with high accuracy by using FFT.
- An object of the present invention is to cut out a part of an input signal and perform Fourier transform, thereby reducing the amount of calculation necessary for calculating the channel power, and expanding and smoothing the channel power of the cut-out signal. Accordingly, it is an object to provide a band power calculation device and a band power calculation method capable of obtaining channel power with the same accuracy as when channel power is obtained from all input signals.
- the band power calculation apparatus includes a cutting unit that cuts out a part of an input signal, a Fourier transform unit that generates a spectrum signal by performing Fourier transform on the signal cut out by the cutting unit, and the Fourier transform.
- the calculation means for calculating the channel power of each frequency from the spectrum signal generated by the means, and the channel power calculated by the calculation means are expanded to a channel power equivalent to the channel power calculated from the input signal and the expanded
- the power generation means for smoothing the expanded channel power and the power generation means smoothed Band power acquisition that acquires channel band power by adding channel power A configuration that includes a stage, the.
- the band power calculation method of the present invention includes a step of cutting out a part of an input signal, a step of generating a spectrum signal by performing Fourier transform on the cut-out signal, and a channel power of each frequency from the generated spectrum signal. And calculating the calculated channel power to a channel power equivalent to the channel power calculated from the input signal and performing an operation using the expanded channel power and a predetermined constant on the higher frequency side.
- the step of smoothing the expanded channel power by sequentially performing from the lower side to the lower side, and adding the smoothed channel power to obtain a predetermined band of power .
- the present invention by cutting out a part of an input signal and performing Fourier transform, it is possible to reduce the amount of calculation necessary for calculating the channel power, and to expand and smooth the channel power of the cut-out signal. As a result, it is possible to obtain channel power with the same accuracy as when channel power is obtained from all input signals.
- the inventor of the present invention pays attention to the fact that it is not necessary to perform the Fourier transform with high accuracy to obtain the channel power when obtaining the band power, and a band having the same accuracy even if a part of the input signal is used. I arrived at a more specific idea to gain power.
- the inventor has invented a method of extending by using a plurality of channel power values in a part of the input signal, but it has been found that the method cannot obtain sufficient accuracy. Therefore, the inventor has invented an interpolation using the correlation between the frequencies, and predetermined values (constants) for the expanded channel power of the higher frequency from the higher frequency to the lower frequency. The method of adding the product multiplied by to the expanded channel power of the lower frequency was invented.
- the band power calculation device of the present invention was invented by combining the above ideas.
- FIG. 1 is a block diagram showing a configuration of band power calculation apparatus 100 according to the present embodiment.
- the band power calculation apparatus 100 includes a partial section extraction unit 101, a window function storage unit 102, a windowing unit 103, an FFT unit 104, a power calculation unit 105, an expansion unit 106, a smoothing unit 107,
- the band information storage unit 108 and the band division unit 109 are mainly configured.
- the power generation unit 150 includes an expansion unit 106 and a smoothing unit 107.
- the partial section cutout unit 101 cuts out a part of the input signal.
- the length of the input signal is “256 samples”
- the length of the extracted signal is “128 samples”
- the location to be extracted is the center of the interval of the input signal.
- the minute segment cutout unit 101 cuts out a part of the input signal so that the center on the time axis of the input signal that is a time domain signal matches the center on the time axis of the cut out signal.
- an extraction algorithm is shown in equation (1).
- the partial section cutout unit 101 outputs the cut out signal to the windowing unit 103.
- the window function storage unit 102 stores window functions.
- the windowing unit 103 multiplies the cut signal input from the partial section cutout unit 101 by the window function stored in the window function storage unit 102. That is, the windowing unit 103 performs the calculation of equation (2).
- the Hanning window shown in Equation (3) is used as the window function.
- the windowing unit 103 outputs a signal windowed by multiplying by a window function to the FFT unit 104.
- the FFT unit 104 performs FFT on the windowed signal input from the windowing unit 103 to obtain a complex spectrum. That is, the FFT unit 104 performs a DFT (Discrete Fourier Transform) process shown in the following equation (4) at higher speed by devising an algorithm.
- DFT Discrete Fourier Transform
- the FFT unit 104 outputs the obtained complex spectrum to the power calculation unit 105.
- the power calculation unit 105 calculates the channel power of each frequency (channel power obtained from the extracted signal) from the complex spectrum input from the FFT unit 104. Specifically, the power calculation unit 105 performs the calculation of the following equation (5).
- the power calculation unit 105 determines the channel power in the half of the complex spectrum band input from the FFT unit 104 because the channel power to be calculated is a contrast centering on half the sampling frequency. . For example, when the length of the input signal is “256” and the length of the extracted signal is “128”, the power calculation unit 105 calculates the channel power for 64 frequencies. The power calculation unit 105 outputs the obtained channel power to the expansion unit 106.
- the extension unit 106 extends the channel power (spectrum length) input from the power calculation unit 105. Specifically, since the length of the input signal is 256 and the length of the spectrum obtained from the signal of that length is 128, the extension unit 106 has 64 frequencies obtained from the extracted signal. One channel power is expanded by storing a plurality. In other words, the extension unit 106 performs the calculation of the following equation (6).
- the expansion unit 106 expands the channel power to the same channel power as when the channel power is obtained without cutting out the input signal according to the equation (6), and outputs the expanded channel power to the smoothing unit 107.
- the smoothing unit 107 performs smoothing by applying an AR filter to the expanded channel power input from the expansion unit 106. Specifically, the smoothing unit 107 determines a predetermined value (constant constant) for the expanded channel power having a higher frequency from the higher frequency to the lower frequency with respect to the expanded channel power. ) Is added to the expanded channel power of the lower frequency to perform smoothing. That is, the smoothing unit 107 performs the calculation of the following equation (7).
- the smoothing unit 107 outputs the smoothed channel power to the band dividing unit 109.
- the band information storage unit 108 stores in advance band information (starting and ending information indicating which frequency each band is from which frequency to).
- the band dividing unit 109 adds the channel power input from the smoothing unit 107 and adds the band power (band) of the band indicated by the information acquired from the band information storage unit 108. Power).
- band power is obtained from the input signal. This band power is used as a parameter indicating the presence / absence or magnitude of noise, the presence / absence of voice, or the magnitude of voice.
- Patent Document 1 how to use the band power, which is the output of the band dividing unit 109, is shown in Patent Document 1, Patent Document 2, and Non-Patent Document 1 in the case of using for determination of a voice band or noise removal.
- Patent Document 2 an application such as visually showing the analysis result of the noise based on the band power without reflecting the voice band determination or noise removal output in the complex spectrum can be easily inferred.
- an inverse FFT IFFT: Inverse Fourier Transform
- IFFT Inverse Fourier Transform
- FIG. 2 is a flowchart showing a modification of the expansion and smoothing process in the present embodiment.
- the power generation unit 150 sets R0 indicating channel power to “0.0”, sets the index k of the frequency after expansion to “127”, Is set to “63” (step ST201).
- power generation section 150 determines whether j is “0” or more (step ST202).
- step ST202: NO If it is determined that j is less than “0” (step ST202: NO), the power generation unit 150 ends the process.
- step ST202 when it is determined that j is “0” or more (step ST202: YES), the power generation unit 150 sets the channel power of the clipped signal input from the power calculation unit 105 as the value of R1. (Step ST203).
- the power generation unit 150 sets “1” to the index i (step ST203).
- power generation section 150 determines whether or not the value of i is “0” or more (step ST204).
- step ST204 If it is determined that the value of i is less than “0” (step ST204: NO), power generation section 150 subtracts “1” from the value of j (step ST205), and returns the process to step ST202. .
- step ST204 when it is determined that the value of i is “0” or more (step ST204: YES), the power generation unit 150 expands and smoothes the channel power input from the power calculation unit 105. Specifically, the power generation unit 150 multiplies the channel power input from the power calculation unit 105 this time by a predetermined constant of 0.37 to obtain a multiplication result, and the channel power input from the power calculation unit 105 this time. And the multiplication result are added to obtain a smoothed channel power (step ST206).
- the power generation unit 150 subtracts “1” from the value of k (step ST206).
- step ST207 power generation section 150 subtracts “1” from the value of i (step ST207), and returns the process to step ST204.
- the power generation unit 150 expands the channel power by repeating the process of step ST204 ⁇ step ST206 ⁇ step ST207 twice, that is, by using the channel power R1 twice in the loop of i.
- the calculation amount of the present invention is 1.5 WMOPS (weighted million operations per second) less than the conventional method. Moreover, the difference in recognition results between the prior art and the present invention is only 2.4%. As a result, it was verified that the present invention can greatly reduce the amount of calculation without changing the performance as compared with the prior art.
- ⁇ Effects of the present embodiment> by cutting out a part of the input signal and performing Fourier transform, it is possible to reduce the amount of calculation required for calculating the channel power, and also to smooth the expanded signal power. By doing this, it is possible to obtain channel power with the same accuracy as when channel power is obtained from all of the input signals.
- the memory ep i for storing the expanded channel power is Since it can be made unnecessary, memory capacity can be saved.
- a stable frequency analysis can be performed even when the number of samples is small by multiplying a cut-out signal with a small number of samples by a window function.
- a part of the input signal is cut out so that the center on the time axis of the input signal, which is a time domain signal, matches the center on the time axis of the cut out signal.
- the window function is a Hanning window
- the end point of the cut signal becomes “0”, and more stable frequency analysis can be performed.
- the Fourier transform can be performed with a smaller order than the case where the band power is obtained by performing the Fourier transform without cutting out the input signal, so that the amount of calculation can be reduced.
- the length of the input signal is 256.
- the present invention is not limited to this, and the length may be 512 or 1024, or may be 512 or 1024. Also, the same great effect as in the present embodiment can be obtained.
- the length of the input signal is not limited to a power of 2, but can be any length such as 200 or 300. When the length of the input signal is set to 200 or 300, the length for performing the FFT becomes long, so that the effect of reducing the calculation amount of the present invention becomes larger.
- the length of the cut out signal is 128.
- the present invention is not limited to this, and the length of the cut out signal may be 64 or 32.
- the length of the signal to be cut out does not have to be a power of 2. If the length of the signal to be cut out is reduced, the performance decreases, but the degree of reduction in the calculation amount increases.
- the length of the signal to be cut out can be set depending on the application or purpose.
- the center of the signal to be cut out matches the center of the input signal.
- the present invention is not limited to this, and the center of the signal to be cut out may not match the center of the input signal. Good. However, it has been proved by experiments that it is preferable that the center of the signal to be extracted matches the center of the input signal.
- the constant used for smoothing is 0.37.
- the present invention is not limited to this and may be a numerical value other than 0.37. If the constant is large, the constant is more stable, but the follow-up with respect to the change in the band is delayed, and the performance is deteriorated. However, it has been verified that if the constant is small, the smoothing effect does not appear and the performance tends to deteriorate.
- the constant may be changed depending on the length of the section where the input signal is cut out. At this time, a plurality of constants may be stored in advance, and the constants may be selected adaptively according to the length of the section from which the input signal is cut out.
- smoothing is performed by applying the AR filter.
- the present invention is not limited to this, and smoothing may be performed by a method other than applying the AR filter.
- the present invention can be applied to speech recognition / synthesis or speech encoding, image recognition or image encoding, or the like. This is because the present invention obtains the band power and does not depend on the purpose of the entire system using the band power.
- the present invention is suitable for a band power calculation device and a band power calculation method.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Complex Calculations (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
本発明の発明者は、帯域パワーを求める際に、高精度でフーリエ変換を行ってチャネルパワーを求める必要はないということに着目し、入力信号の一部を用いても同様の精度を有する帯域パワーを得るための、より具体的な発想に辿り着いた。
<帯域パワー算出装置の構成>
本発明の実施の形態に係る帯域パワー算出装置100の構成について、図1を用いて説明する。図1は、本実施の形態に係る帯域パワー算出装置100の構成を示すブロック図である。
本発明の実施の形態における拡張部106及び平滑化部107における上記処理の変形例を、図2を用いて説明する。図2は、本実施の形態における拡張及び平滑化の処理の変形例を示すフロー図である。
本実施の形態の性能を検証するために音声データを用いた実験を行ったので、その結果について報告する。
本実施の形態によれば、入力信号の一部を切り出してフーリエ変換することにより、チャネルパワーの算出に必要な計算量を削減することができるとともに、切り出した信号のパワーを拡張して平滑化することにより、入力信号の全てからチャネルパワーを求めた場合と同様の精度のチャネルパワーを得ることができる。
なお、上記実施の形態において、入力信号の長さを256にしたが、本発明はこれに限らず、512または1024などの長さでもよく、512または1024などの長さにした場合であっても本実施の形態と同様の大きな効果を得ることができる。この際、入力信号の長さは、2の何乗に限らず、200または300などの任意の長さにすることができる。入力信号の長さを200または300にした場合には、FFTを行う長さが長くなるので、本発明の計算量削減の効果はより大きなものになる。
101 部分区間切出部
102 窓関数格納部
103 窓掛け部
104 FFT部
105 パワー算出部
106 拡張部
107 平滑化部
108 バンド情報格納部
109 バンド分割部
150 パワー生成部
Claims (6)
- 入力信号の一部を切り出す切出手段と、
前記切出手段により切り出した信号に対してフーリエ変換することによりスペクトル信号を生成するフーリエ変換手段と、
前記フーリエ変換手段により生成したスペクトル信号より各周波数のチャネルパワーを算出する算出手段と、
前記算出手段により算出したチャネルパワーを、前記入力信号より算出するチャネルパワーと同等のチャネルパワーまで拡張するとともに、前記拡張したチャネルパワーと所定の定数とを用いた演算を周波数の高い方から低い方に向かって順次行うことにより、前記拡張したチャネルパワーの平滑化を行うパワー生成手段と、
前記パワー生成手段により平滑化したチャネルパワーを加算して所定帯域のパワーを取得する帯域パワー取得手段と、
を具備する帯域パワー算出装置。 - 前記切出手段は、
時間領域信号である前記入力信号の時間軸上の中心と前記切り出した信号の時間軸上の中心とが一致するように前記入力信号の一部を切り出す、
請求項1記載の帯域パワー算出装置。 - 前記切出手段により切り出した信号にハニング窓を乗算する窓掛け手段をさらに具備し、
前記フーリエ変換手段は、
前記窓掛け手段によりハニング窓を乗算した前記切り出した信号に対してフーリエ変換する、
請求項1記載の帯域パワー算出装置。 - 前記フーリエ変換手段は、
前記入力信号を切り出さずにフーリエ変換して前記所定帯域のパワーを取得する場合よりも小さい次数で前記切り出した信号をフーリエ変換する、
請求項1記載の帯域パワー算出装置。 - 前記パワー生成手段は、
前記スペクトル信号の所定帯域毎に、前記拡張及び前記平滑化を行う、
請求項1記載の帯域パワー算出装置。 - 入力信号の一部を切り出すステップと、
前記切り出した信号に対してフーリエ変換することによりスペクトル信号を生成するステップと、
前記生成したスペクトル信号より各周波数のチャネルパワーを算出するステップと、
前記算出したチャネルパワーを、前記入力信号より算出するチャネルパワーと同等のチャネルパワーまで拡張するとともに、前記拡張したチャネルパワーと所定の定数とを用いた演算を周波数の高い方から低い方に向かって順次行うことにより、前記拡張したチャネルパワーの平滑化を行うステップと、
前記平滑化したチャネルパワーを加算して所定帯域のパワーを取得するステップと、
を具備する帯域パワー算出方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014505998A JP6140685B2 (ja) | 2012-03-23 | 2013-03-08 | 帯域パワー算出装置及び帯域パワー算出方法 |
EP13763720.3A EP2830066B1 (en) | 2012-03-23 | 2013-03-08 | Band power computation device and band power computation method |
US14/386,523 US9581623B2 (en) | 2012-03-23 | 2013-03-08 | Band power computation device and band power computation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012067913 | 2012-03-23 | ||
JP2012-067913 | 2012-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013140733A1 true WO2013140733A1 (ja) | 2013-09-26 |
Family
ID=49222217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001486 WO2013140733A1 (ja) | 2012-03-23 | 2013-03-08 | 帯域パワー算出装置及び帯域パワー算出方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9581623B2 (ja) |
EP (1) | EP2830066B1 (ja) |
JP (1) | JP6140685B2 (ja) |
WO (1) | WO2013140733A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11121784B2 (en) * | 2017-05-11 | 2021-09-14 | Keysight Technologies, Inc. | Method and device for detecting power of a periodic signal in a band of interest |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001134287A (ja) | 1999-11-10 | 2001-05-18 | Mitsubishi Electric Corp | 雑音抑圧装置 |
JP2005202222A (ja) | 2004-01-16 | 2005-07-28 | Toshiba Corp | ノイズサプレッサ及びノイズサプレッサを備えた音声通信装置 |
JP2006180354A (ja) * | 2004-12-24 | 2006-07-06 | Matsushita Electric Ind Co Ltd | 不平衡成分解析装置、通信装置及び不平衡成分解析方法 |
JP2009058708A (ja) * | 2007-08-31 | 2009-03-19 | Internatl Business Mach Corp <Ibm> | 音声処理システム、方法及びプログラム |
JP2009150707A (ja) * | 2007-12-19 | 2009-07-09 | Mitsubishi Electric Corp | レーダ装置 |
JP2010025972A (ja) * | 2008-07-15 | 2010-02-04 | Kawai Musical Instr Mfg Co Ltd | コード名検出装置及びコード名検出用プログラム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4163294B2 (ja) * | 1998-07-31 | 2008-10-08 | 株式会社東芝 | 雑音抑圧処理装置および雑音抑圧処理方法 |
US8433582B2 (en) * | 2008-02-01 | 2013-04-30 | Motorola Mobility Llc | Method and apparatus for estimating high-band energy in a bandwidth extension system |
US9530430B2 (en) * | 2013-02-22 | 2016-12-27 | Mitsubishi Electric Corporation | Voice emphasis device |
-
2013
- 2013-03-08 WO PCT/JP2013/001486 patent/WO2013140733A1/ja active Application Filing
- 2013-03-08 US US14/386,523 patent/US9581623B2/en active Active
- 2013-03-08 JP JP2014505998A patent/JP6140685B2/ja active Active
- 2013-03-08 EP EP13763720.3A patent/EP2830066B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001134287A (ja) | 1999-11-10 | 2001-05-18 | Mitsubishi Electric Corp | 雑音抑圧装置 |
JP2005202222A (ja) | 2004-01-16 | 2005-07-28 | Toshiba Corp | ノイズサプレッサ及びノイズサプレッサを備えた音声通信装置 |
JP2006180354A (ja) * | 2004-12-24 | 2006-07-06 | Matsushita Electric Ind Co Ltd | 不平衡成分解析装置、通信装置及び不平衡成分解析方法 |
JP2009058708A (ja) * | 2007-08-31 | 2009-03-19 | Internatl Business Mach Corp <Ibm> | 音声処理システム、方法及びプログラム |
JP2009150707A (ja) * | 2007-12-19 | 2009-07-09 | Mitsubishi Electric Corp | レーダ装置 |
JP2010025972A (ja) * | 2008-07-15 | 2010-02-04 | Kawai Musical Instr Mfg Co Ltd | コード名検出装置及びコード名検出用プログラム |
Non-Patent Citations (2)
Title |
---|
"ITU-T G.718: Frame error robust narrow-band and wideband embedded variable bit-rate coding of speech and audio from 8-32 kbit/s", ITU, 2008 |
See also references of EP2830066A4 |
Also Published As
Publication number | Publication date |
---|---|
JP6140685B2 (ja) | 2017-05-31 |
EP2830066A1 (en) | 2015-01-28 |
EP2830066B1 (en) | 2017-10-11 |
US20150100258A1 (en) | 2015-04-09 |
EP2830066A4 (en) | 2015-06-17 |
US9581623B2 (en) | 2017-02-28 |
JPWO2013140733A1 (ja) | 2015-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2272062B1 (en) | An audio signal classifier | |
JP5127754B2 (ja) | 信号処理装置 | |
US8639500B2 (en) | Method, medium, and apparatus with bandwidth extension encoding and/or decoding | |
JP4818335B2 (ja) | 信号帯域拡張装置 | |
RU2510536C2 (ru) | Устройство сглаживания спектра, устройство кодирования, устройство декодирования, устройство терминала связи, устройство базовой станции и способ сглаживания спектра | |
EP2005423B1 (en) | Processing of excitation in audio coding and decoding | |
RU2733278C1 (ru) | Устройство и способ для определения предварительно определенной характеристики, относящейся к обработке спектрального улучшения аудиосигнала | |
KR20120090086A (ko) | 협대역 신호로부터의 상위대역 신호의 결정 | |
KR102380487B1 (ko) | 오디오 신호 디코더에서의 개선된 주파수 대역 확장 | |
KR20130133848A (ko) | 스펙트럼 도메인 잡음 형상화를 사용하는 선형 예측 기반 코딩 방식 | |
JP6073456B2 (ja) | 音声強調装置 | |
US10170126B2 (en) | Effective attenuation of pre-echoes in a digital audio signal | |
KR20160075790A (ko) | 오디오 프레임 손실 은폐 | |
JP5295372B2 (ja) | デジタルオーディオ信号におけるプリエコーの減衰 | |
AU2015295624B2 (en) | Method for estimating noise in an audio signal, noise estimator, audio encoder, audio decoder, and system for transmitting audio signals | |
JP5443547B2 (ja) | 信号処理装置 | |
JP6728142B2 (ja) | デジタルオーディオ信号におけるプレエコーを識別し、減衰させる方法及び装置 | |
US10431226B2 (en) | Frame loss correction with voice information | |
US9093068B2 (en) | Method and apparatus for processing an audio signal | |
JP6140685B2 (ja) | 帯域パワー算出装置及び帯域パワー算出方法 | |
WO2010098130A1 (ja) | トーン判定装置およびトーン判定方法 | |
Dörfler et al. | Adaptive Gabor frames by projection onto time-frequency subspaces | |
KR20220050924A (ko) | 오디오 코딩을 위한 다중 래그 형식 | |
JP6371530B2 (ja) | 音声信号処理装置及び音声ピッチ変換プログラム | |
JP2016024454A (ja) | 音声帯域拡張装置および音声帯域拡張方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13763720 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014505998 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14386523 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013763720 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013763720 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |