WO2013137267A1 - Nitride compound semiconductor element - Google Patents

Nitride compound semiconductor element Download PDF

Info

Publication number
WO2013137267A1
WO2013137267A1 PCT/JP2013/056846 JP2013056846W WO2013137267A1 WO 2013137267 A1 WO2013137267 A1 WO 2013137267A1 JP 2013056846 W JP2013056846 W JP 2013056846W WO 2013137267 A1 WO2013137267 A1 WO 2013137267A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
layer
electrode
compound semiconductor
semiconductor device
Prior art date
Application number
PCT/JP2013/056846
Other languages
French (fr)
Japanese (ja)
Inventor
池田 成明
Original Assignee
次世代パワーデバイス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 次世代パワーデバイス技術研究組合 filed Critical 次世代パワーデバイス技術研究組合
Publication of WO2013137267A1 publication Critical patent/WO2013137267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a nitride compound semiconductor device, and more particularly to a nitride compound semiconductor device having a two-dimensional electron gas layer and a two-dimensional hole gas layer.
  • a GaN-based electronic device which is a nitride-based compound semiconductor element, has a larger band gap energy than a GaAs-based material, and has a high heat resistance and excellent high-temperature operation. For this reason, development of heterojunction field effect transistors (HFETs) using these materials, particularly GaN / AlGaN semiconductors, is being advanced in nitride compound semiconductor devices.
  • HFETs heterojunction field effect transistors
  • a structure in which an HFET structure epilayer is effectively used and an insulating film is formed by etching only in the vicinity of the gate to form a normally-off type has been proposed (see, for example, US Pat. No. 7,038,253). This structure is called a hybrid MOSHFET structure.
  • FIG. 11 shows an example of the structure of such a nitride compound semiconductor device.
  • the conventional nitride-based compound semiconductor element shown in FIG. 11 has a so-called lateral element structure in which current flows in parallel with the main surface.
  • a two-dimensional hole gas is formed on the cap layer 122 side by increasing the Al composition ratio and film thickness of the barrier layer 120. It has been announced that the breakdown voltage of nitride compound semiconductors and the current collapse can be improved by using these. (For example, see Nakajima et al., In Proc. ISPSD, 2011, pp.280-283.)
  • the p-type layer has a low activation rate, so that it is difficult to make an ohmic contact on the growth surface using a particularly fine p-type electrode. Due to this, the structure has a problem because the two-dimensional hole gas cannot be effectively discharged.
  • An object of the present invention is to provide a nitride-based compound semiconductor device that can effectively discharge holes of a two-dimensional hole gas.
  • 1st aspect of this invention is a nitride type compound semiconductor element, Comprising: The two-dimensional electron gas layer formed in the interface of an electron transit layer, an electron supply layer, this electron transit layer, and this electron supply layer A first nitride-based semiconductor layer comprising: a second nitride-based semiconductor layer formed on the first nitride-based semiconductor layer and having a two-dimensional hole gas layer formed at a polarization junction interface; A base electrode formed in contact with the second nitride-based semiconductor layer and in electrical contact with the two-dimensional hole gas layer in which a surface having an orientation different from that of at least one epitaxial growth surface is exposed; Is provided.
  • the second nitride semiconductor layer has an opening contacting the two-dimensional hole gas layer.
  • the opening reaches the surface of the electron supply layer of the first nitride-based semiconductor layer.
  • an angle formed between a side surface and a bottom surface of the opening is 45 ° or more and 175 ° or less, and the base electrode is the opening. It is formed so as to cover the part.
  • an angle formed between a side surface and a bottom surface of the opening is 90 ° or more and 150 ° or less, and the base electrode defines the opening. It is formed to cover.
  • the gate electrode, the drain electrode, the source electrode, and the region between the gate electrode and the drain electrode are arranged in the region.
  • a field effect transistor including a second nitride-based semiconductor layer and performing a normally-off operation.
  • the gate electrode, the drain electrode, the source electrode, and the region between the gate electrode and the drain electrode are arranged in the region.
  • a field effect transistor including a second nitride-based semiconductor layer and having a normally-on operation.
  • an average concentration of the two-dimensional hole gas layer in the electric field relaxation layer decreases from the gate electrode toward the drain electrode. It is going.
  • the electric field relaxation layer includes a nitride-based semiconductor layer having p-type carriers, and the first electrode is directed from the gate electrode toward the drain electrode. It arrange
  • the second nitride may be disposed in an anode electrode, a cathode electrode, and a region between the anode electrode and the cathode electrode.
  • a field relaxation layer including a semiconductor layer.
  • the electric field relaxation layer includes a nitride-based semiconductor layer having p-type carriers, and the first electrode is directed from the anode electrode toward the cathode electrode. It arrange
  • the source electrode or the gate electrode and the base electrode have the same potential.
  • the anode electrode and the base electrode have the same potential.
  • the gate electrode is formed so as to cover at least a part of the base electrode.
  • the anode electrode is formed so as to cover at least a part of the base electrode.
  • FIG. 3C is a sectional view taken along the line CC of the plan view (3). It is explanatory drawing for demonstrating the 1st manufacturing process of the field effect transistor of a 1st Example. It is explanatory drawing for demonstrating the 2nd manufacturing process of the field effect transistor of a 1st Example. It is explanatory drawing for demonstrating the 3rd manufacturing process of the field effect transistor of a 1st Example.
  • FIG. 3 shows a cross-sectional view (3) along the line CC of FIG.
  • FIG. 10 is a schematic block diagram which shows an example of schematic structure of the diode of 4th Example, The schematic top view (1) seen from the upper surface, BB sectional drawing (2) of a top view, and C of a top view -C sectional view (3) is shown.
  • FIG. 10 is a schematic configuration diagram illustrating an example of a schematic configuration of a normally-on type field effect transistor according to a fifth embodiment, which is a schematic plan view as viewed from above (1), and a cross-sectional view along line BB of the plan view (2). And a sectional view taken along line CC of the plan view (3) is shown.
  • It is sectional drawing which shows an example of schematic structure of the conventional nitride type compound semiconductor element.
  • nitride compound semiconductor device of the present embodiment will be described in detail with reference to the drawings.
  • This embodiment is an example of the nitride compound semiconductor element of the present invention, and the present invention is not limited to this embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of a schematic configuration of the field effect transistor of the present embodiment.
  • FIG. 1 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3).
  • the field effect transistor 10 shown in FIG. 1 is a normally-off GaN-based field effect transistor.
  • the field effect transistor 10 includes a substrate 12, a buffer layer 14, a high resistance layer 16, a channel layer 18, a barrier layer 20, an undoped cap layer 22, a p-type cap layer 24, a dielectric film 26, a source electrode 30, a drain electrode 32, A base electrode 34 and a gate electrode 36 are provided.
  • the substrate 12 is a substrate made of silicon (Si) having a (111) plane as a main surface.
  • the buffer layer 14 formed on the substrate 12 is a buffer layer having a stacked structure in which, for example, an AlN layer and a GaN layer are stacked.
  • the high resistance layer 16 formed on the buffer layer 14 has a higher electrical resistance than the channel layer 18 and is, for example, a GaN layer (GaN: C layer) to which C is added.
  • the channel layer 18 formed on the high resistance layer 16 is an undoped GaN (uid-GaN) layer.
  • the channel layer 18 functions as an electron transit layer of the field effect transistor.
  • the barrier layer 20 formed on the channel layer 18 is an undoped AlGaN layer (barrier layer).
  • the barrier layer 20 functions as an electron supply layer.
  • a barrier layer (undoped AlGaN layer) 20 is heterojunction with the surface of the channel layer (undoped GaN layer) 18 corresponding to the channel length L. Therefore, a two-dimensional electron gas (2DEG) is generated at the interface of the heterojunction portion, and a 2DEG layer is formed.
  • a dielectric film 26, which is a MOS gate insulating film, is formed below the gate electrode 36.
  • the field effect transistor 10 has a structure in which a channel is formed by partially removing the barrier layer 20 by etching under the field effect transistor 10.
  • the two-dimensional electron gas plays a role of reducing the access resistance, and thus exhibits a low on-resistance.
  • the undoped cap layer 22 and the p-type cap layer 24 are disposed between the gate electrode 36 and the drain electrode 32.
  • the undoped cap layer 22 and the p-type cap layer 24 function as an electric field relaxation layer.
  • the undoped cap layer 22 is composed of an undoped In X Ga 1-X N (0 ⁇ X ⁇ 1) layer.
  • the p-type cap layer 24 is composed of a p-In X Ga 1-X N (0 ⁇ X ⁇ 1) layer doped with an impurity such as Mg. Since the undoped cap layer 22 and the p-type cap layer 24 are polarization-bonded, two-dimensional hole gas (2DHG) is generated at the interface of the bonded portions to form a 2DHG layer. Further, the undoped cap layer 22 and the p-type cap layer 24 of the present embodiment have an opening 40 (details will be described later).
  • the base electrode 34 is formed on the p-type cap layer 24 so as to cover the opening 40.
  • the source electrode 30 and the drain electrode 32 are formed in the order of Ti, an alloy of Al and Si, and W from the region closest to the barrier layer 20.
  • a growth apparatus was an MOCVD (Metal Organic Chemical Deposition) apparatus, and the substrate 12 was silicon (111).
  • MOCVD Metal Organic Chemical Deposition
  • the silicon (111) substrate 12 is introduced into the MOCVD apparatus, and the vacuum degree in the MOCVD apparatus is reduced to 1 ⁇ 10 ⁇ 6 hPa or less with a turbo pump, and then the degree of vacuum is set to 100 hPa.
  • the substrate 12 is heated to 1050 ° C.
  • the substrate 12 is rotated at 900 rpm, trimethylaluminum (TMA) as a raw material is introduced into the surface of the substrate 12 at a flow rate of 100 cm 3 / min, and ammonia is 12 liters / min.
  • TMA trimethylaluminum
  • a part of the AlN layer is epitaxially grown. The growth time is 4 min, and the thickness of the AlN layer 2 is about 50 nm.
  • the first step 20 to 80 layers of a laminated film in which, for example, a GaN layer with a thickness of 5 to 100 nm and an AlN layer with a thickness of 1 to 10 nm are laminated are stacked on the AlN layer.
  • a buffer layer is formed.
  • the buffer layer 14 is not limited to this configuration, and may be variously modified depending on the material such as the channel layer 18 and other conditions.
  • the high resistance layer 16 is epitaxially grown on the buffer layer 14 using TMG as a raw material, and C is doped.
  • TMG trimethylgallium
  • ammonia is 12 liters / min
  • the channel layer 18 made of a GaN layer is epitaxially grown.
  • the channel layer 18 functions as an electron transit layer.
  • the growth time of the channel layer 18 was 200 sec, and the film thickness of the channel layer 18 was 300 nm.
  • TMA and 50 cm 3 / min, TMG and 100 cm 3 / min, and ammonia was introduced at a flow rate 12 liter / min, a barrier layer 20 made of Al 0.3 Ga 0.7 N layer Epitaxial growth was performed.
  • the barrier layer 20 functions as an electron supply layer.
  • the growth time of the barrier layer 20 is 40 sec, and the thickness of the barrier layer 20 is 30 nm.
  • TMG is introduced onto the barrier layer 20 at a flow rate of 300 cm 3 / min and ammonia is 12 liter / min to epitaxially grow the undoped cap layer 22 made of a GaN layer.
  • the growth time of the undoped cap layer 22 is 40 sec, and the film thickness of the undoped cap layer 22 is 30 nm.
  • a p-type cap layer 24 made of a p-GaN layer is introduced by introducing TMG at a flow rate of 300 cm 3 / min, ammonia at 12 liters / min, and biscyclopentadienyl magnesium at a flow rate of 300 cm 3 / min. Is epitaxially grown.
  • the growth time of the p-type cap layer 24 is 40 sec, and the film thickness of the p-type cap layer 24 is 20 nm.
  • annealing is performed at 800 ° C. for about 5 minutes in a nitrogen atmosphere.
  • an isolation mesa is formed for element isolation using chlorine gas or the like.
  • the p-type cap layer 24 and the undoped cap layer 22 are masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed.
  • element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas.
  • the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time.
  • the opening 40 is formed in a stripe shape in parallel with the direction of current flow (lateral direction) in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future. .
  • the opening 40 is shown for convenience of explanation.
  • the p-type cap layer 24 is removed by etching in the recess etching portion, preferably the undoped cap layer 22 is removed, and more preferably at least the surface of the barrier layer 20 is removed by etching. Further, even if the etching proceeds more than the surface of the barrier layer 20, it is desirable because the cap layer 22 (2DHG layer) is exposed to obtain a lower contact specific resistance. If the barrier layer 20 is completely removed, the base electrode 34 to be formed later and the channel layer 18 (2DEG layer) are in contact with each other. Therefore, better electrical characteristics can be obtained than in the case of no contact. It will disappear. Therefore, it is desirable not to completely remove the barrier layer 20.
  • the opening width W of the stripe-shaped opening 40 may be at least 0.1 ⁇ m or more, and if there is at least one opening 40, the effect of the present invention is exhibited.
  • the barrier layer 20 is removed by etching only in the region where the gate electrode 36 is formed using chlorine gas or the like.
  • 40 nm of SiO 2 is formed as the dielectric film 26 which is a gate insulating film.
  • the dielectric film 26 of SiO 2 is formed by PCVD or the like using SiH 4 gas and N 2 O gas.
  • the method may be PECVD or APCVD.
  • a region where the source electrode 30 and the drain electrode 32 are to be formed is opened using a resist or the like to expose the surface of the barrier layer 20. In the exposed region, Ti, Al and Si alloy film, and W are sequentially deposited to form the source electrode 30 and the drain electrode 32 by a lift-off method or the like.
  • patterning is performed by using a resist or the like, patterning is performed by providing an opening using a resist or the like in a region where the base electrode 34 is to be formed, and Ni / Au (60 nm / 40 nm) is deposited.
  • the base electrode 34 was formed.
  • the base electrode 34 is further formed by annealing at 500 ° C. to 600 ° C. in an oxygen atmosphere or an oxygen-nitrogen mixed atmosphere.
  • the base electrode 34 is formed so as to cover the opening 40. Since the surface different from the epitaxial growth surface of the 2DHG layer is exposed on the side surface of the opening 40, the base electrode 34 and the 2DHG layer are electrically connected by forming the base electrode 34 in this way.
  • the relationship between the shape of the opening 40 (the recess etching portion of the undoped cap layer 22 and the p-type cap layer 24) and the base electrode 34 will be described with reference to FIGS. 6A, 6B, and 6C.
  • 6A, 6B, and 6C the angle between the side surface 40A of the opening 40 and the bottom surface 40B will be described as ⁇ .
  • 6A, 6B, and 6C the angle ⁇ is illustrated on the base electrode 34 formed so as to cover the opening 40.
  • the angle ⁇ is substantially the same, no problem occurs.
  • the angle ⁇ of the opening 40 is preferably 45 ° or more and 175 ° or less, and more preferably 90 ° or more and 150 ° or less.
  • the fifth step patterning is performed using a resist or the like, patterning is performed in which an opening is formed using a resist or the like in a region where the gate electrode 36 is to be formed, and Ni or Ti or the like is evaporated to form a gate electrode. 36 was formed.
  • the gate electrode 36 may be made of polysilicon or the like. As a result, the field effect transistor 10 shown in FIG. 1 is manufactured.
  • FIG. 7 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the second embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
  • the shapes (upper surface) of the p-type cap layer 24 and the undoped cap layer 22 are shown. The shape seen from) is different.
  • the undoped cap layer 22 and the p-type cap layer 24 are formed so that the area in contact with the barrier layer 20 decreases from the gate electrode 36 side to the drain electrode 32 side.
  • the portion where the p-type cap layer 24 is left (the tip portion where the area is reduced) may be separated from the drain electrode 32 by 0.1 ⁇ m or more, and preferably 1/3 or more between the gate electrode 36 and the drain electrode 32. It is desirable that there is an interval.
  • the portion where the p-type cap layer 24 is left may be at least about 4 ⁇ m if the distance between the gate electrode 36 and the drain electrode 32 is 12 ⁇ m.
  • the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
  • isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like.
  • the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed.
  • element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas.
  • the area to be etched is relatively increased from the gate electrode 36 toward the drain electrode 32 inside the portion left as an island as a layer for forming the base electrode 34. Then, a recess etching portion (opening 40) that comes into contact with the base electrode 34 is formed in the future.
  • the portion where the p-type cap layer 24 is left only needs to be separated from the drain electrode 32 by 0.1 ⁇ m or more, and preferably a space of 1/3 or more between the gate electrode 36 and the drain electrode 32 is left. Is desirable.
  • the portion where the p-type cap layer 24 is left may be at least about 4 ⁇ m if the distance between the gate electrode 36 and the drain electrode 32 is 12 ⁇ m.
  • the gate recess etching, the source electrode 30, the drain electrode 32, the base electrode 34, and the gate electrode 36 are formed, respectively.
  • the illustrated field effect transistor 10 is manufactured.
  • the area of the p-type cap layer 24 and the undoped cap layer 22 is gradually reduced from the gate electrode 36 toward the drain electrode 32 side, so that the average two-dimensional hole gas is reduced.
  • the concentration can be reduced little by little.
  • the electric field concentration at the end of the p-type cap layer 24 and the undoped cap layer 22 on the drain electrode 32 side can be suppressed. Compared with this, leakage current and breakdown voltage can be improved. Further, in the field effect transistor 10 of the present embodiment, the current collapse can be effectively suppressed.
  • FIG. 8 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the third embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
  • the field effect transistor 10 of the present embodiment is such that the base electrode 34 and the gate electrode 36 have the same potential as shown in the sectional view (2) of FIG. That is, it is formed so as to be short-circuited.
  • the base electrode 34 and the gate electrode 36 By short-circuiting the base electrode 34 and the gate electrode 36 in this way, the on-resistance similar to that of the first embodiment can be obtained as the on-characteristic.
  • the drain current conductivity modulation occurs when holes are injected through the p-type layer, so that a drain current that is about 20% larger than that of the first embodiment can be obtained.
  • the off characteristics since the electric field relaxation effect can be obtained as in the first embodiment, the same breakdown voltage and leakage current can be obtained.
  • the base electrode 34 and the gate electrode 36 are short-circuited, they behave as one electrode, so that electrical control can be performed with three terminals of a source, a gate, and a drain.
  • the field effect transistor 10 of the present embodiment it is not necessary to take a terminal called a base electrode, so that the element size can be made more compact.
  • the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
  • isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like.
  • the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed.
  • element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas.
  • the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time.
  • the openings 40 are formed in a stripe shape in parallel with the direction of current flow in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future.
  • the gate recess etching, the source electrode 30, the drain electrode 32, and the base electrode 34 are formed in the manner up to the third step and the fourth step of the first embodiment, respectively.
  • the gate electrode 36 is formed by patterning so as to straddle the base electrode 34. Thereby, the field effect transistor 10 shown in FIG. 8 is manufactured.
  • FIG. 9 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the fourth embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
  • the nitride compound semiconductor device of this embodiment is configured as a diode 60 having a cathode electrode 62 and an anode electrode 64 instead of the source electrode 30, the drain electrode 32, and the gate electrode 36 of the first embodiment. .
  • the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
  • isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like.
  • the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed.
  • element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas.
  • the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time.
  • the openings 40 are formed in a stripe shape in parallel with the direction of current flow in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future.
  • a region where the cathode electrode 62 is to be formed is opened using a resist or the like to expose the surface of the barrier layer 20.
  • Ti, an alloy film of Al and Si, and W are sequentially deposited, and the cathode electrode 62 is formed by a lift-off method or the like.
  • the fourth step of the present embodiment for forming the base electrode 34 patterning is performed using a resist or the like, and patterning is performed in which an opening is formed using a resist or the like in a region where the base electrode 34 is to be formed. Then, Ni / Au (60 nm / 40 nm) is deposited to form the base electrode 34.
  • the base electrode 34 is further formed by annealing at 500 ° C. to 600 ° C. in an oxygen atmosphere or an oxygen-nitrogen mixed atmosphere.
  • patterning is performed using a resist or the like, patterning is performed by providing an opening using a resist or the like in a region where the anode electrode 64 is to be formed, and Ni or Pd is deposited.
  • the anode electrode A is formed.
  • the anode electrode 64 may be made of polysilicon or the like. As a result, the diode shown in FIG. 9 is manufactured.
  • FIG. 10 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the fifth embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
  • the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
  • isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like.
  • a region for forming the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed.
  • element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas.
  • the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time.
  • the openings 40 are formed in a stripe shape in parallel with the direction of current flow in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future.
  • the source electrode 30 and the drain electrode 32 are formed in the same manner as the third step of the first embodiment. Since the field effect transistor 70 of this embodiment is normally on, a gate recess is not formed unlike the first embodiment.
  • the fourth step of the present embodiment for forming the base electrode 34 patterning is performed using a resist or the like, and patterning is performed by providing an opening using a resist or the like at a position where the base electrode 34 is to be formed.
  • Ni / Au 60 nm / 40 nm
  • the base electrode 34 is further formed by annealing at 500 ° C. to 600 ° C. in an oxygen atmosphere or an oxygen-nitrogen mixed atmosphere.
  • the third step patterning is performed using a resist or the like, patterning is performed in which an opening is formed using a resist or the like in a region where the gate electrode 36 is to be formed, and Ni or Ti or the like is evaporated to form the gate electrode 36.
  • the gate electrode 36 may be made of polysilicon or the like.
  • a part of the dielectric film 26 in a region where the gate electrode 36 is formed can be removed to form a gate portion for Schottky junction. As a result, the field effect transistor 70 shown in FIG. 10 is manufactured.
  • the undoped cap layer 22 and the p-type cap layer 24 having the 2DHG layer are partially recessed by etching.
  • the base electrode 34 is formed so as to cover the opening 40 where the surface different from the epitaxial growth surface of the 2DHG layer is exposed. Therefore, the nitride-based compound semiconductor device according to the present invention can easily make ohmic contact with the base electrode 34. In the nitride-based compound semiconductor device according to the present invention, 2DHG holes can be effectively discharged by this configuration.
  • the channel layer 18 is an undoped layer, so that current collapse can be suppressed and the short-circuit tolerance can be maintained while maintaining forward characteristics and reverse characteristics.
  • the increase rate of the on-resistance as a current collapse deteriorated to 1.5 times or more at 600 V. It was confirmed that the field effect transistor 10 of this example was improved to 1.1 times or less. Further, since the discharge of holes can be improved, the load short-circuit withstand capability is also improved, and the conventional nitride-based compound semiconductor device shown in FIG. Then, the withstand voltage at 100 A / cm 2 and 600 V was improved to 700 mJ.
  • a hybrid MOSHFET structure is desirable.
  • 2DEG carriers under the gate electrode 36 can be removed by recess etching of the gate electrode 36.
  • This etching and design conditions have the effect that they can be designed independently without affecting the design parameters of 2DHG.
  • the present invention can also be applied to a method of forming the dielectric film 26, which is a gate insulating film, without removing the barrier layer 20 and leaving several nm.
  • the nitride-based compound semiconductor device according to the present invention can be applied to a high voltage inverter or converter. From the above, it is possible to realize a GaN field effect transistor having a high breakdown voltage and high reliability.
  • the shape of the opening 40 shown in each of the above embodiments is a specific example, and is not limited to this.
  • the opening 40 may have other shapes such as a circular shape instead of the stripe shape.
  • the opening 40 is formed so that the areas of the undoped cap layer 22 and the p-type cap layer 24 are reduced from the gate electrode 36 side toward the drain electrode 32 side. Absent.
  • the opening 40 may be formed to have the same area (alphabet “E” shape) toward the drain side.
  • the undoped cap layer 22 and the p-type cap layer 24 may be formed in stripes with a plurality of intervals (corresponding to the opening 40).
  • the substrate 12 is a silicon substrate
  • any substrate capable of crystal growth of GaN such as a SiC substrate other than a silicon substrate, a sapphire substrate, a GaN substrate, an MgO substrate, and a ZnO substrate can be used. Needless to say, the elements on the substrate also hold true.

Abstract

The present invention is a nitride compound semiconductor element that is capable of effectively discharging a two-dimensional hole gas hole. In other words, a partially recessed structure (an opening part) is made by etching an undoped cap layer and a p-type cap layer that have a 2DHG layer, and is configured so as to easily make Ohmic contact with a base electrode. This configuration enables the effective discharge of a 2DHG hole. Also, making the channel layer an undoped layer enables the suppression of current collapses while maintaining forward characteristics and backward characteristics, and enables short circuit resistance.

Description

窒化物系化合物半導体素子Nitride compound semiconductor device
 本発明は、窒化物系化合物半導体素子、特に二次元電子ガス層及び二次元ホールガス層を有する窒化物系化合物半導体素子に関するものである。 The present invention relates to a nitride compound semiconductor device, and more particularly to a nitride compound semiconductor device having a two-dimensional electron gas layer and a two-dimensional hole gas layer.
 窒化物系化合物半導体素子であるGaN系電子デバイスは、GaAs系の材料に比べてそのバンドギャップエネルギーが大きく、しかも耐熱度が高く高温動作に優れている。そのため、窒化物系化合物半導体素子では、これらの材料、特にGaN/AlGaN系半導体を用いたヘテロ接合電界効果トランジスタ(Hetero-structure Field Effect Transistor:HFET)の開発が進められている。近年、HFET構造エピ層を有効に活用し、ゲート付近のみをエッチングして絶縁膜を形成し、ノーマリオフ型にする構造が提案されている(例えば、米国特許第7,038,253号明細書参照)。この構造は、ハイブリッドMOSHFET構造と呼ばれている。 A GaN-based electronic device, which is a nitride-based compound semiconductor element, has a larger band gap energy than a GaAs-based material, and has a high heat resistance and excellent high-temperature operation. For this reason, development of heterojunction field effect transistors (HFETs) using these materials, particularly GaN / AlGaN semiconductors, is being advanced in nitride compound semiconductor devices. In recent years, a structure in which an HFET structure epilayer is effectively used and an insulating film is formed by etching only in the vicinity of the gate to form a normally-off type has been proposed (see, for example, US Pat. No. 7,038,253). This structure is called a hybrid MOSHFET structure.
 一方、近年、AlGaN/GaNの分極接合(PJ:Polarization Junction)の界面に形成される二次元ホールガスを利用した窒化物系化合物半導体素子が提案されている(例えば、特開2011-82331号公報参照)。図11には、このような窒化物系化合物半導体素子の構造の一例を示す。図11に示した従来の窒化物系化合物半導体素子は、主面と並行に電流が流れるいわゆる横型素子構造をとっている。当該構造によれば、基板112側からチャネル層118(GaN)/バリア層120(AlGaN)/キャップ層122(GaN)/p型キャップ層124(GaN)において、従来のチャネル層118/バリア層120のチャネル層118側に形成される二次元電子ガス層に加えて、バリア層120のAl組成比や膜厚をあげることによって、キャップ層122側に二次元ホールガスが形成される。これらを利用することで、窒化物系化合物半導体の破壊電圧の向上、電流コラプスの改善ができるとの発表がされている。(例えば、Nakajima et al., in Proc. ISPSD, 2011, pp.280-283.参照) On the other hand, in recent years, a nitride-based compound semiconductor device using a two-dimensional hole gas formed at the interface of AlGaN / GaN polarization junction (PJ: Polarization Junction) has been proposed (for example, JP-A-2011-82331). reference). FIG. 11 shows an example of the structure of such a nitride compound semiconductor device. The conventional nitride-based compound semiconductor element shown in FIG. 11 has a so-called lateral element structure in which current flows in parallel with the main surface. According to this structure, the conventional channel layer 118 / barrier layer 120 in the channel layer 118 (GaN) / barrier layer 120 (AlGaN) / cap layer 122 (GaN) / p-type cap layer 124 (GaN) from the substrate 112 side. In addition to the two-dimensional electron gas layer formed on the channel layer 118 side, a two-dimensional hole gas is formed on the cap layer 122 side by increasing the Al composition ratio and film thickness of the barrier layer 120. It has been announced that the breakdown voltage of nitride compound semiconductors and the current collapse can be improved by using these. (For example, see Nakajima et al., In Proc. ISPSD, 2011, pp.280-283.)
 しかしながら、上記図11に例示した窒化物系化合物半導体素子の構造には問題があった。すなわち、当該構造では、p型層は活性化率が低いことに起因して、特に微細なp型電極を用いて成長面上にオーミックコンタクトをとることが難しい構成である。このことに起因し、当該構造では、2次元ホールガスの排出が効果的に行えないため問題が発生した。 However, there is a problem with the structure of the nitride compound semiconductor device illustrated in FIG. That is, in this structure, the p-type layer has a low activation rate, so that it is difficult to make an ohmic contact on the growth surface using a particularly fine p-type electrode. Due to this, the structure has a problem because the two-dimensional hole gas cannot be effectively discharged.
 本発明は、二次元ホールガスのホールの排出を効果的に行わせることができる、窒化物系化合物半導体素子を提供することを目的とする。 An object of the present invention is to provide a nitride-based compound semiconductor device that can effectively discharge holes of a two-dimensional hole gas.
 本発明の第1の態様は、窒化物系化合物半導体素子であって、電子走行層と、電子供給層と、該電子走行層と該電子供給層との界面に形成される二次元電子ガス層を有する第1窒化物系半導体層と、前記第1窒化物系半導体層上に形成されており、分極接合の界面に形成される二次元ホールガス層を有する第2窒化物系半導体層と、前記第2窒化物系半導体層に接して形成されており、少なくとも1箇所のエピタキシャル成長面と異なる方位をもつ面が露出された前記二次元ホールガス層に電気的に接触しているベース電極と、を備える。 1st aspect of this invention is a nitride type compound semiconductor element, Comprising: The two-dimensional electron gas layer formed in the interface of an electron transit layer, an electron supply layer, this electron transit layer, and this electron supply layer A first nitride-based semiconductor layer comprising: a second nitride-based semiconductor layer formed on the first nitride-based semiconductor layer and having a two-dimensional hole gas layer formed at a polarization junction interface; A base electrode formed in contact with the second nitride-based semiconductor layer and in electrical contact with the two-dimensional hole gas layer in which a surface having an orientation different from that of at least one epitaxial growth surface is exposed; Is provided.
 本発明の第2の態様は、上記第1の態様において、前記第2窒化物系半導体層が、前記二次元ホールガス層に接触する開口部を有している。 In a second aspect of the present invention, in the first aspect, the second nitride semiconductor layer has an opening contacting the two-dimensional hole gas layer.
 本発明の第3の態様は、上記第2の態様において、前記開口部が、前記第1窒化物系半導体層の前記電子供給層の表面に至っている。 According to a third aspect of the present invention, in the second aspect, the opening reaches the surface of the electron supply layer of the first nitride-based semiconductor layer.
 本発明の第4の態様は、上記第2の態様または第3の態様において、前記開口部の側面と、底面とのなす角度が45°以上、175°以下であり、前記ベース電極が前記開口部を覆うように形成されている。 According to a fourth aspect of the present invention, in the second aspect or the third aspect, an angle formed between a side surface and a bottom surface of the opening is 45 ° or more and 175 ° or less, and the base electrode is the opening. It is formed so as to cover the part.
 本発明の第5態様は、上記第2の態様または第3の態様において前記開口部の側面と、底面とのなす角度が90°以上、150°以下であり、前記ベース電極が前記開口部を覆うように形成されている。 According to a fifth aspect of the present invention, in the second or third aspect, an angle formed between a side surface and a bottom surface of the opening is 90 ° or more and 150 ° or less, and the base electrode defines the opening. It is formed to cover.
 本発明の第6の態様は、上記第1の態様から第5の態様のいずれかにおいて、ゲート電極と、ドレイン電極と、ソース電極と、前記ゲート電極と前記ドレイン電極との間の領域に前記第2窒化物系半導体層を含む電界緩和層と、を備え、ノーマリオフ動作をする電界効果トランジスタである。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the gate electrode, the drain electrode, the source electrode, and the region between the gate electrode and the drain electrode are arranged in the region. A field effect transistor including a second nitride-based semiconductor layer and performing a normally-off operation.
 本発明の第7の態様は、上記第1の態様から第5の態様のいずれかにおいて、ゲート電極と、ドレイン電極と、ソース電極と、前記ゲート電極と前記ドレイン電極との間の領域に前記第2窒化物系半導体層を含む電界緩和層と、を備え、ノーマリオン動作をする電界効果トランジスタである。 According to a seventh aspect of the present invention, in any one of the first to fifth aspects, the gate electrode, the drain electrode, the source electrode, and the region between the gate electrode and the drain electrode are arranged in the region. A field effect transistor including a second nitride-based semiconductor layer and having a normally-on operation.
 本発明の第8の態様は、上記第6の態様または第7の態様において、前記電界緩和層における前記二次元ホールガス層の平均濃度が、前記ゲート電極から前記ドレイン電極に向かって減少していくものである。 According to an eighth aspect of the present invention, in the sixth aspect or the seventh aspect, an average concentration of the two-dimensional hole gas layer in the electric field relaxation layer decreases from the gate electrode toward the drain electrode. It is going.
 本発明の第9の態様は、上記第8の態様において、前記電界緩和層が、p型キャリアを有する窒化物系半導体層を有しており、前記ゲート電極から前記ドレイン電極に向かって前記第1窒化物系半導体層に接する面積を低減させていくよう配置されている。 According to a ninth aspect of the present invention, in the eighth aspect, the electric field relaxation layer includes a nitride-based semiconductor layer having p-type carriers, and the first electrode is directed from the gate electrode toward the drain electrode. It arrange | positions so that the area which touches 1 nitride type semiconductor layer may be reduced.
 本発明の第10の態様は、上記第1の態様から第5の態様のいずれかにおいて、アノード電極と、カソード電極と、前記アノード電極と前記カソード電極との間の領域に前記第2窒化物系半導体層を含む電界緩和層と、を備えたダイオードである。 According to a tenth aspect of the present invention, in any one of the first to fifth aspects, the second nitride may be disposed in an anode electrode, a cathode electrode, and a region between the anode electrode and the cathode electrode. And a field relaxation layer including a semiconductor layer.
 本発明の第11の態様は、上記第10の態様において、前記電界緩和層が、p型キャリアを有する窒化物系半導体層を有しており、前記アノード電極から前記カソード電極に向かって前記第1窒化物系半導体層に接する面積を低減させていくよう配置されている。 According to an eleventh aspect of the present invention, in the tenth aspect, the electric field relaxation layer includes a nitride-based semiconductor layer having p-type carriers, and the first electrode is directed from the anode electrode toward the cathode electrode. It arrange | positions so that the area which touches 1 nitride type semiconductor layer may be reduced.
 本発明の第12の態様は、上記第6の態様から第9の態様のいずれかにおいて、前記ソース電極または前記ゲート電極と、前記ベース電極と、が同一の電位をもつ。 In a twelfth aspect of the present invention, in any one of the sixth to ninth aspects, the source electrode or the gate electrode and the base electrode have the same potential.
 本発明の第13の態様は、上記第10の態様または第11の態様において、前記アノード電極と、前記ベース電極と、が同一の電位をもつ。 In a thirteenth aspect of the present invention, in the tenth aspect or the eleventh aspect, the anode electrode and the base electrode have the same potential.
 本発明の第14の態様は、上記第12の態様において、前記ゲート電極が、前記ベース電極の少なくとも一部を覆うように形成されている。 According to a fourteenth aspect of the present invention, in the twelfth aspect, the gate electrode is formed so as to cover at least a part of the base electrode.
 本発明の第15の態様は、上記第13の態様において、前記アノード電極が、前記ベース電極の少なくとも一部を覆うように形成されている。 According to a fifteenth aspect of the present invention, in the thirteenth aspect, the anode electrode is formed so as to cover at least a part of the base electrode.
 本発明の上記態様によれば、二次元ホールガスのホールの排出を効果的に行わせることができる、という効果を奏する。 According to the above aspect of the present invention, there is an effect that holes of the two-dimensional hole gas can be effectively discharged.
第1の実施例のノーマリオフ型の電界効果トランジスタの概略構成の一例を示す概略構成図であり、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows an example of schematic structure of the normally-off type field effect transistor of 1st Example, The schematic top view (1) seen from the upper surface, BB sectional drawing (2) of a top view, FIG. 3C is a sectional view taken along the line CC of the plan view (3). 第1の実施例の電界効果トランジスタの第1の製造工程を説明するための説明図である。It is explanatory drawing for demonstrating the 1st manufacturing process of the field effect transistor of a 1st Example. 第1の実施例の電界効果トランジスタの第2の製造工程を説明するための説明図である。It is explanatory drawing for demonstrating the 2nd manufacturing process of the field effect transistor of a 1st Example. 第1の実施例の電界効果トランジスタの第3の製造工程を説明するための説明図である。It is explanatory drawing for demonstrating the 3rd manufacturing process of the field effect transistor of a 1st Example. 第1の実施例の電界効果トランジスタの第4の製造工程を説明するための説明図である。It is explanatory drawing for demonstrating the 4th manufacturing process of the field effect transistor of a 1st Example. アンドープキャップ層及びp型キャップ層の開口部における、側面と底面との角度θについて説明するための説明図であり、角度θが略90°である場合を示している。It is explanatory drawing for demonstrating angle (theta) of the side surface and bottom face in the opening part of an undoped cap layer and a p-type cap layer, and has shown the case where angle (theta) is about 90 degrees. アンドープキャップ層及びp型キャップ層の開口部における、側面と底面との角度θについて説明するための説明図であり、角度θが90°未満である場合を示している。It is explanatory drawing for demonstrating angle (theta) of the side surface and bottom face in the opening part of an undoped cap layer and a p-type cap layer, and has shown the case where angle (theta) is less than 90 degrees. アンドープキャップ層及びp型キャップ層の開口部における、側面と底面との角度θについて説明するための説明図であり、角度θが90°を越える場合を示している。It is explanatory drawing for demonstrating angle (theta) of the side surface and bottom face in the opening part of an undoped cap layer and a p-type cap layer, and has shown the case where angle (theta) exceeds 90 degrees. 第2の実施例の電界効果トランジスタの概略構成の一例を示す概略構成図であり、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。It is a schematic block diagram which shows an example of schematic structure of the field effect transistor of 2nd Example, the schematic top view (1) seen from the upper surface, the BB sectional drawing (2) of a top view, and a top view FIG. 3 shows a cross-sectional view (3) along the line CC of FIG. 第3の実施例の電界効果トランジスタの概略構成の一例を示す概略構成図であり、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。It is a schematic block diagram which shows an example of schematic structure of the field effect transistor of 3rd Example, The schematic top view (1) seen from the upper surface, BB sectional drawing (2) of a top view, and a top view FIG. 3 shows a cross-sectional view (3) along the line CC of FIG. 第4の実施例のダイオードの概略構成の一例を示す概略構成図であり、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。It is a schematic block diagram which shows an example of schematic structure of the diode of 4th Example, The schematic top view (1) seen from the upper surface, BB sectional drawing (2) of a top view, and C of a top view -C sectional view (3) is shown. 第5の実施例のノーマリオン型の電界効果トランジスタの概略構成の一例を示す概略構成図であり、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。FIG. 10 is a schematic configuration diagram illustrating an example of a schematic configuration of a normally-on type field effect transistor according to a fifth embodiment, which is a schematic plan view as viewed from above (1), and a cross-sectional view along line BB of the plan view (2). And a sectional view taken along line CC of the plan view (3) is shown. 従来の窒化物系化合物半導体素子の概略構成の一例を示す断面図である。It is sectional drawing which shows an example of schematic structure of the conventional nitride type compound semiconductor element.
 図面を参照して本実施の形態の窒化物系化合物半導体素子について詳細に説明する。なお、本実施の形態は本発明の窒化物系化合物半導体素子の一例であり、本実施の形態により本発明が限定されるものではない。 The nitride compound semiconductor device of the present embodiment will be described in detail with reference to the drawings. This embodiment is an example of the nitride compound semiconductor element of the present invention, and the present invention is not limited to this embodiment.
 [第1の実施例]
 第1の実施例では、本発明の窒化物系化合物半導体素子がノーマリオフ型の電界効果トランジスタである場合について説明する。
[First embodiment]
In the first embodiment, the case where the nitride compound semiconductor element of the present invention is a normally-off field effect transistor will be described.
 まず、電界効果トランジスタの構成について説明する。図1には、本実施例の電界効果トランジスタの概略構成の一例を示す概略構成図を示す。図1には、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。 First, the structure of the field effect transistor will be described. FIG. 1 is a schematic configuration diagram showing an example of a schematic configuration of the field effect transistor of the present embodiment. FIG. 1 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3).
 図1に示した電界効果トランジスタ10は、ノーマリオフ型GaN系電界効果トランジスタである。電界効果トランジスタ10は、基板12、バッファ層14、高抵抗層16、チャネル層18、バリア層20、アンドープキャップ層22、p型キャップ層24、誘電体膜26、ソース電極30、ドレイン電極32、ベース電極34、及びゲート電極36を備えている。 The field effect transistor 10 shown in FIG. 1 is a normally-off GaN-based field effect transistor. The field effect transistor 10 includes a substrate 12, a buffer layer 14, a high resistance layer 16, a channel layer 18, a barrier layer 20, an undoped cap layer 22, a p-type cap layer 24, a dielectric film 26, a source electrode 30, a drain electrode 32, A base electrode 34 and a gate electrode 36 are provided.
 基板12は、(111)面を主表面とするシリコン(Si)からなる基板である。基板12上に形成されたバッファ層14は、例えばAlN層とGaN層とが積層された積層構造のバッファ層である。バッファ層14上に形成された高抵抗層16は、チャネル層18よりも電気抵抗が高く、例えば、Cが添加されたGaN層(GaN:C層)である。 The substrate 12 is a substrate made of silicon (Si) having a (111) plane as a main surface. The buffer layer 14 formed on the substrate 12 is a buffer layer having a stacked structure in which, for example, an AlN layer and a GaN layer are stacked. The high resistance layer 16 formed on the buffer layer 14 has a higher electrical resistance than the channel layer 18 and is, for example, a GaN layer (GaN: C layer) to which C is added.
 高抵抗層16上に形成されたチャネル層18は、アンドープGaN(uid-GaN)層である。チャネル層18は、電界効果トランジスタの電子走行層として機能する。また、チャネル層18上に形成されたバリア層20は、アンドープAlGaN層(バリア層)である。バリア層20は、電子供給層として機能する。ここで、チャネルの長さLに相当するチャネル層(アンドープGaN層)18の表面には、バリア層(アンドープAlGaN層)20がヘテロ接合している。そのため、ヘテロ接合している部分の界面には2次元電子ガス(2DEG)が発生し、2DEG層を形成する。ゲート電極36下部にはMOSのゲート絶縁膜である誘電体膜26が形成される。電界効果トランジスタ10では、その下をエッチングによってバリア層20を部分的に除去し、チャネルを形成した構造になっている。また、電界効果トランジスタ10では、2次元電子ガスがアクセス抵抗を低減する役割をするため、低オン抵抗を示すようになる。 The channel layer 18 formed on the high resistance layer 16 is an undoped GaN (uid-GaN) layer. The channel layer 18 functions as an electron transit layer of the field effect transistor. The barrier layer 20 formed on the channel layer 18 is an undoped AlGaN layer (barrier layer). The barrier layer 20 functions as an electron supply layer. Here, a barrier layer (undoped AlGaN layer) 20 is heterojunction with the surface of the channel layer (undoped GaN layer) 18 corresponding to the channel length L. Therefore, a two-dimensional electron gas (2DEG) is generated at the interface of the heterojunction portion, and a 2DEG layer is formed. A dielectric film 26, which is a MOS gate insulating film, is formed below the gate electrode 36. The field effect transistor 10 has a structure in which a channel is formed by partially removing the barrier layer 20 by etching under the field effect transistor 10. In the field effect transistor 10, the two-dimensional electron gas plays a role of reducing the access resistance, and thus exhibits a low on-resistance.
 さらに、アンドープキャップ層22及びp型キャップ層24がゲート電極36とドレイン電極32との間に配置されている。アンドープキャップ層22及びp型キャップ層24は、電界緩和層として機能する。アンドープキャップ層22は、アンドープInGa1-XN (0≦X<1)層からなる。p型キャップ層24は、Mgなどの不純物をドーピングしたp-InGa1-XN(0≦X<1)層からなる。アンドープキャップ層22とp型キャップ層24とは、分極接合しているため、接合している部分の界面には、2次元ホールガス(2DHG)が発生し、2DHG層を形成する。また、本実施例のアンドープキャップ層22及びp型キャップ層24は、開口部40(詳細後述)を有している。 Further, the undoped cap layer 22 and the p-type cap layer 24 are disposed between the gate electrode 36 and the drain electrode 32. The undoped cap layer 22 and the p-type cap layer 24 function as an electric field relaxation layer. The undoped cap layer 22 is composed of an undoped In X Ga 1-X N (0 ≦ X <1) layer. The p-type cap layer 24 is composed of a p-In X Ga 1-X N (0 ≦ X <1) layer doped with an impurity such as Mg. Since the undoped cap layer 22 and the p-type cap layer 24 are polarization-bonded, two-dimensional hole gas (2DHG) is generated at the interface of the bonded portions to form a 2DHG layer. Further, the undoped cap layer 22 and the p-type cap layer 24 of the present embodiment have an opening 40 (details will be described later).
 ベース電極34は、p型キャップ層24上に、開口部40を覆うように形成されている。また、ソース電極30およびドレイン電極32はバリア層20に最も近接した領域からTi、AlとSiの合金、及びWの順に形成されている。 The base electrode 34 is formed on the p-type cap layer 24 so as to cover the opening 40. The source electrode 30 and the drain electrode 32 are formed in the order of Ti, an alloy of Al and Si, and W from the region closest to the barrier layer 20.
 次に、本実施例の電界効果トランジスタ10の製造方法の一例について説明する。なお、電界効果トランジスタ10の製造にあたり、成長装置はMOCVD(Metal Organic Chemical Vapor Deposition)装置を用い、基板12はシリコン(111)を用いた。 Next, an example of a method for manufacturing the field effect transistor 10 of this embodiment will be described. In manufacturing the field effect transistor 10, a growth apparatus was an MOCVD (Metal Organic Chemical Deposition) apparatus, and the substrate 12 was silicon (111).
 1)エピタキシャル基板を製造する第1工程について図2を参照して説明する。 1) A first step of manufacturing an epitaxial substrate will be described with reference to FIG.
 まず、第1工程では、シリコン(111)基板12をMOCVD装置内に導入し、ターボポンプでMOCVD装置内の真空度を1×10-6hPa以下になるまで真空引きした後、真空度を100hPaとし基板12を1050℃に昇温する。温度が安定したところで、基板12を900rpmで回転させ、原料となるトリメチルアルミニウム(TMA)を100cm/min、及びアンモニアを12リットル/minの流量で基板12の表面に導入し、バッファ層14の一部であるAlN層をエピタキシャル成長させる。成長時間は、4minで当該AlN層2の膜厚は50nm程度である。 First, in the first step, the silicon (111) substrate 12 is introduced into the MOCVD apparatus, and the vacuum degree in the MOCVD apparatus is reduced to 1 × 10 −6 hPa or less with a turbo pump, and then the degree of vacuum is set to 100 hPa. The substrate 12 is heated to 1050 ° C. When the temperature is stabilized, the substrate 12 is rotated at 900 rpm, trimethylaluminum (TMA) as a raw material is introduced into the surface of the substrate 12 at a flow rate of 100 cm 3 / min, and ammonia is 12 liters / min. A part of the AlN layer is epitaxially grown. The growth time is 4 min, and the thickness of the AlN layer 2 is about 50 nm.
 その後、第1工程では、当該AlN層上に、例えば、膜厚が5~100nmのGaN層と、膜厚が1~10nmのAlN層とが積層された積層膜を、20~80層重ねて、バッファ層を形成する。なお、バッファ層14は、この構成に限定されず、チャネル層18などの材料や、その他の条件によって種々変形されてよい。さらに、第1工程では、バッファ層14上に、TMGを原料として、高抵抗層16をエピタキシャル成長させ、Cをドープさせる。 Thereafter, in the first step, 20 to 80 layers of a laminated film in which, for example, a GaN layer with a thickness of 5 to 100 nm and an AlN layer with a thickness of 1 to 10 nm are laminated are stacked on the AlN layer. A buffer layer is formed. The buffer layer 14 is not limited to this configuration, and may be variously modified depending on the material such as the channel layer 18 and other conditions. Further, in the first step, the high resistance layer 16 is epitaxially grown on the buffer layer 14 using TMG as a raw material, and C is doped.
 次に、第1工程では、トリメチルガリウム(TMG)を300cm/min、アンモニアを12リットル/minの流量で高抵抗層16の上に導入して、GaN層からなるチャネル層18をエピタキシャル成長させる。チャネル層18は、電子走行層として機能する。チャネル層18の成長時間は200secであり、チャネル層18の膜厚は300nmであった。 Next, in the first step, trimethylgallium (TMG) is introduced onto the high resistance layer 16 at a flow rate of 300 cm 3 / min and ammonia is 12 liters / min, and the channel layer 18 made of a GaN layer is epitaxially grown. The channel layer 18 functions as an electron transit layer. The growth time of the channel layer 18 was 200 sec, and the film thickness of the channel layer 18 was 300 nm.
 次に、第1工程では、TMAを50cm/min、TMGを100cm/min、及びアンモニアを12リットル/minの流量で導入し、Al0.3Ga0.7N層からなるバリア層20のエピタキシャル成長を行った。バリア層20は、電子供給層として機能する。バリア層20の成長時間は40secであり、バリア層20の膜厚は30nmである。 Next, in the first step, TMA and 50 cm 3 / min, TMG and 100 cm 3 / min, and ammonia was introduced at a flow rate 12 liter / min, a barrier layer 20 made of Al 0.3 Ga 0.7 N layer Epitaxial growth was performed. The barrier layer 20 functions as an electron supply layer. The growth time of the barrier layer 20 is 40 sec, and the thickness of the barrier layer 20 is 30 nm.
 次に、第1工程では、TMGを300cm/min、アンモニアを12リットル/minの流量でバリア層20の上に導入してGaN層からなるアンドープキャップ層22をエピタキシャル成長させる。アンドープキャップ層22の成長時間は40secであり、アンドープキャップ層22の膜厚は30nmである。 Next, in the first step, TMG is introduced onto the barrier layer 20 at a flow rate of 300 cm 3 / min and ammonia is 12 liter / min to epitaxially grow the undoped cap layer 22 made of a GaN layer. The growth time of the undoped cap layer 22 is 40 sec, and the film thickness of the undoped cap layer 22 is 30 nm.
 さらに、第1工程では、TMGを300cm/min、アンモニアを12リットル/min、及びビスシクロペンタジエニルマグネシウムを300cm/minの流量で導入してp-GaN層からなるp型キャップ層24をエピタキシャル成長させる。p型キャップ層24の成長時間は40secであり、p型キャップ層24の膜厚は20nmである。第工程では、その後、p層の活性化アニールをするため、窒素雰囲気、800℃で5分程度アニールを実施する。 Further, in the first step, a p-type cap layer 24 made of a p-GaN layer is introduced by introducing TMG at a flow rate of 300 cm 3 / min, ammonia at 12 liters / min, and biscyclopentadienyl magnesium at a flow rate of 300 cm 3 / min. Is epitaxially grown. The growth time of the p-type cap layer 24 is 40 sec, and the film thickness of the p-type cap layer 24 is 20 nm. In the second step, in order to perform activation annealing of the p layer, annealing is performed at 800 ° C. for about 5 minutes in a nitrogen atmosphere.
 2)第2工程について図3を参照して説明する。 2) The second step will be described with reference to FIG.
 次に、第2工程では、塩素ガスなどを用いて素子分離のためのアイソレーションメサ形成を実施する。その後、p型キャップ層24及びアンドープキャップ層22をレジストなどでマスクし、バリア層20の表面が露出するまで塩素ガスなどを用いて、ドライエッチングを行う。このとき、フッ素系のガスを混合する、あるいは酸素系のガスを混合するなどして、選択的にエッチングを行うことで、良好な再現性・歩留まりの素子形成が実現できる。第2工程では、その際に、ベース電極34を形成するための層として島状に残した部分の内側に開口部40を同時に形成する。開口部40は、p型キャップ層24及びアンドープキャップ層22に電流の流れる方向(横方向)と並行にストライプ状に形成しておき、将来的にベース電極34と接触するリセスエッチング部を形成する。なお、図3では説明の便宜上、開口部40を図示している。 Next, in the second step, an isolation mesa is formed for element isolation using chlorine gas or the like. Thereafter, the p-type cap layer 24 and the undoped cap layer 22 are masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed. At this time, element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas. In the second step, the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time. The opening 40 is formed in a stripe shape in parallel with the direction of current flow (lateral direction) in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future. . In FIG. 3, the opening 40 is shown for convenience of explanation.
 リセスエッチング部は少なくともp型キャップ層24がエッチング除去されていれば良く、望ましくはアンドープキャップ層22を除去し、さらに望ましくは少なくともバリア層20の表面までエッチング除去されていることが求められる。また、仮にバリア層20の表面よりもエッチングが進んでいてもキャップ層22(2DHG層)が露出されることによって、より低接触比抵抗が得られるため、望ましい。なお、バリア層20を完全に除去してしまうと後に形成するベース電極34とチャネル層18(2DEG層)とが接触することになるため、接触しない場合と比べると、良好な電気特性が得られなくなってしまう。よって、バリア層20は完全に除去しないことが望ましい。 It is sufficient that at least the p-type cap layer 24 is removed by etching in the recess etching portion, preferably the undoped cap layer 22 is removed, and more preferably at least the surface of the barrier layer 20 is removed by etching. Further, even if the etching proceeds more than the surface of the barrier layer 20, it is desirable because the cap layer 22 (2DHG layer) is exposed to obtain a lower contact specific resistance. If the barrier layer 20 is completely removed, the base electrode 34 to be formed later and the channel layer 18 (2DEG layer) are in contact with each other. Therefore, better electrical characteristics can be obtained than in the case of no contact. It will disappear. Therefore, it is desirable not to completely remove the barrier layer 20.
 またストライプ状の開口部40の開口幅Wは少なくとも0.1μm以上あればよく、また少なくとも1箇所でも開口部40があれば、本発明の効果が発揮される。 The opening width W of the stripe-shaped opening 40 may be at least 0.1 μm or more, and if there is at least one opening 40, the effect of the present invention is exhibited.
 3)ソース電極30及びドレイン電極32を形成する第3工程について図4を参照して説明する。 3) A third step of forming the source electrode 30 and the drain electrode 32 will be described with reference to FIG.
 次に、第3工程では、塩素ガスなどを用いてゲート電極36を形成する領域のみバリア層20をエッチングにより除去する。その後、第3工程では、ゲート絶縁膜である誘電体膜26としてSiOを40nm形成する。SiOの誘電体膜26は、SiHガスとNOガスを用いてPCVDなどにより形成する。手法はPECVDでもよいし、APCVDでもよい。その後、第3工程では、レジストなどを用いてソース電極30とドレイン電極32を形成すべき領域を開口してバリア層20の表面を表出させる。表出させた領域には、Ti、AlとSiの合金膜、及びWを順次蒸着してソース電極30とドレイン電極32をリフトオフ法などにより、形成する。 Next, in the third step, the barrier layer 20 is removed by etching only in the region where the gate electrode 36 is formed using chlorine gas or the like. Thereafter, in a third step, 40 nm of SiO 2 is formed as the dielectric film 26 which is a gate insulating film. The dielectric film 26 of SiO 2 is formed by PCVD or the like using SiH 4 gas and N 2 O gas. The method may be PECVD or APCVD. Thereafter, in a third step, a region where the source electrode 30 and the drain electrode 32 are to be formed is opened using a resist or the like to expose the surface of the barrier layer 20. In the exposed region, Ti, Al and Si alloy film, and W are sequentially deposited to form the source electrode 30 and the drain electrode 32 by a lift-off method or the like.
 4)ベース電極34を形成する第4工程について図5を参照して説明する。 4) A fourth step of forming the base electrode 34 will be described with reference to FIG.
 次に、第4工程では、レジストなどによりパターニングを行って、ベース電極34を形成すべき領域に、レジストなどを用いて開口を設けたパターニングをし、Ni/Au(60nm/40nm)を蒸着してベース電極34を形成した。ベース電極34は、さらに酸素雰囲気あるいは、酸素-窒素混合雰囲気において、500℃~600℃でアニールし、形成する。 Next, in the fourth step, patterning is performed by using a resist or the like, patterning is performed by providing an opening using a resist or the like in a region where the base electrode 34 is to be formed, and Ni / Au (60 nm / 40 nm) is deposited. Thus, the base electrode 34 was formed. The base electrode 34 is further formed by annealing at 500 ° C. to 600 ° C. in an oxygen atmosphere or an oxygen-nitrogen mixed atmosphere.
 ベース電極34は、開口部40を覆うように形成される。開口部40の側面では、2DHG層のエピタキシャル成長面と異なる面が露出されているため、このようにベース電極34を形成することによりベース電極34と2DHG層とが電気的に接続される。 The base electrode 34 is formed so as to cover the opening 40. Since the surface different from the epitaxial growth surface of the 2DHG layer is exposed on the side surface of the opening 40, the base electrode 34 and the 2DHG layer are electrically connected by forming the base electrode 34 in this way.
 ここで、開口部40(アンドープキャップ層22及びp型キャップ層24のリセスエッチング部)の形状と、ベース電極34との関係について図6A、図6B、及び図6Cを参照して説明する。図6A、図6B、及び図6Cでは、開口部40の側面40Aと、底面40Bとの角度をθとして、説明する。なお、図6A、図6B、及び図6Cでは、開口部40を覆うように形成されたベース電極34上に角度θを図示しているが、略同様であるため問題は生じない。 Here, the relationship between the shape of the opening 40 (the recess etching portion of the undoped cap layer 22 and the p-type cap layer 24) and the base electrode 34 will be described with reference to FIGS. 6A, 6B, and 6C. 6A, 6B, and 6C, the angle between the side surface 40A of the opening 40 and the bottom surface 40B will be described as θ. 6A, 6B, and 6C, the angle θ is illustrated on the base electrode 34 formed so as to cover the opening 40. However, since the angle θ is substantially the same, no problem occurs.
 図6Aに示すように、角度θが90°程度の場合は、ベース電極34の密着性が良好になる。一方、図6Bに示すように、角度θが90°よりも小さい場合は、側面40Aでは、形成されるベース電極34が他に比べて薄くなることがある。そのため、角度θが90°よりも大幅に小さい場合等、側面40Aでは、ベース電極34が途切れてしまう懸念が生じる。また、図6Cに示すように、角度θが90°よりも大きい場合、ベース電極34の密着性は良好になるが、2DHGが薄まる懸念が生じる。このような観点から、開口部40の角度θは、45°以上、かつ175°以下が好ましく、より好ましくは、90°以上、かつ150°以下である。 As shown in FIG. 6A, when the angle θ is about 90 °, the adhesion of the base electrode 34 is improved. On the other hand, as shown in FIG. 6B, when the angle θ is smaller than 90 °, the base electrode 34 formed on the side surface 40A may be thinner than others. Therefore, there is a concern that the base electrode 34 is interrupted on the side surface 40A, such as when the angle θ is significantly smaller than 90 °. Further, as shown in FIG. 6C, when the angle θ is larger than 90 °, the adhesion of the base electrode 34 is improved, but there is a concern that 2DHG may be thinned. From such a viewpoint, the angle θ of the opening 40 is preferably 45 ° or more and 175 ° or less, and more preferably 90 ° or more and 150 ° or less.
 5)ゲート電極36を形成する第5工程について説明する。 5) A fifth step for forming the gate electrode 36 will be described.
 次に、第5工程では、レジストなどによりパターニングを行って、ゲート電極36を形成すべき領域に、レジストなどを用いて開口部を設けたパターニングをし、NiあるいはTiなどを蒸着してゲート電極36を形成した。なお、ゲート電極36はポリシリコンなどを用いてもよい。その結果、図1に示した電界効果トランジスタ10が製造される。 Next, in the fifth step, patterning is performed using a resist or the like, patterning is performed in which an opening is formed using a resist or the like in a region where the gate electrode 36 is to be formed, and Ni or Ti or the like is evaporated to form a gate electrode. 36 was formed. The gate electrode 36 may be made of polysilicon or the like. As a result, the field effect transistor 10 shown in FIG. 1 is manufactured.
 [第2の実施例]
 図7には、本実施例の概略構成の一例を示す概略構成図を示す。図7には、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。なお、第2の実施例は、第1の実施例と略同様の構成、及び工程を有するため、略同一部分には同一符号を付し、詳細な説明を省略する。
[Second Embodiment]
In FIG. 7, the schematic block diagram which shows an example of schematic structure of a present Example is shown. FIG. 7 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the second embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
 本実施例の電界効果トランジスタ10と、第1の実施例の電界効果トランジスタ10とでは、図7の平面図(1)に示すように、p型キャップ層24及びアンドープキャップ層22の形状(上面からみた形状)が異なっている。 In the field effect transistor 10 of this example and the field effect transistor 10 of the first example, as shown in the plan view (1) of FIG. 7, the shapes (upper surface) of the p-type cap layer 24 and the undoped cap layer 22 are shown. The shape seen from) is different.
 本実施例の電界効果トランジスタ10では、アンドープキャップ層22及びp型キャップ層24がゲート電極36側からドレイン電極32側に向けて、バリア層20と接する面積が小さくなるように形成されている。p型キャップ層24を残す部分(面積が小さくなった先端部)は、ドレイン電極32と0.1μm以上隔絶されていればよく、望ましくはゲート電極36-ドレイン電極32間の1/3以上の間隔が空いていることが望ましい。例えば、p型キャップ層24を残す部分は、ゲート電極36-ドレイン電極32間隔が12μmであれば、少なくとも4μm程度であればよい。 In the field effect transistor 10 of this example, the undoped cap layer 22 and the p-type cap layer 24 are formed so that the area in contact with the barrier layer 20 decreases from the gate electrode 36 side to the drain electrode 32 side. The portion where the p-type cap layer 24 is left (the tip portion where the area is reduced) may be separated from the drain electrode 32 by 0.1 μm or more, and preferably 1/3 or more between the gate electrode 36 and the drain electrode 32. It is desirable that there is an interval. For example, the portion where the p-type cap layer 24 is left may be at least about 4 μm if the distance between the gate electrode 36 and the drain electrode 32 is 12 μm.
 次に、本実施例の電界効果トランジスタ10の製造方法の一例について説明する。 Next, an example of a method for manufacturing the field effect transistor 10 of this embodiment will be described.
 まず、本実施例の第1工程では、第1の実施例の第1工程の要領でエピ基板(基板12、バッファ層14、高抵抗層16、チャネル層18、バリア層20、キャップ層22、及びキャップ層24が積層された基板)を準備する。 First, in the first step of the present embodiment, the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
 その後、本実施例の第2工程では、準備したエピ基板に、塩素ガスなどを用いて素子分離のためのアイソレーションメサ形成を実施する。その後、第2工程では、ベース電極34部分をレジストなどでマスクし、バリア層20の表面が露出するまで塩素ガスなどを用いて、ドライエッチングを行う。このとき、フッ素系のガスを混合する、あるいは酸素系のガスを混合するなどして、選択的にエッチングを行うことで、良好な再現性・歩留まりの素子形成が実現できる。その際に、第2工程では、ベース電極34を形成するための層として島状に残した部分の内側にゲート電極36からドレイン電極32側に向かって、エッチングする面積が相対的に大きくなるようなパターン(上記参照)にしておき、将来的にベース電極34と接触するリセスエッチング部(開口部40)を形成する。 Thereafter, in the second step of this embodiment, isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like. Thereafter, in the second step, the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed. At this time, element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas. At that time, in the second step, the area to be etched is relatively increased from the gate electrode 36 toward the drain electrode 32 inside the portion left as an island as a layer for forming the base electrode 34. Then, a recess etching portion (opening 40) that comes into contact with the base electrode 34 is formed in the future.
 ここで、p型キャップ層24を残す部分は、ドレイン電極32と0.1μm以上隔絶されていればよく、望ましくはゲート電極36-ドレイン電極32間の1/3以上の間隔が空いていることが望ましい。例えば、p型キャップ層24を残す部分は、ゲート電極36-ドレイン電極32間隔が12μmであれば、少なくとも4μm程度であればよい。 Here, the portion where the p-type cap layer 24 is left only needs to be separated from the drain electrode 32 by 0.1 μm or more, and preferably a space of 1/3 or more between the gate electrode 36 and the drain electrode 32 is left. Is desirable. For example, the portion where the p-type cap layer 24 is left may be at least about 4 μm if the distance between the gate electrode 36 and the drain electrode 32 is 12 μm.
 その後、第1の実施例の第3工程~第5工程までの要領で、それぞれゲートリセスエッチング、ソース電極30、ドレイン電極32、ベース電極34、及びゲート電極36を形成することにより、図7に示した電界効果トランジスタ10が製造される。 Thereafter, in the manner from the third step to the fifth step of the first embodiment, the gate recess etching, the source electrode 30, the drain electrode 32, the base electrode 34, and the gate electrode 36 are formed, respectively. The illustrated field effect transistor 10 is manufactured.
 本実施例の電界効果トランジスタ10では、ゲート電極36からドレイン電極32側に向かって、徐々にp型キャップ層24及びアンドープキャップ層22の面積を低減させることで、平均的な二次元ホールガスの濃度を少しずつ低減させられる。このことにより、本実施例の電界効果トランジスタ10では、p型キャップ層24及びアンドープキャップ層22のドレイン電極32側端部への電界集中を抑えることができるため、以下の第3の実施例に比べて、よりリーク電流や耐圧を改善できる。また、本実施例の電界効果トランジスタ10では、電流コラプスについても効果的に抑制が可能である。 In the field effect transistor 10 of the present embodiment, the area of the p-type cap layer 24 and the undoped cap layer 22 is gradually reduced from the gate electrode 36 toward the drain electrode 32 side, so that the average two-dimensional hole gas is reduced. The concentration can be reduced little by little. As a result, in the field effect transistor 10 of this embodiment, the electric field concentration at the end of the p-type cap layer 24 and the undoped cap layer 22 on the drain electrode 32 side can be suppressed. Compared with this, leakage current and breakdown voltage can be improved. Further, in the field effect transistor 10 of the present embodiment, the current collapse can be effectively suppressed.
 [第3の実施例]
 図8には、本実施例の概略構成の一例を示す概略構成図を示す。図8には、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。なお、第3の実施例は、第1の実施例と略同様の構成、及び工程を有するため、略同一部分には同一符号を付し、詳細な説明を省略する。
[Third embodiment]
In FIG. 8, the schematic block diagram which shows an example of schematic structure of a present Example is shown. FIG. 8 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the third embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
 本実施例の電界効果トランジスタ10は、第1の実施例の電界効果トランジスタ10と異なり、図8の断面図(2)に示すように、ベース電極34とゲート電極36とが同電位になるように、すなわち短絡するように形成されている。 Unlike the field effect transistor 10 of the first embodiment, the field effect transistor 10 of the present embodiment is such that the base electrode 34 and the gate electrode 36 have the same potential as shown in the sectional view (2) of FIG. That is, it is formed so as to be short-circuited.
 このようにベース電極34とゲート電極36とを短絡させることで、オン特性としては、第1の実施例と同様のオン抵抗が得られる。また、ドレイン電流については、p型層を通してホール注入されることによって、電導度変調が起きるため、第1の実施例に比べて20%程度大きなドレイン電流が得られる。また、オフ特性としては、第1の実施例と同じく電界緩和効果が得られるため、同程度の耐圧とリーク電流を得ることができる。作製上は、ベース電極34とゲート電極36とを短絡させられれば、一つの電極として振る舞うため、電気的な制御はソース、ゲート、及びドレインの3端子で行える。本実施例の電界効果トランジスタ10では、ベース電極という端子を取る必要がなくなるため、素子サイズをよりコンパクトにできる。 By short-circuiting the base electrode 34 and the gate electrode 36 in this way, the on-resistance similar to that of the first embodiment can be obtained as the on-characteristic. As for the drain current, conductivity modulation occurs when holes are injected through the p-type layer, so that a drain current that is about 20% larger than that of the first embodiment can be obtained. Further, as the off characteristics, since the electric field relaxation effect can be obtained as in the first embodiment, the same breakdown voltage and leakage current can be obtained. In manufacturing, if the base electrode 34 and the gate electrode 36 are short-circuited, they behave as one electrode, so that electrical control can be performed with three terminals of a source, a gate, and a drain. In the field effect transistor 10 of the present embodiment, it is not necessary to take a terminal called a base electrode, so that the element size can be made more compact.
 本実施例の電界効果トランジスタ10の製造方法の一例について説明する。 An example of a method for manufacturing the field effect transistor 10 of this embodiment will be described.
 まず、本実施例の第1工程では、第1の実施例の第1工程の要領でエピ基板(基板12、バッファ層14、高抵抗層16、チャネル層18、バリア層20、キャップ層22、及びキャップ層24が積層された基板)を準備する。 First, in the first step of the present embodiment, the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
 その後、本実施例の第2工程は、準備したエピ基板に、塩素ガスなどを用いて素子分離のためのアイソレーションメサ形成を実施する。その後、第2工程では、ベース電極34部分をレジストなどでマスクし、バリア層20の表面が露出するまで塩素ガスなどを用いて、ドライエッチングを行う。このとき、フッ素系のガスを混合する、あるいは酸素系のガスを混合するなどして、選択的にエッチングを行うことで、良好な再現性・歩留まりの素子形成が実現できる。第2工程では、その際に、ベース電極34を形成するための層として島状に残した部分の内側に開口部40を同時に形成する。開口部40は、p型キャップ層24およびアンドープキャップ層22に電流の流れる方向と並行にストライプ状に形成しておき、将来的にベース電極34と接触するリセスエッチング部を形成する。 Thereafter, in the second step of the present embodiment, isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like. Thereafter, in the second step, the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed. At this time, element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas. In the second step, the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time. The openings 40 are formed in a stripe shape in parallel with the direction of current flow in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future.
 その後、第1の実施例の第3工程、及び第4工程までの要領で、それぞれゲートリセスエッチング、ソース電極30、ドレイン電極32、及びベース電極34を形成する。 Thereafter, the gate recess etching, the source electrode 30, the drain electrode 32, and the base electrode 34 are formed in the manner up to the third step and the fourth step of the first embodiment, respectively.
 その後、本実施例の第5工程では、ベース電極34をまたぐようにゲート電極36をパターニングによって形成する。これにより、図8に示した電界効果トランジスタ10が製造される。 Thereafter, in the fifth step of this embodiment, the gate electrode 36 is formed by patterning so as to straddle the base electrode 34. Thereby, the field effect transistor 10 shown in FIG. 8 is manufactured.
 [第4の実施例]
 図9には、本実施例の概略構成の一例を示す概略構成図を示す。図9には、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。なお、第4の実施例は、第1の実施例と略同様の構成、及び工程を有するため、略同一部分には同一符号を付し、詳細な説明を省略する。
[Fourth embodiment]
In FIG. 9, the schematic block diagram which shows an example of schematic structure of a present Example is shown. FIG. 9 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the fourth embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
 本実施例の窒化物系化合物半導体素子は、第1の実施例のソース電極30、ドレイン電極32、及びゲート電極36に替わり、カソード電極62及びアノード電極64を備えたダイオード60として構成されている。 The nitride compound semiconductor device of this embodiment is configured as a diode 60 having a cathode electrode 62 and an anode electrode 64 instead of the source electrode 30, the drain electrode 32, and the gate electrode 36 of the first embodiment. .
 本実施例のダイオード60の製造方法の一例について説明する。 An example of a manufacturing method of the diode 60 of this embodiment will be described.
 まず、本実施例の第1工程では、第1の実施例の第1工程の要領でエピ基板(基板12、バッファ層14、高抵抗層16、チャネル層18、バリア層20、キャップ層22、及びキャップ層24が積層された基板)を準備する。 First, in the first step of the present embodiment, the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
 その後、本実施例の第2工程は、準備したエピ基板に、塩素ガスなどを用いて素子分離のためのアイソレーションメサ形成を実施する。その後、第2工程では、ベース電極34部分をレジストなどでマスクし、バリア層20の表面が露出するまで塩素ガスなどを用いて、ドライエッチングを行う。このとき、フッ素系のガスを混合する、あるいは酸素系のガスを混合するなどして、選択的にエッチングを行うことで、良好な再現性・歩留まりの素子形成が実現できる。第2工程では、その際に、ベース電極34を形成するための層として島状に残した部分の内側に開口部40を同時に形成する。開口部40は、p型キャップ層24およびアンドープキャップ層22に電流の流れる方向と並行にストライプ状に形成しておき、将来的にベース電極34と接触するリセスエッチング部を形成する。 Thereafter, in the second step of the present embodiment, isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like. Thereafter, in the second step, the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed. At this time, element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas. In the second step, the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time. The openings 40 are formed in a stripe shape in parallel with the direction of current flow in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future.
 その後、本実施例の第3工程では、レジストなどを用いてカソード電極62を形成すべき領域を開口してバリア層20の表面を表出させる。表出させた領域には、Ti、AlとSiの合金膜、及びWを順次蒸着してカソード電極62をリフトオフ法などにより、形成する。 Thereafter, in the third step of this embodiment, a region where the cathode electrode 62 is to be formed is opened using a resist or the like to expose the surface of the barrier layer 20. In the exposed region, Ti, an alloy film of Al and Si, and W are sequentially deposited, and the cathode electrode 62 is formed by a lift-off method or the like.
 次に、ベース電極34を形成するための本実施例の第4工程では、レジストなどによりパターニングを行って、ベース電極34を形成すべき領域に、レジストなどを用いて開口部を設けたパターニングをし、Ni/Au(60nm/40nm)を蒸着してベース電極34を形成する。ベース電極34は、さらに酸素雰囲気あるいは、酸素-窒素混合雰囲気で500℃~600℃でアニールし、形成する。 Next, in the fourth step of the present embodiment for forming the base electrode 34, patterning is performed using a resist or the like, and patterning is performed in which an opening is formed using a resist or the like in a region where the base electrode 34 is to be formed. Then, Ni / Au (60 nm / 40 nm) is deposited to form the base electrode 34. The base electrode 34 is further formed by annealing at 500 ° C. to 600 ° C. in an oxygen atmosphere or an oxygen-nitrogen mixed atmosphere.
 その後、本実施例の第5工程では、レジストなどによりパターニングを行って、アノード電極64を形成すべき領域に、レジストなどを用いて開口部を設けたパターニングをし、NiあるいはPdなどを蒸着してアノード電極Aを形成する。なお、アノード電極64はポリシリコンなどを用いてもよい。その結果、図9に示したダイオードが製造される。 Thereafter, in the fifth step of the present embodiment, patterning is performed using a resist or the like, patterning is performed by providing an opening using a resist or the like in a region where the anode electrode 64 is to be formed, and Ni or Pd is deposited. Thus, the anode electrode A is formed. The anode electrode 64 may be made of polysilicon or the like. As a result, the diode shown in FIG. 9 is manufactured.
 [第5の実施例]
 図10には、本実施例の概略構成の一例を示す概略構成図を示す。図10には、上面から見た概略の平面図(1)、平面図のB-B線断面図(2)、及び平面図のC-C線断面図(3)を示す。なお、第5の実施例は、第1の実施例と略同様の構成、及び工程を有するため、略同一部分には同一符号を付し、詳細な説明を省略する。
[Fifth embodiment]
In FIG. 10, the schematic block diagram which shows an example of schematic structure of a present Example is shown. FIG. 10 shows a schematic plan view (1) viewed from above, a cross-sectional view taken along line BB of the plan view (2), and a cross-sectional view taken along line CC of the plan view (3). Since the fifth embodiment has substantially the same configuration and process as the first embodiment, the same reference numerals are given to substantially the same parts, and detailed description thereof is omitted.
 本実施例では、第1の実施例の電界効果トランジスタ10と異なり、本発明の窒化物系化合物半導体素子をノーマリオン型の電界効果トランジスタとして構成した場合について説明する。 In this embodiment, unlike the field effect transistor 10 of the first embodiment, a case where the nitride compound semiconductor element of the present invention is configured as a normally-on type field effect transistor will be described.
 本実施例の電界効果トランジスタ70の製造方法の一例について説明する。 An example of a method for manufacturing the field effect transistor 70 of this embodiment will be described.
 まず、本実施例の第1工程では、第1の実施例の第1工程の要領でエピ基板(基板12、バッファ層14、高抵抗層16、チャネル層18、バリア層20、キャップ層22、及びキャップ層24が積層された基板)を準備する。 First, in the first step of the present embodiment, the epi substrate (substrate 12, buffer layer 14, high resistance layer 16, channel layer 18, barrier layer 20, cap layer 22, And a substrate on which the cap layer 24 is laminated).
 その後、本実施例の第2工程は、準備したエピ基板に、塩素ガスなどを用いて素子分離のためのアイソレーションメサ形成を実施する。その後、第2工程では、ベース電極34を形成するための領域をレジストなどでマスクし、バリア層20の表面が露出するまで塩素ガスなどを用いて、ドライエッチングを行う。このとき、フッ素系のガスを混合する、あるいは酸素系のガスを混合するなどして、選択的にエッチングを行うことで、良好な再現性・歩留まりの素子形成が実現できる。第2工程では、その際に、ベース電極34を形成するための層として島状に残した部分の内側に開口部40を同時に形成する。開口部40は、p型キャップ層24およびアンドープキャップ層22に電流の流れる方向と並行にストライプ状に形成しておき、将来的にベース電極34と接触するリセスエッチング部を形成する。 Thereafter, in the second step of the present embodiment, isolation mesa formation for element isolation is performed on the prepared epitaxial substrate using chlorine gas or the like. Thereafter, in the second step, a region for forming the base electrode 34 is masked with a resist or the like, and dry etching is performed using chlorine gas or the like until the surface of the barrier layer 20 is exposed. At this time, element formation with good reproducibility and yield can be realized by performing selective etching by mixing a fluorine-based gas or an oxygen-based gas. In the second step, the opening 40 is simultaneously formed inside the portion left as an island as a layer for forming the base electrode 34 at that time. The openings 40 are formed in a stripe shape in parallel with the direction of current flow in the p-type cap layer 24 and the undoped cap layer 22 to form a recess etching portion that comes into contact with the base electrode 34 in the future.
 次に、本実施例の第3工程では、第1の実施例の第3工程の要領で、ソース電極30及びドレイン電極32を形成する。なお、本実施例の電界効果トランジスタ70は、ノーマリオンであるため、第1の実施例と異なり、ゲートリセス部は形成しない。 Next, in the third step of the present embodiment, the source electrode 30 and the drain electrode 32 are formed in the same manner as the third step of the first embodiment. Since the field effect transistor 70 of this embodiment is normally on, a gate recess is not formed unlike the first embodiment.
 次に、ベース電極34を形成する本実施例の第4工程では、レジストなどによりパターニングを行って、ベース電極34を形成すべき箇所に、レジストなどを用いて開口部を設けたパターニングをし、Ni/Au(60nm/40nm)を蒸着してベース電極34を形成する。ベース電極34は、さらに酸素雰囲気あるいは、酸素-窒素混合雰囲気において、500℃~600℃でアニールし、形成する。 Next, in the fourth step of the present embodiment for forming the base electrode 34, patterning is performed using a resist or the like, and patterning is performed by providing an opening using a resist or the like at a position where the base electrode 34 is to be formed. Ni / Au (60 nm / 40 nm) is deposited to form the base electrode 34. The base electrode 34 is further formed by annealing at 500 ° C. to 600 ° C. in an oxygen atmosphere or an oxygen-nitrogen mixed atmosphere.
 さらに、第3工程では、レジストなどによりパターニングを行って、ゲート電極36を形成すべき領域に、レジストなどを用いて開口部を設けたパターニングをし、NiあるいはTiなどを蒸着してゲート電極36を形成する。なお、ゲート電極36はポリシリコンなどを用いてもよい。また、ゲート電極36の形成される領域の一部の誘電体膜26を除去して、ショットキー接合するゲート部も形成することができる。その結果、図10に示した電界効果トランジスタ70が製造される。 Further, in the third step, patterning is performed using a resist or the like, patterning is performed in which an opening is formed using a resist or the like in a region where the gate electrode 36 is to be formed, and Ni or Ti or the like is evaporated to form the gate electrode 36. Form. The gate electrode 36 may be made of polysilicon or the like. In addition, a part of the dielectric film 26 in a region where the gate electrode 36 is formed can be removed to form a gate portion for Schottky junction. As a result, the field effect transistor 70 shown in FIG. 10 is manufactured.
 以上、上述の各実施例で説明したように、本発明による窒化物系化合物半導体素子では、2DHG層を有する、アンドープキャップ層22及びp型キャップ層24にエッチングによって部分的にリセス構造(開口部40)をつくりこみ、2DHG層のエピタキシャル成長面と異なる面が露出された開口部40を覆うようにベース電極34が形成されている。そのため、本発明による窒化物系化合物半導体素子では、ベース電極34とオーミックコンタクトがとりやすくなる。本発明による窒化物系化合物半導体素子では、当該構成により、2DHGのホールを効果的に排出できるようになる。また、本発明による窒化物系化合物半導体素子では、チャネル層18をアンドープ層とすることで、順方向特性や逆方向特性を維持しながら電流コラプスを抑制し、短絡耐量を維持できる。 As described above, in the nitride-based compound semiconductor device according to the present invention as described in the above embodiments, the undoped cap layer 22 and the p-type cap layer 24 having the 2DHG layer are partially recessed by etching. The base electrode 34 is formed so as to cover the opening 40 where the surface different from the epitaxial growth surface of the 2DHG layer is exposed. Therefore, the nitride-based compound semiconductor device according to the present invention can easily make ohmic contact with the base electrode 34. In the nitride-based compound semiconductor device according to the present invention, 2DHG holes can be effectively discharged by this configuration. In the nitride-based compound semiconductor device according to the present invention, the channel layer 18 is an undoped layer, so that current collapse can be suppressed and the short-circuit tolerance can be maintained while maintaining forward characteristics and reverse characteristics.
 例えば、図11に示した従来の窒化物系化合物半導体素子ではオン抵抗が5mΩcmの素子において、電流コラプスとしてオン抵抗の増大率が600Vで1.5倍以上に悪化してしまったものが、本実施例の電界効果トランジスタ10では、1.1倍以下まで改善することが確認できた。また、ホールの排出を改善できたことで、負荷短絡耐量も向上し、図11に示した従来の窒化物系化合物半導体素子では、ほとんど耐量がなかったものが、本実施例の電界効果トランジスタ10では、100A/cm、600Vでの耐量が700mJまで改善できた。 For example, in the conventional nitride-based compound semiconductor device shown in FIG. 11, in the device having an on-resistance of 5 mΩcm 2 , the increase rate of the on-resistance as a current collapse deteriorated to 1.5 times or more at 600 V. It was confirmed that the field effect transistor 10 of this example was improved to 1.1 times or less. Further, since the discharge of holes can be improved, the load short-circuit withstand capability is also improved, and the conventional nitride-based compound semiconductor device shown in FIG. Then, the withstand voltage at 100 A / cm 2 and 600 V was improved to 700 mJ.
 また、ノーマリオフ型の素子としては、ハイブリッドMOSHFET構造が望ましい。この構造では、ゲート電極36のリセスエッチングによってゲート電極36下の2DEGキャリアを除去することができる。このエッチングおよび設計条件は2DHGの設計パラメータに影響を与えずに独立に設計することが出来るという効果がある。もちろん、バリア層20を完全除去せずに、数nm残してゲート絶縁膜である誘電体膜26を形成する方式にも適用できることはいうまでもないことである。 Also, as a normally-off type element, a hybrid MOSHFET structure is desirable. In this structure, 2DEG carriers under the gate electrode 36 can be removed by recess etching of the gate electrode 36. This etching and design conditions have the effect that they can be designed independently without affecting the design parameters of 2DHG. Of course, it is needless to say that the present invention can also be applied to a method of forming the dielectric film 26, which is a gate insulating film, without removing the barrier layer 20 and leaving several nm.
 そのため、本発明による窒化物系化合物半導体素子は、高耐圧のインバータやコンバータなどへの応用が可能になる。以上のことより、高耐圧で、かつ高い信頼性をもつGaN系電界効果トランジスタの実現が可能である。 Therefore, the nitride-based compound semiconductor device according to the present invention can be applied to a high voltage inverter or converter. From the above, it is possible to realize a GaN field effect transistor having a high breakdown voltage and high reliability.
 なお、上記各実施例で示した開口部40の形状等は具体的一例であり、これに限定されるものではない。上述したように、本発明による窒化物系化合物半導体素子では、少なくとも1箇所でも開口部を備えていれば、備えていない場合に比べて、オーミックコンタクトがとりやすくなるため、ホールを効果的に排出することができるという効果が得られる。例えば、開口部40は、ストライプ状ではなく、円形状等の他の形状であってもよい。また第2の実施例では、ゲート電極36側からドレイン電極32側に向けてアンドープキャップ層22およびp型キャップ層24の面積が小さくなるように開口部40を形成しているが、これに限らない。例えば、開口部40は、ドレイン側に向けて当該面積が同じ(アルファベットの「E」形状)ように形成してもよい。また、アンドープキャップ層22及びp型キャップ層24は、複数、間隔(開口部40に相当)を開けてストライプ状に形成してもよい。本発明の主旨を逸脱しない限り、このように、種々の変形が可能であることはいうまでもない。 It should be noted that the shape of the opening 40 shown in each of the above embodiments is a specific example, and is not limited to this. As described above, in the nitride-based compound semiconductor device according to the present invention, if at least one opening is provided, ohmic contact can be easily obtained compared to the case where no opening is provided. The effect that it can do is acquired. For example, the opening 40 may have other shapes such as a circular shape instead of the stripe shape. In the second embodiment, the opening 40 is formed so that the areas of the undoped cap layer 22 and the p-type cap layer 24 are reduced from the gate electrode 36 side toward the drain electrode 32 side. Absent. For example, the opening 40 may be formed to have the same area (alphabet “E” shape) toward the drain side. Further, the undoped cap layer 22 and the p-type cap layer 24 may be formed in stripes with a plurality of intervals (corresponding to the opening 40). Needless to say, various modifications can be made without departing from the gist of the present invention.
 なお、上記各実施例では、基板12をシリコン基板とした場合について例示したが、シリコン基板以外のSiC基板、サファイア基板、GaN基板、MgO基板、及びZnO基板上など、GaNが結晶成長可能なあらゆる基板上の素子についても成り立つことは言うまでも無い。 In each of the above embodiments, the case where the substrate 12 is a silicon substrate has been exemplified. However, any substrate capable of crystal growth of GaN such as a SiC substrate other than a silicon substrate, a sapphire substrate, a GaN substrate, an MgO substrate, and a ZnO substrate can be used. Needless to say, the elements on the substrate also hold true.
 また、上述の各実施の形態で説明した窒化物系化合物半導体素子の構成、及び製造方法などは一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることはいうまでもない。 In addition, the configuration and manufacturing method of the nitride-based compound semiconductor device described in each of the above-described embodiments are examples, and it can be changed according to the situation without departing from the gist of the present invention. Not too long.
 日本出願2012-054985の開示は、その全体が参照により本明細書に取り込まれる。 The entire disclosure of the Japanese application 2012-054985 is incorporated herein by reference.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  電子走行層と、電子供給層と、該電子走行層と該電子供給層との界面に形成される二次元電子ガス層を有する第1窒化物系半導体層と、
     前記第1窒化物系半導体層上に形成されており、分極接合の界面に形成される二次元ホールガス層を有する第2窒化物系半導体層と、
     前記第2窒化物系半導体層に接して形成されており、少なくとも1箇所のエピタキシャル成長面と異なる方位をもつ面が露出された前記二次元ホールガス層に電気的に接触しているベース電極と、
     を備えた窒化物系化合物半導体素子。
    A first nitride-based semiconductor layer having an electron transit layer, an electron supply layer, and a two-dimensional electron gas layer formed at an interface between the electron transit layer and the electron supply layer;
    A second nitride based semiconductor layer formed on the first nitride based semiconductor layer and having a two-dimensional hole gas layer formed at the interface of the polarization junction;
    A base electrode formed in contact with the second nitride-based semiconductor layer and in electrical contact with the two-dimensional hole gas layer in which a surface having an orientation different from that of at least one epitaxial growth surface is exposed;
    A nitride compound semiconductor device comprising:
  2.  前記第2窒化物系半導体層は、前記二次元ホールガス層に接触する開口部を有している、請求項1に記載の窒化物系化合物半導体素子。 The nitride-based compound semiconductor element according to claim 1, wherein the second nitride-based semiconductor layer has an opening that contacts the two-dimensional hole gas layer.
  3.  前記開口部は、前記第1窒化物系半導体層の前記電子供給層の表面に至る、請求項2に記載の窒化物系化合物半導体素子。 The nitride-based compound semiconductor device according to claim 2, wherein the opening reaches a surface of the electron supply layer of the first nitride-based semiconductor layer.
  4.  前記開口部の側面と、底面とのなす角度が45°以上、175°以下であり、前記ベース電極が前記開口部を覆うように形成されている。請求項2または請求項3に記載の窒化物系化合物半導体素子。 The angle formed between the side surface and the bottom surface of the opening is 45 ° or more and 175 ° or less, and the base electrode is formed to cover the opening. The nitride-based compound semiconductor device according to claim 2 or 3.
  5.  前記開口部の側面と、底面とのなす角度が90°以上、150°以下であり、前記ベース電極が前記開口部を覆うように形成されている。請求項2または請求項3に記載の窒化物系化合物半導体素子。 The angle formed between the side surface and the bottom surface of the opening is 90 ° or more and 150 ° or less, and the base electrode is formed to cover the opening. The nitride-based compound semiconductor device according to claim 2 or 3.
  6.  ゲート電極と、
     ドレイン電極と、
     ソース電極と、
     前記ゲート電極と前記ドレイン電極との間の領域に前記第2窒化物系半導体層を含む電界緩和層と、
     を備え、ノーマリオフ動作をする電界効果トランジスタである、請求項1から請求項5のいずれか1項に記載の窒化物系化合物半導体素子。
    A gate electrode;
    A drain electrode;
    A source electrode;
    An electric field relaxation layer including the second nitride-based semiconductor layer in a region between the gate electrode and the drain electrode;
    The nitride-based compound semiconductor device according to claim 1, wherein the nitride-based compound semiconductor device is a field effect transistor that normally operates.
  7.  ゲート電極と、
     ドレイン電極と、
     ソース電極と、
     前記ゲート電極と前記ドレイン電極との間の領域に前記第2窒化物系半導体層を含む電界緩和層と、
     を備え、ノーマリオン動作をする電界効果トランジスタである、請求項1から請求項5のいずれか1項に記載の窒化物系化合物半導体素子。
    A gate electrode;
    A drain electrode;
    A source electrode;
    An electric field relaxation layer including the second nitride-based semiconductor layer in a region between the gate electrode and the drain electrode;
    The nitride-based compound semiconductor device according to claim 1, wherein the nitride-based compound semiconductor device is a field effect transistor that normally operates.
  8.  前記電界緩和層における前記二次元ホールガス層の平均濃度が、前記ゲート電極から前記ドレイン電極に向かって減少していく、請求項6または請求項7に記載の窒化物系化合物半導体素子。 The nitride compound semiconductor element according to claim 6 or 7, wherein an average concentration of the two-dimensional hole gas layer in the electric field relaxation layer decreases from the gate electrode toward the drain electrode.
  9.  前記電界緩和層が、p型キャリアを有する窒化物系半導体層を有しており、前記ゲート電極から前記ドレイン電極に向かって前記第1窒化物系半導体層に接する面積を低減させていくよう配置された、請求項8に記載の窒化物系化合物半導体素子。 The electric field relaxation layer includes a nitride-based semiconductor layer having p-type carriers, and is arranged so as to reduce an area in contact with the first nitride-based semiconductor layer from the gate electrode toward the drain electrode. The nitride compound semiconductor device according to claim 8.
  10.  アノード電極と、
     カソード電極と、
     前記アノード電極と前記カソード電極との間の領域に前記第2窒化物系半導体層を含む電界緩和層と、
     を備えたダイオードである、請求項1から請求項5のいずれか1項に記載の窒化物系化合物半導体素子。
    An anode electrode;
    A cathode electrode;
    An electric field relaxation layer including the second nitride-based semiconductor layer in a region between the anode electrode and the cathode electrode;
    The nitride-based compound semiconductor device according to claim 1, wherein the nitride-based compound semiconductor device is a diode comprising:
  11.  前記電界緩和層が、p型キャリアを有する窒化物系半導体層を有しており、前記アノード電極から前記カソード電極に向かって前記第1窒化物系半導体層に接する面積を低減させていくよう配置された、請求項10に記載の窒化物系化合物半導体素子。 The electric field relaxation layer includes a nitride-based semiconductor layer having p-type carriers, and is arranged so as to reduce an area in contact with the first nitride-based semiconductor layer from the anode electrode toward the cathode electrode. The nitride compound semiconductor device according to claim 10.
  12.  前記ソース電極または前記ゲート電極と、前記ベース電極と、が同一の電位をもつ、請求項6から請求項9のいずれか1項に記載の窒化物系化合物半導体素子。 The nitride compound semiconductor element according to any one of claims 6 to 9, wherein the source electrode or the gate electrode and the base electrode have the same potential.
  13.  前記アノード電極と、前記ベース電極と、が同一の電位をもつ、請求項10または請求項11に記載の窒化物系化合物半導体素子。 The nitride compound semiconductor device according to claim 10 or 11, wherein the anode electrode and the base electrode have the same potential.
  14.  前記ゲート電極が、前記ベース電極の少なくとも一部を覆うように形成されている、請求項12に記載の窒化物系化合物半導体素子。 The nitride-based compound semiconductor device according to claim 12, wherein the gate electrode is formed so as to cover at least a part of the base electrode.
  15.  前記アノード電極が、前記ベース電極の少なくとも一部を覆うように形成されている、請求項13に記載の窒化物系化合物半導体素子。 The nitride-based compound semiconductor element according to claim 13, wherein the anode electrode is formed so as to cover at least a part of the base electrode.
PCT/JP2013/056846 2012-03-12 2013-03-12 Nitride compound semiconductor element WO2013137267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-054985 2012-03-12
JP2012054985A JP2013191637A (en) 2012-03-12 2012-03-12 Nitride-system compound semiconductor element

Publications (1)

Publication Number Publication Date
WO2013137267A1 true WO2013137267A1 (en) 2013-09-19

Family

ID=49161173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056846 WO2013137267A1 (en) 2012-03-12 2013-03-12 Nitride compound semiconductor element

Country Status (2)

Country Link
JP (1) JP2013191637A (en)
WO (1) WO2013137267A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886683A (en) * 2018-03-22 2020-11-03 松下电器产业株式会社 Nitride semiconductor device
CN114400246A (en) * 2021-12-13 2022-04-26 晶通半导体(深圳)有限公司 Reverse conducting high mobility transistor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270572B2 (en) 2014-03-19 2018-01-31 株式会社東芝 Semiconductor device and manufacturing method thereof
JP6230456B2 (en) * 2014-03-19 2017-11-15 株式会社東芝 Semiconductor device
JP2016054250A (en) * 2014-09-04 2016-04-14 豊田合成株式会社 Semiconductor device and manufacturing method thereof
JP6701767B2 (en) 2015-09-22 2020-05-27 株式会社デンソー Semiconductor device
JP2021163888A (en) * 2020-03-31 2021-10-11 豊田合成株式会社 Semiconductor element and device
JP2021163886A (en) * 2020-03-31 2021-10-11 豊田合成株式会社 Semiconductor element and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172055A (en) * 2007-01-12 2008-07-24 Sharp Corp Nitride semiconductor device and power conversion device using it
JP2010206048A (en) * 2009-03-05 2010-09-16 Panasonic Corp Field effect transistor device
JP2011082331A (en) * 2009-10-07 2011-04-21 National Institute Of Advanced Industrial Science & Technology Semiconductor element
JP2011181934A (en) * 2010-03-02 2011-09-15 Samsung Electronics Co Ltd High electron mobility transistor exhibiting dual depletion, and method of manufacturing the same
WO2011162243A1 (en) * 2010-06-24 2011-12-29 ザ ユニバーシティ オブ シェフィールド Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172055A (en) * 2007-01-12 2008-07-24 Sharp Corp Nitride semiconductor device and power conversion device using it
JP2010206048A (en) * 2009-03-05 2010-09-16 Panasonic Corp Field effect transistor device
JP2011082331A (en) * 2009-10-07 2011-04-21 National Institute Of Advanced Industrial Science & Technology Semiconductor element
JP2011181934A (en) * 2010-03-02 2011-09-15 Samsung Electronics Co Ltd High electron mobility transistor exhibiting dual depletion, and method of manufacturing the same
WO2011162243A1 (en) * 2010-06-24 2011-12-29 ザ ユニバーシティ オブ シェフィールド Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886683A (en) * 2018-03-22 2020-11-03 松下电器产业株式会社 Nitride semiconductor device
CN111886683B (en) * 2018-03-22 2024-01-02 松下控股株式会社 Nitride semiconductor device
CN114400246A (en) * 2021-12-13 2022-04-26 晶通半导体(深圳)有限公司 Reverse conducting high mobility transistor

Also Published As

Publication number Publication date
JP2013191637A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
TWI770134B (en) Semiconductor device and manufacturing method of semiconductor device
JP5114947B2 (en) Nitride semiconductor device and manufacturing method thereof
JP4691060B2 (en) GaN-based semiconductor devices
WO2013137267A1 (en) Nitride compound semiconductor element
JP6161910B2 (en) Semiconductor device
JP5675084B2 (en) Nitride diode
US9589951B2 (en) High-electron-mobility transistor with protective diode
CN103715253B (en) Compound semiconductor device and method of manufacturing the same
JP6755892B2 (en) Semiconductor device
US11462635B2 (en) Nitride semiconductor device and method of manufacturing the same
KR20140042470A (en) Normally off high electron mobility transistor
US9680001B2 (en) Nitride semiconductor device
JP2011155221A (en) Semiconductor device and method of manufacturing the same
WO2012160757A1 (en) Schottky diode
US10141439B2 (en) Semiconductor device and method of manufacturing the same
TW201737395A (en) Semiconductor device and method for manufacturing the same
JP6343807B2 (en) Field effect transistor and manufacturing method thereof
EP3539159A1 (en) Semiconductor devices with multiple channels and three-dimensional electrodes
JP2010010412A (en) Semiconductor element, and manufacturing method thereof
JP2007088186A (en) Semiconductor device and its fabrication process
US20220359669A1 (en) Nitride semiconductor device and method of manufacturing the same
US11935947B2 (en) Enhancement mode high electron mobility transistor
JP2023133798A (en) nitride semiconductor device
JP2013135056A (en) Mis semiconductor device and manufacturing method of the same
JP2012138635A (en) Semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760871

Country of ref document: EP

Kind code of ref document: A1