WO2013136823A1 - Led点灯装置 - Google Patents

Led点灯装置 Download PDF

Info

Publication number
WO2013136823A1
WO2013136823A1 PCT/JP2013/050238 JP2013050238W WO2013136823A1 WO 2013136823 A1 WO2013136823 A1 WO 2013136823A1 JP 2013050238 W JP2013050238 W JP 2013050238W WO 2013136823 A1 WO2013136823 A1 WO 2013136823A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
voltage
bus
bus voltage
lighting device
Prior art date
Application number
PCT/JP2013/050238
Other languages
English (en)
French (fr)
Inventor
寛久 桑野
孝佳 永井
友一 坂下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/377,567 priority Critical patent/US9516714B2/en
Priority to DE112013001483.1T priority patent/DE112013001483T5/de
Priority to JP2014504722A priority patent/JP5748901B2/ja
Priority to CN201380014511.2A priority patent/CN104186026A/zh
Publication of WO2013136823A1 publication Critical patent/WO2013136823A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology

Definitions

  • the present invention relates to an LED lighting device for lighting a semiconductor light source composed of a light emitting diode (LED) element.
  • LED light emitting diode
  • An LED (Light Emitting Diode) element as a semiconductor light source is widely used as a vehicular lamp, a traffic light, and an illumination lamp. For such applications, since the amount of light emitted from a single LED element is small, it is common to obtain a necessary amount of light by simultaneously lighting a plurality of LED elements.
  • a converter is connected in series to an LED unit configured by connecting one or a plurality of LED elements in series, and a single LED is connected to both ends of the LED circuit block configured by the LED unit and the converter. DC power supply is connected.
  • the converter includes a switch element, a diode, and a reactor.
  • the current flowing through the LED unit is controlled at a constant current, and the LED unit is lit.
  • a plurality of LED circuit blocks are connected in parallel to a DC power source, and the plurality of LED circuit blocks are operated by a single DC power source (for example, Patent Document 1).
  • the LED circuit block is operated with a single constant voltage source, and the anode side of the diode is connected to the reference potential of the constant voltage source.
  • the LED voltage which is the sum of the forward voltage drops of the LED elements, increases, and the voltage required to light the LED unit increases. End up.
  • the present invention has been made to solve the above-described problem. Even when the voltage for driving the LED unit is increased, the withstand voltage of the switch elements constituting the converter can be lowered, and the reactor can be reduced.
  • An object of the present invention is to provide a small and low-cost LED lighting device that can reduce current ripple.
  • the LED lighting device is: A first bus having a first bus voltage; A second bus having a second bus voltage lower than the first bus voltage; A series connection body of a switch element, a reactor, and an LED unit in which one or a plurality of LED elements are connected in series, connected to the first bus, and a connection point between the switch element and the reactor, and the second bus An LED circuit block composed of a diode connected between A control circuit that controls the on / off of the switch element so that the LED current flowing through the LED unit is within a rated current range; When the LED unit is turned on, the voltage applied to both ends of the serial connection of the reactor and the LED unit is the first bus voltage when the switch element is on, and the first bus voltage when the switch element is off. And a voltage lower than the first bus voltage determined based on the second bus voltage.
  • FIG. 7 is a diagram showing static characteristics of LED units constituting LED lighting devices according to Embodiments 1 to 6 of the present invention. It is a figure which shows the circuit structure of the LED lighting device of the reference example of this invention. It is a figure which shows each part waveform of the LED lighting device of the reference example of this invention. It is a figure which shows the circuit structure of the LED lighting device by Embodiment 2 of this invention. It is a figure which shows each part waveform of the LED lighting device by Embodiment 2 of this invention.
  • FIG. 1 is a circuit configuration diagram showing an LED lighting device according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram showing waveforms of respective parts of the LED lighting device according to Embodiment 1 of the present invention.
  • a constant voltage source 1 outputs a DC voltage that becomes a first bus voltage V1 through a first bus 100 and also outputs a DC voltage that becomes a second bus voltage V2 through a second bus 200, Supply the voltage necessary for lighting.
  • a circuit constituting the constant voltage source 1 for example, a plurality of DC / DC converters or switching regulators such as an AC / DC converter can be used.
  • the LED circuit block 3a1 includes a switching element Qa1, such as an FET (Field Effect Transistor), a reactor La1, an LED unit LEDa1 in which one or a plurality of LED elements are connected in series, and a diode Da1. Further, n LED circuit blocks having the same configuration as the LED circuit block 3a1 (n is a natural number of 1 or more) up to the LED circuit block 3an are connected in parallel to the first bus line 100 and the second bus line 200.
  • a switching element Qa1 such as an FET (Field Effect Transistor)
  • a reactor La1 an LED unit LEDa1 in which one or a plurality of LED elements are connected in series
  • a diode Da1 n LED circuit blocks having the same configuration as the LED circuit block 3a1 (n is a natural number of 1 or more) up to the LED circuit block 3an are connected in parallel to the first bus line 100 and the second bus line 200.
  • the first bus 100 of the constant voltage source 1 is connected to the first end of the switch element Qa1.
  • the cathode terminal of the diode Da1 and the first end of the reactor La1 are connected to the second end of the switching element Qa1.
  • the anode terminal of the diode Da1 is connected to the second bus 200.
  • the second end of the reactor La1 is connected to the anode side terminal of the LED unit LEDa1 configured by connecting one or a plurality of LED elements in series.
  • the cathode side terminal of the LED unit LEDa1 is connected to the reference potential of the constant voltage source 1.
  • the control circuit 2 detects the LED current I LED flowing through the LED units (LEDa1 ⁇ LEDan), each LED current I LED is turned on and off control of the switch elements (Qa1 ⁇ Qan) such that the rated current range Constant current control is performed.
  • the LED current I LED is detected by, for example, a shunt resistor inserted between the LED units (LEDa1 to LEDan) and the reference potential, as disclosed in the prior art, and the current flows. This can be realized by detecting a voltage drop.
  • reference numerals 11a1 to 11an denote detection of each LED current.
  • control circuit 2 detects the first bus voltage V1 and the second bus voltage V2, and performs voltage control of the first bus voltage V1 and the second bus voltage V2 so as to satisfy the conditions described later.
  • 101 and 201 indicate detection of the first bus voltage V1 and the second bus voltage V2
  • 20 indicates voltage control of the constant voltage source 1 by the control circuit 2.
  • the first bus voltage V1 and the second bus voltage V2 may not be controlled by the control circuit 2 but may be set in advance by the constant voltage source 1 so as to satisfy the conditions described later.
  • the “gate signal” is a signal for turning on and off the switch elements (Qa1 to Qan), and is output from the control circuit 2 to each switch element (Qa1 to Qan).
  • LED voltage V LED is a voltage applied to both ends of each LED unit (LEDa1 to LEDan) when a rated current is passed through each LED unit (LEDa1 to LEDan) to light them.
  • This “LED voltage V LED ” is a total sum of forward voltage drops of the LED elements constituting each LED unit (LEDa1 to LEDan), and the forward voltage drop varies among the LED elements.
  • the LED voltage V LED also varies from LED unit to LED unit.
  • FIG. 3 shows the relationship among V LED_max , V LED_min , and V LED_f with the static characteristics of the LED.
  • the LED lighting device when the LED units (LEDa1 to LEDan) are turned on, the first bus voltage V1, the second bus voltage V2, and the LED voltage V LED are: V2 ⁇ V LED_min and V LED_max ⁇ V1 (1) A range of the first bus voltage V1, the second bus voltage V2, and the LED voltage V LED is set so as to satisfy the relationship. By setting in this way, the LED lighting device operates as described below. Since the operation of each LED circuit block (3a1 to 3an) is basically the same, the LED circuit block 3a1 will be described here as an example.
  • the control circuit 2 turns on the gate signal of the switch element Qa1 again and turns on the switch element Qa1. Thereafter, the series of operations described above are repeated, the LED voltage V LED is always applied to both ends of the LED unit LEDa1, and the LED current in the rated current range continues to flow, and the LED unit LEDa1 is kept on. The same operation is performed for the other LED circuit blocks.
  • FIG. 4 is a circuit configuration diagram illustrating an LED lighting device according to a reference example
  • FIG. 5 is a diagram illustrating waveforms of respective parts of the LED lighting device according to the reference example of FIG.
  • FIGS. 4 and 5 those having the same functions as those in FIGS. 1 and 2 are described by changing only the same symbols or subscripts.
  • the first point is that the output voltage of the constant voltage source 4 of the LED lighting device of the reference example is only one kind of the first bus voltage V1, and the second point is the diode (Db1 to Dbn) of the LED lighting device of the reference example.
  • the anode terminal is connected to the reference potential of the constant voltage source 4.
  • the control circuit 5 detects the LED current flowing through the LED unit LEDb1, and performs on / off control of the switch element Qb1 so that the LED current is within the rated current range, thereby performing constant current control.
  • the LED lighting device of such a reference example when the constant current control as described above is performed and the LED units (LEDb1 to LEDbn) are turned on, the voltage across each LED unit (LEDb1 to LEDbn) becomes the LED voltage V LED .
  • the first bus voltage V1 is applied to both ends of the switching elements (Qb1 to Qbn) and both ends of the reactors (Lb1 to Lbn).
  • the LED lighting device according to the first embodiment of the present invention has the voltage across the switching elements (Qa1 to Qan) and the reactors (La1 to Lan) as compared with the LED lighting device of the reference example. Can be reduced by the amount corresponding to the second bus voltage V2.
  • the first bus voltage V1, the second bus voltage V2, and the LED voltage V LED are V2 ⁇ V LED_min and V LED_max ⁇ V1 (1)
  • the switch element and the reactor are more effective than the LED lighting device of the conventional device including the reference example.
  • the applied voltage can be reduced.
  • An LED lighting device can be provided.
  • the switch elements when it is desired to turn off the LED units (LEDa1 to LEDan), the switch elements (Qa1 to Qan) are turned off, and further, V2 ⁇ VLED_f is set.
  • the two-bus voltage V2 may be set.
  • the on / off control of the switch elements (Qa1 to Qan) by the control circuit 2 is performed by setting an upper limit and a lower limit on the LED current as described above, and turning on and off the switch elements (Qa1 to Qan) each time the upper limit and the lower limit are reached.
  • a capacitor may be inserted in parallel for each LED unit (LEDa1 to LEDan) to reduce the ripple of current flowing through the LED unit (LEDa1 to LEDan).
  • FIG. 6 is a diagram showing a circuit configuration of an LED lighting device according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing waveforms of respective parts of the LED lighting device according to Embodiment 2 of the present invention.
  • connection order of the elements constituting the LED circuit blocks (3c1 to 3cn) and the polarity of the diodes (Dc1 to Dcn) are different from the circuit configuration of the first embodiment. Since the LED circuit blocks (3c1 to 3cn) have the same configuration, the connection of the components will be described by taking the LED circuit block 3c1 as an example.
  • the constant voltage source 1 outputs a DC voltage that is the first bus voltage V1 through the first bus 100 and a DC voltage that is the second bus voltage V2 through the second bus voltage 200.
  • a voltage necessary for lighting the element is supplied.
  • the 1st bus-line 100 is connected to the anode side terminal of LED unit LEDc1.
  • the cathode side terminal of the LED unit LEDc1 is connected to the first end of the reactor Lc1, and the second end of the reactor Lc1 is connected to the first end of the switching element Qc1.
  • the second end of the switch element Qc1 is connected to the reference potential of the constant voltage source 1.
  • the anode terminal of the diode Dc1 is connected to the connection point between the reactor Lc1 and the switch element Qc1, and the cathode terminal is connected to the second bus 200.
  • This second bus 200 enables current sinking.
  • the control circuit 6 detects each LED current I LED flowing through each LED unit (LEDc1 to LEDcn), and controls each switch element (Qc1 to Qcn) to turn on and off so that the LED current I LED is in the rated current range. Perform constant current control.
  • the LED current is detected by detecting the current on the anode side or the cathode side of the LED units (LEDc1 to LEDcn). For example, an amplifier that supports current detection on the high voltage side can be used.
  • reference numerals 11c1 to 11cn denote LED current detection.
  • control circuit 2 detects the first bus voltage V1 and the second bus voltage V2, and performs voltage control of the first bus voltage V1 and the second bus voltage V2 so as to satisfy the conditions described later.
  • reference numerals 101 and 201 denote detection of the first bus voltage V1 and the second bus voltage V2
  • reference numeral 60 denotes voltage control of the constant voltage source 1 by the control circuit 6.
  • the first bus voltage V1 and the second bus voltage V2 may not be controlled by the control circuit 2 but may be set in advance by the constant voltage source 1 so as to satisfy the conditions described later.
  • the LED lighting device when the LED units (LEDc1 to LEDcn) are turned on, the first bus voltage V1, the second bus voltage V2, and the LED voltage V LED described above are: V1-V2 ⁇ V LED_min and V LED_max ⁇ V1 (2) A range of the first bus voltage V1, the second bus voltage V2, or the LED voltage V LED is set so as to satisfy the following relationship. By setting in this way, the LED lighting device operates as described below. Since the operation of each LED circuit block (3c1 to 3cn) is basically the same, the LED circuit block 3c1 will be described as an example here.
  • the control circuit 6 turns on the gate signal of the switch element Qc1 again and turns on the switch element Qc1. Thereafter, the series of operations described above is repeated, and the LED voltage V LED is always applied to both ends of the LED unit LEDc1, and the LED current in the rated current range continues to flow, and the LED unit LEDc1 is continuously lit. The same operation is performed for the other LED circuit blocks.
  • the first bus voltage V1, the second bus voltage V2, and the LED voltage V LED are V1-V2 ⁇ V LED_min and V LED_max ⁇ V1 (2)
  • the switch element than the LED lighting device of the reference example described in FIG. 4 and FIG. the voltage applied to the reactor can be reduced to the second bus voltage V2 ( ⁇ V1). Therefore, a switching element having a lower withstand voltage than that of the conventional device including the reference examples of FIGS.
  • the switch elements when it is desired to turn off the LED units (LEDc1 to LEDcn), the switch elements (Qc1 to Qcn) are turned off, and further, V1 ⁇ V2 ⁇ VLED_f is satisfied .
  • the first bus voltage V1 or the second bus voltage V2 may be set.
  • FIG. 8 is a circuit configuration diagram of an LED lighting device according to Embodiment 3 of the present invention.
  • components having the same functions as those in the first embodiment are described by changing only the same symbols or subscripts.
  • the LED lighting device according to the third embodiment is intended for in-vehicle use, and includes a constant voltage source 7, the LED circuit blocks (3a1 to 3an) described in the first embodiment, and a control circuit 11. These basic configurations are the same as those of the LED lighting device according to the first embodiment, and the constant voltage source 7 specifically shows the constant voltage source 1 of the first embodiment.
  • the control circuit 11 is obtained by adding the control function of the converter constituting the constant voltage source 7 to the function of the control circuit 2 of the first embodiment. Therefore, the voltage conditions for turning on and off the LED units (LEDa1 to LEDan) of the LED lighting device according to the third embodiment and the waveforms of the respective parts during operation are the same as those of the LED lighting device according to the first embodiment. Therefore, the description of the operation is omitted, and the configuration of the constant voltage source 7 and the function of the control circuit 11 will be described.
  • V2 ⁇ V LED_min and V LED_max described in the LED lighting device according to the first embodiment, from the battery voltage VB output from the battery 8.
  • V1 The first bus voltage V1 and the second bus voltage V2 must be generated.
  • the first converter 10 is provided on the output side of the battery 8 to boost the battery voltage VB and provide the first bus voltage V1 higher than VLED_max .
  • the first converter 10 may perform a step-down operation or the first converter 10 itself may be omitted.
  • the second bus voltage V2 is generated by a second converter 9 provided between the anode terminals of the diodes (Da1 to Dan) and the output terminal of the battery 8.
  • the second converter 9 receives the battery voltage VB side as input, and allows current to flow out to the second bus 200 side.
  • the control circuit 11 detects the voltage of the first bus voltage V1 and the second bus voltage V2, and the first converter 10 and the second converter so that these voltages satisfy the voltage condition of the first embodiment. 9 is controlled.
  • 11 ⁇ / b> A indicates voltage control of the first converter 10 by the control circuit 11
  • 11 ⁇ / b> B indicates voltage control of the second converter 9 by the control circuit 11.
  • the control circuit 11 also performs constant current control of the LED current described in the first embodiment.
  • the voltage detection means for the first bus voltage V1 and the second bus voltage V2 can be used, for example, by connecting a voltage dividing resistor between each output terminal and the reference voltage. Further, for example, a switching regulator or the like can be used for the first converter 10 and the second converter 9.
  • the constant voltage source has the battery, the first converter, and the second converter, and the control circuit has the output of the first converter as the first. Since the output of the second converter is controlled to be the second bus voltage V2 with respect to the bus voltage V1, the same effect as that of the LED lighting device of the first embodiment can be obtained particularly for in-vehicle use. .
  • FIG. 9 is a circuit configuration diagram of an LED lighting device according to Embodiment 4 of the present invention.
  • components having the same functions as those in the above-described embodiment are described by changing only the same symbols or subscripts.
  • the LED lighting device according to the fourth embodiment is intended for in-vehicle use, and includes a constant voltage source 7, the LED circuit blocks (3c1 to 3cn) described in the second embodiment, and a control circuit 12. These basic configurations are the same as those of the LED lighting device according to the second embodiment, and the constant voltage source 7 specifically shows the constant voltage source 1 of the second embodiment.
  • the control circuit 12 is obtained by adding the control function of the converter constituting the constant voltage source 7 to the function of the control circuit 6 of the second embodiment. Therefore, the voltage conditions for turning on and off the LED units (LEDc1 to LEDcn) of the LED lighting device according to the fourth embodiment and the waveforms of the respective parts during operation are the same as those of the LED lighting device according to the second embodiment. Therefore, explanation of their operations is omitted, and functions of the constant voltage source 7 and the control circuit 12 are described.
  • the LED lighting device according to the fourth embodiment of the present invention is supposed to be used in a vehicle, V1 ⁇ V2 ⁇ V LED_min and V described in the LED lighting device according to the second embodiment, from the battery voltage VB output from the battery 8.
  • LED_max ⁇ V1 (2)
  • the first bus voltage V1 and the second bus voltage V2 must be generated.
  • the LED units (LEDc1 to LEDcn) cannot be turned on. Therefore, the first converter 10 is provided on the output side of the battery 8 to boost the battery voltage VB and provide the first bus voltage V1 higher than VLED_max .
  • the first converter 10 may perform a step-down operation or the first converter 10 itself may be omitted.
  • the second bus voltage V2 is generated by a second converter 9 provided between the cathode terminals of the diodes (Dc1 to Dcn) and the output terminal of the battery 8.
  • the second converter 9 here allows the current to be drawn from the second bus 200 side by using the second bus 200 side as an input and the battery voltage VB as an output.
  • the LED lighting device has the battery, the first converter and the second converter connected to the output terminal of the battery as the constant voltage source, and the control circuit is Since the output of the first converter is controlled to the first bus voltage V1, and the output of the second converter is controlled to the second bus voltage V2, the LED lighting of the second embodiment is turned on particularly for in-vehicle use. The same effect as the device can be obtained.
  • FIG. 10 is a circuit configuration diagram of an LED lighting device according to Embodiment 5 of the present invention.
  • the circuit configuration of the fifth embodiment shown in FIG. 10 is obtained by omitting the second converter 9 from the LED lighting device of the third embodiment shown in FIG. 8, and the control circuit 14 has the first bus voltage V1. Only control and constant current control are performed. Since the circuit operation of FIG. 10 is the same as that of the third embodiment, the description thereof is omitted.
  • FIG. 11 is a circuit configuration diagram of an LED lighting device according to Embodiment 6 of the present invention.
  • the circuit configuration of the sixth embodiment shown in FIG. 11 is obtained by omitting the second converter 9 from the LED lighting device of the fourth embodiment shown in FIG. 9, and accordingly, the control circuit 16 has a first bus. Only control of voltage V1 and constant current control are performed. Since the circuit operation of FIG. 11 is the same as that of the fourth embodiment, description thereof is omitted.
  • the second bus voltage V2 is fixed to the battery voltage VB, the effect of lowering the breakdown voltage of the constituent elements cannot be obtained as much as the LED lighting device according to the fourth embodiment.
  • the circuit can be made smaller and the control circuit simplified than in the fourth embodiment.
  • FIG. 12 is a circuit configuration diagram of an LED lighting device according to Embodiment 7 of the present invention.
  • the circuit configuration of the seventh embodiment shown in FIG. 12 is not a plurality of LED circuit blocks arranged in parallel in the LED lighting device of the first embodiment shown in FIG. 1, but only one LED circuit block 3a1. ing. Since the operation of the LED lighting device according to the seventh embodiment is basically the same as the operation of the LED lighting device according to the first embodiment, detailed description thereof is omitted. However, as shown in the static characteristic diagram of the LED unit shown in FIG.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 LEDユニット(LEDa1)に流れるLED電流が定格電流範囲内となるように、スイッチ素子(Qa1)をオンオフ制御する制御回路(2)を備え、LEDユニット(LEDa1)の点灯時に、リアクトル(La1)とLEDユニット(LEDa1)との直列接続の両端に印加される電圧が、スイッチ素子(Qa1)がオン時に第1母線電圧V1に、スイッチ素子(Qa2)がオフ時に第1母線電圧(V1)と第2母線電圧(V2)に基づいて定まる第1母線電圧(V1)より低い電圧になるようにする。

Description

LED点灯装置
 この発明は、発光ダイオード(LED)素子で構成された半導体光源を点灯させるためのLED点灯装置に関するものである。
 半導体光源としてのLED(Light Emitting Diode)素子は車両用灯具、信号機および照明用灯具として広く用いられるようになっている。なお、このような用途に対しては、LED素子単体の発光量が小さいため、複数のLED素子を同時に点灯させて必要な発光量を得ることが一般的となっている。
 従来のLED点灯装置では、1個又は複数個のLED素子を直列接続させて構成したLEDユニットに、コンバータを直列接続し、更にLEDユニットとコンバータで構成されたLED回路ブロックの両端に、単一の直流電源を接続している。コンバータはスイッチ素子、ダイオード、リアクトルから構成されており、スイッチ素子をオンオフすることにより、LEDユニットに流れる電流を定電流制御して、LEDユニットを点灯させている。また、このLED回路ブロックを直流電源に対して複数並列接続して、複数のLED回路ブロックを単一の直流電源で動作させている(例えば特許文献1)。
特開2006-147184号(図1)
 上記従来のLED点灯装置では、LED回路ブロックを単一の定電圧源で動作させ、ダイオードのアノード側を定電圧源の基準電位に接続している。この場合、特に、LEDユニットを構成するLED素子の直列接続数が増加すると、LED素子の順方向電圧降下の和であるLED電圧が高くなり、LEDユニットを点灯させるために必要な電圧が高くなってしまう。その結果、コンバータを構成するスイッチ素子の耐圧が高くなり、更にリアクトル電流(=LED電流)のリップルも大きくなり、回路規模の大型化やコストアップをもたらすといった問題があった。
 この発明は上記のような問題を解決するためになされたもので、LEDユニットを駆動する電圧が高くなった場合であっても、コンバータを構成するスイッチ素子の耐圧を引き下げることができると共に、リアクトル電流のリップルを小さくすることができ、小型かつ低コストなLED点灯装置を提供することを目的としている。
 この発明に係るLED点灯装置は、
 第1母線電圧を有する第1母線と、
上記第1母線電圧より低い第2母線電圧を有する第2母線と、
上記第1母線に接続される、スイッチ素子、リアクトル、及び1個または複数のLED素子を直列接続したLEDユニット、の直列接続体、並びに上記スイッチ素子と上記リアクトルの接続点と上記第2母線との間に接続したダイオード、で構成されるLED回路ブロックと、
上記LEDユニットに流れるLED電流が定格電流範囲内となるように、上記スイッチ素子をオンオフ制御する制御回路とを備え、
上記LEDユニットの点灯時に、上記リアクトルと上記LEDユニットとの直列接続の両端に印加される電圧が、上記スイッチ素子がオン時に上記第1母線電圧に、上記スイッチ素子がオフ時に上記第1母線電圧と上記第2母線電圧に基づいて定まる上記第1母線電圧より低い電圧になるようにする。
 この発明のLED点灯装置によれば、LED回路ブロックに第1母線電圧と第2母線電圧を供給し、LEDユニット点灯時に、リアクトルとLEDユニットとの直列接続の両端に印加される電圧が、スイッチ素子がオン時に第1母線電圧に、スイッチ素子がオフ時に第1母線電圧と第2母線電圧に基づいて定まる第1母線電圧より低い電圧になるようにしたので、従来よりも低耐圧のスイッチ素子が利用できるとともに、LED電流(=リアクトル電流)の許容リップルを同等とすれば、リアクトルも小型化することができ、LED点灯装置の小型化と低コスト化が実現できる。
本発明の実施の形態1によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態1によるLED点灯装置の各部波形を示す図である。 本発明の実施の形態1~6によるLED点灯装置を構成するLEDユニットの静特性を示す図である。 本発明の参考例のLED点灯装置の回路構成を示す図である。 本発明の参考例のLED点灯装置の各部波形を示す図である。 本発明の実施の形態2によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態2によるLED点灯装置の各部波形を示す図である。 本発明の実施の形態3によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態4によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態5によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態6によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態7によるLED点灯装置の回路構成を示す図である。 本発明の実施の形態7によるLED点灯装置を構成するLEDユニットの静特性を示す図である。
実施の形態1.
 以下、この発明の実施の形態1によるLED点灯装置を図に基づいて説明する。図1はこの発明の実施の形態1によるLED点灯装置を示す回路構成図、図2はこの発明の実施の形態1のLED点灯装置の各部の波形を示す図である。
 図1において、定電圧源1は、第1母線100を通して第1母線電圧V1となる直流電圧を出力すると共に、第2母線200を通して第2母線電圧V2となる直流電圧を出力し、LED素子の点灯に必要な電圧を供給する。ただし、第1母線電圧V1>第2母線電圧V2>0となる関係がある。定電圧源1を構成する回路としては、例えば、複数のDC/DCコンバータや、AC/DCコンバータ等のスイッチングレギュレータを用いることができる。
 LED回路ブロック3a1は、FET(Field Effect Transistor)等のスイッチ素子Qa1、リアクトルLa1、1個又は複数個のLED素子を直列に接続したLEDユニットLEDa1、及びダイオードDa1を備えている。また、LED回路ブロック3a1と同じ構成のLED回路ブロックが、LED回路ブロック3anまでn個(nは1以上の自然数)、第1母線100及び第2母線200に対して並列に接続されている。
 次に、LED回路ブロック3a1の詳細な構成について説明する。定電圧源1の第1母線100は、スイッチ素子Qa1の第1端に接続されている。一方、スイッチ素子Qa1の第2端には、ダイオードDa1のカソード端子と、リアクトルLa1の第1端が接続されている。ダイオードDa1のアノード端子は、第2母線200に接続されている。リアクトルLa1の第2端は、1個または複数個のLED素子の直列接続で構成されるLEDユニットLEDa1のアノード側端子に接続されている。LEDユニットLEDa1のカソード側端子は定電圧源1の基準電位に接続されている。
 制御回路2は、各LEDユニット(LEDa1~LEDan)に流れる各LED電流ILEDを検出し、各LED電流ILEDが定格電流範囲となるように各スイッチ素子(Qa1~Qan)をオンオフ制御して、定電流制御を行う。LED電流ILEDの検出は、例えば上記従来技術に開示しているように、LEDユニット(LEDa1~LEDan)と基準電位との間にシャント抵抗を挿入し、電流が流れる際にシャント抵抗で発生する電圧降下を検出することで実現することができる。なお、図1において、11a1~11anは各LED電流の検出を示している。
 また、制御回路2は、第1母線電圧V1及び第2母線電圧V2を検出して、後述する条件となるように、第1母線電圧V1と第2母線電圧V2の電圧制御を行う。なお、図1において、101、201は第1母線電圧V1、第2母線電圧V2の検出を示し、20は制御回路2による定電圧源1の電圧制御を示している。また、第1母線電圧V1及び第2母線電圧V2は、制御回路2で制御するのでなく後述する条件を満たすように予め定電圧源1で設定していても良い。
 次に、図2を用いて、この発明の実施の形態1によるLED点灯装置の動作を説明する。はじめに、LED点灯装置の動作で使用する用語の説明をする。「ゲート信号」とは、スイッチ素子(Qa1~Qan)をオンオフさせるための信号で、制御回路2から各スイッチ素子(Qa1~Qan)に対して出力される。「LED電圧VLED」とは、各LEDユニット(LEDa1~LEDan)に定格電流を流して点灯させたときに、各LEDユニット(LEDa1~LEDan)の両端に印加される電圧のことである。この「LED電圧VLED」は、各LEDユニット(LEDa1~LEDan)を構成するLED素子の順方向電圧降下の総和であり、順方向電圧降下にはLED素子ごとのバラツキがある。そのため、LED電圧VLEDもLEDユニット毎のバラツキをもつ。「LED電圧のバラツキ幅」とは、使用しているLEDユニット(LEDa1~LEDan)のうち、最大のLED電圧VLED_maxと、最小のLED電圧VLED_minの差分に相当する。
 また、図2には示していないが、LEDユニット(LEDa1~LEDan)が実質的に消灯とみなせる程度にまで電流が小さくなるLED電圧をVLED_fとする。VLED_max、VLED_min、VLED_fの関係をLEDの静特性で示すと図3のようになる。
 次に、LED点灯装置の具体的動作について、順を追って説明する。
 この発明の実施の形態1によるLED点灯装置は、LEDユニット(LEDa1~LEDan)点灯時に、第1母線電圧V1と、第2母線電圧V2と、LED電圧VLEDが、
 V2<VLED_min、かつ VLED_max<V1 ・・・(1)
の関係となるように、第1母線電圧V1、第2母線電圧V2、LED電圧VLEDの範囲を設定することを特徴としている。このように設定することによって、LED点灯装置は下記に述べるように動作する。なお、各LED回路ブロック(3a1~3an)の動作は基本的に同じなので、ここではLED回路ブロック3a1を例に説明する。
 まず、制御回路2がスイッチ素子Qa1のゲート信号をオンすると、スイッチ素子Qa1がオンし、定電圧源1からLED回路ブロック3a1にエネルギーが供給される。その際、スイッチ素子Qa1の両端電圧Vswはゼロとなり、ダイオードDa1の両端にはV1-V2なる電圧が逆方向電圧として印加される。また、リアクトルLa1の両端にはVLon=V1-VLEDなる電圧が印加されて、LED電流(=リアクトル電流)は徐々に増加する。そして、LEDユニットLEDa1の両端にはLED電圧VLEDが印加されて、LEDユニットLEDa1が点灯する。スイッチ素子Qa1がオンしている期間中は、リアクトルLa1にエネルギーが蓄積される。リアクトルLa1に蓄積されたエネルギーは、スイッチ素子Qa1がオフしている期間のLED電流を定格電流範囲に維持するためのエネルギーとなる。
 LED電流が増加して定格電流の上限に到達すると、制御回路2はスイッチ素子Qa1のゲート信号をオフし、スイッチ素子Qa1はオフする。そうすると、スイッチ素子Qa1の第1端には第1母線電圧V1が印加される一方、スイッチ素子Qa1の第2端側はダイオードDa1がオンして、第2母線電圧V2が印加される。したがって、スイッチ素子Qa1の両端電圧Vsw=V1-V2となる。また、リアクトルLa1の両端には、先ほどまでとは逆方向にVLoff=VLED-V2なる電圧が印加される。つまり、リアクトルLa1両端にはスイッチ素子Qa1のオンオフによってV=VLon+VLoff=V1-V2なる電圧が印加される。そして、LEDユニットLEDa1には引き続きLED電流が流れるとともに、その両端にはLED電圧VLEDが印加され続け、LEDユニットLEDa1が点灯する。
 リアクトルLa1の蓄積エネルギーの減少に伴い、LED電流が減少して、定格電流の下限に到達すると、制御回路2は再びスイッチ素子Qa1のゲート信号をオンして、スイッチ素子Qa1をオンする。それ以降は上記説明した一連の動作の繰り返しとなり、LEDユニットLEDa1の両端には常にLED電圧VLEDが加わるとともに、定格電流範囲のLED電流が流れ続け、LEDユニットLEDa1の点灯が維持される。その他のLED回路ブロックに関しても同様の動作となる。
 次に、実施の形態1によるLED点灯装置の作用効果について、図4及び図5に示す参考例であるLED点灯装置と比較して説明する。図4は参考例によるLED点灯装置を示す回路構成図、図5は図4の参考例のLED点灯装置の各部の波形を示す図である。なお、図4及び図5において図1及び図2の構成要素と共通する機能を有するものについては、同じ記号、または添え字のみ変更して記している。
 参考例のLED点灯装置の構成が、実施の形態1によるLED点灯装置と相違する点は2点ある。1点目は参考例のLED点灯装置の定電圧源4の出力電圧は第1母線電圧V1の一種類だけである点、2点目は参考例のLED点灯装置のダイオード(Db1~Dbn)のアノード端子が、定電圧源4の基準電位に接続されている点である。制御回路5は、LEDユニットLEDb1に流れるLED電流を検出し、LED電流が定格電流範囲内となるようにスイッチ素子Qb1をオンオフ制御して、定電流制御を行う。このような参考例のLED点灯装置において、上記のような定電流制御を行い、LEDユニット(LEDb1~LEDbn)を点灯させると、各LEDユニット(LEDb1~LEDbn)の両端電圧はLED電圧VLEDとなり、実施の形態1の場合と変わらないが、スイッチ素子(Qb1~Qbn)両端、及びリアクトル(Lb1~Lbn)両端には、第1母線電圧V1が印加されてしまう。
 これに対して上記説明したように、この発明の実施の形態1によるLED点灯装置は、スイッチ素子(Qa1~Qan)、及びリアクトル(La1~Lan)の両端電圧を、参考例のLED点灯装置よりも第2母線電圧V2の分だけ小さくすることができる。
 以上のように、この発明の実施の形態1によるLED点灯装置は、LEDユニット(LEDa1~LEDan)点灯時に、第1母線電圧V1と、第2母線電圧V2と、LED電圧VLEDが、
 V2<VLED_min、かつ VLED_max<V1 ・・・(1)
の関係になるように、第1母線電圧V1、第2母線電圧V2、またはLED電圧VLEDの範囲を設定することにより、参考例を含めた従来装置のLED点灯装置よりもスイッチ素子とリアクトルに印加される電圧を小さくすることができる。したがって、参考例を含めた従来装置よりも低耐圧のスイッチ素子が利用できるとともに、LED電流(=リアクトル電流)の許容リップルを同等とすれば、リアクトルも小型化することができ、小型かつ低コストなLED点灯装置を提供することができる。
 また、この発明の実施の形態1によるLED点灯装置において、LEDユニット(LEDa1~LEDan)を消灯させたい場合は、スイッチ素子(Qa1~Qan)をオフし、更にV2≦VLED_fとなるように第2母線電圧V2を設定すればよい。
 さらに、制御回路2によるスイッチ素子(Qa1~Qan)のオンオフ制御は、上述のようにLED電流に上限と下限を設け、上限と下限に達する毎にスイッチ素子(Qa1~Qan)をオンオフしてもよいし、LED電流の平均値が所定の電流になるようにスイッチ素子(Qa1~Qan)のデューティ(=オン時間/オンオフ周期)を制御してもよい。また、LEDユニット(LEDa1~LEDan)毎に並列にキャパシタを挿入して、LEDユニット(LEDa1~LEDan)に流れる電流のリップルを低減するようにしてもよい。
実施の形態2.
 次に、この発明の実施の形態2によるLED点灯装置を図に基づいて説明する。図6はこの発明の実施の形態2によるLED点灯装置の回路構成を示す図である。図7はこの発明の実施の形態2によるLED点灯装置の各部の波形を示す図である。
 図6のLED点灯装置の回路構成において、実施の形態1(図1)の構成要素と共通する機能を有するものは、同じ記号、または添え字のみ変更して記している。実施の形態2では、LED回路ブロック(3c1~3cn)を構成する素子の接続順とダイオード(Dc1~Dcn)の極性が、実施の形態1の回路構成と異なる。それぞれのLED回路ブロック(3c1~3cn)の構成は同じなので、LED回路ブロック3c1を例に、構成要素の接続を述べる。
 まず、実施の形態1と同様に、定電圧源1は、第1母線100を通して第1母線電圧V1なる直流電圧を、第2母線電圧200を通して第2母線電圧V2なる直流電圧を出力し、LED素子の点灯に必要な電圧を供給する。ただし、第1母線電圧V1>第2母線電圧V2>0となる関係がある。そして、第1母線100は、LEDユニットLEDc1のアノード側端子に接続されている。また、LEDユニットLEDc1のカソード側端子は、リアクトルLc1の第1端に接続され、リアクトルLc1の第2端はスイッチ素子Qc1の第1端に接続されている。さらに、スイッチ素子Qc1の第2端は、定電圧源1の基準電位に接続されている。また、ダイオードDc1のアノード端子はリアクトルLc1とスイッチ素子Qc1の接続点に接続され、カソード端子は第2母線200に接続されている。この第2母線200は、電流の吸い込みを可能とする。
 制御回路6は、各LEDユニット(LEDc1~LEDcn)に流れる各LED電流ILEDを検出し、LED電流ILEDが定格電流範囲となるように各スイッチ素子(Qc1~Qcn)をオンオフ制御して、定電流制御を行う。LED電流の検出は、LEDユニット(LEDc1~LEDcn)のアノード側、又はカソード側で電流検出を行い、例えば、高圧側での電流検出に対応したアンプなどを用いることができる。なお、図6において、11c1~11cnはLED電流の検出を示している。
 また、制御回路2は、第1母線電圧V1及び第2母線電圧V2を検出して、後述する条件となるように、第1母線電圧V1と第2母線電圧V2の電圧制御を行う。なお、図6において、101、201は第1母線電圧V1、第2母線電圧V2の検出を示し、60は制御回路6による定電圧源1の電圧制御を示している。また、第1母線電圧V1及び第2母線電圧V2は、制御回路2で制御するのでなく後述する条件を満たすように予め定電圧源1で設定していても良い。
 次に、図7を用いて、この発明の実施の形態2によるLED点灯装置の具体的動作について、順を追って説明する。
 この発明の実施の形態2によるLED点灯装置は、LEDユニット(LEDc1~LEDcn)点灯時に、第1母線電圧V1と、第2母線電圧V2と、前述したLED電圧VLEDが、
 V1-V2<VLED_min かつ VLED_max<V1 ・・・(2)
の関係となるように、第1母線電圧V1、第2母線電圧V2、またはLED電圧VLEDの範囲を設定することを特徴としている。このように設定することによって、LED点灯装置は下記に述べるように動作する。なお、各LED回路ブロック(3c1~3cn)の動作は基本的に同じなので、ここではLED回路ブロック3c1を例に説明する。
 まず、制御回路6がスイッチ素子Qc1のゲート信号をオンすると、スイッチ素子Qc1がオンし、定電圧源1からLED回路ブロック3c1にエネルギーが供給される。その際、スイッチ素子Qc1の両端電圧Vswはゼロとなり、ダイオードDc1の両端には第2母線電圧V2が逆電圧として印加される。また、リアクトルLc1の両端にはVLon=V1-VLEDなる電圧が印加されて、LED電流(=リアクトル電流)は徐々に増加する。そして、LEDユニットLEDc1にはLED電圧VLEDが印加されて、LEDユニットLEDc1が点灯する。スイッチ素子Qc1がオンしている期間中は、リアクトルLc1にエネルギーが蓄積される。リアクトルLc1に蓄積されたエネルギーはスイッチ素子Qc1がオフしている期間のLED電流を定格電流範囲に維持するためのエネルギー源となる。
 LED電流が増加して定格電流の上限に到達すると、制御回路6はスイッチ素子Qc1のゲート信号をオフし、スイッチ素子Qc1はオフする。そうすると、スイッチ素子Qc1の両端電圧Vswは第2母線電圧V2となる。また、リアクトルLc1の両端には、先ほどまでと逆方向にVLoff=VLED-(V1-V2)なる電圧が印加される。つまり、リアクトルLc1両端にはスイッチ素子Qc1のオンオフによってV=VLon+VLoff=V2なる電圧が印加される。そして、LEDユニットLEDc1には引き続きLED電流が流れるとともに、その両端にはLED電圧VLEDが印加され続け、LEDユニットLEDc1が点灯する。さらに、このときの電流経路は破線矢印Pとなり、定電圧源1にエネルギーを回生する。
 リアクトルLc1の蓄積エネルギーの減少に伴い、LED電流が減少して、定格電流の下限に到達すると、制御回路6は再びスイッチ素子Qc1のゲート信号をオンして、スイッチ素子Qc1をオンする。以降は上記説明した一連の動作の繰り返しとなり、LEDユニットLEDc1の両端には常にLED電圧VLEDが加わるとともに、定格電流範囲のLED電流が流れ続け、LEDユニットLEDc1の点灯が持続される。その他のLED回路ブロックに関しても同様の動作となる。
 以上のように、この発明の実施の形態2によるLED点灯装置は、LEDユニット(LEDc1~LEDcn)点灯時に、第1母線電圧V1と、第2母線電圧V2と、LED電圧VLEDが、
 V1-V2<VLED_min かつ VLED_max<V1 ・・・(2)
の関係になるように、第1母線電圧V1、第2母線電圧V2、またはLED電圧VLEDの範囲を設定することにより、図4及び図5で説明した参考例のLED点灯装置よりもスイッチ素子とリアクトルに印加される電圧を第2母線電圧V2(<V1)まで小さくすることができる。したがって、図4及び図5の参考例を含めた従来装置よりも低耐圧のスイッチ素子が利用できるとともに、LED電流(=リアクトル電流)の許容リップルを同等とすれば、リアクトルも小型化することができ、小型かつ低コストなLED点灯装置を提供できる。また、スイッチ素子(Qc1~Qcn)がオフしている期間は、エネルギーが回生されるので、従来よりも高効率なLED点灯装置を提供することができる。
 また、実施の形態2によるLED点灯装置において、LEDユニット(LEDc1~LEDcn)を消灯させたい場合は、スイッチ素子(Qc1~Qcn)をオフし、さらに、V1-V2≦VLED_fとなるように第1母線電圧V1、または第2母線電圧V2を設定すればよい。
 さらに、制御回路6によるスイッチ素子(Qc1~Qcn)の制御は、上述のようにLED電流に上限と下限を設け、上限と下限に達する毎にスイッチ素子(Qc1~Qcn)をオンオフしてもよいし、LED電流の平均値が所定の電流になるようにスイッチ素子(Qc1~Qcn)のデューティ(=オン時間/オンオフ周期)を制御してもよい。また、LEDユニット(LEDc1~LEDcn)毎に並列にキャパシタを挿入して、LEDユニット(LEDc1~LEDcn)に流れる電流のリップルを低減するようにしてもよい。
実施の形態3.
 次に、この発明の実施の形態3によるLED点灯装置を図に基づいて説明する。図8はこの発明の実施の形態3によるLED点灯装置の回路構成図である。図8において、実施の形態1(図1)の構成要素と共通する機能を有するものは、同じ記号、または添え字のみ変更して記している。
 実施の形態3によるLED点灯装置は車載用途を想定したものであり、定電圧源7と、実施の形態1で説明したLED回路ブロック(3a1~3an)と、制御回路11で構成されている。これらの基本構成は、実施の形態1によるLED点灯装置と同じであり、実施の形態1の定電圧源1を具体的に示したものが定電圧源7である。また、実施の形態1の制御回路2の機能に定電圧源7を構成するコンバータの制御機能を追加したものが制御回路11である。従って、実施の形態3によるLED点灯装置のLEDユニット(LEDa1~LEDan)を点灯、消灯するための電圧条件、および動作時の各部の波形は実施の形態1によるLED点灯装置と同じである。よって、それらの動作説明は省略し、定電圧源7の構成と制御回路11の機能について述べる。
 この発明の実施の形態3におけるLED点灯装置は車載用途を想定しているため、バッテリ8が出力するバッテリ電圧VBから、実施の形態1のLED点灯装置で説明した
 V2<VLED_min、かつ VLED_max<V1 ・・・(1)
の電圧の関係にある第1母線電圧V1と、第2母線電圧V2を生成しなければならない。
 ここで、LEDユニット(LEDa1~LEDan)を構成するLED素子の直列接続数が多く、バッテリ電圧VB<LED電圧VLED_maxとなると、LEDユニット(LEDa1~LEDan)を点灯することができない。そこで、バッテリ8の出力側に第1のコンバータ10を設け、バッテリ電圧VBを昇圧し、VLED_maxよりも高い第1母線電圧V1を提供する。バッテリ電圧VBがLED電圧VLED_maxよりも高い場合は、第1のコンバータ10は降圧動作を行うか、あるいは第1のコンバータ10自体を省略してもよい。また、第2母線電圧V2は、ダイオード(Da1~Dan)のアノード端子とバッテリ8の出力端子の間に設けた第2のコンバータ9により生成する。ここでの第2のコンバータ9は、バッテリ電圧VB側を入力とし、第2母線200側に電流の流れ出しを可能とする。
 制御回路11は、第1母線電圧V1と第2母線電圧V2の電圧を検出し、それらの電圧が、実施の形態1の電圧条件となるように、第1のコンバータ10と、第2のコンバータ9の制御を行う。なお、図8において、11Aは制御回路11による第1のコンバータ10の電圧制御、11Bは制御回路11による第2のコンバータ9の電圧制御を示している。また、制御回路11は、実施の形態1で説明したLED電流の定電流制御も行う。なお、第1母線電圧V1および第2母線電圧V2の電圧検出手段は、例えば、それぞれの出力端子と基準電圧の間に分圧抵抗を接続して用いることができる。また、第1のコンバータ10と第2のコンバータ9は、例えば、スイッチングレギュレータ等を用いることができる。
 以上のように、この発明の実施の形態3によれば、定電圧源は、バッテリと、第1のコンバータ及び第2のコンバータを有し、制御回路は、第1のコンバータの出力が第1母線電圧V1に、第2のコンバータの出力が第2母線電圧V2になるように制御しているので、特に車載用途等で、実施の形態1のLED点灯装置と同様の効果を得ることができる。
実施の形態4.
 次に、この発明の実施の形態4によるLED点灯装置を図に基づいて説明する。図9はこの発明の実施の形態4によるLED点灯装置の回路構成図である。図9において、上記実施の形態における構成要素と共通する機能を有するものは、同じ記号、または添え字のみ変更して記している。
 実施の形態4によるLED点灯装置は車載用途を想定したものであり、定電圧源7と、実施の形態2で説明したLED回路ブロック(3c1~3cn)と、制御回路12で構成されている。これらの基本構成は、実施の形態2によるLED点灯装置と同じであり、実施の形態2の定電圧源1を具体的に示したものが定電圧源7である。また、実施の形態2の制御回路6の機能に定電圧源7を構成するコンバータの制御機能を追加したものが制御回路12である。従って、実施の形態4によるLED点灯装置のLEDユニット(LEDc1~LEDcn)を点灯、消灯するための電圧条件、および動作時の各部の波形は実施の形態2によるLED点灯装置と同じである。よって、それらの動作説明は省略し、定電圧源7と制御回路12の機能について述べる。
 この発明の実施の形態4におけるLED点灯装置は車載用途を想定しているため、バッテリ8が出力するバッテリ電圧VBから、実施の形態2のLED点灯装置で説明した
 V1-V2<VLED_min かつ VLED_max<V1 ・・・(2)
の電圧の関係にある第1母線電圧V1と、第2母線電圧V2を生成しなければならない。
 ここで、LEDユニット(LEDc1~LEDcn)を構成するLED素子の直列接続数が多く、バッテリ電圧VB<LED電圧VLED_maxとなると、LEDユニット(LEDc1~LEDcn)を点灯することができない。そこで、バッテリ8の出力側に第1のコンバータ10を設け、バッテリ電圧VBを昇圧し、VLED_maxよりも高い第1母線電圧V1を提供する。バッテリ電圧VBがLED電圧VLED_maxよりも高い場合は、第1のコンバータ10は降圧動作を行うか、あるいは第1のコンバータ10自体を省略してもよい。また、第2母線電圧V2は、ダイオード(Dc1~Dcn)のカソード端子とバッテリ8の出力端子の間に設けた第2のコンバータ9により生成する。また、ここでの第2のコンバータ9は、第2母線200側を入力、バッテリ電圧VBを出力として、第2母線200側からの電流の吸い込みを可能とする。
 以上のように、この発明の実施の形態4によるLED点灯装置は、定電圧源として、バッテリと、バッテリの出力端子に接続された第1のコンバータ及び第2のコンバータを有し、制御回路は、第1のコンバータの出力が第1母線電圧V1に、第2のコンバータの出力が第2母線電圧V2になるように制御しているので、特に車載用途等で、実施の形態2のLED点灯装置と同様の効果を得ることができる。
実施の形態5.
 次に、この発明の実施の形態5によるLED点灯装置を図に基づいて説明する。図10はこの発明の実施の形態5によるLED点灯装置の回路構成図である。図10に示す実施の形態5の回路構成は、図8に示す実施の形態3のLED点灯装置から、第2のコンバータ9を省略したものであり、制御回路14は、第1母線電圧V1の制御と定電流制御のみを行う。図10の回路動作については実施の形態3と同じなので、説明を省略する。
 この発明の実施の形態5によるLED点灯装置は、第2母線電圧V2がバッテリ電圧VBに固定されるため、実施の形態3によるLED点灯装置ほど構成素子の低耐圧化効果は得られない。しかし、第2のコンバータ9を省略し、制御回路14から第2のコンバータ9の制御機能をなくしたことにより、実施の形態3よりも回路の小型化と制御回路の簡略化が実現できる。
実施の形態6.
 次に、この発明の実施の形態6によるLED点灯装置を図に基づいて説明する。図11はこの発明の実施の形態6によるLED点灯装置の回路構成図である。図11に示す実施の形態6の回路構成は、図9に示す実施の形態4のLED点灯装置から、第2のコンバータ9を省略したものであり、それに伴い、制御回路16は、第1母線電圧V1の制御と定電流制御のみを行う。図11の回路動作については実施の形態4と同じなので、説明を省略する。
 この発明の実施の形態6によるLED点灯装置は、第2母線電圧V2がバッテリ電圧VBに固定されるため、実施の形態4によるLED点灯装置ほど構成素子の低耐圧化効果は得られない。しかし、第2のコンバータ9を省略し、制御回路14から第2のコンバータ9の制御機能をなくしたことにより、実施の形態4よりも回路の小型化と制御回路の簡略化ができる。
実施の形態7.
 次に、この発明の実施の形態7によるLED点灯装置を図に基づいて説明する。図12はこの発明の実施の形態7によるLED点灯装置の回路構成図である。図12に示す実施の形態7の回路構成は、図1に示す実施の形態1のLED点灯装置においてLED回路ブロックが複数個並列配置されているのではなくLED回路ブロック3a1が1個のみ配置されている。実施の形態7によるLED点灯装置の動作は、基本的に実施の形態1によるLED点灯装置の動作と同様であるので詳細な説明は省略する。ただし、図13に示すLEDユニットの静特性図のように、LEDユニットが複数個でなく1個のため、LED電圧はバラツキを持たず、LED電圧はLEDユニット(LEDa1)の電圧VLEDのみとなる。そのため、LED点灯時の第1母線電圧V1と、第2母線電圧V2と、LED電圧VLEDは、
上記式(1)において、VLED=VLED_min=VLED_maxとして、
 V2<VLED<V1 ・・・(3)
の関係になるように設定する。
 また、図6に示す実施の形態2のLED点灯装置においてLED回路ブロック3c1が1個のみ配置されている場合も同様に考えることができ、LED点灯時の第1母線電圧V1と、第2母線電圧V2と、LED電圧VLEDを、
上記式(2)において、VLED=VLED_min=VLED_maxとして、
 V1-V2<VLED<V1 ・・・(3)
の関係になるように設定する。
 その他の実施の形態3~6においても上記と同様に考えることができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (10)

  1. 第1母線電圧を有する第1母線と、
    上記第1母線電圧より低い第2母線電圧を有する第2母線と、
    上記第1母線に接続される、スイッチ素子、リアクトル、及び1個または複数のLED素子を直列接続したLEDユニット、の直列接続体、並びに上記スイッチ素子と上記リアクトルの接続点と上記第2母線との間に接続したダイオード、で構成されるLED回路ブロックと、
    上記LEDユニットに流れるLED電流が定格電流範囲内となるように、上記スイッチ素子をオンオフ制御する制御回路とを備え、
    上記LEDユニットの点灯時に、上記リアクトルと上記LEDユニットとの直列接続の両端に印加される電圧が、上記スイッチ素子がオン時に上記第1母線電圧、上記スイッチ素子がオフ時に上記第1母線電圧と上記第2母線電圧に基づいて定まる上記第1母線電圧より低い電圧になるようにするLED点灯装置。
  2. 上記第1母線及び上記第2母線に対して上記LED回路ブロックが複数個並列接続され、上記各LED回路ブロックは、上記第1母線に、上記スイッチ素子、上記リアクトル、及び上記LEDユニットの順番で直列に接続するとともに、上記ダイオードはアノード側を上記第2母線に接続し、カソード側を上記スイッチ素子と上記リアクトルの接続点に接続した構成である請求項1に記載のLED点灯装置。
  3. 上記各LEDユニットの点灯時は、上記第1母線電圧V1と、上記第2母線電圧V2と、上記各LEDユニットに印加されるLED電圧のうち最も高い電圧VLED_max及び最も低い電圧VLED_minとの関係が、
     V2<VLED_min かつ VLED_max<V1 ・・・(1)
    となるように上記第1母線電圧V1、上記第2母線電圧V2を設定する請求項2に記載のLED点灯装置。
  4. 上記各LEDユニットの消灯時は、上記各スイッチ素子をオフし、かつ上記第2母線電圧V2と、上記各LEDユニットが実質的に消灯とみなせる程度にまで電流が小さくなるときのLED電圧VLED_fとの関係が、
     V2≦VLED_f
    となるように、上記第2母線電圧V2を設定する請求項2又は請求項3に記載のLED点灯装置。
  5. 上記第1母線及び上記第2母線に対して上記LED回路ブロックが複数個並列接続され、上記各LED回路ブロックは、上記第1母線に、上記LEDユニット、上記リアクトル、及び上記スイッチ素子の順番で直列に接続するとともに、上記ダイオードはカソード側を上記第2母線に接続し、アノード側を上記スイッチ素子と上記リアクトルの接続点に接続した構成である請求項1に記載のLED点灯装置。
  6. 上記各LEDユニットの点灯時は、上記第1母線電圧V1と、上記第2母線電圧V2と、上記各LEDユニットに印加されるLED電圧のうち最も高い電圧VLED_max及び最も低い電圧VLED_minとの関係が、
     V1-V2<VLED_min かつ VLED_max<V1 ・・・(2)
    となるように上記第1母線電圧V1、上記第2母線電圧V2を設定する請求項5に記載のLED点灯装置。
  7. 上記各LEDユニットの消灯時は、上記各スイッチ素子をオフし、かつ上記第1母線電圧V1と、上記第2母線電圧V2と、上記各LEDユニットが実質的に消灯とみなせる程度にまで電流が小さくなるときのLED電圧VLED_fとの関係が、
     V1-V2≦VLED_f
    となるように、上記第1母線電圧V1、上記第2母線電圧V2を設定する請求項5又は請求項6に記載のLED点灯装置。
  8. 上記第1母線及び上記第2母線は定電圧源に接続されており、上記制御回路は、上記第1母線電圧又は上記第2母線電圧を上記設定値になるように上記定電圧源の上記第1母線電圧又は上記第2母線電圧を制御する請求項1から請求項7のいずれか1項に記載のLED点灯装置。
  9. バッテリの出力端子にそれぞれ接続された第1のコンバータと第2のコンバータを備え、上記第1のコンバータは上記第1母線に接続され、上記第2のコンバータは上記第2母線に接続され、上記制御回路は、上記第1のコンバータの出力が上記第1母線電圧に、上記第2のコンバータの出力が上記第2母線電圧になるように制御する請求項1から請求項7のいずれか1項に記載のLED点灯装置。
  10. バッテリの出力端子に接続された第1のコンバータを備え、上記第1のコンバータは上記第1母線に接続され、上記バッテリの出力電圧が上記第2母線電圧となり、上記制御回路は、上記第1のコンバータの出力が上記第1母線電圧になるように制御する請求項1から請求項7のいずれか1項に記載のLED点灯装置。
PCT/JP2013/050238 2012-03-16 2013-01-09 Led点灯装置 WO2013136823A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/377,567 US9516714B2 (en) 2012-03-16 2013-01-09 LED lighting device
DE112013001483.1T DE112013001483T5 (de) 2012-03-16 2013-01-09 LED-Beleuchtungseinrichtung
JP2014504722A JP5748901B2 (ja) 2012-03-16 2013-01-09 Led点灯装置
CN201380014511.2A CN104186026A (zh) 2012-03-16 2013-01-09 Led点亮装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012060082 2012-03-16
JP2012-060082 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013136823A1 true WO2013136823A1 (ja) 2013-09-19

Family

ID=49160745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050238 WO2013136823A1 (ja) 2012-03-16 2013-01-09 Led点灯装置

Country Status (5)

Country Link
US (1) US9516714B2 (ja)
JP (1) JP5748901B2 (ja)
CN (1) CN104186026A (ja)
DE (1) DE112013001483T5 (ja)
WO (1) WO2013136823A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059825A (ja) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 半導体光源駆動装置、及び投写型映像表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554965B (zh) * 2016-02-24 2017-06-13 西南交通大学 一种母线电流互补式分时复用多路恒流输出led驱动器及其控制方法
JP6431018B2 (ja) * 2016-10-24 2018-11-28 本田技研工業株式会社 内燃機関の制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152480A1 (ja) * 2010-06-02 2011-12-08 パナソニック電工株式会社 発光装置
JP2012004054A (ja) * 2010-06-21 2012-01-05 Hitachi Ltd 照明装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519613B2 (ja) 2004-11-16 2010-08-04 三菱電機株式会社 Led点灯装置
KR100628721B1 (ko) * 2005-06-22 2006-09-28 삼성전자주식회사 디스플레이장치 및 그 제어방법
CN101803455B (zh) * 2007-08-06 2012-03-28 Nxp股份有限公司 固态发光系统和用于驱动发光半导体器件的驱动器集成电路
US8487547B2 (en) * 2008-04-24 2013-07-16 Cypress Semiconductor Corporation Lighting assembly, circuits and methods
US8148919B2 (en) 2008-08-05 2012-04-03 O2Micro, Inc Circuits and methods for driving light sources
US8058810B2 (en) * 2009-05-07 2011-11-15 Linear Technology Corporation Method and system for high efficiency, fast transient multi-channel LED driver
US9060400B2 (en) * 2011-07-12 2015-06-16 Arkalumen Inc. Control apparatus incorporating a voltage converter for controlling lighting apparatus
US20130026933A1 (en) * 2011-07-25 2013-01-31 Shenzhen China Star Optoelectronics Technology Co., Ltd. Led backlight drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152480A1 (ja) * 2010-06-02 2011-12-08 パナソニック電工株式会社 発光装置
JP2012004054A (ja) * 2010-06-21 2012-01-05 Hitachi Ltd 照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059825A (ja) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 半導体光源駆動装置、及び投写型映像表示装置

Also Published As

Publication number Publication date
JP5748901B2 (ja) 2015-07-15
CN104186026A (zh) 2014-12-03
DE112013001483T5 (de) 2014-12-11
US9516714B2 (en) 2016-12-06
US20150035444A1 (en) 2015-02-05
JPWO2013136823A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
US9907130B2 (en) High-efficiency LED driver and driving method
JP5089193B2 (ja) 発光装置
KR101302993B1 (ko) 엘이디 구동장치 및 엘이디 조명장치
US8994287B2 (en) Light source control device
JP6126084B2 (ja) 光源制御装置
US20130002159A1 (en) Controlling circuit for an led driver and controlling method thereof
US8188617B2 (en) Current balancing apparatus, current balancing method, and power supply apparatus
JP6264821B2 (ja) 可視光通信装置
JP6152736B2 (ja) 点灯装置及び照明器具
US8446098B2 (en) LED driving circuit
JP2012253942A (ja) Dc−dcコンバータ装置
KR20170102434A (ko) 복수의 출력을 포함하는 차량의 발광 디바이스용 전력 공급 장치
JP2014050112A (ja) 直流電源回路およびled点灯回路
JP2016072245A (ja) ダイレクトled駆動装置
JP5748901B2 (ja) Led点灯装置
US20160270178A1 (en) Lighting device and luminaire
JP2011009253A (ja) 負荷駆動回路
JP2014157785A (ja) 駆動回路、車輌用灯具
JP5150742B2 (ja) Led駆動回路
JP2015185405A (ja) Led点灯装置
JP6357790B2 (ja) 点灯装置および照明器具
KR101549436B1 (ko) 지연 루틴을 이용한 발광 다이오드 구동 회로 및 방법
JP5386421B2 (ja) 照明器具及びそれに用いられる発光モジュール
JP6153112B2 (ja) 点灯装置及び照明器具
US9462644B2 (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504722

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377567

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013001483

Country of ref document: DE

Ref document number: 1120130014831

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760582

Country of ref document: EP

Kind code of ref document: A1