WO2013136409A1 - 受電装置及び受電装置制御方法、並びにコンピュータプログラム - Google Patents

受電装置及び受電装置制御方法、並びにコンピュータプログラム Download PDF

Info

Publication number
WO2013136409A1
WO2013136409A1 PCT/JP2012/056254 JP2012056254W WO2013136409A1 WO 2013136409 A1 WO2013136409 A1 WO 2013136409A1 JP 2012056254 W JP2012056254 W JP 2012056254W WO 2013136409 A1 WO2013136409 A1 WO 2013136409A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage value
power
unit
voltage
Prior art date
Application number
PCT/JP2012/056254
Other languages
English (en)
French (fr)
Inventor
圭介 岩脇
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/056254 priority Critical patent/WO2013136409A1/ja
Priority to JP2014504486A priority patent/JPWO2013136409A1/ja
Publication of WO2013136409A1 publication Critical patent/WO2013136409A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection

Definitions

  • the present invention relates to a technical field of a power receiving apparatus, a power receiving apparatus control method, and a computer program that exchange power with a power transmitting apparatus in a contactless manner.
  • the impedance changes depending on the state of a load such as a battery that is electrically connected to the power receiving device.
  • a load such as a battery that is electrically connected to the power receiving device.
  • impedance matching between the power transmitting device and the power receiving device is shifted, and there is a possibility that the power transmission efficiency is lowered.
  • a switching DC / DC converter is disposed between the receiving antenna of the power receiving apparatus and the load, and impedance matching is proposed (Non-Patent Document 1 “Chapter 5 5.3”). .3 Proposal of switching matching method ”).
  • the mobile power circuit is an equal voltage power circuit.
  • the mobile power supply circuit is a voltage doubler power supply circuit (see Patent Document 1).
  • Non-Patent Document 1 the circuit scale may increase, the manufacturing cost may increase, or the loss of the switching DC / DC converter itself may reduce the efficiency. There is a problem.
  • the present invention has been made in view of the above-described problems, for example, and provides a power receiving apparatus, a power receiving apparatus control method, and a computer program that can suppress a decrease in power transmission efficiency relatively easily and inexpensively. Let it be an issue.
  • a power receiving device of the present invention is disposed to face a power transmission unit of a power transmission device through a space, and receives a power transmitted from the power transmission unit.
  • a first circuit that is a circuit that converts an AC voltage value relating to the output AC power into a first voltage value that is the same or different from the AC voltage value, and the AC voltage value is the AC voltage value.
  • a conversion unit having a second circuit that is a circuit that converts the second voltage value that is different and is a DC voltage value that is higher than the first voltage value; and a charging unit that performs charging by the power output from the conversion unit;
  • a detecting unit that detects an impedance relating to the charging unit, and a selection unit that selects one of the first circuit and the second circuit based on the detected impedance.
  • the power reception device includes a power reception unit that is disposed to face the power transmission unit of the power transmission device via a space and receives power transmitted from the power transmission unit. That is, the power receiving device is a device that exchanges power with the power transmitting device in a non-contact manner using, for example, magnetic resonance.
  • the power receiving apparatus further includes a conversion unit, a charging unit, a detection unit, and a selection unit.
  • the converter is a first circuit that is a circuit that converts an AC voltage value related to the AC power output from the power receiving unit into a first voltage value that is the same or different from the AC voltage value, and the AC voltage value.
  • a second circuit that is a circuit that converts the voltage value to a second voltage value that is different from the AC voltage value and is higher than the first voltage value.
  • the same DC voltage value as the AC voltage value means that the maximum value of the AC voltage is equal to the DC voltage value.
  • the “DC voltage value different from the AC voltage value” typically means a DC voltage value that is larger than the maximum value of the AC voltage, but is a DC voltage value that is smaller than the maximum value of the AC voltage value. May be.
  • the charging unit performs charging with the power output from the conversion unit. Specifically, the charging unit charges an electrical load such as a battery that is electrically connected to the power receiving device.
  • the detection unit detects impedance related to the charging unit.
  • the “detection” according to the present invention is not limited to direct detection, but is calculated or estimated from some physical quantity or some parameter based on a predetermined algorithm or calculation formula (that is, indirect detection). It is a concept that also includes
  • a constant current constant voltage charging method is often employed.
  • the voltage applied to the electrical load reaches a predetermined value
  • the voltage is fixed and the value of the charging current gradually decreases with the charging time. Will gradually increase with charging time. Then, impedance matching between the power transmission device and the power reception device is shifted, and the transmission efficiency is lowered.
  • one of the first circuit and the second circuit is selected on the basis of the detected impedance by the selection means including a memory, a processor, and the like. Specifically, the selection means selects the first circuit when the detected impedance is relatively low, and selects the second circuit when the detected impedance reaches a relatively high value.
  • the second circuit When an AC voltage value that is the same as the AC voltage value input to the first circuit is input to the second circuit, the second circuit is higher than the first voltage value that is the output DC voltage value of the first circuit. Two voltage values are output. For this reason, when the same voltage value as the first voltage value is to be output from the second circuit, the AC voltage value input to the second circuit is kept lower than the AC voltage value input to the first circuit. Can do.
  • the first circuit and the second circuit need only be switched (selected) by, for example, a switching element, etc., so that the configuration of the power receiving apparatus can be made relatively simple and the manufacturing cost can be increased. It can also be suppressed.
  • the first circuit is a bridge rectifier circuit
  • the second circuit is a voltage doubler circuit
  • a power receiving device control method of the present invention is arranged to face a power transmission unit of a power transmission device through a space, and receives a power transmitted from the power transmission unit.
  • a first circuit that is a circuit that converts an AC voltage value related to AC power output from the unit into a first voltage value that is the same or different from the AC voltage value, and the AC voltage value is the AC voltage value.
  • a power receiving device control method in a power receiving device comprising: a detection step of detecting an impedance relating to the charging unit; and one of the first circuit and the second circuit based on the detected impedance Comprising a selection step of-option, a.
  • a computer program according to the present invention is arranged to face a power transmission unit of a power transmission device through a space and receives power transmitted from the power transmission unit, and from the power reception unit
  • a first circuit that is a circuit that converts an AC voltage value relating to the output AC power into a first voltage value that is the same or different from the AC voltage value, and the AC voltage value is the AC voltage value.
  • a conversion unit having a second circuit that is a circuit that converts the second voltage value that is different and is a DC voltage value that is higher than the first voltage value; and a charging unit that performs charging by the power output from the conversion unit;
  • a computer mounted on the power receiving device comprising: a detection unit that detects an impedance relating to the charging unit; and one of the first circuit and the second circuit is selected based on the detected impedance. Selection means for, to function as a.
  • the computer is stored in a storage medium such as a RAM (Random Access Memory), a CD-ROM (Compact Disc Only Memory), a DVD-ROM (DVD Read Only Memory) or the like for storing the computer program.
  • a storage medium such as a RAM (Random Access Memory), a CD-ROM (Compact Disc Only Memory), a DVD-ROM (DVD Read Only Memory) or the like for storing the computer program.
  • FIG. 1 is a block diagram illustrating a configuration of a contactless power feeding device according to an embodiment.
  • the non-contact power feeding device includes a power transmission device 100 and a power receiving device 200.
  • the power transmission device 100 and the power reception device 200 exchange power between the primary coil 102 and the secondary coil 201 in a non-contact manner, for example, by electromagnetic induction, magnetic field resonance, or the like.
  • the power transmission device 100 includes a high-frequency AC power source 101 and a primary coil (antenna) 102.
  • a primary coil antenna 102
  • illustration is abbreviate
  • Various known aspects can be applied to the configuration of the power transmission device 100.
  • the power receiving apparatus 200 includes a secondary coil (antenna) 201, a secondary resonant capacitor 202, a bridge rectifier circuit 203, a switch 204, a voltage doubler rectifier circuit 205, an overvoltage protection circuit 206, a battery 207, a voltage sensor 208, a current sensor 209, and a control.
  • a circuit 210 is provided.
  • the secondary resonance capacitor 202 is electrically connected in series with the secondary coil 201, but may be electrically connected in parallel with the secondary coil 201.
  • the overvoltage protection circuit 206 includes a regulator that limits the output voltage so as not to exceed the rated voltage of the battery 207.
  • Each of the bridge rectifier circuit 203 and the voltage doubler rectifier circuit 205 converts AC power received by the secondary coil 201 into DC power.
  • the switch 204 is configured to be able to switch between the bridge rectifier circuit 203 and the voltage doubler rectifier circuit 205.
  • the control circuit 210 calculates an impedance (here, voltage / current) based on the charging voltage related to the battery 207 detected by the voltage sensor 208 and the charging current related to the battery 207 detected by the current sensor 209. Based on the calculated impedance, the switch 204 is controlled to select one of the bridge rectifier circuit 203 and the voltage doubler rectifier circuit 205.
  • an impedance here, voltage / current
  • a constant current constant voltage charging method is adopted.
  • constant current charging is performed at a rated current (for example, 10 A) as shown in FIG.
  • the cell voltage of the battery 207 also increases.
  • the battery 207 shifts to constant voltage charging.
  • FIG. 2 is a conceptual diagram showing an example of time variation of voltage, current, and load impedance.
  • FIG. 3 is a conceptual diagram illustrating an example of temporal variation of the transmission efficiency.
  • the transmission efficiency is significantly deteriorated after the time t1 (that is, the constant voltage charging period).
  • the transmission efficiency is lower in the constant current charging period than in the case where the bridge rectifier circuit 203 is used, but the bridge rectifier circuit 203 is used in the constant voltage charging period. Will be higher than if
  • the switch 204 is controlled by the control circuit 210 so as to select one of the bridge rectifier circuit 203 and the voltage doubler rectifier circuit 205 based on the load impedance. Specifically, the control circuit 210 controls the switch 204 to select the bridge rectifier circuit 203 at the beginning of charging of the battery 207. Then, when the load impedance reaches a predetermined value, the switch 204 is controlled to select the voltage doubler rectifier circuit 205.
  • the “predetermined value” is a value that determines whether or not to switch from the bridge rectifier circuit 203 to the voltage doubler rectifier circuit 204.
  • Such a “predetermined value” may be set as a load impedance at which the transmission efficiency when the bridge rectification circuit 203 is used is equal to or less than the transmission efficiency when the voltage doubler rectification circuit 205 is used.
  • the change in load impedance during charging of the battery 207 can be relatively easily obtained by, for example, simulation or the like if the configuration of the power receiving device 200 is determined.
  • parameters related to the power transmission device 100 for example, coil inductance, capacitor capacity, etc. are also required.
  • the power receiving device 200 is configured as described above, it is possible to suppress a decrease in power transmission efficiency when the battery 207 is charged.
  • the “primary coil 102”, “secondary coil 201”, “bridge rectifier circuit 203”, “double voltage rectifier circuit 205”, and “control circuit 210” according to the embodiments are respectively referred to as “power transmission unit” according to the present invention, It is an example of “power receiving unit”, “first circuit”, “second circuit”, and “selecting means”.
  • the “voltage sensor 208”, “current sensor 209”, and “control circuit 210” according to the embodiment are examples of the “detection unit” according to the present invention.
  • the “bridge rectifier circuit 203” and the “double voltage rectifier circuit 205” according to the embodiment are examples of the “converter” according to the present invention.
  • the “overvoltage protection circuit 206” according to the embodiment is an example of the “charging unit” according to the present invention.
  • FIG. 4 is a conceptual diagram illustrating an example of temporal variation of the transmission efficiency, voltage, and current.
  • FIG. 5 is a block diagram illustrating a configuration of a power receiving device according to a first modification of the embodiment.
  • the control circuit 210 controls the switch 204 to select the voltage doubler rectifier circuit 205 on the condition that the charging current has decreased to a predetermined value i0 instead of the load impedance.
  • the power receiving device 220 according to the first modification does not have to include the voltage sensor 208 (see FIG. 1) as shown in FIG.
  • FIG. 6 is a conceptual diagram illustrating another example of temporal variation of each of the transmission efficiency, voltage, and current.
  • FIG. 7 is a block diagram illustrating a configuration of a power receiving device according to a second modification of the embodiment.
  • the control circuit 210 controls the switch 204 to select the voltage doubler rectifier circuit 205 on the condition that the charging voltage has risen to the predetermined value v0 instead of the load impedance.
  • the power receiving device 230 according to the second modification may not include the current sensor 209 (see FIG. 1) as shown in FIG.
  • the bridge rectifier circuit 203 and the voltage doubler rectifier circuit 205 are used.
  • a combination of a voltage doubler rectifier circuit and a triple voltage rectifier circuit may be used.
  • the power receiving apparatus 200 includes, for example, a triple voltage rectifier circuit in addition to the bridge rectifier circuit 203 and the voltage doubler rectifier circuit 205, and the bridge rectifier circuit 203, the voltage doubler rectifier circuit 205, and the triple voltage rectifier circuit are connected to a load. You may comprise so that it may mutually switch according to an impedance.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • the power receiving apparatus control method and the computer program are also included in the technical scope of the present invention.
  • DESCRIPTION OF SYMBOLS 100 Power transmission apparatus, 101 ... High frequency alternating current power supply, 102 ... Primary coil, 201 ... Secondary coil, 202 ... Secondary resonance capacitor, 203 ... Bridge rectifier circuit, 204 ... Switch, 205 ... Double voltage rectifier circuit, 206 ... Overvoltage Protection circuit, 207 ... Battery, 208 ... Voltage sensor, 209 ... Current sensor, 210 ... Control circuit

Abstract

 受電装置(200)は、送電装置(100)の送電部(101)と空間を介して対向して配置され、送電部から送電された電力を受電する受電部(201)と、受電部から出力された交流電力に係る交流電圧値を交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路(203)、及び交流電圧値を交流電圧値とは異なり且つ第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路(205)、を有する変換部と、変換部から出力された電力により充電を行う充電部と、充電部に係るインピーダンスを検出する検出部(208、209、210)と、検出されたインピーダンスに基づいて、第1回路及び第2回路の一方を選択する選択手段(210)と、を備える。

Description

受電装置及び受電装置制御方法、並びにコンピュータプログラム
 本発明は、送電装置との間で、非接触に電力授受を行う受電装置及び受電装置制御方法、並びにコンピュータプログラムの技術分野に関する。
 この種の装置では、受電装置に電気的に接続されている、例えばバッテリ等の負荷の状態に応じてインピーダンスが変化する。インピーダンスが比較的大きく変化した場合、送電装置及び受電装置間のインピーダンスマッチングがずれて、電送効率が低下する可能性がある。このため、例えば、受電装置の受信アンテナと、負荷との間に、スイッチングのDC/DCコンバータを配置し、インピーダンスマッチングをとることが提案されている(非特許文献1“第5章5.3.3 スイッチング整合方式の提案”参照)。
 尚、第1受電部と第2受電部とを備える移動体において、該第1受電部及び第2受電部の両方が給電線区間にあるときは、移動体電源回路を等倍電圧電源回路とし、該第1受電部及び第2受電部の一方が無給電線区間にあるときは、移動体電源回路を倍電圧電源回路とする技術が提案されている(特許文献1参照)。
特開2002-058179号公報
居村 岳広、「電磁界共振結合を用いたワイヤレス電力伝送に関する研究」、東京大学大学院工学研究科 電気工学専攻 博士論文、2010年3月24日発行
 しかしながら、非特許文献1に記載の技術では、例えば回路規模が増大したり、製造コストが増加したり、スイッチングのDC/DCコンバータ自体の損失が効率を低下させたりする可能性があるという技術的問題点がある。
 本発明は、例えば上記問題点に鑑みてなされたものであり、比較的簡便且つ安価に、電送効率の低下を抑制することができる受電装置及び受電装置制御方法、並びにコンピュータプログラムを提供することを課題とする。
 本発明の受電装置は、上記課題を解決するために、送電装置の送電部と空間を介して対向して配置され、前記送電部から送電された電力を受電する受電部と、前記受電部から出力された交流電力に係る交流電圧値を前記交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び前記交流電圧値を前記交流電圧値とは異なり且つ前記第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する変換部と、前記変換部から出力された電力により充電を行う充電部と、前記充電部に係るインピーダンスを検出する検出部と、前記検出されたインピーダンスに基づいて、前記第1回路及び前記第2回路の一方を選択する選択手段と、を備える。
 本発明の受電装置によれば、当該受電装置は、送電装置の送電部と空間を介して対向して配置され、該送電部から送電された電力を受電する受電部を備える。つまり、当該受電装置は、送電装置との間で、例えば磁界共鳴等を利用して非接触で電力の授受を行う装置である。受電装置は更に、変換部、充電部、検出部及び選択手段を備えて構成されている。
 変換部は、受電部から出力された交流電力に係る交流電圧値を該交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び交流電圧値を該交流電圧値とは異なり且つ第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する。
 ここで、「交流電圧値と同じ直流電圧値」とは、交流電圧の最大値と直流電圧値とが等しいことを意味する。他方、「交流電圧値とは異なる直流電圧値」とは、典型的には、交流電圧の最大値より大きい直流電圧値を意味するが、交流電圧値の最大値よりも小さい直流電圧値であってもよい。
 充電部は、変換部から出力された電力により充電を行う。具体的には充電部は、当該受電装置に電気的に接続された、例えばバッテリ等の電気的な負荷に対して充電を行う。検出部は、充電部に係るインピーダンスを検出する。
 本発明に係る「検出」とは、直接的な検出に限らず、何らかの物理量若しくは何らかのパラメータから、予め定められたアルゴリズム若しくは算出式に基づいて、算出若しくは推定すること(即ち、間接的な検出)も含む概念である。
 ここで、本願発明者の研究によれば、以下の事項が判明している。即ち、例えばバッテリ等の電気的な負荷に対して充電を行う場合、定電流定電圧充電方式が採用されることが多い。定電流定電圧充電方式では、電気的な負荷にかかる電圧が所定の値に達した後は、電圧を固定して、充電電流の値を充電時間とともに徐々に低下させるので、回路としての負荷インピーダンスは充電時間とともに徐々に増加することとなる。すると、送電装置及び受電装置間のインピーダンスマッチングがずれて電送効率が低下する。
 そこで本発明では、例えばメモリ、プロセッサ等を備えてなる選択手段により、検出されたインピーダンスに基づいて、第1回路及び第2回路の一方が選択される。具体的には、選択手段は、検出されたインピーダンスが比較的低い場合は第1回路を選択し、検出されたインピーダンスが比較的高い値に達した場合には第2回路を選択する。
 第2回路に、第1回路に入力される交流電圧値と同じ交流電圧値が入力された場合、該第2回路は、第1回路の出力直流電圧値である第1電圧値よりも高い第2電圧値を出力する。このため、第1電圧値と同じ電圧値を第2回路から出力しようとする場合、該第2回路に入力される交流電圧値は、第1回路に入力される交流電圧値よりも低く抑えることができる。
 このため、定電流定電圧充電方式により電気的な負荷が充電されている場合に、第1回路から第2回路に切り換えられることにより、送電装置の入力インピーダンスの増加を抑制することができる。この結果、電送効率の低下を抑制することができる。本発明では特に、第1回路及び第2回路を、例えばスイッチング素子等により切り換える(選択する)だけでよいので、受電装置の構成を比較的簡便にすることができると共に、製造コスト等の増加を抑制することもできる。
 本発明の受電装置の一態様では、前記第1回路はブリッジ整流回路であり、前記第2回路は倍電圧回路である。
 この態様によれば、比較的容易にして、電送効率の低下を抑制することができ、実用上非常に有利である。
 本発明の受電装置制御方法は、上記課題を解決するために、送電装置の送電部と空間を介して対向して配置され、前記送電部から送電された電力を受電する受電部と、前記受電部から出力された交流電力に係る交流電圧値を前記交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び前記交流電圧値を前記交流電圧値とは異なり且つ前記第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する変換部と、前記変換部から出力された電力により充電を行う充電部と、を備える受電装置における受電装置制御方法であって、前記充電部に係るインピーダンスを検出する検出工程と、前記検出されたインピーダンスに基づいて、前記第1回路及び前記第2回路の一方を選択する選択工程と、を備える。
 本発明の受電装置制御方法によれば、上述した本発明の受電装置と同様に、比較的簡便且つ安価に、電送効率の低下を抑制することができる。
 尚、本発明の受電装置制御方法においても、上述した本発明の受電装置に係る各種態様と同様の各種態様を採ることができる。
 本発明のコンピュータプログラムは、上記課題を解決するために、送電装置の送電部と空間を介して対向して配置され、前記送電部から送電された電力を受電する受電部と、前記受電部から出力された交流電力に係る交流電圧値を前記交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び前記交流電圧値を前記交流電圧値とは異なり且つ前記第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する変換部と、前記変換部から出力された電力により充電を行う充電部と、を備える受電装置に搭載されたコンピュータを、前記充電部に係るインピーダンスを検出する検出部と、前記検出されたインピーダンスに基づいて、前記第1回路及び前記第2回路の一方を選択する選択手段と、として機能させる。
 本発明のコンピュータプログラムによれば、当該コンピュータプログラムを格納するRAM(Random Access Memory)、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(DVD Read Only Memory)等の記録媒体から、当該コンピュータプログラムを、受電装置に備えられたコンピュータに読み込んで実行させれば、或いは、当該コンピュータプログラムを通信手段を介してダウンロードさせた後に実行させれば、上述した本発明の受電装置を比較的容易にして実現できる。これにより、上述した本発明の受電装置と同様に、比較的簡便且つ安価に、電送効率の低下を抑制することができる。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
実施形態に係る非接触給電装置の構成を示すブロック図である。 電圧、電流及びインピーダンス各々の時間変動の一例を示す概念図である。 電送効率の時間変動の一例を示す概念図である。 電送効率、電圧、電流各々の時間変動の一例を示す概念図である。 実施形態の第1変形例に係る受電装置の構成を示すブロック図である。 電送効率、電圧、電流各々の時間変動の他の例を示す概念図である。 実施形態の第2変形例に係る受電装置の構成を示すブロック図である。
 以下、本発明の受電装置に係る実施形態について、図面に基づいて説明する。
 実施形態に係る非接触給電装置の構成について、図1を参照して説明する。図1は、実施形態に係る非接触給電装置の構成を示すブロック図である。
 図1において、非接触給電装置は、送電装置100と、受電装置200とを備えて構成されている。送電装置100と受電装置200とは、1次コイル102及び2次コイル201間における、例えば電磁誘導、磁界共鳴等によって非接触で電力の授受を行う。
 送電装置100は、高周波交流電源101と、1次コイル(アンテナ)102と、を備えて構成されている。尚、送電装置100の詳細な構成については、本発明とは関連性が低いので、ここでは図示を省略している。送電装置100の構成については、公知の各種態様を適用可能である。
 受電装置200は、2次コイル(アンテナ)201、2次共振コンデンサ202、ブリッジ整流回路203、スイッチ204、倍電圧整流回路205、過電圧保護回路206、バッテリ207、電圧センサ208、電流センサ209及び制御回路210を備えて構成されている。
 2次共振コンデンサ202は、図1では、2次コイル201と電気的に直列に接続されているが、2次コイル201と電気的に並列に接続されていてもよい。過電圧保護回路206は、出力電圧がバッテリ207の定格電圧を超えないように制限するレギュレータ等を有して構成されている。
 ブリッジ整流回路203及び倍電圧整流回路205各々は、2次コイル201により受電された交流電力を直流電力に変換する。スイッチ204は、ブリッジ整流回路203及び倍電圧整流回路205を相互に切り換え可能に構成されている。
 制御回路210は、電圧センサ208により検出されたバッテリ207に係る充電電圧、及び電流センサ209により検出されたバッテリ207に係る充電電流に基づいて、インピーダンス(ここでは、電圧/電流)を算出し、該算出されたインピーダンスに基づいて、ブリッジ整流回路203及び倍電圧整流回路205の一方を選択するようにスイッチ204を制御する。
 ところで、バッテリ207が充電される際には、定電流定電圧充電方式が採用される。バッテリ207の放電状態から充電が開始されると、図2に示すように、先ず定格電流(例えば10A)での定電流充電となる。この際、バッテリ207の充電量が増加することに伴い、該バッテリ207のセル電圧も上昇する。バッテリ207のセル電圧が定格電圧(例えば350V)に達すると(図2における“時刻t1”参照)、定電圧充電に移行する。
 定電圧充電期間では、バッテリ207の充電量の増加に従って、充電電流が低下するため、負荷インピーダンスは徐々に増加することとなる(図2における“時刻t1”以降参照)。すると、送電装置100及び受電装置200間のインピーダンスマッチングがずれて電送効率が低下する。尚、図2は、電圧、電流及び負荷インピーダンス各々の時間変動の一例を示す概念図である。
 ここで、ブリッジ整流回路203のみが使用された場合と、倍電圧整流回路205のみが使用された場合との各々の、バッテリ207が充電される際の電送効率について、図3を参照して説明する。図3は、電送効率の時間変動の一例を示す概念図である。
 図3に示すように、ブリッジ整流回路203のみが使用された場合、電送効率は、時刻t1以降(つまり、定電圧充電期間)顕著に悪化する。他方で、倍電圧整流回路205のみが使用された場合、電送効率は、定電流充電期間ではブリッジ整流回路203が使用された場合に比べて低いが、定電圧充電期間ではブリッジ整流回路203が使用された場合よりも高くなる。
 そこで、本実施形態では、制御回路210により負荷インピーダンスに基づいて、ブリッジ整流回路203及び倍電圧整流回路205の一方を選択するようにスイッチ204が制御される。具体的には、制御回路210は、バッテリ207の充電が開始された当初は、ブリッジ整流回路203を選択するようにスイッチ204を制御する。そして、負荷インピーダンスが所定値に達した時点で、倍電圧整流回路205を選択するようにスイッチ204を制御する。
 ここで、「所定値」は、ブリッジ整流回路203から倍電圧整流回路204への切り換えを実施するか否かを決定する値である。このような「所定値」は、ブリッジ整流回路203を使用した場合の電送効率が、倍電圧整流回路205を使用した場合の電送効率以下となる負荷インピーダンスとして設定すればよい。
 尚、バッテリ207の充電中における負荷インピーダンスの変化は、受電装置200の構成が決定されれば、例えばシミュレーション等により比較的容易に求めることができる。他方で、電送効率を、例えばシミュレーション等により求めるためには、送電装置100に係るパラメータ(例えば、コイルのインダクタンス、コンデンサ容量等)も必要である。
 受電装置200は、上述の如く構成されているので、バッテリ207の充電時における電送効率の低下を抑制することができる。
 実施形態に係る「一次コイル102」、「2次コイル201」、「ブリッジ整流回路203」、「倍電圧整流回路205」、「制御回路210」は、夫々、本発明に係る「送電部」、「受電部」、「第1回路」、「第2回路」及び「選択手段」の一例である。実施形態に係る「電圧センサ208」、「電流センサ209」及び「制御回路210」は、本発明に係る「検出部」の一例である。実施形態に係る「ブリッジ整流回路203」及び「倍電圧整流回路205」は、本発明に係る「変換部」の一例である。実施形態に係る「過電圧保護回路206」は、本発明に係る「充電部」の一例である。
 <第1変形例>
 次に、実施形態に係る受電装置の第1変形例について、図4及び図5を参照して説明する。図4は、電送効率、電圧、電流各々の時間変動の一例を示す概念図である。図5は、実施形態の第1変形例に係る受電装置の構成を示すブロック図である。
 図4に示すように、倍電圧整流回路204を使用した場合の電送効率が、ブリッジ整流回路203を使用した場合の電送効率を上回る時期が、定電圧充電期間内である場合(図4における“時刻t3”参照)、制御回路210は、負荷インピーダンスに代えて、充電電流が所定値i0まで低下したことを条件に、倍電圧整流回路205を選択するようにスイッチ204を制御する。
 第1変形例では充電電流さえ検出できればよいので、第1変形例に係る受電装置220は、図5に示すように、電圧センサ208(図1参照)を備えていなくてもよい。
 <第2変形例>
 次に、実施形態に係る受電装置の第2変形例について、図6及び図7を参照して説明する。図6は、電送効率、電圧、電流各々の時間変動の他の例を示す概念図である。図7は、実施形態の第2変形例に係る受電装置の構成を示すブロック図である。
 図6に示すように、倍電圧整流回路204を使用した場合の電送効率が、ブリッジ整流回路203を使用した場合の電送効率を上回る時期が、定電流充電期間内である場合(図4における“時刻t4”参照)、制御回路210は、負荷インピーダンスに代えて、充電電圧が所定値v0まで上昇したことを条件に、倍電圧整流回路205を選択するようにスイッチ204を制御する。
 第2変形例では充電電圧さえ検出できればよいので、第2変形例に係る受電装置230は、図7に示すように、電流センサ209(図1参照)を備えていなくてもよい。
 尚、実施形態では、ブリッジ整流回路203と倍電圧整流回路205とを用いたが、例えば倍電圧整流回路と三倍電圧整流回路との組み合わせ等であってもよい。また、受電装置200が、例えばブリッジ整流回路203及び倍電圧整流回路205に加えて、三倍電圧整流回路等を備え、ブリッジ整流回路203、倍電圧整流回路205及び三倍電圧整流回路を、負荷インピーダンスに応じて相互に切り換えるように構成してもよい。
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う受電装置及び受電装置制御方法、並びにコンピュータプログラムもまた本発明の技術的範囲に含まれるものである。
 100…送電装置、101…高周波交流電源、102…1次コイル、201…2次コイル、202…2次共振コンデンサ、203…ブリッジ整流回路、204…スイッチ、205…倍電圧整流回路、206…過電圧保護回路、207…バッテリ、208…電圧センサ、209…電流センサ、210…制御回路

Claims (4)

  1.  送電装置の送電部と空間を介して対向して配置され、前記送電部から送電された電力を受電する受電部と、
     前記受電部から出力された交流電力に係る交流電圧値を前記交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び前記交流電圧値を前記交流電圧値とは異なり且つ前記第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する変換部と、
     前記変換部から出力された電力により充電を行う充電部と、
     前記充電部に係るインピーダンスを検出する検出部と、
     前記検出されたインピーダンスに基づいて、前記第1回路及び前記第2回路の一方を選択する選択手段と、
     を備えることを特徴とする受電装置。
  2.  前記第1回路はブリッジ整流回路であり、前記第2回路は倍電圧回路であることを特徴とする請求項1に記載の受電装置。
  3.  送電装置の送電部と空間を介して対向して配置され、前記送電部から送電された電力を受電する受電部と、前記受電部から出力された交流電力に係る交流電圧値を前記交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び前記交流電圧値を前記交流電圧値とは異なり且つ前記第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する変換部と、前記変換部から出力された電力により充電を行う充電部と、を備える受電装置における受電装置制御方法であって、
     前記充電部に係るインピーダンスを検出する検出工程と、
     前記検出されたインピーダンスに基づいて、前記第1回路及び前記第2回路の一方を選択する選択工程と、
     を備えることを特徴とする受電装置制御方法。
  4.  送電装置の送電部と空間を介して対向して配置され、前記送電部から送電された電力を受電する受電部と、前記受電部から出力された交流電力に係る交流電圧値を前記交流電圧値と同じ又は異なる直流電圧値である第1電圧値に変換する回路である第1回路、及び前記交流電圧値を前記交流電圧値とは異なり且つ前記第1電圧値よりも高い直流電圧値である第2電圧値に変換する回路である第2回路、を有する変換部と、前記変換部から出力された電力により充電を行う充電部と、を備える受電装置に搭載されたコンピュータを、
     前記充電部に係るインピーダンスを検出する検出部と、
     前記検出されたインピーダンスに基づいて、前記第1回路及び前記第2回路の一方を選択する選択手段と、
     として機能させることを特徴とするコンピュータプログラム。
PCT/JP2012/056254 2012-03-12 2012-03-12 受電装置及び受電装置制御方法、並びにコンピュータプログラム WO2013136409A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/056254 WO2013136409A1 (ja) 2012-03-12 2012-03-12 受電装置及び受電装置制御方法、並びにコンピュータプログラム
JP2014504486A JPWO2013136409A1 (ja) 2012-03-12 2012-03-12 受電装置及び受電装置制御方法、並びにコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056254 WO2013136409A1 (ja) 2012-03-12 2012-03-12 受電装置及び受電装置制御方法、並びにコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2013136409A1 true WO2013136409A1 (ja) 2013-09-19

Family

ID=49160383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056254 WO2013136409A1 (ja) 2012-03-12 2012-03-12 受電装置及び受電装置制御方法、並びにコンピュータプログラム

Country Status (2)

Country Link
JP (1) JPWO2013136409A1 (ja)
WO (1) WO2013136409A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150115824A1 (en) * 2013-10-31 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode driver
EP2911264A1 (de) * 2014-02-21 2015-08-26 Brusa Elektronik AG Ladeschaltung für einen Akkumulator mit erhöhter Ausgangsspannung
WO2015125114A1 (de) 2014-02-21 2015-08-27 Brusa Elektronik Ag Ladeschaltung für einen akkumulator mit erhöhter ausgangsspannung
JP2017112763A (ja) * 2015-12-17 2017-06-22 矢崎総業株式会社 インピーダンス制御装置及び車両の非接触電力受電装置
CN107147199A (zh) * 2017-06-09 2017-09-08 宁波微鹅电子科技有限公司 无线电能接收端和无线充电系统
DE102017129180A1 (de) 2016-12-07 2018-06-07 Tdk Corporation Drahtlose Leistungsempfangsvorrichtung, drahtloses Leistungsübertragungssystem, das diese verwendet, und Gleichrichter
JP2019058035A (ja) * 2017-09-22 2019-04-11 矢崎総業株式会社 受電装置
JP2019103386A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
US10903691B2 (en) 2017-11-29 2021-01-26 Tdk Corporation Wireless power receiver and wireless power transmission system using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135722A1 (ja) * 2010-04-30 2011-11-03 富士通株式会社 受電装置及び受電方法
JP2012501160A (ja) * 2008-08-25 2012-01-12 クゥアルコム・インコーポレイテッド 無線送電のための受動受信機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5415744B2 (ja) * 2008-11-18 2014-02-12 オリンパス株式会社 カプセル型医療装置
JP5459058B2 (ja) * 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
CN105914904B (zh) * 2010-05-03 2019-07-26 松下知识产权经营株式会社 发电装置和在发电装置中使用的装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501160A (ja) * 2008-08-25 2012-01-12 クゥアルコム・インコーポレイテッド 無線送電のための受動受信機
WO2011135722A1 (ja) * 2010-04-30 2011-11-03 富士通株式会社 受電装置及び受電方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150115824A1 (en) * 2013-10-31 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode driver
US9357595B2 (en) * 2013-10-31 2016-05-31 Solum Co., Ltd. Light emitting diode driver
EP2911264A1 (de) * 2014-02-21 2015-08-26 Brusa Elektronik AG Ladeschaltung für einen Akkumulator mit erhöhter Ausgangsspannung
WO2015125114A1 (de) 2014-02-21 2015-08-27 Brusa Elektronik Ag Ladeschaltung für einen akkumulator mit erhöhter ausgangsspannung
JP2017112763A (ja) * 2015-12-17 2017-06-22 矢崎総業株式会社 インピーダンス制御装置及び車両の非接触電力受電装置
US10847999B2 (en) 2016-12-07 2020-11-24 Tdk Corporation Wireless power receiver, wireless power transmission system using the same, and rectifier
DE102017129180A1 (de) 2016-12-07 2018-06-07 Tdk Corporation Drahtlose Leistungsempfangsvorrichtung, drahtloses Leistungsübertragungssystem, das diese verwendet, und Gleichrichter
JP2018093692A (ja) * 2016-12-07 2018-06-14 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送装置並びに整流器
US10714979B2 (en) 2017-06-09 2020-07-14 Ningbo Weie Electronics Technology Ltd. Wireless power receiving terminal and wireless charging system
CN107147199A (zh) * 2017-06-09 2017-09-08 宁波微鹅电子科技有限公司 无线电能接收端和无线充电系统
JP2019058035A (ja) * 2017-09-22 2019-04-11 矢崎総業株式会社 受電装置
JP2019103386A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
CN109980791A (zh) * 2017-11-29 2019-07-05 Tdk株式会社 无线受电装置及使用其的无线电力传输系统
US10903691B2 (en) 2017-11-29 2021-01-26 Tdk Corporation Wireless power receiver and wireless power transmission system using the same
JP7139857B2 (ja) 2017-11-29 2022-09-21 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
CN109980791B (zh) * 2017-11-29 2024-01-16 Tdk株式会社 无线受电装置及使用其的无线电力传输系统

Also Published As

Publication number Publication date
JPWO2013136409A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2013136409A1 (ja) 受電装置及び受電装置制御方法、並びにコンピュータプログラム
KR101896921B1 (ko) 무선 전력 수신기 및 그 제어 방법
JP6261212B2 (ja) 無線電力送信システムにおける異物感知装置及び方法
US9423439B2 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
US9588163B2 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
KR101775234B1 (ko) 무전전력전송 시스템 및 이의 구동 방법.
CN109874361B (zh) 无线功率接收器和用于控制无线功率接收器的方法
US20130214612A1 (en) Wireless power transmitter, wireless power receiver, and power transmission method of wireless power transmitting system
KR101882800B1 (ko) 무선 전력 수신기 및 그 제어 방법
JP6135471B2 (ja) 送電装置およびそれを用いたワイヤレス電力伝送システム
JP2016063726A (ja) 受電機器及び非接触電力伝送装置
JP2013198260A (ja) 電力伝送システム
JP2016015862A (ja) 受電装置
JP2016015808A (ja) 受電機器及び非接触電力伝送装置
KR20170102454A (ko) 무전전력전송 시스템 및 이의 구동 방법.
WO2015083578A1 (ja) 非接触電力伝送装置及び受電機器
JP2013027082A (ja) 電力伝送システム
US20200274390A1 (en) A wireless power transceiver device and an associates method thereof
WO2014069148A1 (ja) 非接触電力伝送装置および受電機器
JP2016092959A (ja) 送電機器及び非接触電力伝送装置
JP6714908B1 (ja) 非接触給電システム
KR101920216B1 (ko) 무선 전력 송신기 및 무선 전력 수신기
JP2015061425A (ja) 受電機器及び非接触電力伝送装置
KR101905882B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
KR102531671B1 (ko) 무선 전력 송신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870945

Country of ref document: EP

Kind code of ref document: A1