WO2013134977A1 - 无尘室微粒自动测量小车、自动测量系统及其测量方法 - Google Patents

无尘室微粒自动测量小车、自动测量系统及其测量方法 Download PDF

Info

Publication number
WO2013134977A1
WO2013134977A1 PCT/CN2012/073569 CN2012073569W WO2013134977A1 WO 2013134977 A1 WO2013134977 A1 WO 2013134977A1 CN 2012073569 W CN2012073569 W CN 2012073569W WO 2013134977 A1 WO2013134977 A1 WO 2013134977A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
data
automatic
measuring
particle
Prior art date
Application number
PCT/CN2012/073569
Other languages
English (en)
French (fr)
Inventor
齐明虎
吴俊豪
林昆贤
汪永强
朱二庆
李贤德
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/510,388 priority Critical patent/US20130246004A1/en
Publication of WO2013134977A1 publication Critical patent/WO2013134977A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0489Self-propelled units

Definitions

  • the invention relates to the field of measurement, in particular to a clean room particle automatic measuring trolley, an automatic measuring system and a measuring method thereof.
  • FIG. 1 is a measurement scene view of the clean room particle measurement in the prior art, and there are a plurality of devices 104 in the clean room 102.
  • a measurement point 103 is disposed in the vicinity of each device 104.
  • the manual control meter 101 measures the measurement point 103, and the measured data is the particle data value of the clean room 102, due to the testing process. It is manually operated. Therefore, the test result is directly affected by the tester. Therefore, there may be problems such as measurement irregularity, large measurement data error, or measurement data not being processed in time. Therefore, manual measurement is far from meeting the current measurement requirements.
  • the technical problem mainly solved by the invention is to provide a clean room particle automatic measuring trolley, an automatic measuring system and a measuring method thereof, which can automatically measure clean room particles in a designated area, reduce human resources and improve the accuracy of measurement results.
  • the present invention adopts a technical solution to provide a clean room particle automatic measuring trolley, the trolley comprising: an automatic guiding device, the guiding trolley traveling along a predetermined path, the automatic guiding device comprising a read head that recognizes a pre-set sensing path and identifies a plurality of pre-set measurement points, the cart travels according to the sensing path; a measuring instrument that measures the particles of the measuring point; the data processing device, the measurement The meter transmits the measured particle data to the data processing device, and the data processing device performs data output according to a preset rule.
  • the read head is an electromagnetic induction recognizer, a laser recognizer, a magnet-gyro recognizer or a visual guide recognizer.
  • the trolley further includes a pause device that performs pause control when the read head recognizes the measurement point or when the trolley travels to its pre-stored measurement point, and the gauge further measures the particles of the measurement point.
  • the data processing device pre-stores the measurement point data, and the measurement point data includes one or more of the following data: a time interval for actively performing the next automatic measurement after the measurement is completed, and a time interval for actively performing the next automatic measurement when the abnormal data is found. , the positional relationship between each measurement point, a reasonable particle value interval.
  • the cart further includes an instruction input device that receives a command to start automatic measurement and starts the car to perform an automatic measurement operation.
  • the data processing device pre-stores a data abnormality operation command, wherein when the measurement data is normal, the next automatic measurement operation is started according to the time interval of the automatic measurement, and when the measurement data is abnormal, the data is actively performed according to the abnormal data.
  • the measurement is initiated at an interval of automatic measurement, or an automatic measurement is initiated in accordance with an input command from the input device.
  • the trolley further comprises a battery and an automatic charging device to provide transportation power for the trolley.
  • another technical solution adopted by the present invention is to provide an automatic measurement system for clean room particles, the system comprising the above-mentioned clean room particle automatic measuring trolley and corresponding to the reading head disposed in the measured space The sensor strip on the ground.
  • the sensing force of the preset measuring point position of the sensing strip is greater than the surrounding position.
  • another technical solution adopted by the present invention is to provide an automatic measurement method for clean room particles, the method comprising the following steps:
  • the measurement point data includes one or more of the following data: a time interval for actively performing the next automatic measurement after the measurement is completed, a time interval for actively performing the next automatic measurement when the abnormal data is found, and each interval The positional relationship between the measuring points and the reasonable particle value interval;
  • Driving step identifying the pre-set sensing path and measuring point by electromagnetic induction, laser recognition, magnet-gyro recognition or visual guidance recognition, and driving according to the sensing path;
  • Measuring step when the measuring point is recognized, the driving pauses and measures the particles of the measuring point, or when driving to the pre-stored measuring point, the driving pauses and measures the particles of the measuring point;
  • Sending step sending a plurality of particle data measured by the measuring instrument
  • Processing step receiving and processing a plurality of particle data.
  • the storing step further includes: pre-storing a data abnormal job instruction, wherein when the measurement data is normal, the next automatic measurement operation is started according to the time interval of the automatic measurement, and when the measurement data is abnormal, the data is activated according to the abnormal data. Start the measurement at the time interval of the next automatic measurement, or receive the command to start the automatic measurement and start the car to perform the automatic measurement operation.
  • the processing the plurality of particle data further includes: outputting the plurality of particle data according to a preset rule.
  • the preset rule includes receiving a piece of particle data, outputting a piece of particle data, or uniformly receiving the output after receiving all the particle data.
  • the invention has the beneficial effects that the present invention can drive according to a specified path by providing an automatic measuring trolley including an automatic guiding device, a measuring instrument and a data processing device, and automatically measure the particles of the measuring point and perform the measured particle data. Output processing.
  • the present invention can automatically measure the clean room particles in the designated area, reduce human resources, and improve the accuracy of the measurement results.
  • FIG. 2 is a schematic structural diagram of a clean room particle automatic measuring trolley according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for measuring clean room particles according to an embodiment of the present invention.
  • Fig. 4 is a view showing a measurement scene of the clean room particle measuring method shown in Fig. 3.
  • FIG. 2 is a schematic structural diagram of a clean room particle automatic measuring trolley according to an embodiment of the present invention.
  • the clean room particle automatic measuring cart 200 of the embodiment includes: an automatic guiding device 201, a measuring instrument 203, and data processing. Device 204. And may further include a pause device 205 and an instruction input device 206.
  • the automatic guiding device 201 includes a reading head 202.
  • the automatic guiding device 201 guides the trolley to travel along a predetermined path
  • the measuring instrument 203 measures the particles of the test point, and transmits the measured particle data to the data processing device 204
  • the data processing device 204 determines the data and according to the data.
  • the preset rule performs data output
  • the data processing device 204 also stores measurement point data and data abnormal job instructions in advance.
  • the pause device 205 can be used to control the car pause, and the command input device 206 can receive a manually entered command to initiate automatic measurement and initiate the car to perform an automatic measurement job.
  • the read head 202 recognizes the pre-set sensing path and recognizes a plurality of measurement points set in advance, and the cart travels according to the sensing path recognized by the reading head 202.
  • the pause device 205 controls the carriage to pause when the read head 202 recognizes the measurement point or the trolley travels to the measurement point stored in the data processing device 204 in advance, and the gauge 203 measures the particles of the measurement point, and the measured result is obtained.
  • the particle data is supplied to the data processing device 204, and the data processing device 204 first determines whether the data exceeds the boundary value based on the boundary value of the pre-stored particle value and outputs the data by radio.
  • the trolley travels according to a preset sensing path, and the measuring instrument sequentially measures the particles of the measuring point. After the measurement is completed, the processing is performed based on the determined result. Specifically, when the data processing device 204 does not determine that the data exceeds the boundary value of the pre-stored particle value, the data processing device 204 determines that the measurement data is normal, and reads the pre-stored progress. The time of one automatic measurement and the instruction to start the automatic measurement job is sent according to this time. When the data processing device 204 determines that the data of the boundary value exceeding the pre-stored particle value is exceeded, it is determined that the measurement data is abnormal, and the time of the next automatic measurement is performed when the abnormal data stored in advance is read, and the automatic measurement operation is started according to the time. instruction.
  • the time of the next automatic measurement is not performed when the abnormality data is not stored in advance in the data processing device 204, when the data is found to be abnormal, the time for automatically performing the next measurement is the same as when the measurement data is normal.
  • the instruction input device may be directly waited for the manually input command to start the automatic measurement to start the automatic measurement operation.
  • the trolley further includes a battery and an automatic charging device that can provide transportation power.
  • the read head 202 in this embodiment is preferably an electromagnetic induction recognizer, a laser recognizer, a magnet-gyro recognizer or a visual guide recognizer.
  • the preset rule for outputting data in the data processing device 204 may output one data every time one measurement data is received, or may be unified after receiving the entire measurement data.
  • the measurement points pre-stored by the data processing device 204 may be arranged at equal intervals or may be set at equal time intervals.
  • the boundary value of the pre-stored particle value of the data processing device 204 is set according to the measured requirements of the clean room.
  • the present invention also provides an automatic measurement system for clean room particles, the system comprising the clean room particle automatic measuring cart shown in FIG. 2 and a sensing strip disposed on the ground of the space to be measured corresponding to the reading head of the cart.
  • the sensor strip is correspondingly set as a magnetic strip.
  • the sensor strip is a line having a clear visual effect with the surrounding environment, for example, a black line, and when the read head is a laser recognizer, the line is a line that can be recognized by the laser.
  • the path of the sensing strip is set according to a specific situation, and the trolley is driven according to the sensing strip.
  • the measuring point that the reading head can recognize is disposed on the sensing strip, and the sensing force of the measuring point is greater than the sensing force of the position of the surrounding sensing strip.
  • the setting of the position and the number of measuring points is set according to the specific situation.
  • FIG. 3 is a flowchart of a method for measuring clean room particles according to an embodiment of the present invention. As shown in FIG. 3, the measuring method 300 includes the following steps:
  • S1 driving step: identifying a preset sensing path and a measuring point by electromagnetic induction, laser recognition, magnet-gyro recognition or visual guidance recognition, and driving according to the sensing path;
  • S2 measuring step: when the measuring point is recognized, the driving pauses and measures the particles of the measuring point, or when driving to the pre-stored measuring point, the driving pauses and measures the particles of the measuring point;
  • S3 Processing step: receiving and processing a plurality of particle data.
  • FIG. 4 is a measurement scene diagram of the clean room particle measuring method according to FIG. 3.
  • the cart 401 includes an automatic guiding device, a measuring instrument, and a data processing device.
  • the sensing path 405 and the measuring point 403 are first manually set in the clean room space 402, wherein the sensing path 405 is disposed around the device 404 and the measuring point 403 is disposed on the sensing path 405.
  • the reading head recognizes the sensing path 405, and the trolley 401 travels according to the sensed sensing path 405.
  • the reading head of the trolley recognizes the measuring point 403
  • the driving of the trolley is suspended, and the measuring instrument measures the particles of the measuring point 403, and the The measurement data is sent to the data processing device, and the data processing device receives and processes the data.
  • the specific processing method is the same as that of the data processing device described in FIG. 2, and details are not described herein again.
  • the present invention can automatically measure the particles of the measurement point and output the measured particle data by providing an automatic measurement cart including an automatic guiding device, a measuring instrument, and a data processing device.
  • an automatic measurement cart including an automatic guiding device, a measuring instrument, and a data processing device.
  • the present invention can automatically measure the clean room particles in the designated area, reduce human resources, and improve the accuracy of the measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无尘室微粒自动测量小车(200)、自动测量系统及其测量方法,该自动测量小车(200)包括自动导引装置(201),导引小车沿一既定路径行驶,自动导引装置(201)包括一读取头(202),读取头(202)识别预先设置的感应路径以及识别预先设置的多个测量点,小车根据感应路径进行行驶;测量仪(203),测量仪(203)测量测量点的微粒;数据处理装置(204),测量仪(203)将测量所得的微粒数据输送至数据处理装置(204),数据处理装置(204)依据预设规则进行数据输出。通过上述方式,本发明能够自动测量指定区域的无尘室微粒,减少人力资源,提高测量结果的准确性。

Description

无尘室微粒自动测量小车、自动测量系统及其测量方法
【技术领域】
本发明涉及测量领域,特别是涉及一种无尘室微粒自动测量小车、自动测量系统及其测量方法。
【背景技术】
目前的生产环境要求越来越高,特别是无尘生产车间,需要很干净的环境,通常测量无尘室的微粒作为对环境的评估条件之一。现有技术中无尘室的微粒测量采用人工方式,如图1所示,图1是现有技术中无尘室微粒测量的测量场景图,在无尘室102中有多台设备104,在每一台设备104的附近都设置了测量点103,现有技术中,人工控制测量仪101对测量点103进行测量,测量得到的数据即为该无尘室102的微粒数据值,由于测试过程是人工操作的,所以,测试的结果直接受测试者影响,因此,会出现测量不定时、测量数据误差大或者测量得到的数据得不到及时处理等问题。因此人工测量已远远不能满足现在的测量要求。
【发明内容】
本发明主要解决的技术问题是提供一种无尘室微粒自动测量小车、自动测量系统及其测量方法,能够自动测量指定区域的无尘室微粒,减少人力资源,提高测量结果的准确性。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种无尘室微粒自动测量小车,该小车包括:自动导引装置,导引小车沿一既定路径行驶,该自动导引装置包括一读取头,该读取头识别预先设置的感应路径以及识别预先设置的多个测量点,该小车根据感应路径进行行驶;测量仪,该测量仪测量测量点的微粒;数据处理装置,测量仪将测量所得的微粒数据输送至该数据处理装置,该数据处理装置依据预设规则进行数据输出。
其中,读取头为电磁感应识别器、激光识别器、磁铁-陀螺识别器或视觉引导识别器。
其中,小车进一步包括一暂停装置,该暂停装置在读取头识别到测量点或者在该小车行驶到其预先存储的测量点时,进行暂停控制,测量仪进一步测量测量点的微粒。
其中,数据处理装置预先存储测量点数据,该测量点数据包括如下数据之一或多个:测量完成后主动进行下一次自动测量的时间间隔、发现异常数据时主动进行下一次自动测量的时间间隔、每间隔测量点之间的位置关系、合理的微粒数值区间。
其中,该小车进一步包括一指令输入装置,该指令输入装置接收开始自动测量的命令而启动小车进行自动测量作业。
其中,数据处理装置预先存储数据异常作业指令,该指令为,当测量数据正常时,依照自动测量的时间间隔而启动下一次自动测量作业,当测量数据异常时,则依据异常数据时主动进行下一次自动测量的时间间隔启动测量,或者依照输入装置的输入指令启动自动测量。
其中,该小车进一步包括一蓄电池和自动充电装置,为小车提供运输动力。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种无尘室微粒自动测量系统,该系统包括上述的无尘室微粒自动测量小车以及与读取头对应设置于被测量空间地面的感应条。
其中,感应条的预设测量点位置的感应力大于周边位置。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种无尘室微粒的自动测量方法,该方法包括以下步骤:
存储步骤:预先存储测量点数据,测量点数据包括如下数据之一或多个:测量完成后主动进行下一次自动测量的时间间隔、发现异常数据时主动进行下一次自动测量的时间间隔、每间隔测量点之间的位置关系、合理的微粒数值区间;
行驶步骤:通过电磁感应、激光识别、磁铁-陀螺识别或视觉引导识别感应识别预先设置的感应路径和测量点,并根据感应路径进行行驶;
测量步骤:当识别到测量点时,行驶暂停并测量测量点的微粒,或者当行驶到预先存储的测量点时,行驶暂停并测量测量点的微粒;
发送步骤:发送测量仪测量得到的多个微粒数据;
处理步骤:接收并处理多个微粒数据。
其中,存储步骤进一步包括:预先存储数据异常作业指令,该指令为,当测量数据正常时,依照自动测量的时间间隔而启动下一次自动测量作业,当测量数据异常时,则依据异常数据时主动进行下一次自动测量的时间间隔启动测量,或者接收开始自动测量的命令而启动小车进行自动测量作业。
其中,处理多个微粒数据进一步包括:依据预设规则输出多个微粒数据。
其中,预设规则包括接收到一个微粒数据,输出一个微粒数据,或者接收全部微粒数据之后统一进行输出。
本发明的有益效果是:本发明通过提供包括自动导引装置、测量仪以及数据处理装置的自动测量小车,可以根据指定路径进行行驶,并自动测量测量点的微粒以及对测量得到的微粒数据进行输出处理。通过上述方式,本发明能够自动测量指定区域的无尘室微粒,减少人力资源,提高测量结果的准确性。
【附图说明】
图1是现有技术中无尘室微粒测量的测量场景图;
图2是本发明实施例的无尘室微粒自动测量小车的结构模块示意图;
图3是本发明实施例的无尘室微粒测量方法的流程图;
图4是根据图3所示的无尘室微粒测量方法的测量场景图。
【具体实施方式】
请参考图2,图2是本发明实施例的无尘室微粒自动测量小车的结构模块示意图,本实施例的无尘室微粒自动测量小车200包括:自动引导装置201、测量仪203、数据处理装置204。且可进一步包括暂停装置205以及指令输入装置206。其中,自动引导装置201包括一读取头202。
本实施例中,自动引导装置201导引小车沿一既定路径行驶,测量仪203测量测试点的微粒,并将测量所得的微粒数据输送至数据处理装置204,数据处理装置204判断该数据并依据预设规则进行数据输出,数据处理装置204还预先存储测量点数据和数据异常作业指令。暂停装置205可用来控制小车暂停,指令输入装置206可接收人工输入的开始自动测量的命令并启动小车进行自动测量作业。
具体地,以自动测量小车200的工作原理来说明各装置的功能。本实施例中,读取头202识别预先设置的感应路径以及识别预先设置的多个测量点,小车根据读取头202识别的感应路径进行行驶。暂停装置205在读取头202识别到测量点或者小车行驶到预先存储在数据处理装置204中的测量点时,控制小车进行暂停,测量仪203测量该测量点的微粒,并把测量得到的该微粒数据输送至数据处理装置204,数据处理装置204首先根据预存的微粒数值的边界值判断该数据是否超出边界值并利用无线电输出该数据。
小车根据预设的感应路径进行行驶,测量仪依次测量测量点的微粒。待测量结束后,根据判断到的结果进行处理,具体地,数据处理装置204在没有判断到超出预存的微粒数值的边界值的数据时,判断为测量数据正常,则读取预先存储的进行下一次自动测量的时间并按照该时间发送启动自动测量作业的指令。数据处理装置204在判断到超出预存的微粒数值的边界值的数据时,判断为测量数据异常,读取预先存储的异常数据时进行下一次自动测量的时间并按照该时间发送启动自动测量作业的指令。
在另一种实施方式中,若数据处理装置204中预先没有存储异常数据时进行下一次自动测量的时间,当发现数据异常时,自动进行下一次测量的时间与测量数据正常时的相同。或者,当发现数据异常时,也可以直接等待指令输入装置接收人工输入的开始自动测量的命令而启动小车进行自动测量作业。
其中,小车进一步包括可以提供运输动力的蓄电池和自动充电装置。
本实施例中的读取头202优选为电磁感应识别器、激光识别器、磁铁-陀螺识别器或视觉引导识别器。数据处理装置204中输出数据的预设规则可以为每接收到一个测量数据就输出一个数据,也可以为接收完全部测量数据之后再统一进行输出。数据处理装置204预存的测量点可以等距离间隔设置也可以等时间间隔设置。数据处理装置204预存的微粒数值的边界值是根据所测量的无尘室的要求而设定的。
本发明还提供了一种无尘室微粒自动测量系统,该系统包括图2所示的无尘室微粒自动测量小车以及与该小车的读取头对应设置于被测量空间地面的感应条。具体地,当读取头为电磁识别器或者磁铁-陀螺识别器时,感应条对应设置为磁条。当读取头为视觉引导器时,感应条为与周围环境有明显视觉效果的线条,例如为黑色的线条,当读取头为激光识别器时,该线条为能够被激光识别的线条。其中,感应条的路径是根据具体情况进行设定的,小车即是根据该感应条进行行驶的。
由图2所示的实施例可得知测量点的设置方式有两种,一种是存储在数据处理装置204中的测量点,一种是读取头能够识别的测量点。其中,读取头能够识别的测量点设置在感应条上,该测量点的感应力大于其周围感应条位置的感应力。
其中,测量点的位置和个数的设置是根据具体情况而设置的。
请参考图3,图3是本发明实施例的无尘室微粒测量方法的流程图,如3所示,该测量方法300包括以下步骤:
S1:行驶步骤:通过电磁感应、激光识别、磁铁-陀螺识别或视觉引导识别感应识别预先设置的感应路径和测量点,并根据感应路径进行行驶;
S2:测量步骤:当识别到测量点时,行驶暂停并测量测量点的微粒,或者当行驶到预先存储的测量点时,行驶暂停并测量测量点的微粒;
S3:处理步骤:接收并处理多个微粒数据。
请参考图4,图4是根据图3所示的无尘室微粒测量方法的测量场景图,如图4所示,小车401包括有自动引导装置、测量仪以及数据处理装置。首先在无尘室空间402中人工设置感应路径405以及测量点403,其中,感应路径405设置在设备404的四周,测量点403设置在感应路径405上。读取头识别该感应路径405,小车401根据感应到的感应路径405进行行驶,当小车的读取头识别到测量点403时,小车行驶暂停,测量仪测量测量点403的微粒,并把该测量数据发送到数据处理装置,数据处理装置对数据进行接收和处理,具体处理方法和图2所述的数据处理装置的相同,在此不再赘述。
综上所述,本发明通过提供包括自动导引装置、测量仪以及数据处理装置的自动测量小车,可以自动测量测量点的微粒以及对测量得到的微粒数据进行输出处理。通过上述方式,本发明能够自动测量指定区域的无尘室微粒,减少人力资源,提高测量结果的准确性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种无尘室微粒自动测量小车,其特征在于包括:
    自动导引装置,导引所述小车沿一既定路径行驶,所述自动导引装置包括一读取头,所述读取头识别预先设置的感应路径以及识别预先设置的多个测量点,所述小车根据所述感应路径进行行驶;
    测量仪,所述测量仪测量所述测量点的微粒;
    数据处理装置,所述测量仪将测量所得的微粒数据输送至所述数据处理装置,所述数据处理装置依据预设规则进行数据输出。
  2. 根据权利要求1的所述无尘室微粒自动测量小车,其特征在于,所述读取头为电磁感应识别器、激光识别器、磁铁-陀螺识别器或视觉引导识别器。
  3. 根据权利要求1的所述无尘室微粒自动测量小车,其特征在于,进一步包括一暂停装置,所述暂停装置在所述读取头识别到所述测量点或者在所述小车行驶到其预先存储的所述测量点时,进行暂停控制,所述测量仪进一步测量所述测量点的微粒。
  4. 根据权利要求1的所述无尘室微粒自动测量小车,其特征在于,所述数据处理装置预先存储测量点数据,所述测量点数据包括如下数据之一或多个:测量完成后主动进行下一次自动测量的时间间隔、发现异常数据时主动进行下一次自动测量的时间间隔、每间隔测量点之间的位置关系、合理的微粒数值区间。
  5. 根据权利要求4的所述无尘室微粒自动测量小车,其特征在于进一步包括一指令输入装置,所述指令输入装置接收开始自动测量的命令而启动所述小车进行自动测量作业。
  6. 根据权利要求5的所述无尘室微粒自动测量小车,其特征在于,所述数据处理装置预先存储数据异常作业指令,所述指令为,当测量数据正常时,依照所述自动测量的时间间隔而启动下一次自动测量作业,当测量数据异常时,则依据所述异常数据时主动进行下一次自动测量的时间间隔启动测量,或者依照所述输入装置的输入指令启动自动测量。
  7. 根据权利要求5的所述无尘室微粒自动测量小车,其特征在于进一步包括一蓄电池和自动充电装置,为小车提供运输动力。
  8. 一种无尘室微粒自动测量系统,其特征在于包括如权利要求1所述的无尘室微粒自动测量小车以及与所述读取头对应设置于被测量空间地面的感应条。
  9. 根据权利要求8的所述的无尘室微粒自动测量系统,其特征在于所述感应条的预设测量点位置的感应力大于周边位置。
  10. 一种无尘室微粒的自动测量方法,其特征在于,包括以下步骤:
    存储步骤:预先存储测量点数据,所述测量点数据包括如下数据之一或多个:测量完成后主动进行下一次自动测量的时间间隔、发现异常数据时主动进行下一次自动测量的时间间隔、每间隔测量点之间的位置关系、合理的微粒数值区间;
    行驶步骤:通过电磁感应、激光识别、磁铁-陀螺识别或视觉引导识别感应识别预先设置的感应路径和测量点,并根据所述感应路径进行行驶;
    测量步骤:当识别到所述测量点时,行驶暂停并测量所述测量点的微粒,或者当行驶到预先存储的所述测量点时,行驶暂停并测量所述测量点的微粒;
    发送步骤:发送所述测量仪测量得到的多个微粒数据;
    处理步骤:接收并处理多个微粒数据。
  11. 根据权利要求10的所述的无尘室微粒的自动测量方法,其特征在于,
    所述存储步骤进一步包括:预先存储数据异常作业指令,所述指令为,当测量数据正常时,依照所述自动测量的时间间隔而启动下一次自动测量作业,当测量数据异常时,则依据所述异常数据时主动进行下一次自动测量的时间间隔启动测量,或者接收开始自动测量的命令而启动所述小车进行自动测量作业。
  12. 根据权利要求10的所述的无尘室微粒的自动测量方法,其特征在于,所述处理多个微粒数据进一步包括:依据预设规则输出多个所述微粒数据。
  13. 根据权利要求12的所述的无尘室微粒的自动测量方法,其特征在于,所述预设规则包括接收到一个所述微粒数据,输出一个所述微粒数据,或者接收全部所述微粒数据之后统一进行输出。
PCT/CN2012/073569 2012-03-15 2012-04-06 无尘室微粒自动测量小车、自动测量系统及其测量方法 WO2013134977A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/510,388 US20130246004A1 (en) 2012-03-15 2012-04-06 Automatic particle measurement cart and automatic particle measurement system for clean room and measurement method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210068824.3A CN102608003B (zh) 2012-03-15 2012-03-15 无尘室微粒自动测量小车、自动测量系统及其测量方法
CN201210068824.3 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013134977A1 true WO2013134977A1 (zh) 2013-09-19

Family

ID=46525562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073569 WO2013134977A1 (zh) 2012-03-15 2012-04-06 无尘室微粒自动测量小车、自动测量系统及其测量方法

Country Status (2)

Country Link
CN (1) CN102608003B (zh)
WO (1) WO2013134977A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918349A (zh) * 2018-03-23 2018-11-30 张家港康得新光电材料有限公司 测量分散系内的分散质粒子数目和/或粒径的装置及方法
CN108873909B (zh) * 2018-07-17 2021-10-26 苏州冠卓自动化科技有限公司 智能小车控制系统及运行方法
CN110108607A (zh) * 2019-05-06 2019-08-09 江苏耀群工业技术有限公司 一种智能巡回环境量测系统及量测方法
CN111463857B (zh) * 2020-04-09 2021-11-23 深圳市华星光电半导体显示技术有限公司 微粒检测系统的自动充电系统及自动充电方法
CN115560807A (zh) * 2022-12-06 2023-01-03 广州粤芯半导体技术有限公司 环境检测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158618A (ja) * 1986-09-29 1988-07-01 Daifuku Co Ltd クリ−ンル−ム用の移動車誘導設備
CN101067597A (zh) * 2006-05-02 2007-11-07 村田机械株式会社 测量单元及具备该测量单元的输送系统
CN201107319Y (zh) * 2007-11-20 2008-08-27 华南理工大学 中央空调风管多功能空气质量分析机器人
US20100283620A1 (en) * 2008-02-07 2010-11-11 Veltek Associates, Inc. Air sampling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019095A (ja) * 1998-06-30 2000-01-21 Nec Kyushu Ltd クリーンルームの清浄度測定装置およびクリーンルームの清浄度測定方法
JP3500405B2 (ja) * 1999-09-20 2004-02-23 エム・テイ・システム株式会社 ダクト内粉塵測定ロボットシステム
JP4743454B2 (ja) * 2009-04-24 2011-08-10 村田機械株式会社 搬送システム
CN102147259B (zh) * 2011-01-14 2012-12-12 南京航空航天大学 环形阵列磁导引装置及其导引磁标识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158618A (ja) * 1986-09-29 1988-07-01 Daifuku Co Ltd クリ−ンル−ム用の移動車誘導設備
CN101067597A (zh) * 2006-05-02 2007-11-07 村田机械株式会社 测量单元及具备该测量单元的输送系统
CN201107319Y (zh) * 2007-11-20 2008-08-27 华南理工大学 中央空调风管多功能空气质量分析机器人
US20100283620A1 (en) * 2008-02-07 2010-11-11 Veltek Associates, Inc. Air sampling system

Also Published As

Publication number Publication date
CN102608003A (zh) 2012-07-25
CN102608003B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2013134977A1 (zh) 无尘室微粒自动测量小车、自动测量系统及其测量方法
US10624250B2 (en) Mounting processing unit for arranging components on a board
CN111954635B (zh) 使用智能移动设备监控电梯门的门运动过程的特征的方法
US10773435B2 (en) Injection molding system
CN105074601A (zh) 自动输送车和自动输送车系统
US10150263B2 (en) Testing arrangement for controlling the manufacturing of a component
JPH07232270A (ja) 簡易車体計測装置
US9731418B2 (en) Methods and apparatus for closed loop force control in a linear actuator
EP3369489B1 (en) Article rejecting system
CN104535577A (zh) 一种工件质量损失检测设备及工件质量损失检测方法
CN210081754U (zh) 一种巡检机器人
KR102062887B1 (ko) 드론시험장치
KR20150013613A (ko) 본딩 장치 및 본딩 장치에 의한 반도체 다이의 파손 검출 방법
JP6585151B2 (ja) エレベータ装置及び診断方法
US20150026962A1 (en) Device for attaching chip on film onto panel and method for using the same
US11209829B2 (en) Tracking vehicle control system
KR101269487B1 (ko) 플로팅 센서 유닛의 간극 제어장치 및 그 제어방법
CN106476035A (zh) 机器手臂及其教导方法
CN210456593U (zh) 取物装置及探测装置
CN104319059A (zh) 一种五金工具自动充磁流水线
CN210690019U (zh) 一种车窗升降按钮测试装置
JP2002357521A (ja) 材料試験機
JP2019144052A (ja) 検査対象物の点検装置及び点検方法
JPH01321302A (ja) 板厚測定方法
CN114274183B (zh) 刹车性能测试系统、方法及测试控制器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13510388

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871393

Country of ref document: EP

Kind code of ref document: A1