WO2013133131A1 - Binder composition for producing template, and method for producing template - Google Patents

Binder composition for producing template, and method for producing template Download PDF

Info

Publication number
WO2013133131A1
WO2013133131A1 PCT/JP2013/055505 JP2013055505W WO2013133131A1 WO 2013133131 A1 WO2013133131 A1 WO 2013133131A1 JP 2013055505 W JP2013055505 W JP 2013055505W WO 2013133131 A1 WO2013133131 A1 WO 2013133131A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
binder composition
mold
composition
acid
Prior art date
Application number
PCT/JP2013/055505
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 松尾
雅彦 渡邊
快 矢代
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201380008936.2A priority Critical patent/CN104105558B/en
Priority to IN7035DEN2014 priority patent/IN2014DN07035A/en
Publication of WO2013133131A1 publication Critical patent/WO2013133131A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/224Furan polymers

Definitions

  • the present invention relates to a binder composition for mold making, a composition for mold using the same, and a method for producing a mold.
  • the acid-curable self-hardening mold is prepared by adding a mold-forming binder containing an acid-curable resin and a curing agent containing organic sulfonic acid, sulfuric acid, phosphoric acid, etc. to refractory particles such as silica sand. After kneading these, the obtained kneaded sand is filled into a mold such as a wooden mold and the acid curable resin is cured.
  • Furan resin, phenol resin, etc. are used for acid curable resin.
  • Furan resin is furfuryl alcohol, furfuryl alcohol / urea formaldehyde resin, furfuryl alcohol / formaldehyde resin, furfuryl alcohol / phenol / formaldehyde. Resins and other known modified furan resins are used.
  • the obtained mold is used when casting a casting such as a machine casting part, a construction machine part, or an automobile part.
  • An improvement of the final strength of the mold is an important item when molding the above-described mold or casting a desired casting using the mold.
  • the final strength of the mold is particularly necessary when producing large molds. If the strength is insufficient, the mold may crack or core cracks may occur during casting, causing danger to the operator. There is a risk that the resulting casting will be defective.
  • Patent Document 1 there is provided an acid-curing mold binder composition obtained by mixing or reacting an acid-curing resin with a compound having one or more aldehyde groups in a molecule obtained from saccharides or starch. Disclosed is a mold with high curing speed, high mold strength and excellent surface stability.
  • Patent Document 2 At least one selected from a specific amount of 5-hydroxymethylfurfural, 2,5-furandimethylol, 2,5-furandicarboxylic acid, 2,5-diformylfuran, and polyester polyol is used.
  • the binder composition of Patent Document 2 although the odor during casting can be reduced, the final strength is not sufficient, and further improvement has been demanded.
  • the binder composition of Patent Document 1 cannot be said to have good solubility in an acid curable resin such as a furan resin, and the storage stability of the binder composition, in particular, the final strength of the mold. Since it was not enough, further improvement was required.
  • the present invention provides a binder composition for mold making that can improve the final strength of a mold, a composition for a mold using the same, and a method for producing a mold using the same.
  • the binder composition for mold making of the present invention is a binder composition for mold making containing a 5-hydroxymethylfurfural composition manufactured from Molasses and an acid-curable resin.
  • the mold composition of the present invention is a mold composition comprising a mixture of refractory particles, the mold-forming binder composition, and a furan resin curing agent for curing the mold-molding binder composition. It is a thing.
  • the method for producing a mold according to the present invention includes a step of curing a mixture containing refractory particles, the above-mentioned binder for mold molding, and a curing agent for furan resin for curing the binder composition for mold molding. This is a method for producing a mold.
  • the final strength of the mold can be improved. Further, according to the mold composition and the mold manufacturing method of the present invention, the final strength of the mold can be improved.
  • the binder composition for mold making of the present invention (hereinafter, also simply referred to as “binder composition”) is used as a binder when producing a mold, and is produced from Molasses.
  • This is a binder composition for mold making containing a 5-hydroxymethylfurfural composition and an acid curable resin.
  • the binder composition of the present invention has an effect of improving the final strength of the mold. The reason for such an effect is not clear, but is considered as follows.
  • 5-Hydroxymethylfurfural has two groups, a methylol group and an aldehyde group. The methylol group has one reactive site, the aldehyde group has two reactive sites, and 5-hydroxymethylfurfural has a total of three reactive sites.
  • the reactivity of these two functional groups is different, and it seems that there are relatively reactive sites and reactive sites. Therefore, the pot life can be secured due to the difference in reactivity between the two functional groups, and the cross-linking reaction from the linear polymer proceeds at a stroke from the three reactive sites, and the template is rapidly cured. Inferred.
  • the by-product resulting from the raw material molasses dissolves the 5-hydroxymethylfurfural composition uniformly in an acid curable resin such as furan resin. It is considered that the 5-hydroxymethylfurfural composition and the furan resin can react uniformly and efficiently. For this reason, in the binder composition containing the 5-hydroxymethylfurfural composition, the crosslinking reaction is more likely to proceed, and it is considered that the mold strength can be improved.
  • the components contained in the binder composition of the present invention will be described.
  • the binder composition of the present invention contains a 5-hydroxymethylfurfural composition manufactured from Molasses and an acid curable resin.
  • the 5-hydroxymethylfurfural composition produced from molasses of the present invention comprises a step of dehydrating molasses in a solvent to obtain a reaction mixture in the presence of an acid catalyst, and extracting the reaction mixture with an organic solvent to give 5- It is manufactured through a step of obtaining a hydroxymethylfurfural composition.
  • the 5-hydroxymethylfurfural composition produced from molasses of the present invention is composed of a polymer compound having 5-hydroxymethylfurfural as a main component and a weight average molecular weight of 1000 or more, an organic acid such as levulinic acid, fructose, glucose, mannose. , Hexose such as galactose (hexose sugar), ash, moisture and the like are included as by-products.
  • Molasses is a viscous black-brown liquid that contains components other than sugar and is produced when sugar is refined from sugar cane derived from sugarcane and sugar beet.
  • molasses ⁇ Ingredients in molasses>
  • commercially available molasses can be used, and molasses manufactured by Kaset Thai Sugar Co. can be exemplified.
  • Such molasses contains sucrose, glucose, fructose, xylose, moisture, ash, protein, a high molecular weight compound having a weight average molecular weight of 3500 or more, organic acids such as lactic acid, acetic acid, formic acid, oxalic acid and citric acid.
  • the content of sucrose in molasses is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, and preferably 50% by weight or less. , 40% by weight or less is more preferable, and 30% by weight or less is more preferable.
  • the content of glucose in molasses is preferably 1.0% by weight or more, more preferably 3.0% by weight or more, still more preferably 5.0% by weight or more, from the viewpoint of improving the final strength of the mold. Moreover, 20 weight% or less is preferable, 15 weight% or less is more preferable, and 10 weight% or less is still more preferable.
  • the content of fructose in molasses is preferably 1.0% by weight or more, more preferably 5.0% by weight or more, further preferably 7.0% by weight or more, from the viewpoint of improving the final strength of the mold. Moreover, 20 weight% or less is preferable, 18 weight% or less is more preferable, and 15 weight% or less is still more preferable.
  • the xylose content in molasses is preferably 1.0% by weight or more, more preferably 2.0% by weight or more, and preferably 20% by weight or less, from the viewpoint of improving the final strength of the mold. % By weight or less is more preferred, 10% by weight or less is more preferred, and 6.0% by weight or less is even more preferred.
  • the water content in molasses is preferably 5.0% by weight or more, more preferably 15% by weight or more, and preferably 40% by weight or less from the viewpoint of improving economy and final strength of the mold. It is more preferably 35% by weight or less, and still more preferably 30% by weight or less.
  • the content of ash in molasses is preferably 1.0% by weight or more, more preferably 3.0% by weight or more, and more preferably 20% by weight or less from the viewpoint of improving economy and final strength of the mold.
  • the protein content in molasses is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and preferably 5.0% by weight or less from the viewpoint of improving the final strength of the mold. 4.0 weight% or less is more preferable, and 3.0 weight% or less is still more preferable.
  • the content of the high molecular weight compound having a weight average molecular weight of 3500 or more in molasses is preferably 1.0% by weight or more, more preferably 2.0% by weight or more, from the viewpoint of improving the final strength of the template. 0.0% by weight or more is more preferable, 20% by weight or less is preferable, 15% by weight or less is more preferable, and 10% by weight or less is more preferable.
  • the content of organic acid such as lactic acid, acetic acid, formic acid, oxalic acid, citric acid in molasses is preferably 0.1% by weight or more, and 0.5% by weight or more from the viewpoint of improving the final strength of the mold. Is more preferably 1.0% by weight or more, more preferably 5% by weight or less, more preferably 4.5% by weight or less, and still more preferably 4% by weight or less.
  • sucrose, glucose, fructose, xylose, moisture, ash, protein, high molecular weight compound having a weight average molecular weight of 3500 or more and organic acid in molasses can be measured by the method described in the examples.
  • Step I The production method of the present invention includes a step of dehydrating molasses (waste molasses) in a solvent in the presence of an acid catalyst to obtain a reaction mixture (hereinafter sometimes simply referred to as “step I”).
  • the dehydration reaction in Step I is performed in the presence of an acid catalyst.
  • the acid catalyst used include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and boric acid and salts thereof, sulfonic acids such as p-toluenesulfonic acid and xylenesulfonic acid and salts thereof, acetic acid and levulinic acid.
  • Carboxylic acids such as oxalic acid, fumaric acid, maleic acid, citric acid and their salts, cationic sulfonic acid resins represented by amberlist, amberlite, diamond ion, zeolite, alumina, silica-alumina, clay , Sulfuric acid immobilization catalysts typified by sulfated zirconia, phosphoric acid immobilization catalysts typified by phosphorylated titania, heteropoly acids, metal salts that act as Lewis acids such as aluminum chloride and chromium chloride, or these A mixture is mentioned.
  • inorganic acids or carboxylic acids are preferred from the viewpoint of improving the yield of 5-hydroxymethylfurfural composition produced from molasses and from the viewpoint of economy, and more preferred are hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, boron.
  • hydrochloric acid sulfuric acid, phosphoric acid, nitric acid, boron.
  • acids acetic acid, levulinic acid, oxalic acid, fumaric acid, maleic acid and citric acid, more preferably one or two selected from sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and boric acid More than a seed.
  • the amount of the acid catalyst used in the dehydration reaction is preferably 0.1 to 50% by weight based on molasses from the viewpoint of improving the reaction rate, suppressing the production of by-products, economically and reducing waste. More preferred is 0.1 to 30% by weight, still more preferred is 0.1 to 20% by weight.
  • reaction form The reaction form of the dehydration reaction is not particularly limited, and may be a batch type, a semi-batch type, a continuous type, or a combination of both types.
  • a semi-batch reaction and a continuous reaction are preferable from the viewpoint of productivity improvement, and a batch reaction is preferable from the viewpoint of easy operation.
  • reaction temperature The reaction temperature in the dehydration reaction is preferably 50 to 250 ° C., more preferably 70 to 230 ° C., still more preferably 80 to 220 ° C., and still more preferably 100 to 200 from the viewpoint of improving the reaction rate and suppressing the production of by-products. ° C.
  • the reaction pressure in the dehydration reaction is preferably 0.1 to 40 MPa, more preferably 0.1 to 20 MPa, and still more preferably 0 from the viewpoints of improving the reaction rate, reducing the amount of by-products generated, and reducing the equipment load.
  • 0.1 to 10 MPa more preferably 0.1 to 5 MPa, still more preferably 0.1 to 2 MPa, and still more preferably 0.1 to 1 MPa.
  • reaction solvent The dehydration reaction of molasses is performed in a solvent.
  • Suitable reaction solvents are those which can at least partially dissolve the raw materials and their reaction intermediates, preferably to a significant extent, more preferably completely, and are stable under the reaction conditions.
  • HMF 5-hydroxymethylfurfural
  • a considerable extent more preferably completely dissolved.
  • water, a highly polar aprotic organic solvent, and an ionic liquid are mentioned.
  • examples of the highly polar aprotic organic solvent include dimethyl sulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylmorpholine, N-methylpyrrolidinone, 1,3-dimethyl-2-imidazolidinone, and hexamethyl.
  • examples thereof include phosphoric acid triamide, tetramethylurea, acetonitrile, ethylene glycol dimethyl ether, tetrahydrofuran, acetone and the like.
  • the ionic liquid examples include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride, Pyrrolidinium salts such as butyl-1-methylpyrrolidinium, piperidinium salts such as 1-butyl-1-methylpiperidinium bromide, pyridinium salts such as 1-butylpyridinium chloride, tetrabutylammonium Ammonium salts such as Romido, sulfonium salts such as phosphonium salts and triethyl sulfonium bis (trifluoromethylsulfonyl) imide such as methane sulfonic acid tetrabutyl phosphonium and the like.
  • imidazolium salts such as 1-ethyl-3-methylimidazolium chloride
  • Pyrrolidinium salts such as butyl-1-methylpyrrolidinium
  • piperidinium salts such as 1-butyl-1-methyl
  • a combination of two or more arbitrary solvents can also be used. From the viewpoint of reactivity and suppression of the amount of by-products produced, highly polar organic solvents and ionic liquids such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methylpyrrolidinone, imidazolium salts and pyridinium salts are preferred. Water is more preferable from the viewpoint of economy. When water is selected as the main solvent, it is preferable to mix one or more organic solvents in addition to water. The solvent used in this case is low in miscibility with water from the viewpoint of reactivity and suppression of the amount of by-product produced, has physical properties such as polarity and solubility that can extract the produced HMF, and is used under the conditions used.
  • unsaturated and saturated aliphatic ketones include acyclic aliphatic ketones and cyclic aliphatic ketones
  • unsaturated and saturated aliphatic ethers as aliphatic ethers
  • unsaturated and saturated aliphatic alcohols unsaturated and saturated aliphatic esters
  • unsaturated and saturated lactones aromatic hydrocarbons
  • Saturated and saturated aliphatic alkanes unsaturated and saturated halogenated alkanes, and the like
  • unsaturated and saturated aliphatic ketones include acyclic aliphatic ketones and cyclic aliphatic ketones
  • unsaturated and saturated aliphatic ethers as aliphatic ethers
  • unsaturated and saturated aliphatic alcohols unsaturated and saturated aliphatic esters
  • unsaturated and saturated lactones aromatic hydrocarbons
  • Saturated and saturated aliphatic alkanes unsaturated and saturated halogenated alkanes, and the like
  • the mixture which combined arbitrary 2 or more types of these from polarity or a soluble viewpoint can be used.
  • the weight ratio of water to the organic solvent is preferably 1:10 to 1: 0. 01, more preferably 1: 7 to 1: 0.05, still more preferably 1: 5 to 1: 0.1.
  • the concentration of molasses used in the production method of the present invention with respect to the solvent is preferably 0.01 to 70% by weight, more preferably from the viewpoint of improving the yield of the 5-hydroxymethylfurfural composition produced from molasses. It is 0.1 to 65% by weight, more preferably 1 to 60% by weight, still more preferably 3 to 40% by weight, and still more preferably 5 to 20% by weight.
  • the acid catalyst may be neutralized after completion of Step I or after completion of Step II described below.
  • neutralization is preferably performed.
  • the neutralizing agent used for neutralization include bases such as alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth gold carbonates, organic amines, calcium oxide, and magnesium oxide. Substances. From the viewpoint of economy, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates are preferable, and alkali metal hydroxides and alkaline earth metal hydroxides are more preferable. .
  • Step I solid matter may be generated during the dehydration reaction depending on the reaction temperature, catalyst type, and raw material concentration. These are the sugars and sugar condensates by intramolecular and intermolecular dehydration of molasses which is the starting material, 5-hydroxymethylfurfural polymer by condensation polymerization of 5-hydroxymethylfurfural, 5-hydroxymethylfurfural and starting materials and intermediate reaction From the overreaction product of 5-hydroxymethylfurfural, it is presumed to be a humic substance that becomes solid waste. If necessary, this solid matter may be removed by filtration, or may be carried over to the next production step such as an extraction step without filtration.
  • the production method of the present invention includes a step of obtaining 5-hydroxymethylfurfural produced from molasses by extracting the reaction mixture after the dehydration reaction in Step I with an organic solvent (hereinafter sometimes simply referred to as “Step II”). .
  • Organic solvent 5-Hydroxymethylfurfural in the reaction mixture obtained in Step I is extracted and recovered using an organic solvent.
  • organic solvent examples include unsaturated and saturated aliphatic ketones (the aliphatic ketones include acyclic aliphatic ketones and cyclic aliphatic ketones), and unsaturated and saturated aliphatic ethers.
  • Aliphatic ethers include acyclic aliphatic ethers and cyclic aliphatic ethers.
  • Unsaturated and saturated aliphatic alcohols, aromatic hydrocarbons, unsaturated and saturated halogenated alkanes, Saturated and saturated aliphatic alkanes, unsaturated and saturated aliphatic esters and the like can be used.
  • the mixture which combined two arbitrary types among these from a polar or soluble viewpoint can be used.
  • the amount of the organic solvent used for extraction is preferably 0.1 to 50 when water is 1 by weight from the viewpoint of improving the extraction efficiency of the 5-hydroxymethylfurfural composition produced from molasses. More preferably, it is 0.2 to 10, more preferably 0.3 to 5, and still more preferably 0.5 to 2.5.
  • the organic solvent is preferably used in several times (for example, three times).
  • the step of extracting and recovering 5-hydroxymethylfurfural from the reaction mixture may be performed after the dehydration reaction in Step I, during the dehydration reaction in Step I, or both. From the viewpoint of improving the productivity of the 5-hydroxymethylfurfural composition and suppressing by-products, the step of extracting and recovering from the reaction mixture is preferably both during and after the dehydration reaction.
  • the production method of the present invention may further comprise a step of concentrating the 5-hydroxymethylfurfural composition produced from molasses by distilling off the organic solvent after completion of Step II.
  • the concentration conditions are not particularly limited, but from the viewpoint of suppressing side reactions and the thermal stability of the 5-hydroxymethylfurfural composition produced from molasses, for example, vacuum concentration, methods using osmotic membranes, transpiration, lyophilization, etc. Is mentioned.
  • vacuum concentration it is preferably performed at 150 ° C. or lower under sufficient pressure reduction conditions that can distill off the solvent, more preferably 120 ° C. or lower, still more preferably 100 ° C. or lower, still more preferably 80 ° C. or lower, More preferably, it is 60 degrees C or less. At this time, it may be distilled off simply by reducing the pressure, or it may be distilled off while topping a gas such as nitrogen.
  • the 5-hydroxymethylfurfural content in the 5-hydroxymethylfurfural composition produced from the molasses of the present invention is preferably 60% by weight or more, more preferably 70% by weight, more preferably 72% by weight from the viewpoint of improving the mold strength.
  • the above is more preferable, 80% by weight or more is more preferable, 95% by weight or less is preferable, and 90% by weight or less is more preferable.
  • the 5-hydroxymethylfurfural content in the 5-hydroxymethylfurfural composition produced from molasses of the present invention is preferably 60 to 95% by weight, more preferably 70 to 90% by weight from the viewpoint of improving the mold strength.
  • it is 72 to 90% by weight, more preferably 80 to 90% by weight.
  • the content of levulinic acid in the 5-hydroxymethylfurfural composition produced from molasses of the present invention is preferably 0.1% by weight or more from the viewpoint of improving the final strength of the mold, It is preferably 5.0% by weight or less, more preferably 3.0% by weight or less, and further preferably 1.5% by weight or less.
  • the content of the high molecular weight compound having a weight average molecular weight of 1000 or more is 0.1% by weight or more from the viewpoint of improving the final strength of the mold.
  • 0.5 wt% or more is more preferable, 1.2 wt% or more is more preferable, 5.0 wt% or less is preferable, 3.0 wt% or less is more preferable, 2.0 wt% or less. Is more preferable.
  • the content of the 5-hydroxymethylfurfural composition produced from molasses of the present invention in the binder composition is preferably 1% by weight or more, more preferably 4% by weight or more from the viewpoint of improving the strength of the mold. 5% by weight or more is more preferable, 6% by weight or more is further preferable, 10% by weight or more is more preferable, 50% by weight or less is preferable, 40% by weight or less is more preferable, and 30% by weight or less is further It is preferably 20% by weight or less, more preferably 12% by weight. Further, from the same viewpoint, it is preferably 1 to 50% by weight, more preferably 4 to 40% by weight, still more preferably 5 to 30% by weight, still more preferably 6 to 20% by weight, and more preferably 10 to 12% by weight.
  • the content of 5-hydroxymethylfurfural produced from molasses of the present invention in the binder composition is preferably 1% by weight or more, more preferably 3% by weight or more from the viewpoint of improving the strength of the mold. More preferably 4% by weight or more, more preferably 5% by weight or more, more preferably 45% by weight or less, still more preferably 35% by weight or less, still more preferably 25% by weight or less, and even more preferably 15% by weight or less. preferable. From the same viewpoint, it is preferably 1 to 45% by weight, more preferably 3 to 35% by weight, still more preferably 4 to 25% by weight, still more preferably 5 to 15% by weight.
  • the content of levulinic acid in the binder composition of the present invention is preferably 0.001% by weight or more, more preferably 0.01% by weight, and 2.5%. % By weight or less is preferable, 1.5% by weight or less is more preferable, and 0.5% by weight or less is more preferable.
  • the content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the binder composition of the present invention is preferably 0.001% by weight or more from the viewpoint of improving the final strength of the mold, and 0.01% by weight. % Or more is more preferable, 0.08% by weight or more is further preferable, 2.5% by weight or less is preferable, 1.0% by weight or less is more preferable, and 0.60% by weight or less is further preferable.
  • a conventionally known resin can be used, for example, a self-hardening resin such as a furan resin or a phenol resin can be used. From the viewpoint of mold productivity due to the development of mold strength and environmental aspects due to plant-derived materials.
  • Furan resin is preferred.
  • Furan resins include furfuryl alcohol, furfuryl alcohol condensate, furfuryl alcohol and aldehyde condensate, furfuryl alcohol and urea condensate, furfuryl alcohol, phenol and aldehyde condensate, furfuryl.
  • One or more selected from the group consisting of a condensate of alcohol, melamine and aldehydes, and a condensate of furfuryl alcohol, urea and aldehydes, or a cocondensate consisting of two or more selected from the above group can be used.
  • furfuryl alcohol condensate of furfuryl alcohol and aldehydes, condensate of furfuryl alcohol and urea
  • the condensate of furfuryl alcohol, urea, and aldehydes is preferably synthesized in furfuryl alcohol in the presence of urea and formaldehyde.
  • aldehydes examples include formaldehyde, acetaldehyde, glyoxal, furfural, terephthalaldehyde, and the like, and one or more of these can be used as appropriate. From the viewpoint of improving the final strength of the mold, it is preferable to use formaldehyde, and from the viewpoint of reducing the amount of formaldehyde generated during molding, it is preferable to use furfural or terephthalaldehyde.
  • urea and aldehydes In the case of producing a condensate of furfuryl alcohol, urea and aldehydes, 0.05 to 0.5 mol of urea is used with respect to 1 mol of furfuryl alcohol, and 0.1 to 1. It is preferable to use 5 mol.
  • the mixing ratio of formaldehyde and urea at the time of synthesizing the acid curable resin improves the deep curability and final strength of the mold.
  • the molar ratio of formaldehyde / urea is preferably 1.5 to 4.0, and more preferably 3.0 to 4.0. More preferred.
  • the content of the acid curable resin in the binder composition is preferably 55 to 99% by weight, more preferably 60 to 95% by weight, and still more preferably 80% from the viewpoint of sufficiently expressing the final strength. ⁇ 90% by weight.
  • the pH of the acid curable resin is preferably 2.0 to 8.5, more preferably 3.0 to 6.5 from the viewpoints of improving the deep curability and final strength of the mold and improving the storage stability. 0, and more preferably 3.5 to 5.0.
  • the acid curable resin may be adjusted by adding an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an acidic aqueous solution such as an oxalic acid aqueous solution to the acid curable resin.
  • amino groups such as urea are considered to form a cross-linking bond with the resin component, and it is presumed that this has a favorable effect on the flexibility of the resulting mold.
  • the amino group content can be estimated by the nitrogen content (% by weight). Note that the flexibility of the mold is necessary when the mold is removed from the original mold. In particular, when a mold having a complicated shape is formed, if the mold has high flexibility, it is possible to prevent mold cracks caused by stress concentration at a portion where the thickness of the mold is thin at the time of mold removal.
  • the binder composition of the present invention has a nitrogen content of 0.8 to 6.0% by weight from the viewpoint of improving the final strength and preventing cracking of the resulting mold.
  • the content of the nitrogen-containing compound in the binder composition may be adjusted.
  • the nitrogen-containing compound urea, melamine, a condensate of urea and aldehydes, a condensate of melamine and aldehydes, a urea resin, a urea-modified resin, and the like are preferable.
  • the nitrogen content in the binder composition can be quantified by the Kjeldahl method.
  • urea, urea resin, furfuryl alcohol / urea resin (urea-modified resin), and nitrogen content derived from furfuryl alcohol / urea formaldehyde resin are 13C-NMR for the carbonyl group (C ⁇ O group) derived from urea. It can also be determined by quantifying with.
  • the binder composition may further contain an additive such as a silane coupling agent.
  • a silane coupling agent is contained because the final strength can be improved.
  • silane coupling agents include N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl)- aminosilanes such as ⁇ -aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycol Epoxy silanes such as sidoxypropyltriethoxysilane, 3-glycidoxypropy
  • silane coupling agent used.
  • Amino silane, epoxy silane, and ureido silane are preferable, amino silane is more preferable, and N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane is more preferable.
  • the content of the silane coupling agent in the binder composition is preferably 0.01 to 0.5% by weight, and 0.05 to 0.3% by weight from the viewpoint of improving the final strength. Is more preferable.
  • the silane coupling agent may be contained as one component of the acid curable resin.
  • the mold composition of the present invention contains refractory particles, a curing agent, and a mold forming binder composition of the present invention.
  • refractory particles conventionally known particles such as silica sand, chromite sand, zircon sand, olivine sand, alumina sand, mullite sand, and synthetic mullite sand can be used. Recycled ones can also be used.
  • Curing agents include sulfonic acid compounds such as xylene sulfonic acid (especially m-xylene sulfonic acid) and toluene sulfonic acid (especially p-toluene sulfonic acid), acidic aqueous solutions containing phosphoric acid compounds, sulfuric acid, etc.
  • sulfonic acid compounds such as xylene sulfonic acid (especially m-xylene sulfonic acid) and toluene sulfonic acid (especially p-toluene sulfonic acid), acidic aqueous solutions containing phosphoric acid compounds, sulfuric acid, etc.
  • the curing agent may contain one or more solvents selected from the group consisting of alcohols, ether alcohols and esters, and carboxylic acids. Among these, alcohols and ether alcohols are preferable, and ether alcohols are more preferable from the viewpoint of improving the deep curability of the mold and improving the final strength.
  • the said solvent and carboxylic acid are contained, since the moisture content in a hardening
  • the content of the solvent or the carboxylic acid in the curing agent is preferably 5 to 50% by weight, and more preferably 10 to 40% by weight from the viewpoint of improving the final strength.
  • the ratio of the refractory particles, the binder composition and the curing agent in the kneaded sand can be set as appropriate, but the binder composition is 0.5 to 1.5 parts by weight with respect to 100 parts by weight of the refractory particles.
  • the curing agent is preferably in the range of 0.07 to 1 part by weight. With such a ratio, it is easy to obtain a mold having a sufficient final strength.
  • the content of the curing agent is such that the amount of water contained in the mold is reduced as much as possible to improve the deep curability of the mold, and from the viewpoint of mixing efficiency in the mixer, the acid curability in the binder composition.
  • the amount is preferably 10 to 70 parts by weight, more preferably 15 to 60 parts by weight, and still more preferably 20 to 55 parts by weight with respect to 100 parts by weight of the resin.
  • the binder composition of the present invention is suitable for a method for producing a mold having a step of curing a mixture containing refractory particles, a binder composition for mold making, and a curing agent. That is, the method for producing a mold of the present invention is a method for producing a mold using the above-mentioned binder composition of the present invention as a binder composition for mold making.
  • the mold can be manufactured using the process of the conventional mold manufacturing method as it is.
  • the binder composition of the present invention and a curing agent for curing the binder composition to the refractory particles and kneading them with a batch mixer or a continuous mixer, the mixture (kneading) Sand.
  • the binder composition of the present invention it is preferable to add the binder composition of the present invention after adding the curing agent to the refractory particles from the viewpoint of improving the final strength.
  • composition of the present invention comprises: ⁇ 1> A binder composition for mold making containing a 5-hydroxymethylfurfural composition produced from Molasses and an acid curable resin.
  • the following composition or production method or use is further preferred.
  • ⁇ 2> The step of obtaining a reaction mixture by dehydrating molasses in a solvent in the presence of an acid catalyst in the presence of an acid catalyst, and extracting the reaction mixture with an organic solvent to form a 5-hydroxymethylfurfural composition
  • the binder composition for mold making according to the above ⁇ 1> which is produced through a step of obtaining a product.
  • ⁇ 3> The binder composition for mold making according to ⁇ 2>, wherein in the step of dehydrating molasses in the solvent, the solvent is a two-layer system of water and an organic solvent.
  • the organic solvent is unsaturated and saturated aliphatic ketones, unsaturated and saturated aliphatic ethers, unsaturated and saturated aliphatic alcohols, aromatic hydrocarbons, unsaturated and saturated halogenated alkanes
  • the binder composition for mold making according to the above ⁇ 2> or ⁇ 3> which is at least one selected from saturated and saturated aliphatic alkanes and unsaturated and saturated aliphatic esters.
  • the acid catalyst is at least one selected from sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and boric acid.
  • the content of the 5-hydroxymethylfurfural composition in the binder composition is preferably 1% by weight or more, more preferably 4% by weight or more, still more preferably 5% by weight or more, and still more preferably 6%.
  • % By weight or more, more preferably 10% by weight or more, preferably 50% by weight or less, more preferably 40% by weight or less, still more preferably 30% by weight or less, still more preferably 20% by weight or less, and even more preferably.
  • the content of the 5-hydroxymethylfurfural in the binder composition is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 4% by weight or more, and still more preferably 5% by weight.
  • the viscosity for mold making according to the above ⁇ 1> to ⁇ 6> which is preferably 45% by weight or less, more preferably 35% by weight or less, still more preferably 25% by weight or less, and still more preferably 15% by weight or less.
  • the content of 5-hydroxymethylfurfural in the 5-hydroxymethylfurfural composition is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 72% by weight or more, and still more preferably 80% by weight.
  • the binder composition for molding according to the above ⁇ 1> to ⁇ 7> which is not less than wt%, preferably not more than 95 wt%, more preferably not more than 90 wt%.
  • the content of levulinic acid in the binder composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and preferably 2.5% by weight or less, more preferably 1.
  • the binder composition for mold making according to the above ⁇ 1> to ⁇ 8> which is not more than 5% by weight, more preferably not more than 0.5% by weight.
  • the content of levulinic acid in the 5-hydroxymethylfurfural composition is preferably 0.1% by weight or more, preferably 5.0% by weight or less, more preferably 3.0% by weight or less,
  • the content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the binder composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and further preferably 0.08% by weight.
  • the content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the 5-hydroxymethylfurfural composition is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 1 2 to 5% by weight, preferably 5.0% by weight or less, more preferably 3.0% by weight or less, and still more preferably 2.0% by weight.
  • Binder composition preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 1 2 to 5% by weight, preferably 5.0% by weight or less, more preferably 3.0% by weight or less, and still more preferably 2.0% by weight.
  • molasses is a viscous black-brown liquid containing components other than sugar, which is generated when sugar is refined from sugar liquid derived from sugarcane or sugar beet Binder composition.
  • molasses is a viscous black-brown liquid containing components other than sugar, which is generated when sugar is refined from sugar liquid derived from sugarcane or sugar beet Binder composition.
  • the acid curable resin is furfuryl alcohol and / or a condensate of furfuryl alcohol, urea, and aldehydes.
  • a mold composition comprising refractory particles, a curing agent, and the above-mentioned ⁇ 1> to ⁇ 15> a binder composition for mold making.
  • a binder composition for mold making Use in which the binder composition for mold making according to the above ⁇ 1> to ⁇ 15> is used for mold production.
  • a method for producing a mold comprising a step of curing a mixture comprising refractory particles, a curing agent, and the above binder molding composition for molding ⁇ 1> to ⁇ 15>.
  • Molasses used in the present invention was sucrose 24.4 wt%, glucose 7.0 wt%, fructose 9.9 wt%, xylose 4.1 wt%, moisture 25.4 wt%, ash content 5.6 wt%,
  • the organic acid was 2.9% by weight
  • the protein was 1.1% by weight
  • the weight average molecular weight was 3,500 or more
  • the high molecular weight compound was 6.5% by weight.
  • the breakdown of the organic acid was 1.5% by weight of lactic acid, 0.7% by weight of acetic acid, 0.3% by weight of formic acid, 0.1% by weight of oxalic acid, and 0.3% by weight of citric acid.
  • molasses manufactured by Kaset Thai Sugar was used.
  • waste molasses is a viscous black-brown liquid containing components other than sugar, which is generated when sugar is purified from sugar liquid derived from sugarcane or sugar beet.
  • the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the contents are filtered to remove solids, then a sample is taken from each of the aqueous phase and the methyl isobutyl ketone solution phase, diluted with pure water, and 5-hydroxymethylfurfural in each phase. The concentration of was measured by liquid chromatography. HMF1 measures the peak area of 5-hydroxymethylfurfural in the chromatogram obtained by the RI detection method, and calculates the concentration in the sample using the 5-hydroxymethylfurfural concentration-area relation that has been prepared in advance. Calculated.
  • HMF1 was concentrated.
  • the weight of the concentrate was 3.40 g, and the weight of 5-hydroxymethylfurfural was 2.90 g.
  • HMF1 had a 5-hydroxymethylfurfural content of 85.3% by weight, a levulinic acid content of 1.1% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.5% by weight. .
  • the reaction was carried out for 3 hours while keeping the temperature and stirring.
  • the gauge pressure during the reaction was 0.4 MPa.
  • the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower.
  • the contents were filtered to remove solids, and then the filtrate was neutralized by adding 50% by weight aqueous sodium hydroxide solution while stirring the filtrate to adjust the pH of the filtrate to 7.
  • the content was filtered to remove solids, and the concentration of 5-hydroxymethylfurfural in each phase was measured in the same manner as in the production of HMF1.
  • HMF3 5-hydroxymethylfurfural composition
  • D-fructose was used as a raw material.
  • HMF was 72% based on the molar basis of fructose.
  • the weight of the concentrated liquid after extraction was 9.80 g, of which HMF was 4.90 g.
  • HMF3 had a 5-hydroxymethylfurfural content of 50.0% by weight, a levulinic acid content of 7.3% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.1% by weight. .
  • HMF4 5-hydroxymethylfurfural composition
  • the reaction was conducted in the same manner as in Example 2 except that D-fructose was used as the starting material. As a result, the production of HMF corresponding to 66% on the basis of the fructose mole was confirmed.
  • the weight of the concentrated liquid after extraction was 8.50 g, and the weight of the internal HMF was 6.00 g.
  • HMF4 had a 5-hydroxymethylfurfural content of 70.6% by weight, a levulinic acid content of 0.4% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.0% by weight. .
  • Unreacted furfuryl alcohol was determined by the above analytical method, and the portion excluding unreacted furfuryl alcohol was designated as condensate 1.
  • the composition of the condensate 1 was 89% by weight of urea-modified furan resin and 11% by weight of water.
  • the kneaded sand immediately after kneading is filled into a cylindrical test piece frame having a diameter of 50 mm and a height of 50 mm, and after 3 hours, the mold is removed, and after 24 hours from filling, the method described in JIS Z 2604-1976 Then, the compressive strength (MPa) was measured and defined as “compressive strength after 24 hours”. The higher the value, the higher the mold strength.
  • Table 1 As is clear from Table 1, the binder compositions of Examples 1 to 5 are superior in compressive strength to the binder compositions of Comparative Examples 1 to 3.

Abstract

A binder composition for producing a template, which comprises a 5-hydroxymethylfurfural composition produced from molasses and an acid-curable resin. It is preferred that the 5-hydroxymethylfurfural composition is produced through a step of subjecting molasses to a dehydration reaction in a solvent in the presence of an acid catalyst to produce a reaction mixture and a step of extracting the reaction mixture with an organic solvent to produce the 5-hydroxymethylfurfural composition, and it is more preferred that the content ratio of the 5-hydroxymethylfurfural composition in the binder composition is 1 to 50 wt% inclusive.

Description

[規則37.2に基づきISAが決定した発明の名称] 鋳型造型用粘結剤組成物及び鋳型の製造方法[Name of invention determined by ISA based on Rule 37.2] Binder composition for mold making and method for producing mold
 本発明は、鋳型造型用粘結剤組成物と、これを用いた鋳型用組成物及び鋳型の製造方法に関する。 The present invention relates to a binder composition for mold making, a composition for mold using the same, and a method for producing a mold.
 酸硬化性自硬性鋳型は、ケイ砂等の耐火性粒子に、酸硬化性樹脂を含有する鋳型造型用粘結剤と、有機スルホン酸、硫酸、リン酸等を含有する硬化剤とを添加し、これらを混練した後、得られた混練砂を木型等の原型に充填し、酸硬化性樹脂を硬化させて製造される。酸硬化性樹脂には、フラン樹脂やフェノール樹脂等が用いられており、フラン樹脂には、フルフリルアルコール、フルフリルアルコール・尿素ホルムアルデヒド樹脂、フルフリルアルコール・ホルムアルデヒド樹脂、フルフリルアルコール・フェノール・ホルムアルデヒド樹脂、その他公知の変性フラン樹脂等が用いられている。得られた鋳型は、機械鋳物部品や建設機械部品あるいは自動車用部品等の鋳物を鋳造する際に使用される。 The acid-curable self-hardening mold is prepared by adding a mold-forming binder containing an acid-curable resin and a curing agent containing organic sulfonic acid, sulfuric acid, phosphoric acid, etc. to refractory particles such as silica sand. After kneading these, the obtained kneaded sand is filled into a mold such as a wooden mold and the acid curable resin is cured. Furan resin, phenol resin, etc. are used for acid curable resin. Furan resin is furfuryl alcohol, furfuryl alcohol / urea formaldehyde resin, furfuryl alcohol / formaldehyde resin, furfuryl alcohol / phenol / formaldehyde. Resins and other known modified furan resins are used. The obtained mold is used when casting a casting such as a machine casting part, a construction machine part, or an automobile part.
 前記した鋳型の造型、あるいは鋳型を用いて所望の鋳物を鋳造する上で、重要な項目として鋳型の最終強度の向上が挙げられる。鋳型の最終強度については、大型の鋳型を生産する場合に特に必要となり、強度が不足すると、鋳型が割れたり、鋳造時の中子割れが発生したりして、作業者に危険が及んだり、得られる鋳物が不良品になる恐れがある。 An improvement of the final strength of the mold is an important item when molding the above-described mold or casting a desired casting using the mold. The final strength of the mold is particularly necessary when producing large molds. If the strength is insufficient, the mold may crack or core cracks may occur during casting, causing danger to the operator. There is a risk that the resulting casting will be defective.
 特許文献1では、酸硬化型樹脂に、糖類あるいは澱粉から得られる分子内に1つあるいは2つ以上のアルデヒド基を有する化合物を混合あるいは反応させてなる酸硬化型鋳型用粘結剤組成物が開示され、硬化速度を速くし、鋳型強度を高くし、表面安定性の優れた鋳型を得ている。 In Patent Document 1, there is provided an acid-curing mold binder composition obtained by mixing or reacting an acid-curing resin with a compound having one or more aldehyde groups in a molecule obtained from saccharides or starch. Disclosed is a mold with high curing speed, high mold strength and excellent surface stability.
 また、特許文献2では、特定量の5-ヒドロキシメチルフルフラール、2,5-フランジメチロール、2,5-フランジカルボン酸、2,5-ジホルミルフラン、ポリエステルポリオールから選ばれる1種以上が、フルフリルアルコールと共に実質的にフェノールやホルムアルデヒドや窒素(尿素などのアミン含有成分を意味する)を含まない粘結剤組成物を開示し、有害物質やガスを低減することによる作業環境の改善ができることが示されている。 In Patent Document 2, at least one selected from a specific amount of 5-hydroxymethylfurfural, 2,5-furandimethylol, 2,5-furandicarboxylic acid, 2,5-diformylfuran, and polyester polyol is used. Disclose a binder composition substantially free from phenol, formaldehyde and nitrogen (meaning amine-containing components such as urea) together with furyl alcohol, and can improve the work environment by reducing harmful substances and gases It is shown.
特開昭61-235034号公報JP-A-61-235034 US20080207796号公報US2008207796
 しかしながら、特許文献2の粘結剤組成物では、鋳造時の臭気は低減できるものの、最終強度が十分でなく、更なる改善が求められていた。また、特許文献1の粘結剤組成物では、フラン樹脂などの酸硬化性樹脂への溶解性が良いとは言えず、粘結剤組成物の保存安定性や、特に、鋳型の最終強度が十分とは言えないので更なる改善が求められていた。 However, with the binder composition of Patent Document 2, although the odor during casting can be reduced, the final strength is not sufficient, and further improvement has been demanded. In addition, the binder composition of Patent Document 1 cannot be said to have good solubility in an acid curable resin such as a furan resin, and the storage stability of the binder composition, in particular, the final strength of the mold. Since it was not enough, further improvement was required.
 本発明は、鋳型の最終強度を向上させることができる鋳型造型用粘結剤組成物、これを用いた鋳型用組成物、及びこれを用いた鋳型の製造方法を提供する。 The present invention provides a binder composition for mold making that can improve the final strength of a mold, a composition for a mold using the same, and a method for producing a mold using the same.
 本発明の鋳型造型用粘結剤組成物は、モラセスから製造された5-ヒドロキシメチルフルフラール組成物と酸硬化性樹脂を含有する鋳型造型用粘結剤組成物である。 The binder composition for mold making of the present invention is a binder composition for mold making containing a 5-hydroxymethylfurfural composition manufactured from Molasses and an acid-curable resin.
 本発明の鋳型用組成物は、耐火性粒子、前記鋳型造型用粘結剤組成物及び該鋳型造型用粘結剤組成物を硬化させるフラン樹脂用硬化剤とを混合してなる、鋳型用組成物である。 The mold composition of the present invention is a mold composition comprising a mixture of refractory particles, the mold-forming binder composition, and a furan resin curing agent for curing the mold-molding binder composition. It is a thing.
 本発明の鋳型の製造方法は、耐火性粒子、前記鋳型造型用粘結剤組成物及び該鋳型造型用粘結剤組成物を硬化させるフラン樹脂用硬化剤を含む混合物を硬化する工程を有する、
鋳型の製造方法である。
The method for producing a mold according to the present invention includes a step of curing a mixture containing refractory particles, the above-mentioned binder for mold molding, and a curing agent for furan resin for curing the binder composition for mold molding.
This is a method for producing a mold.
 本発明の鋳型造型用粘結剤組成物によれば、鋳型の最終強度を向上させることができる。また、本発明の鋳型用組成物及び鋳型の製造方法によれば、鋳型の最終強度を向上させることができる。 According to the binder composition for mold making of the present invention, the final strength of the mold can be improved. Further, according to the mold composition and the mold manufacturing method of the present invention, the final strength of the mold can be improved.
 本発明の鋳型造型用粘結剤組成物(以下、単に「粘結剤組成物」ともいう)は、鋳型を製造する際の粘結剤として使用されるものであって、モラセスから製造された5-ヒドロキシメチルフルフラール組成物と酸硬化性樹脂を含有する鋳型造型用粘結剤組成物である。本発明の粘結剤組成物は鋳型の最終強度を向上させる効果を奏する。このような効果を奏する理由は定かではないが、以下の様に考えられる。
 5-ヒドロキシメチルフルフラールは、メチロール基とアルデヒド基の二つを有している。メチロール基は反応点が1箇所で、アルデヒド基は反応点を2箇所持っており、5-ヒドロキシメチルフルフラールとしては合計3箇所の反応点を持つ。しかもこれらの二つの官能基の反応性は異なり、比較的反応性の高い反応点と低い反応点があると思われる。従って、2つの官能基の反応性の違いから可使時間の確保が可能となり、また、3箇所の反応点を持つところから、線状ポリマーからの架橋反応が一気に進み、急速に鋳型が硬化するものと推察される。本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物においては、原料であるモラセスに起因する副生成物が、5-ヒドロキシメチルフルフラール組成物をフラン樹脂などの酸硬化性樹脂に均一に溶解させ、5-ヒドロキシメチルフルフラール組成物とフラン樹脂が均一かつ効率的に反応することができると考えられる。このため、5-ヒドロキシメチルフルフラール組成物を含有する粘結剤組成物において、架橋反応がさらに進行しやすくなるため、鋳型強度の向上が可能となると考えられる。
以下、本発明の粘結剤組成物に含有される成分について説明する。
The binder composition for mold making of the present invention (hereinafter, also simply referred to as “binder composition”) is used as a binder when producing a mold, and is produced from Molasses. This is a binder composition for mold making containing a 5-hydroxymethylfurfural composition and an acid curable resin. The binder composition of the present invention has an effect of improving the final strength of the mold. The reason for such an effect is not clear, but is considered as follows.
5-Hydroxymethylfurfural has two groups, a methylol group and an aldehyde group. The methylol group has one reactive site, the aldehyde group has two reactive sites, and 5-hydroxymethylfurfural has a total of three reactive sites. Moreover, the reactivity of these two functional groups is different, and it seems that there are relatively reactive sites and reactive sites. Therefore, the pot life can be secured due to the difference in reactivity between the two functional groups, and the cross-linking reaction from the linear polymer proceeds at a stroke from the three reactive sites, and the template is rapidly cured. Inferred. In the 5-hydroxymethylfurfural composition produced from the molasses of the present invention, the by-product resulting from the raw material molasses dissolves the 5-hydroxymethylfurfural composition uniformly in an acid curable resin such as furan resin. It is considered that the 5-hydroxymethylfurfural composition and the furan resin can react uniformly and efficiently. For this reason, in the binder composition containing the 5-hydroxymethylfurfural composition, the crosslinking reaction is more likely to proceed, and it is considered that the mold strength can be improved.
Hereinafter, the components contained in the binder composition of the present invention will be described.
 本発明の粘結剤組成物はモラセスから製造された5-ヒドロキシメチルフルフラール組成物及び酸硬化性樹脂を含有する。 The binder composition of the present invention contains a 5-hydroxymethylfurfural composition manufactured from Molasses and an acid curable resin.
<モラセスから製造された5-ヒドロキシメチルフルフラール組成物>
 本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物は、酸触媒の存在下、溶剤中でモラセスを脱水反応して反応混合物を得る工程、及び反応混合物を有機溶剤で抽出して5-ヒドロキシメチルフルフラール組成物を得る工程を経て製造される。本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物は、5-ヒドロキシメチルフルフラールを主成分とし、重量平均分子量が1000以上の高分子化合物、レブリン酸等の有機酸、フルクトース、グルコース、マンノース、ガラクトース等のヘキソース(六炭糖)、灰分、水分等が副生成物として含まれる。
<5-hydroxymethylfurfural composition manufactured from molasses>
The 5-hydroxymethylfurfural composition produced from molasses of the present invention comprises a step of dehydrating molasses in a solvent to obtain a reaction mixture in the presence of an acid catalyst, and extracting the reaction mixture with an organic solvent to give 5- It is manufactured through a step of obtaining a hydroxymethylfurfural composition. The 5-hydroxymethylfurfural composition produced from molasses of the present invention is composed of a polymer compound having 5-hydroxymethylfurfural as a main component and a weight average molecular weight of 1000 or more, an organic acid such as levulinic acid, fructose, glucose, mannose. , Hexose such as galactose (hexose sugar), ash, moisture and the like are included as by-products.
<モラセス>
 モラセスは、サトウキビやシュガービートに由来する糖液から砂糖を精製する時に発生する、糖分以外の成分も含んだ粘状で黒褐色の液体であり廃糖蜜のことである。
<Moraces>
Molasses is a viscous black-brown liquid that contains components other than sugar and is produced when sugar is refined from sugar cane derived from sugarcane and sugar beet.
<モラセス中の成分>
 本発明では、市販品のモラセスを使用することが可能であり、Kaset  Thai  Sugar社製のモラセスを例示することができる。かかるモラセスは、スクロース、グルコース、フルクトース、キシロース、水分、灰分、たんぱく質、重量平均分子量が3500以上の高分子量化合物、乳酸、酢酸、ギ酸、シュウ酸、クエン酸等の有機酸等を含有する。
<Ingredients in molasses>
In the present invention, commercially available molasses can be used, and molasses manufactured by Kaset Thai Sugar Co. can be exemplified. Such molasses contains sucrose, glucose, fructose, xylose, moisture, ash, protein, a high molecular weight compound having a weight average molecular weight of 3500 or more, organic acids such as lactic acid, acetic acid, formic acid, oxalic acid and citric acid.
 モラセス中のスクロースの含有量は、鋳型の最終強度を向上させる観点から、10重量%以上が好ましく、15重量%以上がより好ましく、20重量%以上が更に好ましく、また、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましい。 From the viewpoint of improving the final strength of the mold, the content of sucrose in molasses is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, and preferably 50% by weight or less. , 40% by weight or less is more preferable, and 30% by weight or less is more preferable.
 また、モラセス中のグルコースの含有量は、鋳型の最終強度を向上させる観点から、1.0重量%以上が好ましく、3.0重量%以上がより好ましく、5.0重量%以上が更に好ましく、また、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましい。 Further, the content of glucose in molasses is preferably 1.0% by weight or more, more preferably 3.0% by weight or more, still more preferably 5.0% by weight or more, from the viewpoint of improving the final strength of the mold. Moreover, 20 weight% or less is preferable, 15 weight% or less is more preferable, and 10 weight% or less is still more preferable.
 また、モラセス中のフルクトースの含有量は、鋳型の最終強度を向上させる観点から、1.0重量%以上が好ましく、5.0重量%以上がより好ましく、7.0重量%以上が更に好ましく、また、20重量%以下が好ましく、18重量%以下がより好ましく、15重量%以下が更に好ましい。 Further, the content of fructose in molasses is preferably 1.0% by weight or more, more preferably 5.0% by weight or more, further preferably 7.0% by weight or more, from the viewpoint of improving the final strength of the mold. Moreover, 20 weight% or less is preferable, 18 weight% or less is more preferable, and 15 weight% or less is still more preferable.
 また、モラセス中のキシロースの含有量は、鋳型の最終強度を向上させる観点から、1.0重量%以上が好ましく、2.0重量%以上がより好ましく、また、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましく、6.0重量%以下がより更に好ましい。 In addition, the xylose content in molasses is preferably 1.0% by weight or more, more preferably 2.0% by weight or more, and preferably 20% by weight or less, from the viewpoint of improving the final strength of the mold. % By weight or less is more preferred, 10% by weight or less is more preferred, and 6.0% by weight or less is even more preferred.
 また、モラセス中の水分の含有量は、経済性と鋳型の最終強度を向上させる観点から、5.0重量%以上が好ましく、15重量%以上がより好ましく、また、40重量%以下が好ましく、35重量%以下がより好ましく、30重量%以下が更に好ましい。 Further, the water content in molasses is preferably 5.0% by weight or more, more preferably 15% by weight or more, and preferably 40% by weight or less from the viewpoint of improving economy and final strength of the mold. It is more preferably 35% by weight or less, and still more preferably 30% by weight or less.
 また、モラセス中の灰分の含有量は、経済性と鋳型の最終強度を向上させる観点から、1.0重量%以上が好ましく、3.0重量%以上がより好ましく、また、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましい。 Further, the content of ash in molasses is preferably 1.0% by weight or more, more preferably 3.0% by weight or more, and more preferably 20% by weight or less from the viewpoint of improving economy and final strength of the mold. Preferably, 15 weight% or less is more preferable, and 10 weight% or less is still more preferable.
 また、モラセス中のたんぱく質の含有量は、鋳型の最終強度を向上させる観点から、0.1重量%以上が好ましく、0.3重量%以上がより好ましく、また、5.0重量%以下が好ましく、4.0重量%以下がより好ましく、3.0重量%以下が更に好ましい。 The protein content in molasses is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and preferably 5.0% by weight or less from the viewpoint of improving the final strength of the mold. 4.0 weight% or less is more preferable, and 3.0 weight% or less is still more preferable.
 また、モラセス中の重量平均分子量が3500以上の高分子量化合物の含有量は、鋳型の最終強度を向上させる観点から、1.0重量%以上が好ましく、2.0重量%以上がより好ましく、3.0重量%以上が更に好ましく、また、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましい。 Further, the content of the high molecular weight compound having a weight average molecular weight of 3500 or more in molasses is preferably 1.0% by weight or more, more preferably 2.0% by weight or more, from the viewpoint of improving the final strength of the template. 0.0% by weight or more is more preferable, 20% by weight or less is preferable, 15% by weight or less is more preferable, and 10% by weight or less is more preferable.
 また、モラセス中の乳酸、酢酸、ギ酸、シュウ酸、クエン酸等の有機酸の含有量は、鋳型の最終強度を向上させる観点から、0.1重量%以上が好ましく、0.5重量%以上がより好ましく、1.0重量%以上が更に好ましく、また、5重量%以下が好ましく、4.5重量%以下がより好ましく、4重量%以下が更に好ましい。 Further, the content of organic acid such as lactic acid, acetic acid, formic acid, oxalic acid, citric acid in molasses is preferably 0.1% by weight or more, and 0.5% by weight or more from the viewpoint of improving the final strength of the mold. Is more preferably 1.0% by weight or more, more preferably 5% by weight or less, more preferably 4.5% by weight or less, and still more preferably 4% by weight or less.
 モラセス中のスクロース、グルコース、フルクトース、キシロース、水分、灰分、たんぱく質、重量平均分子量が3500以上の高分子量化合物及び有機酸の含有量は実施例記載の方法で測定することができる。 The contents of sucrose, glucose, fructose, xylose, moisture, ash, protein, high molecular weight compound having a weight average molecular weight of 3500 or more and organic acid in molasses can be measured by the method described in the examples.
<モラセスから製造された5-ヒドロキシメチルフルフラール組成物の製造方法>
[工程I]
 本発明の製造方法は、酸触媒の存在下、溶剤中でモラセス(廃糖蜜)を脱水反応して反応混合物を得る工程(以下、単に「工程I」ということがある)を有する。
<Method for producing 5-hydroxymethylfurfural composition produced from molasses>
[Step I]
The production method of the present invention includes a step of dehydrating molasses (waste molasses) in a solvent in the presence of an acid catalyst to obtain a reaction mixture (hereinafter sometimes simply referred to as “step I”).
(酸触媒)
 工程Iにおける脱水反応は、酸触媒の存在下で行われる。使用される酸触媒としては、例えば、塩酸、硫酸、リン酸、硝酸、ホウ酸などの無機酸およびその塩類、p-トルエンスルホン酸、キシレンスルホン酸などのスルホン酸およびその塩類、酢酸、レブリン酸、シュウ酸、フマル酸、マレイン酸、クエン酸などのカルボン酸およびその塩類、アンバーリスト、アンバーライト、ダイヤイオンなどに代表される陽イオン性スルホン酸樹脂類、ゼオライト、アルミナ、シリカ-アルミナ、粘土、硫酸化ジルコニアに代表される硫酸固定化触媒、リン酸化チタニアに代表されるリン酸固定化触媒、ヘテロポリ酸類、塩化アルミニウムや塩化クロムなどのルイス酸としての作用がある金属塩、又は、これらの混合物が挙げられる。このうち、モラセスから製造された5-ヒドロキシメチルフルフラール組成物の収率向上の観点、並びに経済性の観点から、無機酸類又はカルボン酸類が好ましく、より好ましくは塩酸、硫酸、リン酸、硝酸、ホウ酸、酢酸、レブリン酸、シュウ酸、フマル酸、マレイン酸、及びクエン酸から選ばれる1種又は2種以上、更に好ましくは硫酸、塩酸、リン酸、酢酸、ホウ酸から選ばれる1種又は2種以上である。
(Acid catalyst)
The dehydration reaction in Step I is performed in the presence of an acid catalyst. Examples of the acid catalyst used include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and boric acid and salts thereof, sulfonic acids such as p-toluenesulfonic acid and xylenesulfonic acid and salts thereof, acetic acid and levulinic acid. , Carboxylic acids such as oxalic acid, fumaric acid, maleic acid, citric acid and their salts, cationic sulfonic acid resins represented by amberlist, amberlite, diamond ion, zeolite, alumina, silica-alumina, clay , Sulfuric acid immobilization catalysts typified by sulfated zirconia, phosphoric acid immobilization catalysts typified by phosphorylated titania, heteropoly acids, metal salts that act as Lewis acids such as aluminum chloride and chromium chloride, or these A mixture is mentioned. Of these, inorganic acids or carboxylic acids are preferred from the viewpoint of improving the yield of 5-hydroxymethylfurfural composition produced from molasses and from the viewpoint of economy, and more preferred are hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, boron. One or more selected from acids, acetic acid, levulinic acid, oxalic acid, fumaric acid, maleic acid and citric acid, more preferably one or two selected from sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and boric acid More than a seed.
 脱水反応における酸触媒の使用量としては、反応速度の向上、副産物の生成抑制の観点、経済性及び廃棄物低減の観点から、モラセスに対して0.1~50重量%であることが好ましく、より好ましくは0.1~30重量%、更に好ましくは0.1~20重量%である。 The amount of the acid catalyst used in the dehydration reaction is preferably 0.1 to 50% by weight based on molasses from the viewpoint of improving the reaction rate, suppressing the production of by-products, economically and reducing waste. More preferred is 0.1 to 30% by weight, still more preferred is 0.1 to 20% by weight.
(反応形態)
 脱水反応の反応形態は特に限定されず、バッチ式でも半回分式でも連続式でもよく、双方を組み合わせた反応形態でもよい。生産性向上の観点から、半回分式反応及び連続式反応が好ましく、オペレーションの簡易さの観点からは、バッチ式反応が好ましい。
(Reaction form)
The reaction form of the dehydration reaction is not particularly limited, and may be a batch type, a semi-batch type, a continuous type, or a combination of both types. A semi-batch reaction and a continuous reaction are preferable from the viewpoint of productivity improvement, and a batch reaction is preferable from the viewpoint of easy operation.
(反応温度)
 脱水反応における反応温度としては、反応速度の向上、副産物の生成抑制の観点から、好ましくは50~250℃、より好ましくは70~230℃、更に好ましくは80~220℃、更に好ましくは100~200℃である。
(Reaction temperature)
The reaction temperature in the dehydration reaction is preferably 50 to 250 ° C., more preferably 70 to 230 ° C., still more preferably 80 to 220 ° C., and still more preferably 100 to 200 from the viewpoint of improving the reaction rate and suppressing the production of by-products. ° C.
(反応圧力)
 脱水反応における反応圧力としては、反応速度の向上、副産物の生成量低減の観点、並びに設備負荷低減の観点から、好ましくは0.1~40MPa、より好ましくは0.1~20MPa、更に好ましくは0.1~10MPa、より更に好ましくは0.1~5MPa、より更に好ましくは0.1~2MPa、より更に好ましくは0.1~1MPaである。
(Reaction pressure)
The reaction pressure in the dehydration reaction is preferably 0.1 to 40 MPa, more preferably 0.1 to 20 MPa, and still more preferably 0 from the viewpoints of improving the reaction rate, reducing the amount of by-products generated, and reducing the equipment load. 0.1 to 10 MPa, more preferably 0.1 to 5 MPa, still more preferably 0.1 to 2 MPa, and still more preferably 0.1 to 1 MPa.
(反応溶剤)
 前記モラセスの脱水反応は、溶剤中で行われる。反応溶剤は、原料やその反応中間体を少なくとも部分的に、好ましくはかなりの程度、さらに好ましくは完全に溶解でき、尚且つ反応条件下で安定であるものが適している。加えて、生成する5-ヒドリキシメチルフルフラール(以下HMFともいう。)をかなりの程度溶解させ、より好ましくは完全に溶解させるものが好ましい。例えば、水、高極性非プロトン性有機溶媒、イオン液体が挙げられる。具体的には、高極性非プロトン性有機溶媒としては例えばジメチルスルホキシド、スルホラン、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルモルホリン、N-メチルピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルリン酸トリアミド、テトラメチルウレア、アセトニトリル、エチレングリコールジメチルエーテル、テトラヒドロフラン、アセトンなどが挙げられ、またイオン性液体としては、例えば塩化1-エチル-3-メチルイミダゾリウムなどのイミダゾリウム塩類、臭化1-ブチル-1-メチルピロリジニウムなどのピロリジニウム塩類、臭化1-ブチル-1-メチルピペリジニウムなどのピペリジニウム塩類、塩化1-ブチルピリジニウムなどのピリジニウム塩類、テトラブチルアンモニウムブロミドなどのアンモニウム塩類、メタンスルホン酸テトラブチルホスホニウムなどのホスホニウム塩類及びトリエチルスルホニウムビス(トリフルオロメチルスルホニル)イミドなどのスルホニウム塩類などが挙げられる。また2種以上の任意の溶媒を組み合わせたものも使用できる。反応性および副産物の生成量抑制の観点からは高極性有機溶媒ならびにイオン液体、例えばジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリジノン、イミダゾリウム塩類、ピリジニウム塩類が好ましい。経済性の観点からは水がより好ましい。水を主溶媒として選択する場合、水の他に一種類以上の有機溶剤を混合させることが好ましい。この場合に用いる溶媒としては、反応性および副産物の生成量抑制の観点から、水と混和性が低く、生成するHMFを抽出できる程度の極性や溶解性などの物性を有し、使用する条件下で安定であるものが適している。例えば、不飽和及び飽和脂肪族ケトン類(脂肪族ケトン類としては非環状脂肪族ケトン類や環状脂肪族ケトン類が挙げられる。)、不飽和及び飽和脂肪族エーテル類(脂肪族エーテル類としては非環状脂肪族エーテル類や環状脂肪族エーテル類が挙げられる。)、不飽和及び飽和脂肪族アルコール類、不飽和及び飽和脂肪族エステル類、不飽和及び飽和ラクトン類、芳香族炭化水素類、不飽和及び飽和脂肪族アルカン類、不飽和及び飽和ハロゲン化アルカン類などを用いることができる。また、極性や溶解性の観点からこれらのうち任意の2種類以上を組み合わせた混合物を用いることができる。具体的には、3-メチル-2-ブタノン、メチルイソブチルケトン、ジイソブチルケトン、5-メチル-3-ヘプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、イソホロン、テトラヒドロフラン、フルフラール、フルフリルアルコール、ブタノール、アミルアルコール、イソペンチルアルコール、ヘキシルアルコール、クロロメタン、ジクロロメタン、トリクロロメタン、トリクロロエタン、ジエチルエーテル、イソプロピルエーテル、ジ-tert-ブチルエーテル、トルエン、キシレン、デカン、デセン、ドデカン、ドデセン、ヘキサン、ペンタン、石油エーテル、酢酸エチル、酢酸プロピル、酢酸ブチル又はこれらの任意の組み合わせが挙げられる。このうち、HMFの抽出効率向上の観点から、好ましくはメチルイソブチルケトン、シクロヘキサノン、ブタノール、テトラヒドロフラン、アミルアルコール、ジクロロメタン、トリクロロメタン、酢酸エチル、酢酸プロピル、酢酸ブチル、トルエンより好ましくはメチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、ブタノール、ジクロロメタン、トリクロロメタンである。
(Reaction solvent)
The dehydration reaction of molasses is performed in a solvent. Suitable reaction solvents are those which can at least partially dissolve the raw materials and their reaction intermediates, preferably to a significant extent, more preferably completely, and are stable under the reaction conditions. In addition, it is preferable that 5-hydroxymethylfurfural (hereinafter also referred to as HMF) to be produced is dissolved to a considerable extent, more preferably completely dissolved. For example, water, a highly polar aprotic organic solvent, and an ionic liquid are mentioned. Specifically, examples of the highly polar aprotic organic solvent include dimethyl sulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylmorpholine, N-methylpyrrolidinone, 1,3-dimethyl-2-imidazolidinone, and hexamethyl. Examples thereof include phosphoric acid triamide, tetramethylurea, acetonitrile, ethylene glycol dimethyl ether, tetrahydrofuran, acetone and the like. Examples of the ionic liquid include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride, Pyrrolidinium salts such as butyl-1-methylpyrrolidinium, piperidinium salts such as 1-butyl-1-methylpiperidinium bromide, pyridinium salts such as 1-butylpyridinium chloride, tetrabutylammonium Ammonium salts such as Romido, sulfonium salts such as phosphonium salts and triethyl sulfonium bis (trifluoromethylsulfonyl) imide such as methane sulfonic acid tetrabutyl phosphonium and the like. A combination of two or more arbitrary solvents can also be used. From the viewpoint of reactivity and suppression of the amount of by-products produced, highly polar organic solvents and ionic liquids such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methylpyrrolidinone, imidazolium salts and pyridinium salts are preferred. Water is more preferable from the viewpoint of economy. When water is selected as the main solvent, it is preferable to mix one or more organic solvents in addition to water. The solvent used in this case is low in miscibility with water from the viewpoint of reactivity and suppression of the amount of by-product produced, has physical properties such as polarity and solubility that can extract the produced HMF, and is used under the conditions used. And stable are suitable. For example, unsaturated and saturated aliphatic ketones (aliphatic ketones include acyclic aliphatic ketones and cyclic aliphatic ketones), unsaturated and saturated aliphatic ethers (as aliphatic ethers) Acyclic aliphatic ethers and cyclic aliphatic ethers), unsaturated and saturated aliphatic alcohols, unsaturated and saturated aliphatic esters, unsaturated and saturated lactones, aromatic hydrocarbons, Saturated and saturated aliphatic alkanes, unsaturated and saturated halogenated alkanes, and the like can be used. Moreover, the mixture which combined arbitrary 2 or more types of these from polarity or a soluble viewpoint can be used. Specifically, 3-methyl-2-butanone, methyl isobutyl ketone, diisobutyl ketone, 5-methyl-3-heptanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, isophorone, tetrahydrofuran, furfural, furfuryl Alcohol, butanol, amyl alcohol, isopentyl alcohol, hexyl alcohol, chloromethane, dichloromethane, trichloromethane, trichloroethane, diethyl ether, isopropyl ether, di-tert-butyl ether, toluene, xylene, decane, decene, dodecane, dodecene, hexane, Pentane, petroleum ether, ethyl acetate, propyl acetate, butyl acetate or any combination thereof. Of these, from the viewpoint of improving the extraction efficiency of HMF, preferably methyl isobutyl ketone, cyclohexanone, butanol, tetrahydrofuran, amyl alcohol, dichloromethane, trichloromethane, ethyl acetate, propyl acetate, butyl acetate, toluene, more preferably methyl isobutyl ketone, cyclohexanone Ethyl acetate, butyl acetate, butanol, dichloromethane and trichloromethane.
 工程Iにおいて溶剤に水と有機溶剤を使用する場合、水と有機溶剤の重量比率(水:有機溶剤)は、経済性および副生成物抑制の観点から、好ましくは1:10~1:0.01、より好ましくは1:7~1:0.05、更に好ましくは1:5~1:0.1である。 When water and an organic solvent are used as the solvent in Step I, the weight ratio of water to the organic solvent (water: organic solvent) is preferably 1:10 to 1: 0. 01, more preferably 1: 7 to 1: 0.05, still more preferably 1: 5 to 1: 0.1.
 本発明の製造方法に用いられるモラセスの溶剤に対する濃度としては、モラセスから製造された5-ヒドロキシメチルフルフラール組成物の収率向上の観点から、好ましくは0.01~70重量%、より好ましくは、0.1~65重量%、更に好ましくは1~60重量%、より更に好ましくは3~40重量%、より更に好ましくは5~20重量%である。 The concentration of molasses used in the production method of the present invention with respect to the solvent is preferably 0.01 to 70% by weight, more preferably from the viewpoint of improving the yield of the 5-hydroxymethylfurfural composition produced from molasses. It is 0.1 to 65% by weight, more preferably 1 to 60% by weight, still more preferably 3 to 40% by weight, and still more preferably 5 to 20% by weight.
(中和工程)
 必要に応じて、工程I終了後又は後述する工程II終了後に、酸触媒を中和してもよい。モラセスから製造された5-ヒドロキシメチルフルフラール組成物の組成の安定性の観点から、中和を行うことが好ましい。中和に用いられる中和剤としては、例えば、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金炭酸塩、有機アミン、酸化カルシウム、酸化マグネシウムなどの塩基性物質が挙げられる。経済性の観点から、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金炭酸塩が好ましく、アルカリ金属水酸化物、アルカリ土類金属水酸化物が更に好ましい。
(Neutralization process)
If necessary, the acid catalyst may be neutralized after completion of Step I or after completion of Step II described below. From the viewpoint of the stability of the composition of the 5-hydroxymethylfurfural composition produced from molasses, neutralization is preferably performed. Examples of the neutralizing agent used for neutralization include bases such as alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth gold carbonates, organic amines, calcium oxide, and magnesium oxide. Substances. From the viewpoint of economy, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates are preferable, and alkali metal hydroxides and alkaline earth metal hydroxides are more preferable. .
 工程Iにおいて、反応温度や触媒種、原料濃度によって、脱水反応中に固形物が生成することがある。これらは出発原料であるモラセスの分子内ならびに分子間脱水による無水糖や糖縮合体、5-ヒドロキシメチルフルフラール同士の縮重合による5-ヒドロキシメチルフルフラールポリマー、5-ヒドロキシメチルフルフラールと出発原料ならびに反応中間体、5-ヒドロキシメチルフルフラールの過反応生成物から固形廃棄物となるフミン質であると推測される。必要に応じて、この固形物はろ過にて除去してもよく、ろ過せずに抽出工程など次の製造工程に持ち越してもよい。 In Step I, solid matter may be generated during the dehydration reaction depending on the reaction temperature, catalyst type, and raw material concentration. These are the sugars and sugar condensates by intramolecular and intermolecular dehydration of molasses which is the starting material, 5-hydroxymethylfurfural polymer by condensation polymerization of 5-hydroxymethylfurfural, 5-hydroxymethylfurfural and starting materials and intermediate reaction From the overreaction product of 5-hydroxymethylfurfural, it is presumed to be a humic substance that becomes solid waste. If necessary, this solid matter may be removed by filtration, or may be carried over to the next production step such as an extraction step without filtration.
[工程II]
 本発明の製造方法は、工程Iの脱水反応後反応混合物を有機溶剤で抽出してモラセスから製造された5-ヒドロキシメチルフルフラールを得る工程(以下、単に「工程II」ということがある)を有する。
[Step II]
The production method of the present invention includes a step of obtaining 5-hydroxymethylfurfural produced from molasses by extracting the reaction mixture after the dehydration reaction in Step I with an organic solvent (hereinafter sometimes simply referred to as “Step II”). .
(有機溶剤)
 工程Iで得られた反応混合物中の5-ヒドロキシメチルフルフラールは、有機溶剤を用いて抽出回収する。
用いられる有機溶剤としては、例えば、不飽和及び飽和脂肪族ケトン類(脂肪族ケトン類としては非環状脂肪族ケトン類や環状脂肪族ケトン類が挙げられる。)、不飽和及び飽和脂肪族エーテル類(脂肪族エーテル類としては非環状脂肪族エーテル類や環状脂肪族エーテル類が挙げられる。)、不飽和及び飽和脂肪族アルコール類、芳香族炭化水素類、不飽和及び飽和ハロゲン化アルカン類、不飽和及び飽和脂肪族アルカン類、不飽和及び飽和脂肪族エステル類などを使用できる。また、極性や溶解性の観点からこれらのうち任意の2種類を組み合わせた混合物を用いることができる。具体的には、3-メチル-2-ブタノン、メチルイソブチルケトン、ジイソブチルケトン、5-メチル-3-ヘプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、テトラヒドロフラン、フルフラール、フルフリルアルコール、ブタノール、アミルアルコール、イソペンチルアルコール、ヘキシルアルコール、クロロメタン、ジクロロメタン、トリクロロメタン、トリクロロエタン、ジエチルエーテル、イソプロピルエーテル、ジ-tert-ブチルエーテル、トルエン、キシレン、デカン、デセン、ドデカン、ドデセン、ヘキサン、ペンタン、石油エーテル、酢酸エチル、酢酸プロピル、酢酸ブチル又はこれらの任意の組み合わせが挙げられる。このうち、モラセスから製造された5-ヒドロキシメチルフルフラール組成物の抽出効率向上の観点から、好ましくはメチルイソブチルケトン、シクロヘキサノン、ブタノール、テトラヒドロフラン、アミルアルコール、ジクロロメタン、トリクロロメタン、酢酸エチル、酢酸プロピル、酢酸ブチル、トルエン、より好ましくはメチルイソブチルケトン、シクロヘキサノン、酢酸エチル、ブタノール、ジクロロメタン、トリクロロメタン、更に好ましくはメチルイソブチルケトン、酢酸エチル、ジクロロメタンである。
(Organic solvent)
5-Hydroxymethylfurfural in the reaction mixture obtained in Step I is extracted and recovered using an organic solvent.
Examples of the organic solvent used include unsaturated and saturated aliphatic ketones (the aliphatic ketones include acyclic aliphatic ketones and cyclic aliphatic ketones), and unsaturated and saturated aliphatic ethers. (Aliphatic ethers include acyclic aliphatic ethers and cyclic aliphatic ethers.), Unsaturated and saturated aliphatic alcohols, aromatic hydrocarbons, unsaturated and saturated halogenated alkanes, Saturated and saturated aliphatic alkanes, unsaturated and saturated aliphatic esters and the like can be used. Moreover, the mixture which combined two arbitrary types among these from a polar or soluble viewpoint can be used. Specifically, 3-methyl-2-butanone, methyl isobutyl ketone, diisobutyl ketone, 5-methyl-3-heptanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, tetrahydrofuran, furfural, furfuryl alcohol, Butanol, amyl alcohol, isopentyl alcohol, hexyl alcohol, chloromethane, dichloromethane, trichloromethane, trichloroethane, diethyl ether, isopropyl ether, di-tert-butyl ether, toluene, xylene, decane, decene, dodecane, dodecene, hexane, pentane, Examples include petroleum ether, ethyl acetate, propyl acetate, butyl acetate, or any combination thereof. Of these, from the viewpoint of improving the extraction efficiency of the 5-hydroxymethylfurfural composition produced from molasses, preferably methyl isobutyl ketone, cyclohexanone, butanol, tetrahydrofuran, amyl alcohol, dichloromethane, trichloromethane, ethyl acetate, propyl acetate, acetic acid Butyl, toluene, more preferably methyl isobutyl ketone, cyclohexanone, ethyl acetate, butanol, dichloromethane, trichloromethane, and still more preferably methyl isobutyl ketone, ethyl acetate, dichloromethane.
 工程IIにおいて、抽出に用いられる有機溶剤量は、モラセスから製造された5-ヒドロキシメチルフルフラール組成物の抽出効率向上の観点から、重量比率で水を1とした場合、好ましくは0.1~50、より好ましくは0.2~10、更に好ましくは0.3~5、より更に好ましくは0.5~2.5である。尚、抽出の際、有機溶剤は数回(例えば3回)に分けて用いるのが好ましい。 In Step II, the amount of the organic solvent used for extraction is preferably 0.1 to 50 when water is 1 by weight from the viewpoint of improving the extraction efficiency of the 5-hydroxymethylfurfural composition produced from molasses. More preferably, it is 0.2 to 10, more preferably 0.3 to 5, and still more preferably 0.5 to 2.5. In the extraction, the organic solvent is preferably used in several times (for example, three times).
 5-ヒドロキシメチルフルフラールを反応混合物から抽出回収する工程は、工程Iの脱水反応後でも、工程Iの脱水反応中でも、またその両方であってもよい。5-ヒドロキシメチルフルフラール組成物の生産性向上および副生成物抑制の観点から、反応混合物から抽出回収する工程は、脱水反応中及び脱水反応後の両方が好ましい。 The step of extracting and recovering 5-hydroxymethylfurfural from the reaction mixture may be performed after the dehydration reaction in Step I, during the dehydration reaction in Step I, or both. From the viewpoint of improving the productivity of the 5-hydroxymethylfurfural composition and suppressing by-products, the step of extracting and recovering from the reaction mixture is preferably both during and after the dehydration reaction.
(濃縮工程)
 本発明の製造方法は、工程IIの終了後、さらに有機溶剤を留去して、モラセスから製造された5-ヒドロキシメチルフルフラール組成物を濃縮する工程を含んでいてもよい。濃縮の条件は特に限定されないが、副反応の抑制、モラセスから製造された5-ヒドロキシメチルフルフラール組成物の熱安定性の観点から、例えば減圧濃縮や、浸透膜を用いる方法、蒸散、凍結乾燥などが挙げられる。減圧濃縮を行う場合は、溶媒を留去できる十分な減圧条件のもと、150℃以下で行うことが好ましく、より好ましくは120℃以下、更に好ましくは100℃以下、更に好ましくは80℃以下、更に好ましくは60℃以下である。この際、単に減圧して留去しても良く、また窒素などの気体をトッピングしながら留去してもよい。
(Concentration process)
The production method of the present invention may further comprise a step of concentrating the 5-hydroxymethylfurfural composition produced from molasses by distilling off the organic solvent after completion of Step II. The concentration conditions are not particularly limited, but from the viewpoint of suppressing side reactions and the thermal stability of the 5-hydroxymethylfurfural composition produced from molasses, for example, vacuum concentration, methods using osmotic membranes, transpiration, lyophilization, etc. Is mentioned. When performing vacuum concentration, it is preferably performed at 150 ° C. or lower under sufficient pressure reduction conditions that can distill off the solvent, more preferably 120 ° C. or lower, still more preferably 100 ° C. or lower, still more preferably 80 ° C. or lower, More preferably, it is 60 degrees C or less. At this time, it may be distilled off simply by reducing the pressure, or it may be distilled off while topping a gas such as nitrogen.
 本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物中の5-ヒドロキシメチルフルフラール含有量は鋳型強度の向上の観点から、60重量%以上が好ましく、70重量%がより好ましく、72重量%以上が更に好ましく、80重量%以上がより更に好ましく、また、95重量%以下が好ましく、90重量%以下がより好ましい。
また、本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物中の5-ヒドロキシメチルフルフラール含有量は鋳型強度の向上の観点から、60~95重量%が好ましく、70~90重量%がより好ましく、72~90重量%が更に好ましく、80~90重量%がより更に好ましい。
The 5-hydroxymethylfurfural content in the 5-hydroxymethylfurfural composition produced from the molasses of the present invention is preferably 60% by weight or more, more preferably 70% by weight, more preferably 72% by weight from the viewpoint of improving the mold strength. The above is more preferable, 80% by weight or more is more preferable, 95% by weight or less is preferable, and 90% by weight or less is more preferable.
Further, the 5-hydroxymethylfurfural content in the 5-hydroxymethylfurfural composition produced from molasses of the present invention is preferably 60 to 95% by weight, more preferably 70 to 90% by weight from the viewpoint of improving the mold strength. Preferably, it is 72 to 90% by weight, more preferably 80 to 90% by weight.
 また、本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物中のレブリン酸の含有量は、鋳型の最終強度を向上させる観点から、0.1重量%以上であることが好ましく、また、5.0重量%以下であることが好ましく、3.0重量%以下であることがより好ましく、1.5重量%以下であることが更に好ましい。 Further, the content of levulinic acid in the 5-hydroxymethylfurfural composition produced from molasses of the present invention is preferably 0.1% by weight or more from the viewpoint of improving the final strength of the mold, It is preferably 5.0% by weight or less, more preferably 3.0% by weight or less, and further preferably 1.5% by weight or less.
 また、本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物中、重量平均分子量が1000以上の高分子量化合物の含有量は、鋳型の最終強度を向上させる観点から、0.1重量%以上が好ましく、0.5重量%以上がより好ましく、1.2重量%以上が更に好ましく、また、5.0重量%以下が好ましく、3.0重量%以下がより好ましく、2.0重量%以下が更に好ましい。 In the 5-hydroxymethylfurfural composition produced from molasses of the present invention, the content of the high molecular weight compound having a weight average molecular weight of 1000 or more is 0.1% by weight or more from the viewpoint of improving the final strength of the mold. 0.5 wt% or more is more preferable, 1.2 wt% or more is more preferable, 5.0 wt% or less is preferable, 3.0 wt% or less is more preferable, 2.0 wt% or less. Is more preferable.
 本発明のモラセスから製造された5-ヒドロキシメチルフルフラール組成物の粘結剤組成物中における含有量は、鋳型の強度の向上の観点から、1重量%以上が好ましく、4重量%以上がより好ましく、5重量%以上が更に好ましく、6重量%以上がより更に好ましく、10重量%以上がより更に好ましく、また、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましく、20重量%以下がより更に好ましく、12重量%がより更に好ましい。また、同様の観点から、1~50重量%が好ましく、4~40重量%がより好ましく、5~30重量%が更に好ましく、6~20重量%がより更に好ましく、10~12重量%がより更に好ましい。
また、本発明のモラセスから製造された5-ヒドロキシメチルフルフラールの粘結剤組成物中における含有量は、鋳型の強度の向上の観点から、1重量%以上が好ましく、3重量%以上がより好ましく、4重量%以上が更に好ましく、5重量%以上がより更に好ましく、また、45重量%以下が好ましく、35重量%以下がより好ましく、25重量%以下が更に好ましく、15重量%以下がより更に好ましい。また、同様の観点から、1~45重量%が好ましく、3~35重量%がより好ましく、4~25重量%が更に好ましく、5~15重量%がより更に好ましい。
The content of the 5-hydroxymethylfurfural composition produced from molasses of the present invention in the binder composition is preferably 1% by weight or more, more preferably 4% by weight or more from the viewpoint of improving the strength of the mold. 5% by weight or more is more preferable, 6% by weight or more is further preferable, 10% by weight or more is more preferable, 50% by weight or less is preferable, 40% by weight or less is more preferable, and 30% by weight or less is further It is preferably 20% by weight or less, more preferably 12% by weight. Further, from the same viewpoint, it is preferably 1 to 50% by weight, more preferably 4 to 40% by weight, still more preferably 5 to 30% by weight, still more preferably 6 to 20% by weight, and more preferably 10 to 12% by weight. Further preferred.
Further, the content of 5-hydroxymethylfurfural produced from molasses of the present invention in the binder composition is preferably 1% by weight or more, more preferably 3% by weight or more from the viewpoint of improving the strength of the mold. More preferably 4% by weight or more, more preferably 5% by weight or more, more preferably 45% by weight or less, still more preferably 35% by weight or less, still more preferably 25% by weight or less, and even more preferably 15% by weight or less. preferable. From the same viewpoint, it is preferably 1 to 45% by weight, more preferably 3 to 35% by weight, still more preferably 4 to 25% by weight, still more preferably 5 to 15% by weight.
 本発明の粘結剤組成物中のレブリン酸の含有量は、鋳型の最終強度を向上させる観点から、0.001重量%以上が好ましく、0.01重量%がより好ましく、また、2.5重量%以下が好ましく、1.5重量%以下がより好ましく、0.5重量%以下が更に好ましい。 From the viewpoint of improving the final strength of the mold, the content of levulinic acid in the binder composition of the present invention is preferably 0.001% by weight or more, more preferably 0.01% by weight, and 2.5%. % By weight or less is preferable, 1.5% by weight or less is more preferable, and 0.5% by weight or less is more preferable.
 また、本発明の粘結剤組成物中の重量平均分子量が1000以上の高分子量化合物の含有量は、鋳型の最終強度を向上させる観点から、0.001重量%以上が好ましく、0.01重量%以上がより好ましく、0.08重量%以上が更に好ましく、また、2.5重量%以下が好ましく、1.0重量%以下がより好ましく、0.60重量%以下が更に好ましい。 In addition, the content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the binder composition of the present invention is preferably 0.001% by weight or more from the viewpoint of improving the final strength of the mold, and 0.01% by weight. % Or more is more preferable, 0.08% by weight or more is further preferable, 2.5% by weight or less is preferable, 1.0% by weight or less is more preferable, and 0.60% by weight or less is further preferable.
<酸硬化性樹脂>
 酸硬化性樹脂としては、従来公知の樹脂が使用でき、例えば、フラン樹脂やフェノール樹脂等の自硬性の樹脂が使用できるが、鋳型強度発現による鋳型生産性及び植物由来原料による環境側面の観点から、フラン樹脂が好ましい。フラン樹脂としては、フルフリルアルコール、フルフリルアルコールの縮合物、フルフリルアルコールとアルデヒド類の縮合物、フルフリルアルコールと尿素の縮合物、フルフリルアルコールとフェノール類とアルデヒド類の縮合物、フルフリルアルコールとメラミンとアルデヒド類の縮合物、及びフルフリルアルコールと尿素とアルデヒド類の縮合物よりなる群から選ばれる1種以上、又は前記群から選ばれる2種以上からなる共縮合物が使用できる。このうち、鋳物砂との硬化反応を円滑に進行させ、深部硬化性と最終強度を向上させる観点から、フルフリルアルコール、フルフリルアルコールとアルデヒド類の縮合物、フルフリルアルコールと尿素の縮合物、及びフルフリルアルコールと尿素とアルデヒド類の縮合物から選ばれる1種以上、並びにこれらの共縮合物を使用するのが好ましく、フルフリルアルコール及び/又はフルフリルアルコールと尿素とアルデヒド類の縮合物を使用することがより好ましい。フルフリルアルコールと尿素とアルデヒド類の縮合物はフルフリルアルコール中で尿素とホルムアルデヒドの存在下で合成されることが好ましい。
<Acid curable resin>
As the acid curable resin, a conventionally known resin can be used, for example, a self-hardening resin such as a furan resin or a phenol resin can be used. From the viewpoint of mold productivity due to the development of mold strength and environmental aspects due to plant-derived materials. Furan resin is preferred. Furan resins include furfuryl alcohol, furfuryl alcohol condensate, furfuryl alcohol and aldehyde condensate, furfuryl alcohol and urea condensate, furfuryl alcohol, phenol and aldehyde condensate, furfuryl. One or more selected from the group consisting of a condensate of alcohol, melamine and aldehydes, and a condensate of furfuryl alcohol, urea and aldehydes, or a cocondensate consisting of two or more selected from the above group can be used. Among these, from the viewpoint of smoothly proceeding the curing reaction with the foundry sand and improving the deep curability and final strength, furfuryl alcohol, condensate of furfuryl alcohol and aldehydes, condensate of furfuryl alcohol and urea, And at least one selected from the condensates of furfuryl alcohol, urea and aldehydes, and the co-condensates thereof, preferably furfuryl alcohol and / or condensates of furfuryl alcohol, urea and aldehydes. More preferably it is used. The condensate of furfuryl alcohol, urea, and aldehydes is preferably synthesized in furfuryl alcohol in the presence of urea and formaldehyde.
 前記アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、グリオキザール、フルフラール、テレフタルアルデヒド等が挙げられ、これらのうち1種以上を適宜使用できる。鋳型の最終強度を向上させる観点からは、ホルムアルデヒドを用いるのが好ましく、造型時のホルムアルデヒド発生量低減の観点からは、フルフラールやテレフタルアルデヒドを用いるのが好ましい。 Examples of the aldehydes include formaldehyde, acetaldehyde, glyoxal, furfural, terephthalaldehyde, and the like, and one or more of these can be used as appropriate. From the viewpoint of improving the final strength of the mold, it is preferable to use formaldehyde, and from the viewpoint of reducing the amount of formaldehyde generated during molding, it is preferable to use furfural or terephthalaldehyde.
 フルフリルアルコールと尿素とアルデヒド類の縮合物を製造する場合には、フルフリルアルコール1モルに対して、尿素を0.05~0.5モル使用し、且つアルデヒド類を0.1~1.5モル使用することが好ましい。 In the case of producing a condensate of furfuryl alcohol, urea and aldehydes, 0.05 to 0.5 mol of urea is used with respect to 1 mol of furfuryl alcohol, and 0.1 to 1. It is preferable to use 5 mol.
 また、酸硬化性樹脂が、尿素及びホルムアルデヒドを含む原料から合成されている場合は、酸硬化性樹脂を合成する際のホルムアルデヒドと尿素の配合比が、鋳型の深部硬化性及び最終強度を向上させることができる観点及び造型時のホルムアルデヒドの発生量を低減できる観点から、モル比で、ホルムアルデヒド/尿素=1.5~4.0であることが好ましく、3.0~4.0であることがより好ましい。 In addition, when the acid curable resin is synthesized from a raw material containing urea and formaldehyde, the mixing ratio of formaldehyde and urea at the time of synthesizing the acid curable resin improves the deep curability and final strength of the mold. From the viewpoint of being able to reduce the amount of formaldehyde generated during molding, the molar ratio of formaldehyde / urea is preferably 1.5 to 4.0, and more preferably 3.0 to 4.0. More preferred.
 粘結剤組成物中の酸硬化性樹脂の含有量は、最終強度を十分発現する観点から、好ましくは55~99重量%であり、より好ましくは60~95重量%であり、更に好ましくは80~90重量%である。 The content of the acid curable resin in the binder composition is preferably 55 to 99% by weight, more preferably 60 to 95% by weight, and still more preferably 80% from the viewpoint of sufficiently expressing the final strength. ~ 90% by weight.
 酸硬化性樹脂のpHは、鋳型の深部硬化性及び最終強度を向上させる観点及び貯蔵安定性向上の観点から、好ましくは2.0~8.5であり、より好ましくは3.0~6.0であり、更に好ましくは3.5~5.0である。酸硬化性樹脂のpHを上記範囲内に制御するには、酸硬化性樹脂に、水酸化ナトリウム水溶液等のアルカリ性水溶液、又はシュウ酸水溶液等の酸性水溶液を添加することによって調整すればよい。 The pH of the acid curable resin is preferably 2.0 to 8.5, more preferably 3.0 to 6.5 from the viewpoints of improving the deep curability and final strength of the mold and improving the storage stability. 0, and more preferably 3.5 to 5.0. In order to control the pH of the acid curable resin within the above range, the acid curable resin may be adjusted by adding an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an acidic aqueous solution such as an oxalic acid aqueous solution to the acid curable resin.
 本発明の粘結剤組成物では、尿素などのアミノ基が樹脂成分と架橋結合を形成すると考えられ、得られる鋳型の可撓性に好ましい影響を与えることが推測される。アミノ基の含有量は窒素含有量(重量%)で見積もることが出来る。なお、鋳型の可撓性は、原型から鋳型を抜型する際に必要である。特に、複雑な形状の鋳型を造型した際に、鋳型の可撓性が高いと、抜型時に鋳型の肉厚が薄い部分に応力が集中することに起因する鋳型割れを防ぐことができる。本発明の粘結剤組成物は、最終強度を向上させる観点と、得られる鋳型の割れを防ぐ観点から、粘結剤組成物中の窒素含有量は、0.8~6.0重量%であることが好ましく、1.8~6.0重量%がより好ましく、2.2~5.0重量%が更に好ましく、2.3~4.5重量%が更により好ましく、2.5~4.0重量%が更により好ましい。粘結剤組成物中の窒素含有量を上記範囲内に調整するには、粘結剤組成物中の窒素含有化合物の含有量を調整すればよい。窒素含有化合物としては、尿素、メラミン、尿素とアルデヒド類の縮合物、メラミンとアルデヒド類の縮合物、尿素樹脂及び尿素変性樹脂等が好ましい。粘結剤組成物中の窒素含有量は、ケルダール法により定量することが出来る。更には、尿素、尿素樹脂、フルフリルアルコール・尿素樹脂(尿素変性樹脂)、及びフルフリルアルコール・尿素ホルムアルデヒド樹脂由来の窒素含有量は、尿素由来のカルボニル基(C=O基)を13C-NMRで定量することで求めることも出来る。 In the binder composition of the present invention, amino groups such as urea are considered to form a cross-linking bond with the resin component, and it is presumed that this has a favorable effect on the flexibility of the resulting mold. The amino group content can be estimated by the nitrogen content (% by weight). Note that the flexibility of the mold is necessary when the mold is removed from the original mold. In particular, when a mold having a complicated shape is formed, if the mold has high flexibility, it is possible to prevent mold cracks caused by stress concentration at a portion where the thickness of the mold is thin at the time of mold removal. The binder composition of the present invention has a nitrogen content of 0.8 to 6.0% by weight from the viewpoint of improving the final strength and preventing cracking of the resulting mold. It is preferably 1.8 to 6.0% by weight, more preferably 2.2 to 5.0% by weight, still more preferably 2.3 to 4.5% by weight, and even more preferably 2.5 to 4%. Even more preferred is 0.0 wt%. In order to adjust the nitrogen content in the binder composition within the above range, the content of the nitrogen-containing compound in the binder composition may be adjusted. As the nitrogen-containing compound, urea, melamine, a condensate of urea and aldehydes, a condensate of melamine and aldehydes, a urea resin, a urea-modified resin, and the like are preferable. The nitrogen content in the binder composition can be quantified by the Kjeldahl method. Further, urea, urea resin, furfuryl alcohol / urea resin (urea-modified resin), and nitrogen content derived from furfuryl alcohol / urea formaldehyde resin are 13C-NMR for the carbonyl group (C═O group) derived from urea. It can also be determined by quantifying with.
<その他の添加剤>
 また、粘結剤組成物中には、さらにシランカップリング剤等の添加剤が含まれていてもよい。例えばシランカップリング剤が含まれていると、最終強度を向上させることができるため好ましい。シランカップリング剤としては、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-α-アミノプロピルトリメトキシシラン等のアミノシランや、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン、ウレイドシラン、メルカプトシラン、スルフィドシラン、メタクリロキシシラン、アクリロキシシランなどが用いられる。好ましくは、アミノシラン、エポキシシラン、ウレイドシランであり、より好ましくはアミノシラン、更に好ましくはN-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシランである。シランカップリング剤の粘結剤組成物中の含有量は、最終強度向上の観点から、0.01~0.5重量%であることが好ましく、0.05~0.3重量%であることがより好ましい。なお、シランカップリング剤は、酸硬化性樹脂の一成分として含有されてもよい。
<Other additives>
The binder composition may further contain an additive such as a silane coupling agent. For example, it is preferable that a silane coupling agent is contained because the final strength can be improved. Examples of silane coupling agents include N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl)- aminosilanes such as γ-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-β- (aminoethyl) -α-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycol Epoxy silanes such as sidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, ureidosilane, mercaptosilane, sulfide silane, methacryloxysilane, acryloxysilane, etc. Used. Amino silane, epoxy silane, and ureido silane are preferable, amino silane is more preferable, and N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane is more preferable. The content of the silane coupling agent in the binder composition is preferably 0.01 to 0.5% by weight, and 0.05 to 0.3% by weight from the viewpoint of improving the final strength. Is more preferable. The silane coupling agent may be contained as one component of the acid curable resin.
 本発明の鋳型用組成物は、耐火性粒子、硬化剤及び本発明の鋳型造型用粘結剤組成物を含有する。 The mold composition of the present invention contains refractory particles, a curing agent, and a mold forming binder composition of the present invention.
 耐火性粒子としては、ケイ砂、クロマイト砂、ジルコン砂、オリビン砂、アルミナ砂、ムライト砂、合成ムライト砂等の従来公知のものを使用でき、また、使用済みの耐火性粒子を回収したものや再生処理したものなども使用できる。 As the refractory particles, conventionally known particles such as silica sand, chromite sand, zircon sand, olivine sand, alumina sand, mullite sand, and synthetic mullite sand can be used. Recycled ones can also be used.
 硬化剤としては、キシレンスルホン酸(特に、m-キシレンスルホン酸)やトルエンスルホン酸(特に、p-トルエンスルホン酸)等のスルホン酸系化合物、リン酸系化合物、硫酸等を含む酸性水溶液など、従来公知のものを1種以上使用できる。更に、硬化剤中にアルコール類、エーテルアルコール類及びエステル類よりなる群から選ばれる1種以上の溶剤や、カルボン酸類を含有させることができる。これらの中でも、鋳型の深部硬化性の向上や、最終強度の向上を図る観点から、アルコール類、エーテルアルコール類が好ましく、エーテルアルコール類がより好ましい。また、上記溶剤やカルボン酸類を含有させると、硬化剤中の水分量を低減できるため、鋳型の深部硬化性が更に良好になると共に、最終強度が更に向上する。前記溶剤や前記カルボン酸類の硬化剤中の含有量は、最終強度向上の観点から、5~50重量%であることが好ましく、10~40重量%であることがより好ましい。また、硬化剤の粘度を低減させる観点からは、メタノールやエタノールを含有させることが好ましい。 Curing agents include sulfonic acid compounds such as xylene sulfonic acid (especially m-xylene sulfonic acid) and toluene sulfonic acid (especially p-toluene sulfonic acid), acidic aqueous solutions containing phosphoric acid compounds, sulfuric acid, etc. One or more conventionally known materials can be used. Further, the curing agent may contain one or more solvents selected from the group consisting of alcohols, ether alcohols and esters, and carboxylic acids. Among these, alcohols and ether alcohols are preferable, and ether alcohols are more preferable from the viewpoint of improving the deep curability of the mold and improving the final strength. Moreover, when the said solvent and carboxylic acid are contained, since the moisture content in a hardening | curing agent can be reduced, while the deep part sclerosis | hardenability of a casting_mold | template will become still more favorable, final strength further improves. The content of the solvent or the carboxylic acid in the curing agent is preferably 5 to 50% by weight, and more preferably 10 to 40% by weight from the viewpoint of improving the final strength. Moreover, it is preferable to contain methanol and ethanol from a viewpoint of reducing the viscosity of a hardening | curing agent.
 混練砂における耐火性粒子と粘結剤組成物と硬化剤との比率は適宜設定できるが、耐火性粒子100重量部に対して、粘結剤組成物が0.5~1.5重量部で、硬化剤が0.07~1重量部の範囲が好ましい。このような比率であると、十分な最終強度の鋳型が得られやすい。更に、硬化剤の含有量は、鋳型に含まれる水分量を極力少なくし、鋳型の深部硬化性を向上させる観点と、ミキサーでの混合効率の観点から、粘結剤組成物中の酸硬化性樹脂100重量部に対して10~70重量部であることが好ましく、15~60重量部であることがより好ましく、20~55重量部であることが更に好ましい。 The ratio of the refractory particles, the binder composition and the curing agent in the kneaded sand can be set as appropriate, but the binder composition is 0.5 to 1.5 parts by weight with respect to 100 parts by weight of the refractory particles. The curing agent is preferably in the range of 0.07 to 1 part by weight. With such a ratio, it is easy to obtain a mold having a sufficient final strength. Furthermore, the content of the curing agent is such that the amount of water contained in the mold is reduced as much as possible to improve the deep curability of the mold, and from the viewpoint of mixing efficiency in the mixer, the acid curability in the binder composition. The amount is preferably 10 to 70 parts by weight, more preferably 15 to 60 parts by weight, and still more preferably 20 to 55 parts by weight with respect to 100 parts by weight of the resin.
 本発明の粘結剤組成物は、耐火性粒子、鋳型造型用粘結剤組成物及び硬化剤を含む混合物を硬化させる工程を有する鋳型の製造方法に好適である。即ち、本発明の鋳型の製造方法は、鋳型造型用粘結剤組成物として上記本発明の粘結剤組成物を使用する鋳型の製造方法である。 The binder composition of the present invention is suitable for a method for producing a mold having a step of curing a mixture containing refractory particles, a binder composition for mold making, and a curing agent. That is, the method for producing a mold of the present invention is a method for producing a mold using the above-mentioned binder composition of the present invention as a binder composition for mold making.
 本発明の鋳型の製造方法では、従来の鋳型の製造方法のプロセスをそのまま利用して鋳型を製造することができる。例えば、上記本発明の粘結剤組成物と、この粘結剤組成物を硬化させる硬化剤とを耐火性粒子に加え、これらをバッチミキサーや連続ミキサーなどで混練することによって、上記混合物(混練砂)を得ることができる。本発明の鋳型の製造方法では、最終強度向上の観点から、前記硬化剤を耐火性粒子に添加した後、本発明の粘結剤組成物を添加することが好ましい。 In the mold manufacturing method of the present invention, the mold can be manufactured using the process of the conventional mold manufacturing method as it is. For example, by adding the binder composition of the present invention and a curing agent for curing the binder composition to the refractory particles and kneading them with a batch mixer or a continuous mixer, the mixture (kneading) Sand). In the mold manufacturing method of the present invention, it is preferable to add the binder composition of the present invention after adding the curing agent to the refractory particles from the viewpoint of improving the final strength.
 本発明の組成物は、
<1>モラセスから製造された5-ヒドロキシメチルフルフラール組成物及び酸硬化性樹脂を含有する鋳型造型用粘結剤組成物である。
The composition of the present invention comprises:
<1> A binder composition for mold making containing a 5-hydroxymethylfurfural composition produced from Molasses and an acid curable resin.
 本発明は、更に以下の組成物又は製造方法、或いは用途が好ましい。
<2>前記5-ヒドロキシメチルフルフラール組成物が、酸触媒の存在下、溶剤中でモラセスを脱水反応して反応混合物を得る工程、及び反応混合物を有機溶剤で抽出して5-ヒドロキシメチルフルフラール組成物を得る工程を経て製造されたものである前記<1>の鋳型造型用粘結剤組成物。
<3>前記溶剤中でモラセスを脱水反応する工程において、前記溶剤が水と有機溶剤の2層系である前記<2>の鋳型造型用粘結剤組成物。
<4>前記有機溶剤が不飽和及び飽和脂肪族ケトン類、不飽和及び飽和脂肪族エーテル類、不飽和及び飽和脂肪族アルコール類、芳香族炭化水素類、不飽和及び飽和ハロゲン化アルカン類、不飽和及び飽和脂肪族アルカン類、並びに不飽和及び飽和脂肪族エステル類から選ばれる1種以上である前記<2>又は<3>の鋳型造型用粘結剤組成物。
<5>前記酸触媒が硫酸、塩酸、リン酸、酢酸及びホウ酸から選ばれる1種以上である前記<2>~<4>の鋳型造型用粘結剤組成物。
<6>前記5-ヒドロキシメチルフルフラール組成物の粘結剤組成物中の含有量が好ましくは1重量%以上、より好ましくは4重量%以上、更に好ましくは5重量%以上、より更に好ましくは6重量%以上、より更に好ましくは10重量%以上、また、好ましくは50重量%以下、より好ましくは40重量%以下、更に好ましくは30重量%以下、より更に好ましくは20重量%以下、より更に好ましくは12重量%以下である前記<1>~<5>の鋳型造型用粘結剤組成物。
<7>前記5-ヒドロキシメチルフルフラールの粘結剤組成物中の含有量が好ましくは1重量%以上、より好ましくは3重量%以上、更に好ましくは4重量%以上、より更に好ましくは5重量%以上、また、好ましくは45重量%以下、より好ましくは35重量%以下、更に好ましくは25重量%以下、より更に好ましくは15重量%以下である前記<1>~<6>の鋳型造型用粘結剤組成物。
<8>前記5-ヒドロキシメチルフルフラール組成物中の5-ヒドロキシメチルフルフラールの含有量が好ましくは60重量%以上、より好ましくは70重量%以上、更に好ましくは72重量%以上、より更に好ましくは80重量%以上、また、好ましくは95重量%以下、より好ましくは90重量%以下である前記<1>~<7>の鋳型造型用粘結剤組成物。
<9>レブリン酸の粘結剤組成物中の含有量が好ましくは0.001重量%以上、より好ましくは0.01重量%以上、また、好ましくは2.5重量%以下、より好ましくは1.5重量%以下、更に好ましくは0.5重量%以下である前記<1>~<8>の鋳型造型用粘結剤組成物。
<10>前記5-ヒドロキシメチルフルフラール組成物中のレブリン酸の含有量が好ましくは0.1重量%以上、また、好ましくは5.0重量%以下、より好ましくは3.0重量%以下、更に好ましくは1.5重量%以下である前記<1>~<9>の鋳型造型用粘結剤組成物。
<11>重量平均分子量が1000以上の高分子量化合物の粘結剤組成物中の含有量が好ましくは0.001重量%以上、より好ましくは0.01重量%以上、更に好ましくは0.08重量%以上、また、好ましくは2.5重量%以下、より好ましくは1.0重量%以下、更に好ましくは0.60重量%以下である前記<1>~<10>の鋳型造型用粘結剤組成物。
<12>前記5-ヒドロキシメチルフルフラール組成物中の重量平均分子量が1000以上の高分子量化合物の含有量が好ましくは0.1重量%以上、より好ましくは0.5重量%以上、更に好ましくは1.2重量%以上、また、好ましくは5.0重量%以下、より好ましくは3.0重量%以下、更に好ましくは2.0重量%である前記<1>~<11>の鋳型造型用粘結剤組成物。
<13>モラセスが、サトウキビやシュガービートに由来する糖液から砂糖を精製する時に発生する、糖分以外の成分も含んだ粘状で黒褐色の液体である前記<1>~<12>の鋳型造型用粘結剤組成物。
<14>モラセスが、廃糖蜜である前記<1>~<13>の鋳型造型用粘結剤組成物。
<15>前記酸硬化性樹脂が、フルフリルアルコール及び/又はフルフリルアルコールと尿素とアルデヒド類の縮合物である前記<1>~<14>の鋳型造型用粘結剤組成物。
<16>耐火性粒子、硬化剤及び前記<1>~<15>の鋳型造型用粘結剤組成物を含有する鋳型用組成物。
<17>前記<1>~<15>記載の鋳型造型用粘結剤組成物を鋳型製造に使用する用途。
<18>耐火性粒子、硬化剤及び前記<1>~<15>の鋳型造型用粘結剤組成物を含む混合物を硬化する工程を有する鋳型の製造方法。
In the present invention, the following composition or production method or use is further preferred.
<2> The step of obtaining a reaction mixture by dehydrating molasses in a solvent in the presence of an acid catalyst in the presence of an acid catalyst, and extracting the reaction mixture with an organic solvent to form a 5-hydroxymethylfurfural composition The binder composition for mold making according to the above <1>, which is produced through a step of obtaining a product.
<3> The binder composition for mold making according to <2>, wherein in the step of dehydrating molasses in the solvent, the solvent is a two-layer system of water and an organic solvent.
<4> The organic solvent is unsaturated and saturated aliphatic ketones, unsaturated and saturated aliphatic ethers, unsaturated and saturated aliphatic alcohols, aromatic hydrocarbons, unsaturated and saturated halogenated alkanes, The binder composition for mold making according to the above <2> or <3>, which is at least one selected from saturated and saturated aliphatic alkanes and unsaturated and saturated aliphatic esters.
<5> The binder composition for mold making according to the above <2> to <4>, wherein the acid catalyst is at least one selected from sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and boric acid.
<6> The content of the 5-hydroxymethylfurfural composition in the binder composition is preferably 1% by weight or more, more preferably 4% by weight or more, still more preferably 5% by weight or more, and still more preferably 6%. % By weight or more, more preferably 10% by weight or more, preferably 50% by weight or less, more preferably 40% by weight or less, still more preferably 30% by weight or less, still more preferably 20% by weight or less, and even more preferably. <12> The binder composition for mold making according to the above <1> to <5>, which is 12% by weight or less.
<7> The content of the 5-hydroxymethylfurfural in the binder composition is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 4% by weight or more, and still more preferably 5% by weight. In addition, the viscosity for mold making according to the above <1> to <6>, which is preferably 45% by weight or less, more preferably 35% by weight or less, still more preferably 25% by weight or less, and still more preferably 15% by weight or less. Binder composition.
<8> The content of 5-hydroxymethylfurfural in the 5-hydroxymethylfurfural composition is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 72% by weight or more, and still more preferably 80% by weight. The binder composition for molding according to the above <1> to <7>, which is not less than wt%, preferably not more than 95 wt%, more preferably not more than 90 wt%.
<9> The content of levulinic acid in the binder composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and preferably 2.5% by weight or less, more preferably 1. The binder composition for mold making according to the above <1> to <8>, which is not more than 5% by weight, more preferably not more than 0.5% by weight.
<10> The content of levulinic acid in the 5-hydroxymethylfurfural composition is preferably 0.1% by weight or more, preferably 5.0% by weight or less, more preferably 3.0% by weight or less, The binder composition for mold making according to the above <1> to <9>, preferably 1.5% by weight or less.
<11> The content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the binder composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and further preferably 0.08% by weight. % Or more, preferably 2.5% by weight or less, more preferably 1.0% by weight or less, and further preferably 0.60% by weight or less, <1> to <10> binder for mold making as described above Composition.
<12> The content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the 5-hydroxymethylfurfural composition is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 1 2 to 5% by weight, preferably 5.0% by weight or less, more preferably 3.0% by weight or less, and still more preferably 2.0% by weight. <1> to <11> Binder composition.
<13> Mold making of <1> to <12>, wherein molasses is a viscous black-brown liquid containing components other than sugar, which is generated when sugar is refined from sugar liquid derived from sugarcane or sugar beet Binder composition.
<14> The binder composition for mold making according to the above <1> to <13>, wherein Molasses is molasses.
<15> The binder composition for molding according to the above <1> to <14>, wherein the acid curable resin is furfuryl alcohol and / or a condensate of furfuryl alcohol, urea, and aldehydes.
<16> A mold composition comprising refractory particles, a curing agent, and the above-mentioned <1> to <15> a binder composition for mold making.
<17> Use in which the binder composition for mold making according to the above <1> to <15> is used for mold production.
<18> A method for producing a mold, comprising a step of curing a mixture comprising refractory particles, a curing agent, and the above binder molding composition for molding <1> to <15>.
 以下、本発明を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。 Hereinafter, examples and the like specifically showing the present invention will be described. In addition, the evaluation item in an Example etc. measured as follows.
<5-ヒドロキシメチルフルフラール組成物中及び粘結剤組成物中のレブリン酸の含有量>
 イオンクロマトグラフィーにて、下記方法により含有量を算出した。
装置:DX-320(日本ダイオネクス社製)
カラム:Ion Pac AS11HC
溶離液:10mM KOH(0min)→ 40mM KOH(25min)
流量:1.5mL/min
オートサプレッサー:ASRS-300(日本ダイオネクス社製)
検出:電気伝導度
MS装置:LCMS-2010EV(島津製作所製)
流量:1mL/min
<Content of levulinic acid in 5-hydroxymethylfurfural composition and binder composition>
The content was calculated by the following method using ion chromatography.
Device: DX-320 (manufactured by Nippon Dionex)
Column: Ion Pac AS11HC
Eluent: 10 mM KOH (0 min) → 40 mM KOH (25 min)
Flow rate: 1.5mL / min
Auto suppressor: ASRS-300 (manufactured by Nippon Dionex)
Detection: Electrical conductivity MS device: LCMS-2010EV (manufactured by Shimadzu Corporation)
Flow rate: 1 mL / min
<5-ヒドロキシメチルフルフラール組成物中及び粘結剤組成物中の高分子量化合物の含有量>
 ゲルパーミエーションクロマトグラフィーにて、下記方法により含有量を算出した。
検出器:RI
カラム:TSKgel α-M ×2(東ソー社製)
温度 : 40 ℃ 
溶離液:N,N-ジメチルホルムアミド
流量 : 1.0 mL/min
換算標準:ポリスチレン
<Content of high molecular weight compound in 5-hydroxymethylfurfural composition and binder composition>
The content was calculated by gel permeation chromatography by the following method.
Detector: RI
Column: TSKgel α-M × 2 (manufactured by Tosoh Corporation)
Temperature: 40 ° C
Eluent: N, N-dimethylformamide Flow rate: 1.0 mL / min
Conversion standard: Polystyrene
<粘結剤組成物中のフルフリルアルコール含有量>
 ガスクロマトグラフィーにて測定を行った。(フルフリルアルコールで検量線を作成)
測定条件:
内部標準溶液:1,6-ヘキサンジオール
カラム:PEG-20M  Chromosorb  WAW  DMCS  60/80mesh(ジーエルサイエンス社製)
カラム温度:80~200℃(8℃/min)
インジェクション温度:210℃
検出器温度:250℃
キャリアーガス:50mL/min(He)
<Furfuryl alcohol content in the binder composition>
Measurement was performed by gas chromatography. (Create a calibration curve with furfuryl alcohol)
Measurement condition:
Internal standard solution: 1,6-hexanediol Column: PEG-20M Chromosorb WAW DMCS 60/80 mesh (manufactured by GL Sciences Inc.)
Column temperature: 80-200 ° C (8 ° C / min)
Injection temperature: 210 ° C
Detector temperature: 250 ° C
Carrier gas: 50 mL / min (He)
<粘結剤組成物中の水分>
 JIS  K  0068に示される化学製品の水分試験法にて測定を行った。
<Moisture in the binder composition>
Measurement was performed by a moisture test method for chemical products shown in JIS K 0068.
<粘結剤組成物中の窒素含有量>
 JIS  M  8813に示されるケルダール法にて測定を行った。
粘結剤組成物中の窒素重量%は、実施例1~5及び比較例1については3.00重量%であった。
<Nitrogen content in binder composition>
Measurement was performed by the Kjeldahl method shown in JIS M 8813.
The nitrogen weight% in the binder composition was 3.00% by weight for Examples 1 to 5 and Comparative Example 1.
<HMF製造における糖転化率と六炭糖含有量>
 高速液体クロマトグラフィーにて測定を行った。
検出器:colona  CAD
カラム:Asahipak  NH2P-50
温度  :25  ℃  
溶離液:a)アセトニトリル  b)30%メタノール含有水
流量  :1.0  mL/min
<Sugar conversion and hexose content in HMF production>
Measurement was performed by high performance liquid chromatography.
Detector: colona CAD
Column: Asahipak NH2P-50
Temperature: 25 ° C
Eluent: a) acetonitrile b) 30% methanol-containing water flow rate: 1.0 mL / min
<HMF製造におけるHMF含有量>
 高速液体クロマトグラフィーにて測定を行った。
検出器:RI
カラム:CARBO  Sep  COREGEL-87H
温度  :80  ℃  
溶離液:0.1%トリフルオロ酢酸含有水
流量  :0.6mL/min
<HMF content in HMF production>
Measurement was performed by high performance liquid chromatography.
Detector: RI
Column: CARBO Sep COREGEL-87H
Temperature: 80 ° C
Eluent: 0.1% trifluoroacetic acid-containing water flow rate: 0.6 mL / min
<モラセス中の高分子量化合物の含有量>
 ゲルパーミエーションクロマトグラフィーにて、下記方法により含有量を算出した。
検出器:RI
カラム:TSKgel α-M ×2(東ソー社製)
温度 : 40 ℃ 
溶離液:30%メタノール含有水
流量 : 0.6 mL/min
換算標準:ポリスチレン
<Content of high molecular weight compound in molasses>
The content was calculated by gel permeation chromatography by the following method.
Detector: RI
Column: TSKgel α-M × 2 (manufactured by Tosoh Corporation)
Temperature: 40 ° C
Eluent: 30% methanol-containing water flow rate: 0.6 mL / min
Conversion standard: Polystyrene
<モラセス中の有機酸の含有量>
 イオンクロマトグラフィーにて、下記方法により含有量を算出した。
装置:DX-320 (日本ダイオネクス社製)
カラム:Ion Pac AS11HC
溶離液:10mM KOH(0min)→40mM KOH(25min)
流量:1.5mL/min
オートサプレッサー:ASRS-300(日本ダイオネクス社製)
検出:電気伝導度
MS装置:LCMS-2010EV(島津製作所製)
流量:1mL/min
<Content of organic acid in molasses>
The content was calculated by the following method using ion chromatography.
Device: DX-320 (manufactured by Nippon Dionex)
Column: Ion Pac AS11HC
Eluent: 10 mM KOH (0 min) → 40 mM KOH (25 min)
Flow rate: 1.5mL / min
Auto suppressor: ASRS-300 (manufactured by Nippon Dionex)
Detection: Electrical conductivity MS device: LCMS-2010EV (manufactured by Shimadzu Corporation)
Flow rate: 1 mL / min
<モラセス中のスクロース、グルコース、フルクトース、キシロースの含有量>
 イオンクロマトグラフィーにて、下記方法により含有量を算出した。
装置:DX-320 (日本ダイオネクス社製)
カラム:Carbo Pac PA1(4.0mm×250mm)
サンプル濃度:100ppm
溶離液:A 100mM NaOH B 100mM NaOH/CH3COONa C 超純水
流量:1.0mL/min
検出:電気化学検出器
<Content of sucrose, glucose, fructose and xylose in molasses>
The content was calculated by the following method using ion chromatography.
Device: DX-320 (manufactured by Nippon Dionex)
Column: Carbo Pac PA1 (4.0 mm × 250 mm)
Sample concentration: 100 ppm
Eluent: A 100 mM NaOH B 100 mM NaOH / CH3COONa C Ultrapure water Flow rate: 1.0 mL / min
Detection: Electrochemical detector
<モラセス中のたんぱく質含有量>
 分析機器として、全自動高速アミノ酸分析機(型式JLC-500/V、日本電子社製)を用いて測定を行った。
<Protein content in molasses>
Measurement was performed using a fully automatic high-speed amino acid analyzer (model JLC-500 / V, manufactured by JEOL Ltd.) as an analytical instrument.
<モラセス中の灰分>
 JIS  K  0067に示される化学製品の減量及び残分試験法にて測定を行った。
<Ashes in molasses>
Measurement was carried out by the weight loss and residue test method of chemical products shown in JIS K 0067.
<モラセス中の水分>
 JIS  K  0068に示される化学製品の水分試験法にて測定を行った。
<Moisture in molasses>
Measurement was performed by a moisture test method for chemical products shown in JIS K 0068.
<モラセス中の成分>
 本発明で使用したモラセスは、スクロース24.4重量%、グルコース7.0重量%、フルクトース9.9重量%、キシロース4.1重量%、水分25.4重量%、灰分5.6重量%、有機酸2.9重量%、たんぱく質1.1重量%、重量平均分子量が3500以上の高分子量化合物6.5重量%であった。有機酸の内訳は、乳酸1.5重量%、酢酸0.7重量%、ギ酸0.3重量%、シュウ酸0.1重量%、クエン酸0.3重量%であった。
 なお、モラセスとしてKaset  Thai  Sugar  社製の廃糖蜜を使用した。かかる廃糖蜜は、サトウキビやシュガービートに由来する糖液から砂糖を精製する時に発生する、糖分以外の成分も含んだ粘状で黒褐色の液体である。
<Ingredients in molasses>
Molasses used in the present invention was sucrose 24.4 wt%, glucose 7.0 wt%, fructose 9.9 wt%, xylose 4.1 wt%, moisture 25.4 wt%, ash content 5.6 wt%, The organic acid was 2.9% by weight, the protein was 1.1% by weight, and the weight average molecular weight was 3,500 or more, and the high molecular weight compound was 6.5% by weight. The breakdown of the organic acid was 1.5% by weight of lactic acid, 0.7% by weight of acetic acid, 0.3% by weight of formic acid, 0.1% by weight of oxalic acid, and 0.3% by weight of citric acid.
As molasses, molasses manufactured by Kaset Thai Sugar was used. Such waste molasses is a viscous black-brown liquid containing components other than sugar, which is generated when sugar is purified from sugar liquid derived from sugarcane or sugar beet.
<5-ヒドロキシメチルフルフラール組成物の製造例1(HMF1)>
 500mLチタン製電磁弁式オートクレーブ(日東高圧社製)に20.0gの廃糖蜜(Kaset  Thai  Sugar  社製)、40.0gのイオン交換水、160gのメチルイソブチルケトン(和光純薬工業株式会社製)および2.0gのリン酸(純度85%,  Aldrich製)を仕込んだ。容器を密閉後、内部空間を窒素で十分に置換した。その後内容物を十分に撹拌しながら140℃まで昇温し、140℃に達してから3時間、保温・撹拌を続けながら反応を行った。なお、反応時のゲージ圧力は0.4MPaであった。反応終了後、攪拌を維持しながら内容物の温度が30℃以下になるまで冷却した。冷却後、内容物をろ過して固形分の除去を行った後、水溶液相ならびにメチルイソブチルケトン溶液相の各々から試量を採取し、純水で希釈して、各相の5-ヒドロキシメチルフルフラールの濃度を液体クロマトグラフィーで測定した。HMF1はRI検出法で得られたクロマトグラムにおける5-ヒドロキシメチルフルフラールのピーク面積を測定し、あらかじめ作成しておいた5-ヒドロキシメチルフルフラールの濃度-面積の関係式を用いて試料中の濃度を計算した。その結果、仕込んだ廃糖蜜量基準で16.0重量%(3.20g)の5-ヒドロキシメチルフルフラールの生成が確認された。これは廃糖蜜中のスクロース、グルコース、フルクトースのモル基準で54%にあたる。
次いで、水溶液相とメチルイソブチルケトン溶液相の各々を分取した。得られた水溶液相を混合し1L分液漏斗へ移し、水溶液相に対し0.5倍重量のメチルイソブチルケトンを入れ、水溶液相中のHMF1の分液抽出操作を行った。抽出操作を3回行い、水溶液相の抽出操作にて得られたメチルイソブチルケトン溶液と、上記で分取した反応終了後のメチルイソブチルケトン溶液を混合し、ロータリーエバポレーターにてメチルイソブチルケトンを留去し、HMF1を濃縮した。濃縮液の重量は3.40g、内5-ヒドロキシメチルフルフラールの重量は2.90gであった。HMF1の5-ヒドロキシメチルフルフラール含有量は85.3重量%であり、レブリン酸含有量は1.1重量%であり、重量平均分子量が1000以上の高分子量化合物が1.5重量%であった。
<Production Example 1 of 5-hydroxymethylfurfural composition (HMF1)>
500mL titanium solenoid valve autoclave (manufactured by Nitto Koatsu) 20.0g molasses (manufactured by Kaset Thai Sugar) 40.0g ion-exchanged water, 160g methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) And 2.0 g of phosphoric acid (purity 85%, made by Aldrich). After sealing the container, the internal space was sufficiently replaced with nitrogen. Thereafter, the contents were heated to 140 ° C. with sufficient stirring, and after reaching 140 ° C., the reaction was carried out for 3 hours while keeping the temperature and stirring. The gauge pressure during the reaction was 0.4 MPa. After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the contents are filtered to remove solids, then a sample is taken from each of the aqueous phase and the methyl isobutyl ketone solution phase, diluted with pure water, and 5-hydroxymethylfurfural in each phase. The concentration of was measured by liquid chromatography. HMF1 measures the peak area of 5-hydroxymethylfurfural in the chromatogram obtained by the RI detection method, and calculates the concentration in the sample using the 5-hydroxymethylfurfural concentration-area relation that has been prepared in advance. Calculated. As a result, it was confirmed that 16.0% by weight (3.20 g) of 5-hydroxymethylfurfural was produced based on the amount of molasses charged. This is 54% based on the molar basis of sucrose, glucose and fructose in the molasses.
Subsequently, each of the aqueous solution phase and the methyl isobutyl ketone solution phase was separated. The obtained aqueous phase was mixed and transferred to a 1 L separatory funnel, 0.5 times the weight of methyl isobutyl ketone was added to the aqueous phase, and the separation extraction operation of HMF1 in the aqueous phase was performed. Perform the extraction operation three times, mix the methyl isobutyl ketone solution obtained by the extraction operation of the aqueous phase and the methyl isobutyl ketone solution after completion of the reaction fractionated above, and distill off the methyl isobutyl ketone with a rotary evaporator. And HMF1 was concentrated. The weight of the concentrate was 3.40 g, and the weight of 5-hydroxymethylfurfural was 2.90 g. HMF1 had a 5-hydroxymethylfurfural content of 85.3% by weight, a levulinic acid content of 1.1% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.5% by weight. .
<5-ヒドロキシメチルフルフラール組成物の製造例2(HMF2)>
 500mLチタン製電磁弁式オートクレーブ(日東高圧社製)に20.0gの廃糖蜜(Kaset  Thai  Sugar  社製)、40.0gのイオン交換水、160  gのメチルイソブチルケトン(和光純薬工業株式会社製)および2.0gのリン酸(純度85%,  Aldrich製)を仕込んだ。容器を密閉後、内部空間を窒素で十分に置換した。その後内容物を十分に撹拌しながら140℃まで昇温し、140℃に達してから3時間、保温・撹拌を続けながら反応を行った。なお、反応時のゲージ圧力は0.4MPaであった。反応終了後、攪拌を維持しながら内容物の温度が30℃以下になるまで冷却した。冷却後、内容物をろ過して固形分の除去を行った後、濾液を攪拌しながら50重量%水酸化ナトリウム水溶液を滴下して中和し、濾液のpHを7とした。中和後、内容物をろ過して固形分の除去を行った後、HMF1の製造と同様の方法にて、各相の5-ヒドロキシメチルフルフラールの濃度を測定した。その結果、仕込んだ廃糖蜜量基準で11.6重量%(4.65g)の5-ヒドロキシメチルフルフラールの生成が確認された。これは廃糖蜜中のスクロース、グルコース、フルクトースのモル基準で31%にあたる。
次いで、HMF1の製造と同様の操作を行って、HMF2の濃縮液を得た。濃縮液の重量は4.293g、内5-ヒドロキシメチルフルフラールの重量は3.16gであった。HMF2の5-ヒドロキシメチルフルフラール含有量は73.6重量%であり、レブリン酸含有量は0.2重量%であり、重量平均分子量が1000以上の高分子量化合物が1.7重量%であった。
<Production Example 2 of 5-hydroxymethylfurfural composition (HMF2)>
500 mL titanium solenoid valve autoclave (manufactured by Nitto High Pressure Co., Ltd.), 20.0 g of molasses (manufactured by Kaset Thai Sugar), 40.0 g of ion-exchanged water, 160 g of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) ) And 2.0 g of phosphoric acid (purity 85%, manufactured by Aldrich). After sealing the container, the internal space was sufficiently replaced with nitrogen. Thereafter, the contents were heated to 140 ° C. with sufficient stirring, and after reaching 140 ° C., the reaction was carried out for 3 hours while keeping the temperature and stirring. The gauge pressure during the reaction was 0.4 MPa. After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the contents were filtered to remove solids, and then the filtrate was neutralized by adding 50% by weight aqueous sodium hydroxide solution while stirring the filtrate to adjust the pH of the filtrate to 7. After neutralization, the content was filtered to remove solids, and the concentration of 5-hydroxymethylfurfural in each phase was measured in the same manner as in the production of HMF1. As a result, it was confirmed that 11.6% by weight (4.65 g) of 5-hydroxymethylfurfural was produced based on the amount of molasses charged. This corresponds to 31% on a molar basis of sucrose, glucose and fructose in the molasses.
Subsequently, operation similar to manufacture of HMF1 was performed, and the concentrate of HMF2 was obtained. The weight of the concentrate was 4.293 g, and the weight of 5-hydroxymethylfurfural was 3.16 g. HMF2 had a 5-hydroxymethylfurfural content of 73.6% by weight, a levulinic acid content of 0.2% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.7% by weight. .
<5-ヒドロキシメチルフルフラール組成物の製造例3(HMF3)>
 使用原料をD-フルクトースとした以外は実施例1と同様に反応を行った。その結果、フルクトースのモル基準で72%にあたるHMFの生成が確認された。抽出後の濃縮液の重量は9.80g、このうちHMFは4.90gであった。HMF3の5-ヒドロキシメチルフルフラール含有量は50.0重量%であり、レブリン酸含有量は7.3重量%であり、重量平均分子量が1000以上の高分子量化合物が1.1重量%であった。
<Production Example 3 of 5-hydroxymethylfurfural composition (HMF3)>
The reaction was carried out in the same manner as in Example 1 except that D-fructose was used as a raw material. As a result, it was confirmed that HMF was 72% based on the molar basis of fructose. The weight of the concentrated liquid after extraction was 9.80 g, of which HMF was 4.90 g. HMF3 had a 5-hydroxymethylfurfural content of 50.0% by weight, a levulinic acid content of 7.3% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.1% by weight. .
<5-ヒドロキシメチルフルフラール組成物の製造例4(HMF4)>
 使用原料をD-フルクトースとした以外は実施例2と同様に反応を行った。その結果、フルクトースのモル基準で66%にあたるHMFの生成が確認され、抽出後の濃縮液の重量は8.50g、内HMFの重量は6.00gであった。HMF4の5-ヒドロキシメチルフルフラール含有量は70.6重量%であり、レブリン酸含有量は0.4重量%であり、重量平均分子量が1000以上の高分子量化合物が1.0重量%であった。
<Production Example 4 of 5-hydroxymethylfurfural composition (HMF4)>
The reaction was conducted in the same manner as in Example 2 except that D-fructose was used as the starting material. As a result, the production of HMF corresponding to 66% on the basis of the fructose mole was confirmed. The weight of the concentrated liquid after extraction was 8.50 g, and the weight of the internal HMF was 6.00 g. HMF4 had a 5-hydroxymethylfurfural content of 70.6% by weight, a levulinic acid content of 0.4% by weight, and a high molecular weight compound having a weight average molecular weight of 1000 or more was 1.0% by weight. .
<縮合物1の製造>
 三ツ口フラスコにフルフリルアルコール100重量部とパラホルムアルデヒド35重量部と尿素13重量部を混合し、25%水酸化ナトリウム水溶液でpH9に調整した。100℃に昇温後、同温度で1時間反応させた後、37%塩酸でpH4.5に調整し、更に100℃で1時間反応させた。その後、25%水酸化ナトリウム水溶液でpH7に調整し、尿素5重量部を添加して、100℃で30分反応させ、反応物1を得た。未反応のフルフリルアルコールを上記分析方法で求め、未反応フルフリルアルコール除いた部分を縮合物1とした。縮合物1の組成は、尿素変性フラン樹脂89重量%、水11重量%であった。
<Production of condensate 1>
A three-necked flask was mixed with 100 parts by weight of furfuryl alcohol, 35 parts by weight of paraformaldehyde, and 13 parts by weight of urea, and adjusted to pH 9 with a 25% aqueous sodium hydroxide solution. After raising the temperature to 100 ° C., the mixture was reacted at the same temperature for 1 hour, adjusted to pH 4.5 with 37% hydrochloric acid, and further reacted at 100 ° C. for 1 hour. Thereafter, the pH was adjusted to 7 with a 25% aqueous sodium hydroxide solution, 5 parts by weight of urea was added, and the mixture was reacted at 100 ° C. for 30 minutes to obtain a reaction product 1. Unreacted furfuryl alcohol was determined by the above analytical method, and the portion excluding unreacted furfuryl alcohol was designated as condensate 1. The composition of the condensate 1 was 89% by weight of urea-modified furan resin and 11% by weight of water.
<粘結剤組成物の製造>
〔実施例1~5、比較例1~3〕
 表1の組成になるように、縮合物1と、フルフリルアルコール、シランカップリング剤、添加剤を混合攪拌し、配合した。
Figure JPOXMLDOC01-appb-T000001
<Manufacture of binder composition>
[Examples 1 to 5, Comparative Examples 1 to 3]
Condensate 1 and furfuryl alcohol, a silane coupling agent, and an additive were mixed and stirred so as to have the composition shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
<試験例(24時間後の圧縮強度)>
 25℃、55%RHの条件下で、珪砂(フリーマントル)100重量部に対し、硬化剤〔花王クエーカー社製  カオーライトナー硬化剤(US-3/C-21=40%/60%)〕0.40重量部を添加し、次いで表1に示す粘結剤組成物1.00重量部を添加し、これらを混合して混練砂を得た。その後、混練直後の混練砂を直径50mm、高さ50mmの円柱形状のテストピース枠に充填し、3時間経過した時に抜型を行い、充填から24時間後に、JIS  Z  2604-1976に記載された方法で、圧縮強度(MPa)を測定し、「24時間後の圧縮強度」とした。数値が高いほど鋳型強度が高いことを示す。結果を表1に示す。
 表1から明らかなように、実施例1~5の粘結剤組成物は、比較例1~3の粘結剤組成物に比べ圧縮強度に優れる。
<Test example (compressive strength after 24 hours)>
Under conditions of 25 ° C. and 55% RH, with respect to 100 parts by weight of silica sand (Fremantle), a curing agent [Caolitener curing agent (US-3 / C-21 = 40% / 60%) manufactured by Kao Quaker Co., Ltd.]] 0 .40 parts by weight was added, and then 1.00 parts by weight of the binder composition shown in Table 1 was added and mixed to obtain kneaded sand. Thereafter, the kneaded sand immediately after kneading is filled into a cylindrical test piece frame having a diameter of 50 mm and a height of 50 mm, and after 3 hours, the mold is removed, and after 24 hours from filling, the method described in JIS Z 2604-1976 Then, the compressive strength (MPa) was measured and defined as “compressive strength after 24 hours”. The higher the value, the higher the mold strength. The results are shown in Table 1.
As is clear from Table 1, the binder compositions of Examples 1 to 5 are superior in compressive strength to the binder compositions of Comparative Examples 1 to 3.

Claims (18)

  1.  モラセスから製造された5-ヒドロキシメチルフルフラール組成物及び酸硬化性樹脂を含有する鋳型造型用粘結剤組成物。 A binder composition for mold making containing a 5-hydroxymethylfurfural composition manufactured from Molasses and an acid curable resin.
  2.  前記5-ヒドロキシメチルフルフラール組成物が、酸触媒の存在下、溶剤中でモラセスを脱水反応して反応混合物を得る工程、及び反応混合物を有機溶剤で抽出して5-ヒドロキシメチルフルフラール組成物を得る工程を経て製造されたものである請求項1記載の鋳型造型用粘結剤組成物。 The 5-hydroxymethylfurfural composition is obtained by dehydrating molasses in a solvent in the presence of an acid catalyst to obtain a reaction mixture, and the reaction mixture is extracted with an organic solvent to obtain a 5-hydroxymethylfurfural composition. The binder composition for mold making according to claim 1, which is produced through a process.
  3.  前記溶剤中でモラセスを脱水反応する工程において、前記溶剤が水と有機溶剤の2層系である請求項2記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to claim 2, wherein in the step of dehydrating molasses in the solvent, the solvent is a two-layer system of water and an organic solvent.
  4.  前記有機溶剤が不飽和及び飽和脂肪族ケトン類、不飽和及び飽和脂肪族エーテル類、不飽和及び飽和脂肪族アルコール類、芳香族炭化水素類、不飽和及び飽和ハロゲン化アルカン類、不飽和及び飽和脂肪族アルカン類、並びに不飽和及び飽和脂肪族エステル類から選ばれる1種以上である請求項2又は3記載の鋳型造型用粘結剤組成物。 The organic solvent is unsaturated and saturated aliphatic ketones, unsaturated and saturated aliphatic ethers, unsaturated and saturated aliphatic alcohols, aromatic hydrocarbons, unsaturated and saturated halogenated alkanes, unsaturated and saturated The binder composition for mold making according to claim 2 or 3, which is one or more selected from aliphatic alkanes and unsaturated and saturated aliphatic esters.
  5.  前記酸触媒が硫酸、塩酸、リン酸、酢酸及びホウ酸から選ばれる1種以上である請求項2~4の何れか1項記載の鋳型造型用粘結剤組成物。 The mold forming binder composition according to any one of claims 2 to 4, wherein the acid catalyst is at least one selected from sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and boric acid.
  6.  前記5-ヒドロキシメチルフルフラール組成物の粘結剤組成物中の含有量が1重量%以上、50重量%以下である請求項1~5の何れか1項記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to any one of claims 1 to 5, wherein the content of the 5-hydroxymethylfurfural composition in the binder composition is 1 wt% or more and 50 wt% or less. .
  7.  前記5-ヒドロキシメチルフルフラールの粘結剤組成物中の含有量が1重量%以上、45重量%以下である請求項1~6の何れか1項記載の鋳型造型用粘結剤組成物。 The mold-forming binder composition according to any one of claims 1 to 6, wherein a content of the 5-hydroxymethylfurfural in the binder composition is 1 wt% or more and 45 wt% or less.
  8.  前記5-ヒドロキシメチルフルフラール組成物中の5-ヒドロキシメチルフルフラールの含有量が60重量%以上、95重量%以下である請求項1~7の何れか1項記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to any one of claims 1 to 7, wherein the content of 5-hydroxymethylfurfural in the 5-hydroxymethylfurfural composition is 60 wt% or more and 95 wt% or less. .
  9.  レブリン酸の粘結剤組成物中の含有量が0.001重量%以上、2.5重量%以下である請求項1~8の何れか1項記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to any one of claims 1 to 8, wherein the content of levulinic acid in the binder composition is 0.001 wt% or more and 2.5 wt% or less.
  10.  前記5-ヒドロキシメチルフルフラール組成物中のレブリン酸の含有量が0.1重量%以上、5.0重量%以下である請求項1~9の何れか1項記載の鋳型造型用粘結剤組成物。

    The binder composition for mold making according to any one of claims 1 to 9, wherein a content of levulinic acid in the 5-hydroxymethylfurfural composition is 0.1 wt% or more and 5.0 wt% or less. object.

  11.  重量平均分子量が1000以上の高分子量化合物の粘結剤組成物中の含有量が0.001重量%以上、2.5重量%以下である請求項1~10の何れか1項記載の鋳型造型用粘結剤組成物。 The mold making according to any one of claims 1 to 10, wherein the content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the binder composition is 0.001 wt% or more and 2.5 wt% or less. Binder composition.
  12.  前記5-ヒドロキシメチルフルフラール組成物中の重量平均分子量が1000以上の高分子量化合物の含有量が0.1重量%以上、5.0重量%以下である請求項1~11の何れか1項記載の鋳型造型用粘結剤組成物。 The content of the high molecular weight compound having a weight average molecular weight of 1000 or more in the 5-hydroxymethylfurfural composition is 0.1 wt% or more and 5.0 wt% or less. Binder composition for mold making.
  13.  モラセスが、サトウキビやシュガービートに由来する糖液から砂糖を精製する時に発生する、糖分以外の成分も含んだ粘状で黒褐色の液体である請求項1~12の何れか1項記載の鋳型造型用粘結剤組成物。 The mold molding according to any one of claims 1 to 12, wherein the molasses is a viscous black-brown liquid containing components other than sugar, which is generated when sugar is refined from sugar liquid derived from sugarcane or sugar beet. Binder composition.
  14.  モラセスが、廃糖蜜である請求項1~13の何れか1項記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to any one of claims 1 to 13, wherein the molasses is molasses.
  15.  前記酸硬化性樹脂が、フルフリルアルコール及び/又はフルフリルアルコールと尿素とアルデヒド類の縮合物である請求項1~14の何れか1項記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to any one of claims 1 to 14, wherein the acid curable resin is furfuryl alcohol and / or a condensate of furfuryl alcohol, urea, and aldehydes.
  16.  耐火性粒子、硬化剤及び前記請求項1~15の何れか1項記載の鋳型造型用粘結剤組成物を含有する鋳型用組成物。 A mold composition comprising a refractory particle, a curing agent, and a binder composition for mold making according to any one of claims 1 to 15.
  17.  前記請求項1~15の何れか1項記載の鋳型造型用粘結剤組成物を鋳型製造に使用する用途。 Use for using the binder composition for mold making according to any one of claims 1 to 15 for mold production.
  18.  耐火性粒子、硬化剤及び前記請求項1~15の何れか1項記載の鋳型造型用粘結剤組成物を含む混合物を硬化する工程を有する鋳型の製造方法。 A method for producing a mold, comprising a step of curing a mixture comprising refractory particles, a curing agent, and the binder composition for mold making according to any one of claims 1 to 15.
PCT/JP2013/055505 2012-03-09 2013-02-28 Binder composition for producing template, and method for producing template WO2013133131A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380008936.2A CN104105558B (en) 2012-03-09 2013-02-28 The manufacture method of making molds adhesive composition and casting mold
IN7035DEN2014 IN2014DN07035A (en) 2012-03-09 2013-02-28

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012053718 2012-03-09
JP2012-053718 2012-03-09
JP2013-000592 2013-01-07
JP2013000592A JP6026891B2 (en) 2012-03-09 2013-01-07 Binder composition for mold making

Publications (1)

Publication Number Publication Date
WO2013133131A1 true WO2013133131A1 (en) 2013-09-12

Family

ID=49116612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055505 WO2013133131A1 (en) 2012-03-09 2013-02-28 Binder composition for producing template, and method for producing template

Country Status (4)

Country Link
JP (1) JP6026891B2 (en)
CN (1) CN104105558B (en)
IN (1) IN2014DN07035A (en)
WO (1) WO2013133131A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457362A (en) * 2014-06-17 2017-02-22 花王株式会社 Binder composition for forming mold
US20220402018A1 (en) * 2019-11-22 2022-12-22 Kinsei Matec Co., Ltd. Casting sand and kit for sand mold
US11981770B2 (en) 2019-03-08 2024-05-14 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyde scavenger for binder systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062715B2 (en) * 2012-10-31 2017-01-18 花王株式会社 Binder composition for mold making
CN106311960A (en) * 2015-06-23 2017-01-11 姚伟 Bonding agent and preparing method thereof
CN108717093A (en) * 2018-04-26 2018-10-30 胡贝贞 The ion chromatography of sucrose-tandem mass spectrum is combined detection method in tealeaves
JP6627012B1 (en) * 2018-08-24 2019-12-25 花王株式会社 Binder composition for mold making
WO2020070819A1 (en) * 2018-10-03 2020-04-09 花王株式会社 Binder composition for forming mold
CN109577009B (en) * 2019-01-30 2021-01-26 山东科技大学 Biomass organic material-inorganic sol composite coating for casting filter screen, preparation method and application
DE102019106021A1 (en) * 2019-03-08 2020-09-10 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyde scavenger for binder systems
CN111203271B (en) * 2020-02-26 2022-10-04 南京林业大学 Preparation method and application of cellulose supported catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691960A (en) * 1979-12-25 1981-07-25 Kinsei Kogyo Kk Production of mold
JPS61235034A (en) * 1985-04-10 1986-10-20 Kao Corp Binder composition for casting mold
JPH04327336A (en) * 1991-04-25 1992-11-16 Kao Corp Composition for manufacturing mold and refractory aggregate
US20080207796A1 (en) * 2006-09-29 2008-08-28 Clingerman Michael C Furanic resin aggregate binders and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439568A (en) * 1981-11-06 1984-03-27 The Quaker Oats Company Fabrication of composite articles
CN102367242A (en) * 2011-11-08 2012-03-07 河北师范大学 Method for preparing 5-hydroxymethylfurfural from carbohydrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691960A (en) * 1979-12-25 1981-07-25 Kinsei Kogyo Kk Production of mold
JPS61235034A (en) * 1985-04-10 1986-10-20 Kao Corp Binder composition for casting mold
JPH04327336A (en) * 1991-04-25 1992-11-16 Kao Corp Composition for manufacturing mold and refractory aggregate
US20080207796A1 (en) * 2006-09-29 2008-08-28 Clingerman Michael C Furanic resin aggregate binders and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457362A (en) * 2014-06-17 2017-02-22 花王株式会社 Binder composition for forming mold
CN106457362B (en) * 2014-06-17 2018-11-13 花王株式会社 Making molds adhesive composition
US11981770B2 (en) 2019-03-08 2024-05-14 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyde scavenger for binder systems
US20220402018A1 (en) * 2019-11-22 2022-12-22 Kinsei Matec Co., Ltd. Casting sand and kit for sand mold

Also Published As

Publication number Publication date
IN2014DN07035A (en) 2015-04-10
CN104105558B (en) 2016-04-06
JP6026891B2 (en) 2016-11-16
JP2013212536A (en) 2013-10-17
CN104105558A (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP6026891B2 (en) Binder composition for mold making
JP6092666B2 (en) Binder composition for mold making
CN102665960B (en) Self-curing making molds adhesive composition
CN104245183B (en) Making molds curing agent composition, its purposes and its manufacture method and the manufacture method of casting mold
JP6010426B2 (en) Binder composition for mold making
RU2738371C1 (en) Self-cure organic synthetic resin composition for additive production and use thereof
JP6097135B2 (en) Binder composition for mold making
JP6062715B2 (en) Binder composition for mold making
JP5683941B2 (en) Method for producing binder composition for mold making
JP5430313B2 (en) Binder composition for mold making
CN112236247A (en) Binder composition for mold making
JPWO2020035923A1 (en) Binder composition for molding
JP6770528B2 (en) Molding kit
JP6971412B2 (en) Blotting agent composition for molding
JP5486295B2 (en) Binder composition for mold making
CN112512722A (en) Binder composition for mold making
JP7102639B1 (en) Binder composition for mold molding
JP6063219B2 (en) Binder composition for mold making
JP2016107328A (en) Binder composition for molding mold
WO2022254503A1 (en) Method for producing adhesive resin for molding
JP5944259B2 (en) Binder composition for mold making

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380008936.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758295

Country of ref document: EP

Kind code of ref document: A1