WO2013129782A1 - 플리커가 개선된 엘이디 조명장치 - Google Patents

플리커가 개선된 엘이디 조명장치 Download PDF

Info

Publication number
WO2013129782A1
WO2013129782A1 PCT/KR2013/000778 KR2013000778W WO2013129782A1 WO 2013129782 A1 WO2013129782 A1 WO 2013129782A1 KR 2013000778 W KR2013000778 W KR 2013000778W WO 2013129782 A1 WO2013129782 A1 WO 2013129782A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
light emitting
current
voltage
phase
Prior art date
Application number
PCT/KR2013/000778
Other languages
English (en)
French (fr)
Inventor
이동원
Original Assignee
Lee Dong Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Dong Won filed Critical Lee Dong Won
Priority to CN201380010819.XA priority Critical patent/CN104137655A/zh
Priority to US14/382,187 priority patent/US9271358B2/en
Publication of WO2013129782A1 publication Critical patent/WO2013129782A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines

Definitions

  • the present invention relates to a lighting device using a light emitting diode (LED), and more particularly, to improve flicker that is directly driven at a rectified voltage without using a general switching mode power supply (SMPS). It is about LED lighting device
  • LEDs Light-emitting diodes
  • LED direct drive method methods of driving an LED lamp with a rectified voltage without using a general switching mode power supply (SMPS) (hereinafter, referred to as "LED direct drive method”) are the inventors' patent 10-. Many have been introduced, including 1110380.
  • SMPS general switching mode power supply
  • the current-voltage characteristic curve 950 is a characteristic curve of the AX2200 AC driving LED device manufactured by Seoul Semiconductor. Since the AX2200 itself is a device driven by alternating current, the rectifier circuit 940 is not required separately in the LED lighting apparatus using the device. However, since the current-voltage characteristic curve has the same shape as the general diode characteristic curve (voltage increases linearly, current increases exponentially), the characteristic curve of the AX2200 is used in this specification for numerical description.
  • the horizontal axis of 2 is the effective voltage
  • the vertical axis is the effective current.In the present specification, for convenience of description, the axes are set to instantaneous voltage and instantaneous current, respectively.
  • the threshold voltage is 62.5 V in the current-voltage characteristic curve 950.
  • the first linear model 951 and the second linear model 952 simply model the characteristic curve 950 in a straight line, and the first linear model 951 has an instantaneous rectified voltage (Vrect) of 0 V to. It can be used to model when moving between 112.5 V, with current flowing at 0 mA at 62.5 V and 31 mA at 112.5 V.
  • the second linear model 952 can be used to model when the instantaneous rectified voltage (Vrect) moves between 0 V and 87.5 V, and it can be seen that current is 0 mA at 62.5 V and 11 mA at 87.5 V. have.
  • FIG 3 illustrates an example in which the first linear model 951 and the second linear model 952 are applied when the power frequency is 50 Hz.
  • the rectified voltage Vrect is represented by the waveform 951 V, and the rectified current is represented by the waveform 951A.
  • the rectified voltage Vrect is represented by a waveform 952V and the rectified current is represented by a waveform 952A.
  • the threshold voltage of the light emitting block is equal to 62.5 V, but the start time of lighting of the LED light emitting block 970 is the rectified voltage (Vrect) effective value.
  • Vrect the rectified voltage
  • the light emission is zero.
  • the rectified maximum voltage is supplied at 87.5 V, since the rectified voltage does not flow below the threshold voltage of the light emitting block 970 before the rectified voltage phase 45.5 degrees, the light emission is zero.
  • the rectified maximum voltage is supplied at 112.5 V, since the rectified voltage does not flow below the threshold voltage of the light emitting block 970 before the rectified voltage phase is 33.7 degrees, the light emission is zero.
  • the maximum current flows as shown in the current waveform 952A and the current waveform 951A at a rectified voltage phase of 90 degrees.
  • the conventional LED light emitting block 970 which is a load
  • the conventional LED light emitting block 970 is divided into a plurality of sub light emitting blocks (that is, the first light emitting block 10, the second light emitting block 11, and 3 light emitting blocks 12].
  • a parallel switch block [(first switch S11 and second switch S12) and controller 4 which adjusts the number of lit sub-light emitting blocks by changing a path through which load current flows in accordance with the instantaneous voltage.
  • the load current was limited using a current limiting device CS2.
  • the threshold voltage of the light emitting block which is a load, is lower than that of the prior art 1, so that a current flows in a relatively fast voltage phase, thereby reducing the time that light is not emitted from the LED light emitting block.
  • Patent 10-1110380 Patent 10-0942234
  • Patent No. 10-0971757 Patent No. 10-0997050
  • the present invention was derived to solve the conventional problems, LED light improved flicker quality by reducing the deviation of the instantaneous light brightness by reducing the difference between the instantaneous minimum light brightness and the instantaneous maximum light brightness emitted from the LED lighting device To provide a device.
  • the flicker improved LED lighting apparatus the first power supply AC voltage and the second phase AC voltage supply AC power supply; A first rectifying circuit and a second rectifying circuit converting an AC voltage into a rectified voltage of DC; A first LED light emitting block and a second LED light emitting block composed of one or more LEDs as a load; A first current limiting device and a second current limiting device for limiting the amount of current; And a first current limiting device for rectifying the first phase AC voltage, a first LED light emitting block driven by an output of the first rectifying circuit, and a first current limiting device for limiting the amount of current of the first LED light emitting block.
  • each of the LED lighting blocks the voltage phase is 10 degrees before the time when the AC voltage supplied to each LED lighting block rises through the zero volts, the voltage phase 0 degrees Current is supplied to each LED lighting block to initiate light emission, and the percent flicker of each LED lighting block is 100%.
  • the flicker improved LED lighting apparatus includes an AC power supply for supplying a third phase AC voltage; A third rectifier circuit for rectifying the third phase AC voltage; And a third LED lighting block including a third LED light emitting block which is a load driven by the output of the third rectifying circuit and a third current limiting device for limiting the amount of current of the third LED light emitting block.
  • a current is supplied to each LED lighting block before the voltage phase is 40 degrees. Emission is initiated and the percent flicker of each LED lighting block is 100%; it is also preferred.
  • the first LED light emitting block is a light emitting block in which two or more sub LED light emitting blocks are connected in series, and the first lighting block adjusts the number of sub LED light emitting blocks that are turned on by changing a current flow
  • a first switch block composed of the above switches and a first controller (controlling the first current limiting device and the first switch block);
  • the second LED light emitting block is a light emitting block in which two or more sub LED light emitting blocks are connected in series, and the first lighting block controls the number of sub LED light emitting blocks that are turned on by changing a current flow.
  • a second switch block configured as a switch and a second controller (controlling the second current limiting device and the second switch block);
  • the third LED light emitting block is a light emitting block in which two or more sub LED light emitting blocks are connected in series, and the first lighting block controls the number of sub LED light emitting blocks that are turned on by changing a current flow (one or more switches).
  • a third switch block (consisting of) and a third controller (controlling the third current limiting device and the third switch block);
  • Each of the LED lighting blocks when the time when the AC voltage supplied to each LED lighting block rises through zero volts to the voltage phase of 0 degrees, current is supplied to each of the LED lighting blocks 30 degrees before the voltage phase.
  • the first to third controllers control the first current limiting device to the third current limiting device with a sinusoidal wave signal (hereinafter, referred to as a "sinusoidal wave 1 signal") in phase with the rectified voltage.
  • a sinusoidal wave signal hereinafter, referred to as a "sinusoidal wave 1 signal”
  • the first controller to the third controller controls the first current limiting device to the third current limiting device in the form of a step wave based on either of the instantaneous rectified voltage or the rectified voltage phase.
  • the first controller to the third controller generates a sinusoidal wave signal (hereinafter referred to as "sinusoidal wave 2 signal") of a frequency lower than the rectified frequency, the first current to supply a current corresponding to the sinusoidal wave 2 signal to the load It is preferable to control the limiting device to the third current limiting device, respectively.
  • the first LED light emitting block is an LED light emitting block in which two or more sub LED light emitting blocks are connected in series, and the first lighting block controls the number of sub LED light emitting blocks that are turned on by changing a current flow (1).
  • a first switch block (comprising at least one switch) and a first controller (controlling the first current limiting device and the first switch block);
  • the second LED light emitting block is an LED light emitting block in which two or more sub LED light emitting blocks are connected in series, and the second lighting block controls the number of sub LED light emitting blocks that are turned on by changing a current flow.
  • a second switch block configured as a switch and a second controller (controlling the second current limiting device and the second switch block);
  • the first controller to the second controller controls the first current limiting device to the second current limiting device with a sinusoidal wave signal (hereinafter, referred to as a "sinusoidal wave 1 signal”) in phase with the rectified voltage.
  • the first controller to the second controller to control the first current limiting device to the second current limiting device in the form of a step wave based on any one of the instantaneous rectified voltage or the rectified voltage phase.
  • the first controller to the second controller generates a sinusoidal wave signal having a frequency lower than the rectified frequency (hereinafter referred to as "sinusoidal wave 2") and supplies the current corresponding to the sinusoidal wave 2 signal to the load. Controlling the devices to the second current limiting device, respectively.
  • the percentage flicker (hereinafter referred to as "% F") is 100%, but the flicker according to the present invention is
  • the improved LED luminaire is provided at the same level (25% to 40%) or improved as fluorescent lamps with magnetic ballasts.
  • 1 is a view showing an LED lighting device.
  • 3 is an LED light emission block current waveform.
  • FIG. 4 is a view showing another LED lighting device.
  • FIG. 5 is a diagram illustrating a flicker calculation method.
  • 10 is a waveform that simulates the light brightness for each phase in a three-phase power supply.
  • 11 is another waveform in which light brightness are simulated for each phase in a three-phase power source.
  • 13 is a table for calculating the flicker quality index in the three-phase power source.
  • 15 is a graph in which the brightness of each phase is summed in the two-phase power source.
  • 16 is another waveform simulated for each phase in the two-phase power source.
  • 15 is a graph in which the brightness of each phase is summed in the two-phase power source.
  • the core concept of the present invention is to place an LED lighting block of 100% Percent Flicker (hereinafter, "% F") on two or more phases of a three-phase AC power supply, so that% F of the entire lighting device is a conventional magnetic fluorescent lamp. It is to be at the same level or more improved level.
  • % F Percent Flicker
  • % F percent flicker
  • FI flicker index
  • FIG. 5 is a citation of the flicker calculation method in the "IESNA Lighting Handbook, 9th Edition" published by the Illuminating Engineering Society of North America (hereinafter referred to as "IESNA").
  • % F is calculated using Equation 1, and is calculated using the instantaneous maximum light brightness value and the instantaneous minimum light brightness value.
  • % F is 100% when the instantaneous minimum light brightness value is 0.
  • the flicker quality index,% F ranges from 0% to 100%, with lower values indicating better quality.
  • % F is widely known and commonly used, and may also be referred to as peak-to-peak contrast, michaelson contrast, modulation, or modulation depth.
  • the numerator is the area of brightness above the average light brightness
  • the denominator is the area of overall light brightness.
  • the ratio of light brightness above average in light brightness distribution is the ratio of total light brightness.
  • FI is a value between 0 and 1.0, the lower the quality.
  • FI is 0.25 when the light brightness waveform is represented by a triangular wave 81, FI is 0.32 when it is represented by a sine wave 82, and FI is 0.50 when it is represented by a square wave 83. However, in all three cases, the instantaneous light brightness is zero, so% F is 100%.
  • FIG. 7 is a partial excerpt from FIG. 3. Since the light emission amount of the LED light emission block and the current flowing in the LED light emission block 970 are proportional to each other, the current waveform 951A and the current waveform 952A may be regarded as instantaneous light emission amounts.
  • % F is 100% unchanged. That is,% F can be calculated quickly by modeling the light emission amount of the light emitting block as a triangular wave.
  • the current waveform 951A is a current waveform obtained by approximating the current-voltage characteristic curve 950 of the light emitting block 970 with the linear model 951 in FIG. 2 and is calculated to supply more current than the actual current.
  • FIG. 8 illustrates an example of the light emission amount model 27L when the light emitting block includes four sub light emitting blocks in the circuit of FIG. 4, and the current limiting device CS2 supplies a load current through a sine wave.
  • the horizontal axis is the rectified voltage phase
  • the vertical axis is the light emission amount.
  • the light emission amount was normalized by setting the light emission value to 100 at a rectified voltage phase of 90 degrees. (The method of supplying the load current to the sine wave is described in detail in Patent No. 10-1110380 of the present inventors, and is omitted for convenience of description. )
  • the instantaneous light brightness value is (0) to (8) when one sub light-emitting block is turned on.
  • the instantaneous light brightness values are from (17) to (28).
  • the instantaneous light brightness values are from (43) to (61).
  • the instantaneous light brightness value is from (83) to (100).
  • the instantaneous light brightness increases from (8) to two times when the two light emitting blocks start to light up from (8) to about 17 times. It was. In simple terms, the brightness is doubled by turning on one light emitting block with the same current and then two lights.
  • the instantaneous light brightness increased from (28) to three times after the three light-emitting blocks started lighting up from (28) to about 43 times.
  • the brightness is increased 3/2 times by lighting two light emitting blocks with the same current and then lighting three.
  • the instantaneous light brightness increased from (61) to (83) before the start of the three light emitting blocks, and the instantaneous light brightness increased to (83) about 4/3 times.
  • the brightness was increased by 4/3 by turning on three light emitting blocks with the same current and then lighting four.
  • the light emission amount model 27L and the triangular wave model 28L are substantially in the vicinity of the rectified voltage phase of 0 degrees.
  • % F will be 100% unchanged. Therefore, it can be seen that% F can be calculated quickly by modeling the amount of light emitted from the light emitting block as a triangle wave.
  • % F is calculated from the instantaneous maximum light intensity value and the instantaneous minimum light intensity value, the overall trend does not change much even if the light emission model is somewhat inaccurate. And FI is automatically improved (decreased) as the% F value improves (decreases) (ie, when the average value becomes high). Therefore, the following description focuses on% F.
  • the first embodiment of the present invention is an LED lighting device (meaning the entire Fig. 1 or 4 circuit, each of the three phase power supply, hereinafter the LED lighting device installed in each phase in the three phase power supply is referred to as "LED lighting block")
  • LED lighting block When provided with each, is a specific embodiment of calculating the% F and FI.
  • the circuit configuration used in the first embodiment includes an AC power supply for supplying a first phase AC voltage; A first lighting block driven by the first phase AC voltage; An AC power supply for supplying a second phase AC voltage; A second lighting block driven by the second phase AC voltage; An AC power supply for supplying a third phase AC voltage; And a third lighting block driven by the third phase AC voltage.
  • the first lighting block will be described in detail, a first rectifying circuit for rectifying the first phase AC voltage;
  • a first LED light emitting block comprising one or more LEDs driven by an output of the first rectifier circuit;
  • the first LED lighting block is configured to include a first current source (hereinafter, referred to as a "first current limiting device") for adjusting the amount of current supplied to the first LED light emitting block.
  • a second rectifying circuit rectifying the second phase AC voltage
  • a second LED light emitting block comprising one or more LEDs driven by an output of the second rectifying circuit
  • the second LED lighting block is configured to include a second current source (hereinafter, referred to as a "second current limiting device") for adjusting the amount of current supplied to the second LED light emitting block.
  • a third rectifying circuit for rectifying the third phase AC voltage
  • a third LED light emitting block comprising one or more LEDs driven by the output of the third rectifier circuit
  • the third LED lighting block is configured to include a third current source (hereinafter, referred to as a “third current limiting device”) for controlling the amount of current supplied to the third LED light emitting block.
  • the first to third LED light emitting blocks may include a plurality of sub light emitting blocks connected in series.
  • each LED lighting block may include a switch block (composed of one or more switches) for controlling the number of sub-light emitting blocks by changing the flow of current flowing through each sub light emitting block.
  • each lighting block preferably includes a controller for controlling the switch block.
  • the lighting block controller When the lighting block controller is supplied with one cycle of rectified voltage, it is desirable to improve the power factor by controlling each current limiting device so that a small load current flows at a low instantaneous rectified voltage and a large load current flows at a high instantaneous rectified voltage.
  • each of the lighting block controller preferably controls each current limiting device to supply a stepped wave current to the load based on the instantaneous rectified voltage.
  • the respective lighting block controller may control each current limiting device to supply the stepped wave current to the load based on the rectified voltage phase.
  • each of the lighting block controllers further includes a function of generating a sinusoidal wave signal (hereinafter, referred to as a “sinusoidal wave 1 signal”) having the same phase with each lighting block rectified voltage. It is preferable to control each current limiting device so as to supply a current corresponding to the sinusoidal wave 1 signal (hereinafter referred to as "sinusoidal wave 1 current”) to the load.
  • a sinusoidal wave signal hereinafter, referred to as a “sinusoidal wave 1 signal”
  • the reason why the respective lighting block controllers generate a sinusoidal wave 1 signal having a rectified voltage and the same phase is that the AC current supplied from each lighting block AC power source is in the same phase as the AC voltage. I hope.
  • the load current flowing through the load will be obvious that the AC current is rectified.
  • Each of the lighting block controllers generates a sinusoidal wave signal having a frequency lower than the rectified frequency (twice the frequency of the AC power supply frequency) (hereinafter, referred to as a “sinusoidal wave 2 signal”), and a current corresponding to the sinusoidal wave 2 signal (hereinafter referred to as “sinusoidal wave 2 signal”). It is desirable to control each illumination block current limiting device so as to supply " sinusoidal wave 2 current " Here, it is preferable that the maximum instantaneous voltage of the sinusoidal wave 2 signal appears at 90 ° of each rectified voltage phase.
  • the power current harmonic content is relatively higher than the sinusoidal wave 1 current, but can provide a brighter LED lighting device.
  • the power current harmonic content of a low power (eg, 25 watts or less) LED lighting device is set to 30% or less.
  • the power current harmonic content ratio is theoretically 0% in the case of a general resistance load, and can be made 1% or less in the case of an LED lighting device. Therefore, it is desirable to provide an LED lighting device with improved brightness even if the power current harmonic content is slightly increased (up to 30% or less, which is a regulated value) and the power factor is relatively low.
  • each illumination block current limiting device it is also preferable to control each illumination block current limiting device to supply the stepped wave current to the load based on the sinusoidal wave 2 signal.
  • the light emission amount when the sinusoidal wave 1 current is supplied to the load is represented by a triangular wave.
  • the first LED light emitting block to the third LED light emitting block is composed of one or more LEDs, a plurality of LEDs may be configured in series or in parallel or in a serial / parallel arrangement. Since the light emitting blocks may be configured by a well-known technique, detailed description thereof will be omitted in the present specification for the sake of simplicity.
  • the rectified voltage is as shown in FIG. That is, the first phase rectified voltage 301 starting from the voltage phase 0 shows the instantaneous maximum rectified voltage at the voltage phase of 90 degrees.
  • the second phase rectified voltage 302 starts at the voltage phase 120 degrees, the instantaneous maximum rectified voltage appears at the voltage phase 30 degrees.
  • the third rectified voltage 303 starting at a voltage phase of 240 ° shows an instantaneous maximum rectified voltage at 150 °. That is, the instantaneous maximum rectified voltage of each phase appears at the voltage phases of 30 degrees, 90 degrees and 150 degrees.
  • the first phase rectified voltage 301 starts at a voltage phase of 0 degrees and becomes a maximum value at a voltage phase of 90 degrees.
  • the light emission amount triangular wave model 311 has a light emission amount of 0 to a voltage phase of 60 degrees, the light emission is 0, the light emission is started at a voltage phase of 60 degrees, the maximum instantaneous rectification of the first phase rectified voltage 301
  • the voltage increases linearly to maximize the amount of light emitted at 90 ° above the voltage phase.
  • the value is reduced to the same slope but the opposite sign.
  • the light emission triangular wave model 311 starts light emission 60 degrees later than the phase of the first-phase rectified voltage 301 and at the instantaneous maximum rectified voltage, the light emission is maximized and 60 degrees faster than the rectified voltage phase.
  • % F closing light emission is 100% Model ".
  • the light emission amount triangular wave model 312 of the second LED light block and the light emission amount model 313 of the third LED light block are implemented in the same principle as the light emission amount triangular wave model 311 of the first light block, they will be omitted for convenience of description. .
  • % F and FI are calculated by adding all the instantaneous light emission amounts of the light emission triangle wave model 311 to the light emission triangle wave model 313,% F is 100% and FI is 0.253. That is, in order to improve (decrease)% F, it is understood that light emission must be started before the rectified voltage phase of each phase is 60 degrees.
  • the light emission triangle wave model 321 starts light emission 45 degrees later than the phase of the first phase rectified voltage 301, and the light emission is maximized at the instantaneous maximum rectified voltage and 45 degrees above the rectified voltage phase.
  • % F to quickly close the light emission is 100% Model ".
  • the light emission amount triangle wave model 322 of the second illumination block and the light emission amount triangle wave model 323 of the third illumination block are implemented on the same principle as the light emission amount triangle wave model 311 of the first illumination block, they will be omitted for convenience of description. .
  • the instantaneous light average waveform 320 is a waveform obtained by averaging all the instantaneous light emission amounts of the light emission triangle wave model 321 to the light emission triangle wave model 323.
  • % F and FI are calculated using the instantaneous light average waveform 320,% F is 20% and FI is 0.063.
  • the linear waveform 325a shows the average light emission amount between 0 and 180 degrees of the voltage phase.
  • FIG. 13 is a table illustrating results of calculating light emission start phases with various values using the principles applied to FIGS. 10 to 12.
  • row Ang3 is a voltage phase at which light emission is initiated in the lighting block of each phase
  • % F is calculated in row (% Flicker)
  • row (Flicker Index) is the result of calculating FI.
  • the light emission amount when the sinusoidal wave 1 current is supplied to the load is modeled as a triangular wave.
  • the stepped wave current based on the instantaneous rectified voltage, the stepped wave current based on the rectified voltage phase, and the sinusoidal wave 2 current are supplied to the load, modeling light emission as a triangular wave model and calculating% F do not deviate from the spirit of the present invention.
  • modeling light emission as a triangular wave model and calculating% F do not deviate from the spirit of the present invention.
  • the second embodiment of the present invention is an LED lighting device in two phases in a three-phase power supply (means the entire circuit of FIG. 1 or 4, hereinafter, the LED lighting device installed in each phase in the three-phase power supply is referred to as an "LED lighting block")
  • the LED lighting device installed in each phase in the three-phase power supply is referred to as an "LED lighting block"
  • each is a specific embodiment of calculating% F and FI.
  • the circuit configuration used in the second embodiment includes an AC power supply for supplying a first phase AC voltage; A first lighting block driven by the first phase AC voltage; An AC power supply for supplying a second phase AC voltage; And a second lighting block driven by the second phase AC voltage.
  • the first lighting block will be described in detail, a first rectifying circuit for rectifying the first phase AC voltage;
  • a first LED light emitting block comprising one or more LEDs driven by an output of the first rectifier circuit;
  • the first LED lighting block is configured to include a first current source (hereinafter, referred to as a "first current limiting device") for adjusting the amount of current supplied to the first LED light emitting block.
  • a second rectifying circuit rectifying the second phase AC voltage
  • a second LED light emitting block comprising one or more LEDs driven by an output of the second rectifying circuit
  • the second LED lighting block is configured to include a second current source (hereinafter, referred to as a "second current limiting device") for adjusting the amount of current supplied to the second LED light emitting block.
  • each LED lighting block may include a switch block (composed of one or more switches) for controlling the number of sub LED light emitting blocks that are turned on by changing a flow of current.
  • each lighting block preferably includes a controller for controlling the switch block.
  • each lighting block current limiting device is controlled to improve the power factor. desirable.
  • each of the lighting block controller preferably controls each lighting block current limiting device to supply the step wave current to the load based on the instantaneous rectified voltage.
  • the lighting block controller may control each lighting block current limiting device to supply a stepped wave current to the load based on the rectified voltage phase.
  • each of the lighting block controllers further includes a function of generating a sinusoidal wave signal (hereinafter, referred to as a “sinusoidal wave 1 signal”) having the same phase with each lighting block rectified voltage. It is preferable to control each illumination block current limiting device to supply a current corresponding to the sinusoidal wave 1 signal (hereinafter referred to as "sinusoidal wave 1 current”) to the load.
  • a sinusoidal wave signal hereinafter, referred to as a “sinusoidal wave 1 signal”
  • the reason why the respective lighting block controllers generate a sinusoidal wave 1 signal having a rectified voltage and the same phase is that the AC current supplied from each lighting block AC power source is in the same phase as the AC voltage. I hope.
  • the load current flowing through the load will be obvious that the AC current is rectified.
  • Each of the lighting block controllers generates a sinusoidal wave signal having a frequency lower than the rectified frequency (twice the frequency of the AC power supply frequency) (hereinafter, referred to as a “sinusoidal wave 2 signal”), and a current corresponding to the sinusoidal wave 2 signal (hereinafter referred to as “sinusoidal wave 2 signal”). It is desirable to control each illumination block current limiting device so as to supply " sinusoidal wave 2 current " Here, it is preferable that the maximum instantaneous voltage of the sinusoidal wave 2 signal appears at 90 ° of each rectified voltage phase.
  • the power current harmonic content is relatively higher than the sinusoidal wave 1 current, but can provide a brighter LED lighting device.
  • the power current harmonic content of a low power (eg, 25 watts or less) LED lighting device is set to 30% or less.
  • the harmonic content of the power supply current is theoretically 0% in the case of the general resistance load, and can be made 1% or less in the case of the LED lighting device. Therefore, it is desirable to provide an LED lighting device with improved brightness even if the power current harmonic content is slightly increased (up to 30% or less, which is a regulated value) and the power factor is relatively low.
  • each illumination block current limiting device it is also preferable to control each illumination block current limiting device to supply the stepped wave current to the load based on the sinusoidal wave 2 signal.
  • the light emission amount when the sinusoidal wave 1 current is supplied to the load is represented by a triangular wave.
  • the first LED light emitting block to the second LED light emitting block is composed of one or more LEDs, a plurality of LEDs may be configured in a series or parallel or serial / parallel arrangement. Since the light emitting blocks may be configured by a well-known technique, a detailed description thereof will be omitted in the present specification for the sake of simplicity .
  • the triangular wave model 201 of light emission applied to the first lighting block will be described.
  • the first phase rectified voltage 301 starts at the voltage phase of 0 degrees and becomes the maximum value at the voltage phase of 90 degrees.
  • the light emission amount is 0 from the voltage phase 0 degrees to the voltage phase 30 degrees
  • light emission is started at the voltage phase 30 degrees
  • the instantaneous maximum rectification of the first phase rectified voltage 301 The voltage increases linearly to maximize the amount of light emitted at 90 ° above the voltage phase.
  • the value is reduced to the same slope but the opposite sign. When the light emission reaches zero, it remains at zero until the start of the next rectified voltage cycle.
  • the light emission model 201 starts light emission 30 degrees later than the phase of the first phase rectified voltage 301, and the light emission is maximized at the instantaneous maximum rectified voltage, and light 30 degrees faster than the rectified voltage phase.
  • % F closing the release is 100% Triangular wave model.
  • the light emission model 202 applied to the second lighting block is implemented in the same principle as the emission model 201, it is omitted for convenience of description.
  • the instantaneous light average waveform 200 is a waveform obtained by averaging all the instantaneous light emission amounts of the light emission triangle wave model 201 to the light emission triangle wave model 202.
  • % F and FI are calculated using the instantaneous light average waveform 200,% F is 100% and FI is 0.222.
  • the linear waveform 205a shows the average amount of light emission between the rectified voltage phase 0 degrees and 180 degrees.
  • the light emission triangle wave model 211 starts light emission 10 degrees later than the phase of the first phase rectified voltage 301, and the light emission is maximized at the instantaneous maximum rectified voltage and 10 degrees above the rectified voltage phase.
  • % F fast closing light emission is 100% Model ".
  • the light emission amount triangular wave model 212 of the second illumination block is implemented on the same principle as the light emission amount triangle wave model 311 of the first illumination block, it is omitted for convenience of description.
  • the instantaneous light average waveform 210 is a waveform obtained by averaging the sum of the instantaneous light emission amounts of the light emission triangle wave model 211 and the light emission triangle wave model 212.
  • % F and FI are calculated using the instantaneous light average waveform 210,% F is 42.9% and FI is 0.168.
  • the linear waveform 215a shows the average amount of light emission between the rectified voltage phase 0 degrees and 180 degrees.
  • FIG. 18 is a table illustrating results of calculating light emission start phases with various values using the principles applied to FIGS. 14 to 16.
  • row Ang2 is a voltage phase at which light emission is initiated in the lighting block of each phase
  • % F is calculated in row (% Flicker)
  • row (Flicker Index) is a result of calculating FI.
  • % F is 60% when the light emission start phase is 20 degrees, 50% when 15 degrees, 42.9% when 10 degrees, and 37.5% when 5 degrees. .
  • the% F of fluorescent lamps with magnetic ballasts is between 25% and 40%, it would be desirable to initiate light emission before the rectified voltage phase 10 degrees.
  • the light emission amount when the sinusoidal current is supplied to the load is modeled as a triangular wave.
  • the stepped wave current based on the instantaneous rectified voltage, the stepped wave current based on the rectified voltage phase, and the sinusoidal wave 2 current are supplied to the load, the light emission amount can be modeled using a triangular wave model and the% F does not depart from the spirit of the present invention.
  • the stepped wave current based on the instantaneous rectified voltage, the stepped wave current based on the rectified voltage phase, and the sinusoidal wave 2 current are supplied to the load, the light emission amount can be modeled using a triangular wave model and the% F does not depart from the spirit of the present invention.
  • the% F does not depart from the spirit of the present invention.
  • the LED lighting industry there are two main types of power supplies that drive LEDs.
  • the AC-DC converter system which supplies DC power
  • a high power LED lamp is expensive because a separate circuit such as a power factor improvement circuit is required, and a low power low power LED lamp usually has a poor power factor, which is an electrical quality index.
  • the life of the LED lamp is limited to the life of the power supply.
  • the AC drive method using AC has a competitive price compared to the AC-DC converter method because there is no need for a separate power factor improving circuit.
  • the light quality is poor at 100% percent flicker.
  • the AC driving method has a competitive price because the core components of the LED lighting industry, which is a new growth industry, are provided with excellent optical quality (percent flicker less than 40%) without requiring a separate power factor improving circuit. Availability is very high.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은 LED(발광다이오드)를 사용하는 조명장치에 관한것으로, 보다 상세하게는 플리커(Flicker)가 개선된 LED 조명장치에 관한 것이다. 일반적은 스위칭 전원장치(SMPS: Switching mode power supply)를 사용하지 않는 종래의 직구동 LED 조명장치에서는 퍼센트 플리커(이하 "%F")가 100 % 이지만, 본 발명에 따른 플리커가 개선된 엘이디 조명장치는 자기식 안정기를 사용한 형광등 수준인 40 % 이하가 제공된다.

Description

플리커가 개선된 엘이디 조명장치
본 발명은 LED(발광다이오드)를 사용하는 조명장치에 관한 것으로, 보다 상세하게는 일반적인 스위칭 전원장치(SMPS: Switching mode power supply)를 사용하지 않고 정류전압으로 바로 구동되는 플리커(Flicker)가 개선된 LED 조명장치에 관한 것이다
발광다이오드(LED)는 전류가 흐르면 빛을 방출하는 전광변환 반도체소자로, 표시기 백라이트 등에 널리 사용되고 있으며, 기술의 발달로 전광변환 효율이 기존의 백열등 및 형광등보다 높아져서 현재는 일반 조명으로 그 범위를 넓혀가고 있다.
LED 를 구동하는 방법 중에서, 일반적인 스위칭 전원장치(SMPS: Switching mode power supply)를 사용하지 않고 정류전압으로 LED 램프를 구동하는 방법(이하, "LED 직구동 방법")들이 본 발명인의 특허 제 10-1110380 호를 비롯하여 다수 개 소개되어 있다.
이하 도 1 내지 도 4를 사용하여 종래의 LED 직구동 방법에 대하여 설명한다.
< 종래의 기술 예 1 >
종래의 LED 조명장치는 도 1에 도시된 바와 같이, 교류전압을 공급하는 교류전원(910), 상기 교류전압을 직류의 정류전압(Vrect)로 변환하는 정류회로(940), 상기 정류회로(940)의 출력으로 구동되는 부하인 LED 발광블럭(970) 및 상기 LED 발광블럭 (970)에 흐르는 전류를 제한하는 전류제한소자(930)을 포함하여 구성된다.
그런데 종래의 LED 조명장치에서는, LED 발광블럭(970)의 문턱전압 이하에서는 전류가 흐르지 않기 때문에 전광변환소자인 LED 발광블럭(970)에서 빛의 방출이 없으며, 순시 최대 정류전압에서는 최대의 빛을 방출한다. 그래서 빛의 밝기가 시간에 따라서 고르지 못하고 변동하는 문제점이 있다.
이하 도 2 및 도3 을 사용하여 구체적으로 살펴본다.
도 2에서, 전류-전압 특성곡선(950)은 서울반도체사의 AX2200 교류구동 LED 소자의 특성곡선이다. 상기 AX2200 자체가 교류로 구동되는 소자이므로 상기 소자를 사용하는 LED 조명장치에서는 정류회로(940)이 별도로 필요하지는 않다. 그러나 전류-전압 특성곡선은 일반적인 다이오드 특선곡선과 동일한 형태(전압이 선형적으로 증가하는데 전류는 지수적으로 증가)이므로 수치적으로 설명하기 위하여 본 명세서에서는 상기 AX2200 의 특성곡선을 사용한다.( 도2 의 가로축은 실효전압이고, 세로축은 실효전류이다. 본 명세서 에서는 본 발명의 취지를 설명하는데 있어서 설명의 편의를 위하여 상기 축들을 각각 순시전압 및 순시전류로 설정하여 설명한다.)
도 2에서 전류-전압 특성곡선(950)에서 문턱전압은 62.5 V 임을 알 수 있다. 제1 직선모델(951) 및 제2 직선모델(952)는 상기 특성곡선(950)을 간단하게 직선으로 모델링한 것으로써, 제1 직선모델(951)은 순시 정류전압(Vrect)가 0 V ~ 112.5 V 사이를 움직일 때 모델링 하는데 사용 가능하며, 62.5 V 에서 전류는 0 mA 그리고 112.5 V 에서는 31 mA 가 흐르는 것을 알 수 있다. 그리고, 제2 직선모델(952)는 순시 정류전압(Vrect)가 0 V ~ 87.5 V 사이를 움직일 때 모델링 하는데 사용 가능하며, 62.5 V 에서 전류는 0 mA 그리고 87.5 V 에서는 11 mA 가 흐르는 것을 알 수 있다.
도 3은 상기 제1 직선모델(951) 및 제2 직선모델(952)를 전원주파수가 50 Hz 인 경우에 적용한 일 예이다.
먼저, 정류최대전압 112.5 V 를 적용한 제1 직선모델(951)의 경우, 정류전압 (Vrect)은 파형(951V), 정류전류는 파형(951A)로 나타내었다. 그리고, 정류최대전압 87.5 V 를 적용한 제2 직선모델(952)의 경우, 정류전압(Vrect)은 파형 (952V), 정류전류는 파형(952A)로 나타내었다.
여기서, 동일한 발광블럭(970)에 입력 정류전압의 크기만 변경되었으므로, 상기 발광블럭의 문턱전압은 62.5 V 로 동일하지만, 상기 LED 발광블럭(970)의 점등 개시시각은 정류전압(Vrect) 실효값이 높아질수록 빨라진다. 일 예로, 전원주파수 50 Hz 에 대하여, 정류최대전압이 87.5 V 및 112.5 V 에 대하여 LED 발광블럭(970)의 문턱전압인 62.5 V 를 통과하는 시각을 각각 계산해보면 2.53 ms 및 1.87 ms 이다. 이것을 정류전압 위상으로 각각 환산하여 보면 위상 45.5 ( = 2.53 / 5 x 90 ) 도 및 위상 33.7 ( = 1.87 / 5 x 90 ) 도 이다.
즉, 정류최대전압이 87.5 V 로 공급되면 정류전압위상 45.5 도 이전에는 정류전압이발광블럭(970)의 문턱전압 이하로 전류가 흐르지 않으므로 빛 방출이 제로이다. 또한, 정류최대전압이 112.5 V 로 공급되면 정류전압위상 33.7 도 이전에는 정류전압이 발광블럭(970)의 문턱전압 이하로 전류가 흐르지 않으므로 빛 방출이 제로이다.
그리고, 정류전압위상 90 도에서 전류파형(952A) 및 전류파형(951A) 에 도시된 바와 같이 최대의 전류가 흐른다.
도 3을 요약하면, 정류전압(Vrect) 실효값이 높아질수록 LED 발광모듈의 점등 개시시각이 점점 더 빨라져서 점등되는 시간이 길어지지만, 발광블럭(970)의 문턱전압 이하에서는 빛이 방출되지 않아서 순시 최소 빛 밝기가 제로인 구간이 존재하는 문제점이 있다.
< 종래의 기술 예 2 >
도 4는 본 발명인의 특허 제 10-1110380 호 에서 인용한 도면이다. 본 발명의 관점에서 도 4의 특징을 설명하면, 1) 부하인 종래의 LED 발광블럭(970)을 다수개의 서브 발광블럭 [ 즉 제1 발광블럭(10), 제2 발광블럭(11) 및 제3 발광블럭(12) ] 으로 나누었다. 그리고, 2) 순시전압에 맞추어서 부하전류가 흐르는 경로를 변경하여 점등된 서브 발광블럭의 개수를 조정하는 병렬 스위치블럭 [ (제1 스위치(S11) 및 제2 스위치(S12) ] 및 제어기(4)를 구비하였다. 또한, 3) 전류제한장치(CS2)를 사용하여 부하전류를 제한하였다.
순시전압이 낮을 때는 적은 개수의 발광블럭을 직렬로 배열하여 구동한다. 그러면 부하인 발광블럭의 분턱전압을 종래기술1 보다 낮아져서 상대적으로 빠른 전압위상에서 전류가 흐르므로 LED 발광블럭에서 빛이 방출되지 않는 시간이 줄어든다.
여기서, 단 하나의 서브 발광블럭을 점등할 때를 살펴보면, 서브 발광블럭의 문턱전압 이하에서는 빛이 방출되지 않음으로, 순시 최소 빛 밝기가 제로인 구간이 존재하는 문제점은 여전히 해결되지 않는다.
선행기술문헌
특허 제 10-1110380 호, 특허 제 10-0942234 호
특허 제 10-0971757 호, 특허 제 10-0997050 호
특허 제 10-0979432 호
본 발명은 종래의 문제점을 해결하기 위하여 도출한 것으로서, LED 조명장치에서 방출되는 순시 최소 빛 밝기와 순시 최대 빛 밝기의 차를 줄여서 순시 빛 밝기 편차가 저감되어서 플리커(Flicker) 품질이 개선된 LED 조명장치를 제공하는데 있다.
이를 위해, 본 발명에 따른 플리커가 개선된 LED 조명장치는, 제1 상 교류전압 및 제2 상 교류전압 공급하는 교류전원; 교류전압을 직류의 정류전압으로 변환하는 제1 정류회로 및 제2 정류회로; 부하로써 1 개 이상의 LED로 구성된 제1 LED 발광블럭 및 제2 LED 발광블럭; 전류량을 제한하는 제1 전류제한장치 및 제2 전류제한장치; 상기 제1 상 교류전압을 정류하는 상기 제1 정류회로, 상기 제1 정류회로의 출력으로 구동되는 제1 LED 발광블럭 및 상기 제1 LED 발광블럭 전류량을 제한하는 제1 전류제한장치 를 포함하는 제1 LED 조명블럭; 상기 제2 상 교류전압을 정류하는 상기 제2 정류회로, 상기 제2 정류회로의 출력으로 구동되는 제2 LED 발광블럭 및 상기 제2 LED 발광블럭 전류량을 제한하는 제2 전류제한장치 를 포함하는 제2 LED 조명블럭;을 포함하여 구성되며, 상기 각 LED 조명블럭은, 각 LED 조명블럭에 공급되는 교류전압이 제로볼트를 통과하여 상승하는 시각을 전압위상 0 도로 할 경우, 상기 전압위상 10 도 이전에 각 LED 조명블럭에 전류가 공급 개시되어 빛 방출이 개시되고, 각 LED 조명블럭의 퍼센트 플리커 (Percent flicker)가 100 % 인 것;을 특징으로 한다.
또한, 본 발명에 따른 플리커가 개선된 LED 조명장치는 제3 상 교류전압을 공급하는 교류전원; 상기 제3 상 교류전압을 정류하는 제3 정류회로; 상기 제3 정류회로의 출력으로 구동되는 부하인 제3 LED 발광블럭 및 상기 제3 LED 발광블럭 전류량을 제한하는 제3 전류제한장치 를 포함하는 제3 LED 조명블럭;을 더 포함하여 구성되며, 상기 각 LED 조명블럭은, 각 LED 조명블럭에 공급되는 교류전압이 제로볼트를 통과하여 상승하는 시각을 전압위상 0 도로 할 경우, 상기 전압위상 40 도 이전에 각 LED 조명블럭에 전류가 공급 개시되어 빛 방출이 개시되고, 각 LED 조명블럭의 퍼센트 플리커 (Percent flicker)가 100 % 인 것;도 바람직하다.
그리고, 상기 제1 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 발광블럭이고, 상기 제1 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제1 스위치 블럭 및 (제1 전류제한장치 및 제1 스위치 블럭을 제어하는) 제1 제어기를 더 포함하여 구성되고; 상기 제2 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 발광블럭이고, , 상기 제1 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제2 스위치 블럭 및 (제2 전류제한장치 및 제2 스위치 블럭을 제어하는) 제2 제어기를 더 포함하여 구성되고; 상기 제3 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 발광블럭이고, 상기 제1 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제3 스위치 블럭 및 (제3 전류제한장치 및 제3 스위치 블럭을 제어하는) 제3 제어기를 더 포함하여 구성되며; 상기 각 LED 조명블럭은, 각 LED 조명블럭에 공급되는 교류전압이 제로볼트를 통과하여 상승하는 시각을 전압위상 0 도로 할 경우, 상기 전압위상 30 도 이전에 각 LED 조명블럭에 전류가 공급 개시되어 빛 방출이 개시되며; 상기 제1 제어기 내지 제3 제어기는 정류전압과 동위상의 정현파신호(이하, "정현파1 신호"라 칭함)로 상기 제1 전류제한장치 내지 제3 전류제한장치를 각각 제어하는 것;이 바람직하다.
그리고, 상기 제1 제어기 내지 제3 제어기는 순시 정류전압 또는 정류전압위상 중 어느 하나에 근거하여 계단파 형태로 상기 제1 전류제한장치 내지 제3 전류제한장치를 각각 제어하는 것;이 바람직하다.
또한, 상기 제1 제어기 내지 제3 제어기는 정류주파수 보다 낮은 주파수의 정현파신호(이하 "정현파2 신호"라 칭함)를 발생하고, 상기 정현파2 신호에 대응하는 전류를 부하에 공급하도록 상기 제1 전류제한장치 내지 제3 전류제한장치를 각각 제어하는 것;이 바람직하다.
그리고, 상기 제1 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 LED 발광블럭이고, 상기 제1 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제1 스위치 블럭 및 (제1 전류제한장치 및 제1 스위치 블럭을 제어하는) 제1 제어기를 더 포함하여 구성되고; 상기 제2 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 LED 발광블럭이고, 상기 제2 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제2 스위치 블럭 및 (제2 전류제한장치 및 제2 스위치 블럭을 제어하는) 제2 제어기를 더 포함하여 구성되고; 상기 제1 제어기 내지 제2 제어기는 정류전압과 동위상의 정현파신호(이하, "정현파1 신호"라 칭함)로 상기 제1 전류제한장치 내지 제2 전류제한장치를 각각 제어하는 것;이 바람직하다.
그리고, 상기 제1 제어기 내지 제2 제어기는 순시 정류전압 또는 정류전압위상 중 어느 하나에 근거하여 계단파 형태로 상기 제1 전류제한장치 내지 제2 전류제한장치를 각각 제어하는 것;이 바람직하다.
그리고, 상기 제1 제어기 내지 제2 제어기는 정류주파수 보다 낮은 주파수의 정현파신호(이하 "정현파2"라 칭함)를 발생하고, 상기 정현파2 신호에 대응하는 전류를 부하에 공급하도록 상기 제1 전류제한장치 내지 제2 전류제한장치를 각각 제어하는 것;이 바람직하다.
일반적인 스위칭 전원장치(SMPS: Switching mode power supply)를 사용하지 않고 정류전압으로 LED 램프를 직구동하는 종래의 조명장치에서는 퍼센트 플리커(이하 "%F")가 100 % 이지만, 본 발명에 따른 플리커가 개선된 LED 조명장치는 자기식 안정기를 사용한 형광등과 동일한 수준(25 % ~ 40 %) 또는 개선된 수준이 제공된다.
도 1은 LED 조명장치를 나타낸 도면이다.
도 2는 LED 발광블럭의 전류-전압 특성곡선이다.
도 3은 LED 발광블럭 전류파형이다.
도 4는 또 다른 LED 조명장치를 나타낸 도면이다.
도 5는 플리커 계산방법을 나타낸 도면이다.
도 6은 각 파형에서 플리커를 계산한 예이다.
도 7은 LED 광출력을 모델링한 그래프이다.
도 8은 LED 광출력을 모델링한 또 다른 그래프이다.
도 9는 3상전원의 정류전압파형 그래프이다.
도 10은 3상전원에서 빛 밝기를 각 상별로 시뮬레이션한 파형이다.
도 11은 3상전원에서 빛 밝기를 각 상별로 시뮬레이션한 또 다른 파형이다.
도 12는 3상전원에서 각 상의 밝기를 모두 합한 그래프이다.
도 13은 3상전원에서 플리커 품질지수를 계산한 표이다.
도 14는 2상전원에서 빛 밝기를 각 상별로 시뮬레이션한 파형이다.
도 15는 2상전원에서 각 상의 밝기를 모두 합한 그래프이다.
도 16는 2상전원에서 각 상별로 시뮬레이션한 또 다른 파형이다.
도 15는 2상전원에서 각 상의 밝기를 모두 합한 그래프이다.
도 18은 2상전원에서 플리커 품질지수를 계산한 표이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때 첨부된 도면에서 동일한 구성요소는 가능한 동일한 부호로 나타내고 있음에 유의하여야 한다. 또한, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석해서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 그리고 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공기구성 및 기능에 대한 상세한 설명을 생략한다.
본 발명의 핵심 개념은, 퍼센트 플리커(Percent Flicker, 이하 "%F")가 100 % 인 LED 조명블럭을 삼상교류전원 2 개 상 이상에 배치하여, 전체 조명장치의 %F 가 종래의 자기식 형광등과 동일한 수준 또는 보다 개선된 수준이 되도록 하는 것이다.
< 플리커 품질지수 계산방법 >
이하 도 5 내지 도 6을 사용하여 조명에 사용되는 플리커 품질지수인 퍼센트 플리커(Percent Flicker, 이하 "%F") 와 플리커 인덱스(Flicker Index, 이하 "FI")를 계산하는 방법에 대하여 설명한다.
도 5는 북미조명학회( Illuminating Engineering Society of North America , 이하 "IESNA")에서 발간한 "IESNA Lighting Handbook, 9th Edition" 에서 플리커 계산방법을 인용한 것이다.
먼저, 도 5에서 %F 는 (수식 1)로 계산되며, 순시 최대 빛 밝기값과 순시 최소 빛 밝기값을 사용하여 계산한다.
%F = (A - B) / (A + B) x 100 -----(수식 1)
단, 순시 최소 빛 밝기값이 0 인 경우 %F 는 100 % 한다.
플리커 품질지수인 %F 는 0 % 에서 100 % 사이의 값으로 나타나며 값이 낮을수록 품질이 좋다. %F 는 널리 알려져서 보편적으로 사용되고 있으며 피크-피크 콘트라스트 (Peak-to -Peak Contrast), 마이클슨 콘트라스트(Michelson Contrast), 변조 (Modulation) 또는 변조깊이(Modulation depth) 등으로 불리기도 한다.
그리고 도 5에서, 또 다른 플리커 품질지수인 FI 는 (수식 2)로 나타나 있듯이 빛 밝기의 면적을 이용하여 계산한다.
FI = (Area 1) / (Area 1 + Area 2) -----(수식 2)
(수식 2)를 자세히 보면, 분자는 평균 빛 밝기값 이상의 밝기 면적이며, 분모는 전체 빛 밝기의 면적이다. 즉 빛 밝기 분포에서 평균이상 빛 밝기 면적이 전체 빛 밝기에서 차지하는 비이다. FI 는 0 에서 1.0 사이의 값으로 나타나며 낮을수록 품질이 좋다.
도 6은 상기 플리커 품질지수 %F 와 FI 를 계산한 예를 도시한 것이다. 빛 밝기 파형이 삼각파(81)로 나타나는 경우는 FI 가 0.25 이고, 정현파(82)로 나타나는 경우는 FI 가 0.32 이며, 구형파(83)로 나타나는 경우는 FI 가 0.50 이다. 그런데, 세 경우 모두 순시 빛 밝기가 0 인 부분이 있으므로 %F 는 100 % 이다.
여기서 %F 와 FI 사이의 관계를 살펴보면, %F 가 개선되면(낮아지면) 평균값이 높아지게 되므로 평균 빛 밝기값 이상의 빛 밝기 면적인 (Area1) 이 낮아지고, 결과적으로 상기 (수식2)의 분자가 작아져서 FI 가 개선된다(낮아진다).
< 빛 방출량 모델: 삼각파 >
도 7은 도 3에서 일부 발췌한 것으로, LED 발광블럭의 빛 방출량과 LED 발광블럭(970)에 흐르는 전류는 비례하므로 전류파형(951A) 와 전류파형(952A)는 순시 빛 방출량으로 생각할 수 있다.
계산의 편의상 상기 전류파형(951A)를 삼각파 전류파형(51A) 로 근사하여 계산한 경우에도 %F 는 100 % 로 변동이 없다. 즉, %F 는 발광블럭의 빛 방출량을 삼각파로 모델링하면 빠르게 계산할 수 있다.
그런데, FI 는 전류파형(951A)가 삼각파 전류파형(51A) 보다 더 높게 나올 것임을 예상(도 6에서 삼각파 FI = 0.25 이고 정현파 FI = 0.32 이므로)할 수 있다. 전류파형(951A)는 도 2에서 발광블럭(970)의 전류-전압 특성곡선(950)을 직선모델(951)로 근사하여 구한 전류파형이며, 실제 전류보다 많은 전류가 공급되도록 계산되는 모델이다.
결론적으로, 발광블럭 직선모델(951)에서는 많은 전류가 계산되었고, 빛 방출량 삼각파모델(51A)에서는 작게 계산되었으므로 서로 상쇄되어서 빛 방출량 계산값은 실제와 비슷하게 계산될 것 이므로 FI 계산에 유용할 것이다. 물론 상기 전류파형(952A)를 삼각파 전류파형(52A)로 근사한 경우도 마찬가지이다.
도 8은 도 4의 회로에서 발광블럭을 4개의 서브 발광블럭으로 구성하고, 전류제한장치(CS2)는 정현파로 부하전류를 공급 하였을 경우에, 빛 방출량 모델(27L)을 도시한 일 실시예이다. 가로축은 정류전압위상이며, 세로축은 빛 방출량이다. 상기 빛 방출량은 정류전압위상 90 도에서 빛 방출량 값을 100 으로 하여서 표준화 하였다.(부하전류를 정현파로 공급하는 방법은 본 발명인의 특허 제 10-1110380 호 에 상세히 설명되어 있으므로 설명의 편의상 생략한다.)
여기서 빛 방출량 모델(27L)을 자세히 살펴보면, 서브 발광블럭을 1 개 점등할 때는 순시 빛 밝기값이 (0) 에서 (8)까지이다. 서브 발광블럭 2 개가 점등될 때는 순시 빛 밝기값이 (17)에서 (28)까지이다. 서브 발광블럭 3 개가 점등될 때는 순시 빛 밝기값이 (43)에서 (61)까지이다. 서브 발광블럭 4 개가 점등될 때는 순시 빛 밝기값이 (83)에서 (100)까지이다.
여기서 빛 밝기가 (8)에서 (17)로 수직으로 상승하는 부분이 있는데, 이것은 부하전류가 전류제한장치 (CS2)에 의하여 정현파로 제한되므로 전류증가는 조금이지만 서브 발광블럭이 하나 더 점등되어 전체 빛 방출량이 증가하여 나타나는 현상이다.
서브 발광블럭 3 개가 점등개시될 때[즉, (28) 에서 (43)으로 수직상승] 및 4 개가 점등개시될 때[즉, (61) 에서 (83)으로 수직상승]에 대해서는 앞의 경우와 동일한 원리로 해석하면 되므로 설명의 편의상 생략한다.
도 8에서 빛 방출량 모델(27L)을 조금 더 구체적으로 설명하면, 발광블럭 2 개가 점등개시 전에는 순시 빛 밝기가 (8) 에서 2 개 점등개시 후에는 순시 빛 밝기는 (17)로 약 2 배 증가하였다. 단순하게 설명하면 동일한 전류로 발광블럭 1 개를 점등하다가 2 개를 점등함으로써 밝기가 2 배가 되었다.
그리고, 발광블럭 3 개가 점등개시 전에는 순시 빛 밝기가 (28)에서 3 개 점등개시 후에는 순시 빛 밝기는 (43)으로 약 3/2 배 증가하였다. 단순하게 설명하면 동일한 전류로 발광블럭 2 개를 점등하다가 3 개를 점등함으로써 밝기가 3/2 배가 되었다.
또한, 발광블럭 3 개가 점등개시 전에는 순시 빛 밝기가 (61)에서 4 개 점등개시 후에는 순시 빛 밝기는 (83)으로 약 4/3 배 증가하였다. 단순하게 설명하면 동일한 전류로 발광블럭 3 개를 점등하다가 4 개를 점등함으로써 밝기가 4/3 배가 되었다.
이상에서 설명되었듯이, 빛 방출량 모델(27L)이 이론적으로 잘 설정되었음을 알 수 있다.
도 8에서 정류전압위상 0 도 부근에서 빛 방출량 모델(27L)과 삼각파모델 (28L)이 거의 일치 함을 알 수 있다. 계산의 편의상 상기 빛 방출량 모델 (27L)을 삼각파모델(28L)로 근사하여 계산해보면 %F 는 100 % 로 변동이 없을 것이다. 따라서 %F 는 발광블럭의 빛 방출량을 삼각파로 모델링하면 빠르게 계산할 수 있음을 알 수 있다.
그리고, 도 8에서 전류가 정현파 형태로 증가[즉, (17)~(28)구간, (43)~(61)구간, (83)~(100)구간]하지 않고 계단파 형태로 증가하여도, 빛 방출량 삼각파모델에 의한 %F 및 FI 계산이 가능함은 당연하다.
이상, 조명장치의 품질지수인 %F 와 FI 는 빛 방출량을 삼각파로 모델링하여 계산하는 방법에 대하여 설명하였다.
%F 는 순시 최대 빛 밝기값과 순시 최소 빛 밝기값을 가지고 계산하기 때문에 빛 방출량 모델이 다소 부정확 하더라도 전체적인 경향은 크게 변하지 않는다. 그리고, FI 는 %F 값이 개선되면(감소하면)(즉, 평균값이 높아지면) 자동적으로 같이 개선(감소)된다. 따라서 이하에서는 %F 에 촛점을 맞추어 설명한다.
< 제1 실시예 : 3상 교류전원 >
본 발명의 제1 실시예는 삼상전원의 각 상에 LED 조명장치(도 1 또는 도 4 회로 전체를 의미함, 이하 삼상전원에서 각 상에 설치된 LED 조명장치는 "LED 조명블럭" 이라 칭함)를 각각 구비하였을 경우, %F 와 FI 를 계산한 구체적인 일 실시예이다.
제1 실시예에 사용된 회로구성은, 제1 상 교류전압을 공급하는 교류전원; 상기 제1 상 교류전압으로 구동되는 제1 조명블럭; 제2 상 교류전압을 공급하는 교류전원; 상기 제2 상 교류전압으로 구동되는 제2 조명블럭; 제3 상 교류전압을 공급하는 교류전원; 상기 제3 상 교류전압으로 구동되는 제3 조명블럭;을 포함하여 구성된다.
상기 제1 조명블럭을 상세히 설명하면, 상기 제1 상 교류전압을 정류하는 제1 정류회로; 상기 제1 정류회로의 출력으로 구동되는 1 개 이상의 LED 로 이루어진 제1 LED 발광블럭; 상기 제1 LED 발광블럭에 공급되는 전류량을 조절하는 제1 전류원(이하, "제1 전류제한장치" 라고도 칭함);을 포함하여 제1 LED 조명블럭이 구성된다.
그리고, 상기 제2 조명블럭을 상세히 설명하면, 상기 제2 상 교류전압을 정류하는 제2 정류회로; 상기 제2 정류회로의 출력으로 구동되는 1 개 이상의 LED 로 이루어진 제2 LED 발광블럭; 상기 제2 LED 발광블럭에 공급되는 전류량을 조절하는 제2 전류원(이하, "제2 전류제한장치" 라고도 칭함);을 포함하여 제2 LED 조명블럭이 구성된다.
또한, 상기 제3 조명블럭을 상세히 설명하면, 상기 제3 상 교류전압을 정류하는 제3 정류회로; 상기 제3 정류회로의 출력으로 구동되는 1 개 이상의 LED 로 이루어진 제3 LED 발광블럭; 상기 제3 LED 발광블럭에 공급되는 전류량을 조절하는 제3 전류원(이하, "제3 전류제한장치" 라고도 칭함);을 포함하여 제3 LED 조명블럭이 구성된다.
여기서, 상기 제1 LED 발광블럭 내지 제3 LED 발광블럭은 다수개의 직렬로 연결된 서브 발광블럭으로 구성될 수 있다. 그리고, 각 서브 발광블럭에 흐르는 전류의 흐름을 변경하여 점등 서브 발광블럭 개수를 조절하는 (1 개 이상의 스위치로 구성된) 스위치 블럭을 각 LED 조명블럭에 포함할 수 있다. 이때 각 조명블럭은 상기 스위치 블럭을 제어하는 제어기를 포함하는 것이 바람직하다.
상기 각 조명블럭 제어기는 정류전압 한 싸이클이 공급되면, 낮은 순시 정류전압에서는 적은 부하전류가 흐르고, 높은 순시 정류전압에서는 많은 부하전류가 흐르도록, 각 전류제한장치을 제어하여 역율을 개선하는 것이 바람직하다
이때, 상기 각 조명블럭 제어기는 순시 정류전압에 근거하여 계단파 전류를 부하에 공급하도록 각 전류제한장치를 제어하는 것이 바람직하다.
그리고, 상기 각 조명블럭 제어기는 정류전압위상에 근거하여 계단파 전류를 부하에 공급하도록 각 전류제한장치를 제어하는 것도 바람직하다
또한, 본 발명인의 특허 제 10-1110380 호 에서 설명하였듯이 상기 각 조명블럭 제어기는 각 조명블럭 정류전압과 동 위상의 정현파신호(이하, "정현파1 신호"라 칭함) 발생기능을 더 포함하여, 상기 정현파1 신호에 대응하는 전류( 이하 "정현파1 전류"라 칭함)를 부하에 공급하도록 각 전류제한장치를 제어하는 것이 바람직하다.
이때, 상기 각 조명블럭 제어기가 정류전압과 동 위상의 정현파1 신호를 발생하는 이유는, 각 조명블럭 교류전원에서 공급되는 교류전류가 교류전압과 동일한 위상이고, 그 형태는 정현파 이어서 역율이 개선되기를 바라기 때문이다. 그리고, 부하에 흐르는 부하전류는 상기 교류전류가 정류된 것임은 당연할 것이다.
또한, 상기 각 조명블럭 제어기는 정류주파수(교류전원 주파수의 2배 주파수)보다 낮은 주파수의 정현파신호(이하, "정현파2 신호" 라 칭함)를 발생시키고, 상기 정현파2 신호에 대응하는 전류( 이하 "정현파2 전류"라 칭함)를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것이 바람직하다. 여기서, 각 정류전압위상 90 도 에서 상기 정현파2 신호의 최대 순시전압이 나타나는 것이 바람직하다.
이렇게 하면 전원전류 고조파 함유율이 정현파1 전류보다 상대적으로 높아지지만 보다 밝은 LED 조명장치를 제공할 수 있기 때문이다. 일 예를 들면, 우리나라는 저전력(예, 25 와트 이하) LED 조명장치의 전원전류 고조파 함유율을 30 % 이하로 규정하고 있다. 그런데, 정현파1 에 의하면, 전원전류 고조파 함유율이 일반 저항부하의 경우에는 이론상 0 % 이고, LED 조명장치의 경우는 1 % 이하로 만들 수 있다. 따라서 전원전류 고조파 함유율이 약간 증가(규제값인 30 % 이하까지)하여서 상대적으로 역율이 약간 낮아지더라도 밝기를 개선한 LED 조명장치를 제공하는 것이 바람직하다.
이때, 상기 정현파2 신호에 근거하여 계단파 전류를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것도 바람직하다.
이상에서 설명하였듯이 부하에 전류를 공급하는 방법이 다수 개 존재하고, 이것들이 본 발명의 요지가 아니므로 반복전인 설명을 피하기 위하여 정현파1 전류를 부하에 공급하였을때 빛 방출량을 삼각파로 모델링한 것을 대표로 설명한다.
바람직하게, 상기 제1 LED 발광블럭 내지 제3 LED 발광블럭은 1개 이상의 LED 로 구성되며, 다수개의 LED 가 직렬 또는 병렬 또는 직/병렬 배열로 구성될 수 있다. 상기 발광블럭들은 널리 알려진 공지기술로 구성할 수 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다
순시 정류전압에 적합한 개수의 LED 발광블럭이 직렬로 연결되도록 스위치블럭을 제어하는 방법, 순시 정류전압에 근거한 계단파 전류를 부하에 공급하는 방법, 순시 정류전압위상에 근거한 계단파 전류를 부하에 공급하는 방법 및 정현파1 전류를 부하에 공급하는 방법은 본 발명인의 특허 제 10-1110380 호 및 특허 10-1043533 호 을 비롯하여 그 외 널리 알려진 공지기술로 구성할 수 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
이하, 도 9 및 도 10을 사용하여 본 발명의 제1 실시예를 설명한다.
먼저, 삼상교류전압을 정류하면 정류전압은 도 9에 도시된 바와 같이 된다. 즉, 전압위상 0 에서 출발한 제1 상 정류전압(301)은 전압위상 90 도 에서 순시 최대정류전압이 나타난다. 전압위상 120 도 에서 출발하는 제2 상 정류전압(302)을 따라가 보면 전압위상 30 도 에서 순시 최대정류전압이 나타난다. 그리고 전압위상 240 도 에서 출발하는 제3 정류전압(303)은 150 도 에서 순시 최대정류전압이 나타난다. 즉 전압위상 30 도, 90 도 및 150 도 에서 각 상의 순시 최대정류전압이 나타난다.
이하 도 10에서 삼각파모델을 사용하여 %F 가 100 % 가 되는 (빛 방출 개시위상) 경계조건을 설명한다
먼저 제1 조명블럭의 빛 방출량 삼각파모델(311)에 대하여 설명한다. 제1 상 정류전압(301)은 전압위상 0 도에서 출발하여 전압위상 90 도에서 최대값이 된다. 그런데, 빛 방출량 삼각파모델(311)은 전압위상 0 도 에서 전압위상 60 도 까지 빛 방출량이 0 이고, 전압위상 60 도 에서 빛 방출이 개시되며, 상기 제1 상 정류전압(301)의 최대순시정류전압이 나타나는 전압위상 90 도 에서 빛 방출량이 최대가 되도록 선형으로 증가한다. 또한 전압위상 90 도 이후에서는 값은 같지만 부호가 반대인 기울기로 감소한다. 그리고 빛 방출량이 0 이 되면 다음 정류전압 싸이클 개시 까지는 0 상태를 유지한다. 간단히 요약하면 빛 방출량 삼각파모델(311)은 "제1 상 정류전압(301) 위상보다 60 도 늦게 빛 방출을 개시하며, 순시 최대정류전압에서 빛 방출량이 최대가 되며, 정류전압위상보다 60 도 빨리 빛 방출을 마감하는 %F 가 100 % 인 모델"이다.
제2 LED 조명블럭의 빛 방출량 삼각파모델(312) 및 제3 LED 조명블럭의 빛 방출량 모델(313)은 제1 조명블럭의 빛 방출량 삼각파모델(311)과 동일한 원리 구현된 것이므로 설명의 편의상 생략한다.
여기서, 상기 빛 방출량 삼각파모델(311) 내지 빛 방출량 삼각파모델(313)의 순시 빛 방출량을 모두 합하여 %F 와 FI 를 계산하면 %F 는 100 %, FI 는 0.253 이 된다. 즉, %F 가 개선(감소)되기 위해서는 각 상의 정류전압위상 60 도 이전에 빛 방출이 개시되어야 함을 알 수 있다.
이하, 삼각파모델을 사용하여 %F 가 개선되는 일 예를 설명한다.
도 11에서, 빛 방출량 삼각파모델(321)은 "제1 상 정류전압(301) 위상보다 45 도 늦게 빛 방출을 개시하며, 순시 최대정류전압에서 빛 방출량이 최대가 되며, 정류전압위상보다 45 도 빨리 빛 방출을 마감하는 %F 가 100 % 인 모델"이다.
제2 조명블럭의 빛 방출량 삼각파모델(322) 및 제3 조명블럭의 빛 방출량 삼각파모델(323)은 제1 조명블럭의 빛 방출량 삼각파모델(311)과 동일한 원리로 구현한 것이므로 설명의 편의상 생략한다.
도 12에서 순시 빛 평균파형(320)은 상기 빛 방출량 삼각파모델(321) 내지 빛 방출량 삼각파모델(323)의 순시 빛 방출량을 모두 합하여 평균한 파형이다. 상기 순시 빛 평균파형 (320)으로 %F 와 FI 를 계산하면 %F 는 20 %, FI 는 0.063 이 된다. 그리고 직선파형(325a)는 전압위상 0 도에서 180 도 사이의 평균 빛 방출량을 도시한 것이다.
이상 도 11 및 도 12를 사용하여 단상전원에서는 %F 가 100 % 인 LED 조명블럭을 삼상전원에 적용하면 %F 가 20 % 로 개선되는 일 예를 설명하였다.
도 13은 도 10 내지 도 12에 적용한 원리를 사용하여 빛 방출 개시위상을 다양값으로 계산한 결과를 도시한 표이다. 여기서 행(Ang3)은 각 상의 조명블럭에서 빛 방출을 개시하는 전압위상이며, 행(% Flicker)에는 %F 를, 행(Flicker Index)는 FI 를 계산한 결과이다.
여기서 몇몇 수치를 살펴보면, 빛 방출개시 위상이 45 도 인 경우는 %F 가 20 % 이고, 40 도 인 경우는 11.1 % 이며, 35 도인 경우는 4.8 % 임을 알 수 있다. 특이하게 빛 방출개시 위상이 30 도에서 %F 및 FI 가 0 이 되었다. 그리고 빛 방출개시 위상이 30 도 보다 더 빨라질수록 %F 는 점점더 나빠져서 전압위상 5 도 에서는 %F 가 10.2 % 가 되었다.
본 발명에서 사용한 빛 방출량 모델의 정확도와 LED 간의 밝기 편차를 고려 할때 %F 를 11.1 % 이하로 달성하기 위해서는 정류전압위상 40 도 이전에 빛 방출을 개시하는 것이 바람직하다. 또한, 정류전압위상 30도에서 빛 방출을 개시하면 %F 가 0%가 되므로 정류전압위상 30도 이전에 빛 방출을 개시하는 것도 바람직하다.
이상, 정현파1 전류를 부하에 공급하였을때 빛 방출량을 삼각파로 모델링한 것을 대표로 설명한다. 순시 정류전압에 근거한 계단파전류, 정류전압위상에 근거한 계단파 전류 및ㅣ 정현파2 전류를 부하에 공급하였을 경우에도 빛 방출량을 삼각파모델로 모델링하고 %F 를 계산하여도 본 발명의 사상을 벗어나지 않음은 당연하다.
< 제2 실시예 : 2상 >
본 발명의 제2 실시예는 삼상전원에서 2개 상에 LED 조명장치(도 1 또는 도 4 회로 전체를 의미함, 이하 삼상전원에서 각 상에 설치된 LED 조명장치는 "LED 조명블럭" 이라 칭함)를 각각 구비하였을 경우 %F 와 FI 를 계산한 구체적인 일 실시예이다.
제2 실시예에 사용된 회로구성은, 제1 상 교류전압을 공급하는 교류전원; 상기 제1 상 교류전압으로 구동되는 제1 조명블럭; 제2 상 교류전압을 공급하는 교류전원; 상기 제2 상 교류전압으로 구동되는 제2 조명블럭;을 포함하여 구성된다.
상기 제1 조명블럭을 상세히 설명하면, 상기 제1 상 교류전압을 정류하는 제1 정류회로; 상기 제1 정류회로의 출력으로 구동되는 1 개 이상의 LED 로 이루어진 제1 LED 발광블럭; 상기 제1 LED 발광블럭에 공급되는 전류량을 조절하는 제1 전류원(이하, "제1 전류제한장치" 라고도 칭함);을 포함하여 제1 LED 조명블럭이 구성된다.
그리고, 상기 제2 조명블럭을 상세히 설명하면, 상기 제2 상 교류전압을 정류하는 제2 정류회로; 상기 제2 정류회로의 출력으로 구동되는 1 개 이상의 LED 로 이루어진 제2 LED 발광블럭; 상기 제2 LED 발광블럭에 공급되는 전류량을 조절하는 제2 전류원(이하, "제2 전류제한장치" 라고도 칭함);을 포함하여 제2 LED 조명블럭이 구성된다.
여기서, 상기 제1 LED 발광블럭 내지 제2 LED 발광블럭은 다수개의 직렬로 연결된 서브 발광블럭으로 구성될 수 있다. 그리고, 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 스위치 블럭을 각 LED 조명블럭에 포함할 수 있다. 이때 각 조명블럭은 상기 스위치 블럭을 제어하는 제어기를 포함하는 것이 바람직하다.
상기 각 조명블럭 제어기는 정류전압 한 싸이클이 공급되면, 낮은 순시 정류전압에서는 적은 부하전류가 흐르고, 높은 순시 정류전압에서는 많은 부하전류가 흐르도록, 각 조명블럭 전류제한장치을 제어하여 역율을 개선하는 것이 바람직하다.
이때, 상기 각 조명블럭 제어기는 순시 정류전압에 근거하여 계단파 전류를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것이 바람직하다.
그리고, 상기 각 조명블럭 제어기는 정류전압위상에 근거하여 계단파 전류를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것도 바람직하다.
또한, 본 발명인의 특허 제 10-1110380 호 에서 설명하였듯이 상기 각 조명블럭 제어기는 각 조명블럭 정류전압과 동 위상의 정현파신호(이하, "정현파1 신호"라 칭함) 발생기능을 더 포함하여, 상기 정현파1 신호에 대응하는 전류( 이하 "정현파1 전류"라 칭함)를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것이 바람직하다.
이때, 상기 각 조명블럭 제어기가 정류전압과 동 위상의 정현파1 신호를 발생하는 이유는, 각 조명블럭 교류전원에서 공급되는 교류전류가 교류전압과 동일한 위상이고, 그 형태는 정현파 이어서 역율이 개선되기를 바라기 때문이다. 그리고, 부하에 흐르는 부하전류는 상기 교류전류가 정류된 것임은 당연할 것이다.
또한, 상기 각 조명블럭 제어기는 정류주파수(교류전원 주파수의 2배 주파수)보다 낮은 주파수의 정현파신호(이하, "정현파2 신호" 라 칭함)를 발생시키고, 상기 정현파2 신호에 대응하는 전류( 이하 "정현파2 전류"라 칭함)를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것이 바람직하다. 여기서, 각 정류전압위상 90 도 에서 상기 정현파2 신호의 최대 순시전압이 나타나는 것이 바람직하다.
이렇게 하면 전원전류 고조파 함유율이 정현파1 전류보다 상대적으로 높아지지만 보다 밝은 LED 조명장치를 제공할 수 있기 때문이다. 일 예를 들면, 우리나라는 저전력(예, 25 와트 이하) LED 조명장치의 전원전류 고조파 함유율을 30 % 이하로 규정하고 있다. 그런데, 정현파1 전류에 의하면, 전원전류 고조파 함유율이 일반 저항부하의 경우에는 이론상 0 % 이고, LED 조명장치의 경우는 1 % 이하로 만들 수 있다. 따라서 전원전류 고조파 함유율이 약간 증가(규제값인 30 % 이하까지)하여서 상대적으로 역율이 약간 낮아지더라도 밝기를 개선한 LED 조명장치를 제공하는 것이 바람직하다.
이때, 상기 정현파2 신호에 근거하여 계단파 전류를 부하에 공급하도록 각 조명블럭 전류제한장치를 제어하는 것도 바람직하다.
이상에서 설명하였듯이 부하에 전류를 공급하는 방법이 다수 개 존재하고, 이것들이 본 발명의 요지가 아니므로 반복전인 설명을 피하기 위하여 정현파1 전류를 부하에 공급하였을때 빛 방출량을 삼각파로 모델링한 것을 대표로 설명한다.
바람직하게, 상기 제1 LED 발광블럭 내지 제2 LED 발광블럭은 1개 이상의 LED 로 구성되며, 다수개의 LED 가 직렬 또는 병렬 또는 직/병렬 배열로 구성될 수 있다. 상기 발광블럭들은 널리 알려진 공지기술로 구성할 수 있으므로, 본명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
순시 정류전압에 적합한 개수의 LED 발광블럭이 직렬로 연결되도록 스위치블럭을 제어하는 방법, 순시 정류전압에 근거한 계단파 전류를 부하에 공급하는 방법, 순시 정류전압위상에 근거한 계단파 전류를 부하에 공급하는 방법 및 정현파1 전류를 부하에 공급하는 방법은 본 발명인의 특허 제 10-1110380 호 및 특허 10-1043533 호 을 비롯하여 그 외 널리 알려진 공지기술로 구성할 수 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다
이하 도 9 및 도 14를 사용하여 본 발명의 제2 실시예를 설명한다.
먼저, 도 14에서 삼각파모델을 사용하여 %F 가 100%가 되는 (빛 방출 개시위상) 경계조건을 설명한다.
제1 조명블럭에 적용되는 빛 방출량 삼각파모델(201)에 대하여 설명한다. 제1 상 정류전압(301)이 전압위상 0 도에서 출발하여 전압위상 90 도에서 최대값이 된다. 그런데, 빛 방출량 삼각파모델(201)은 전압위상 0 도 에서 전압위상 30 도 까지 빛 방출량이 0 이고, 전압위상 30 도 에서 빛 방출이 개시되며, 상기 제1 상 정류전압(301)의 순시 최대정류전압이 나타나는 전압위상 90 도 에서 빛 방출량이 최대가 되도록 선형으로 증가한다. 또한 전압위상 90 도 이후에서는 값은 같지만 부호가 반대인 기울기로 감소한다. 그리고 빛 방출량이 0 이 되면 다음 정류전압 싸이클 개시 까지는 0 상태를 유지한다.
간단히 요약하면 빛 방출량 모델(201)은 "제1상 정류전압(301) 위상보다 30 도 늦게 빛 방출을 개시하며, 순시 최대정류전압에서 빛 방출량이 최대가 되며, 정류전압위상보다 30 도 빨리 빛 방출을 마감하는 %F 가 100 % 인 삼각파모델"이다.
제2 조명블럭에 적용되는 빛 방출량 모델(202)는 방출량 모델(201)과 동일한 원리 구현된 것이므로 설명의 편의상 생략한다.
도 15에서 순시 빛 평균파형(200)은 상기 빛 방출량 삼각파모델(201) 내지 빛 방출량 삼각파모델 (202)의 순시 빛 방출량을 모두 합하여 평균한 파형이다. 상기 순시 빛 평균파형(200)으로 %F 와 FI 를 계산하면 %F 는 100 %, FI 는 0.222 이 된다. 그리고 직선파형(205a)는 정류전압위상 0 도에서 180 도 사이의 평균 빛 방출량을 도시한 것이다.
여기서, %F 가 개선되기 위해서는 각 상의 정류전압위상 30 도 이전에 빛 방출이 개시되어야 함을 알 수 있다.
이하, 삼각파모델을 사용하여 %F 가 개선되는 일 실시예를 설명한다.
도 16에서, 빛 방출량 삼각파모델(211)은 "제1 상 정류전압(301) 위상보다 10 도 늦게 빛 방출을 개시하며, 순시 최대정류전압에서 빛 방출량이 최대가 되며, 정류전압위상보다 10 도 빨리 빛 방출을 마감하는 %F 가 100 % 인 모델"이다.
제2 조명블럭의 빛 방출량 삼각파모델(212)은 제1 조명블럭의 빛 방출량 삼각파모델(311)과 동일한 원리로 구현한 것이므로 설명의 편의상 생략한다.
도 17에서 순시 빛 평균파형(210)은 상기 빛 방출량 삼각파모델(211) 및 빛 방출량 삼각파모델(212)의 순시 빛 방출량을 모두 합하여 평균한 파형이다. 상기 순시 빛 평균파형(210)으로 %F 와 FI 를 계산하면 %F 는 42.9 %, FI 는 0.168 이 된다. 그리고 직선파형(215a)는 정류전압위상 0 도에서 180 도 사이의 평균 빛 방출량을 도시한 것이다.
이상 도 16 및 도 17를 사용하여 단상전원에서는 %F 가 100 % 인 LED 조명블럭을 이상전원에 각각 적용하면 %F 가 42.9 % 로 개선되는 일 예를 설명하였다.
도 18은 도 14 내지 도 16에 적용한 원리를 사용하여 빛 방출 개시위상을 다양값으로 계산한 결과를 도시한 표이다. 여기서 행(Ang2)은 각 상의 조명블럭에서 빛 방출을 개시하는 전압위상이며, 행(% Flicker)에는 %F 를, 행(Flicker Index)는 FI 를 계산한 결과이다.
여기서 몇몇 수치를 살펴보면, 빛 방출개시 위상이 20 도 인 경우는 %F 가 60 % 이고, 15 도 인 경우는 50 % 이며, 10 도인 경우는 42.9 % 그리고 5 도 인 경우는 37.5 % 임을 알 수 있다.
자기식 안정기를 채탁한 형광등의 %F 가 25 % 에서 40 % 사이임을 고려하면 정류전압위상 10 도 이전에 빛 방출을 개시하는 것이 바람직할 것이다
이상, 정현파 전류를 부하에 공급하였을때 빛 방출량을 삼각파로 모델링한 것을 대표로 설명하였다. 순시 정류전압에 근거한 계단파전류, 정류전압위상에 근거한 계단파 전류 및 정현파2 전류를 부하에 공급하였을 경우에도 빛 방출량을 삼각파모델로 모델링하고 %F 를 계산하여도 본 발명의 사상을 벗어나지 않음은 당연하다.
이상, 본 발명에 대하여 그 바람직한 실시예를 살펴보았으나 이는 예시에 불과하며, 본 기술 분야의 통상적인 지식을 가진 자라면 이로부터 다양한 변형된 실시예가 가능함을 이해하여야 할 것이다. 그러므로 , 본 명세서 와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술내용을 쉽게 설명하고, 본 발명의 이해를 돕기 위해 특 정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다.
신규 성장산업인 LED 조명산업에서, LED 를 구동하는 전원장치는 크게 2 가지 종류가 있다. 첫째로 DC 전원을 공급하는 AC-DC 컨버터 방식은 광품질 지수인 퍼센트 플리커가 40 % 이하로 우수하다. 그러나 고전력 LED 램프에서는 역율개선회로 등과 같은 별도의 회로가 필요하기 때문에 고가이고, 저가의 저전력 LED 램프에서는 통상 전기품질지수인 역율이 나쁘다. 게다가, 액체가 들어있는 전해콘덴서를 사용하므로, LED 램프의 수명이 전원장치의 수명으로 제한된다.
두번째로, 교류를 사용하는 교류구동 방식은, 별도의 역율개선 회로가 필요없기 때문에 AC-DC 컨버터 방식에 비하여 가격 경쟁력이 있다. 그러나 광품질 지수인 퍼센트 플리커가 100 % 로 광품질이 나쁘다.
본 발명에 의한 교류구동 방식은, 현재 신규 성장산업인 LED 조명산업의 핵심 구성품이 별도의 역률 개선회로가 필요없으면서도 우수한 광품질(퍼센트 플리커 40 % 이하)로 제공되기 때문에 가격경쟁력이 있어서 산업상 이용가능성이 아주 높다.

Claims (8)

  1. 제1 상 교류전압 및 제2 상 교류전압 공급하는 교류전원;
    교류전압을 직류의 정류전압으로 변환하는 제1 정류회로 및 제2 정류회로;
    부하로써 1 개 이상의 LED로 구성된 제1 LED 발광블럭 및 제2 LED 발광블럭;
    전류량을 제한하는 제1 전류제한장치 및 제2 전류제한장치;
    상기 제1 상 교류전압을 정류하는 상기 제1 정류회로, 상기 제1 정류회로의 출력으로 구동되는 제1 LED 발광블럭 및 상기 제1 LED 발광블럭 전류량을 제한하는 제1 전류제한장치 를 포함하는 제1 LED 조명블럭;
    상기 제2 상 교류전압을 정류하는 상기 제2 정류회로, 상기 제2 정류회로의 출력으로 구동되는 제2 LED 발광블럭 및 상기 제2 LED 발광블럭 전류량을 제한하는 제2 전류제한장치 를 포함하는 제2 LED 조명블럭;을 포함하여 구성되며,
    상기 각 LED 조명블럭은, 각 LED 조명블럭에 공급되는 교류전압이 제로볼트를 통과하여 상승하는 시각을 전압위상 0 도로 할 경우, 상기 전압위상 10 도 이전에 각 LED 조명블럭에 전류가 공급 개시되어 빛 방출이 개시되고, 각 LED 조명블럭의 퍼센트 플리커 (Percent flicker)가 100 % 인 것;을 특징으로 하는 플리커가 개선된 LED 조명장치.
  2. 제1항에 있어서,
    제3 상 교류전압을 공급하는 교류전원;
    상기 제3 상 교류전압을 정류하는 제3 정류회로; 상기 제3 정류회로의 출력으로 구동되는 제3 LED 발광블럭 및 상기 제3 LED 발광블럭 전류량을 제한하는 제3 전류제한장치 를 포함하는 제3 LED 조명블럭;을 더 포함하여 구성되며,
    상기 각 LED 조명블럭은, 각 LED 조명블럭에 공급되는 교류전압이 제로볼트를 통과하여 상승하는 시각을 전압위상 0 도로 할 경우, 상기 전압위상 40 도 이전에 각 LED 조명블럭에 전류가 공급 개시되어 빛 방출이 개시되고, 각 LED 조명블럭의 퍼센트 플리커 (Percent flicker)가 100 % 인 것;을 특징으로 하는 플리커가 개선된 LED 조명장치.
  3. 제2 항에 있어서,
    상기 제1 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 발광블럭이고, 상기 제1 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제1 스위치 블럭 및 (제1 전류제한장치 및 제1 스위치 블럭을 제어하는) 제1 제어기를 더 포함하여 구성되고;
    상기 제2 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 발광블럭이고, 상기 제2 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제2 스위치 블럭 및 (제2 전류제한장치 및 제2 스위치 블럭을 제어하는) 제2 제어기를 더 포함하여 구성되고;
    상기 제3 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 발광블럭이고, 상기 제3 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제3 스위치 블럭 및 (제3 전류제한장치 및 제3 스위치 블럭을 제어하는) 제3 제어기를 더 포함하여 구성되며;
    상기 각 LED 조명블럭은, 각 LED 조명블럭에 공급되는 교류전압이 제로볼트를 통과하여 상승하는 시각을 전압위상 0 도로 할 경우, 상기 전압위상 30 도 이전에 각 LED 조명블럭에 전류가 공급 개시되어 빛 방출이 개시되며;
    상기 제1 제어기 내지 제3 제어기는 정류전압과 동위상의 정현파신호(이하, "정현파1 신호"라 칭함)로 상기 제1 전류제한장치 내지 제3 전류제한장치를 각각 제어하는 것;을 특징으로 하는 플리커가 개선된 LED 조명장치.
  4. 제3 항에 있어서,
    상기 제1 제어기 내지 제3 제어기는 순시 정류전압 또는 정류전압위상 중 어느 하나에 근거하여 계단파 형태로 상기 제1 전류제한장치 내지 제3 전류제한장치를 각각 제어하는 것;을 특징으로 하는 플리커가 개선된 LED 조명장치
  5. 제3 항에 있어서,
    상기 제1 제어기 내지 제3 제어기는 정류주파수 보다 낮은 주파수의 정현파신호(이하 "정현파2 신호"라 칭함)를 발생하고, 상기 정현파2 신호에 대응하는 전류를 부하에 공급하도록 상기 제1 전류제한장치 내지 제3 전류제한장치를 각각 제어하는 것;을 특징으로 하는 플리커가 개선된 LED 조명장치
  6. 제1 항에 있어서,
    상기 제1 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 LED 발광블럭이고, 상기 제1 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제1 스위치 블럭 및 (제1 전류제한장치 및 제1 스위치 블럭을 제어하는) 제1 제어기를 더 포함하여 구성되고;
    상기 제2 LED 발광블럭은 2 개 이상의 서브 LED 발광블럭이 직렬로 연결된 LED 발광블럭이고, 상기 제2 조명블럭은 전류의 흐름을 변경하여 점등되는 서브 LED 발광블럭의 개수를 조절하는 (1 개 이상의 스위치로 구성된) 제2 스위치 블럭 및 (제2 전류제한장치 및 제2 스위치 블럭을 제어하는) 제2 제어기를 더 포함하여 구성되고;
    상기 제1 제어기 내지 제2 제어기는 정류전압과 동위상의 정현파신호(이하, "정현파1 신호"라 칭함)로 상기 제1 전류제한장치 내지 제2 전류제한장치를 각각 제어하는 것;을 특징으로 하는 플리커가 개선된 LED 조명장치.
  7. 제6 항에 있어서,
    상기 제1 제어기 내지 제2 제어기는 순시 정류전압 또는 정류전압위상 중 어느 하나에 근거하여 계단파 형태로 상기 제1 전류제한장치 내지 제2 전류제한장치를 각각 제어하는 것;을 특징으로 하는 플리커가 개선된 LED 조명장치.
  8. 제6 항에 있어서,
    상기 제1 제어기 내지 제2 제어기는 정류주파수 보다 낮은 주파수의 정현파신호(이하 "정현파2"라 칭함)를 발생하고, 상기 정현파2 신호에 대응하는 전류를 부하에 공급하도록 상기 제1 전류제한장치 내지 제2 전류제한장치를 각각 제어하는 것;을 특징으로 하는 플리커가 개선된 LED 조명장치.
PCT/KR2013/000778 2012-03-01 2013-01-31 플리커가 개선된 엘이디 조명장치 WO2013129782A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380010819.XA CN104137655A (zh) 2012-03-01 2013-01-31 改良闪烁器的发光二极管照明设备
US14/382,187 US9271358B2 (en) 2012-03-01 2013-01-31 LED lighting apparatus having improved flicker performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0021522 2012-03-01
KR20120021522 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013129782A1 true WO2013129782A1 (ko) 2013-09-06

Family

ID=49082938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000778 WO2013129782A1 (ko) 2012-03-01 2013-01-31 플리커가 개선된 엘이디 조명장치

Country Status (3)

Country Link
US (1) US9271358B2 (ko)
CN (1) CN104137655A (ko)
WO (1) WO2013129782A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198993A4 (en) * 2014-09-23 2017-09-06 Huizhou Light Engine Ltd. Method and circuit for driving light emitting diodes from three-phase power source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592593B (zh) * 2016-03-03 2017-05-03 东莞市中科久明新能源科技有限公司 一种交流直驱光控串并联led灯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212267A (ja) * 2009-03-06 2010-09-24 Sharp Corp Led駆動回路、led照明灯具、led照明機器、及びled照明システム
KR100995793B1 (ko) * 2010-08-20 2010-11-22 김남규 발광 다이오드 어레이 구동회로
KR101040135B1 (ko) * 2008-02-26 2011-06-13 심현섭 교류전원에 의해 구동하는 엘이디 조명장치
JP2011192646A (ja) * 2010-02-22 2011-09-29 Esa:Kk Led駆動回路及び電源回路
KR101110380B1 (ko) * 2010-12-16 2012-02-24 이동원 교류 구동 엘이디 조명장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411045B1 (en) * 2000-12-14 2002-06-25 General Electric Company Light emitting diode power supply
US7318659B2 (en) * 2004-03-03 2008-01-15 S. C. Johnson & Son, Inc. Combination white light and colored LED light device with active ingredient emission
CN1604711A (zh) * 2003-09-30 2005-04-06 东芝照明技术株式会社 发光二极管照明装置及照明系统
US20070029879A1 (en) * 2005-08-04 2007-02-08 Eldredge James G Distribution of universal DC power in buildings
JP5097111B2 (ja) * 2006-05-31 2012-12-12 パナソニック株式会社 半導体光源装置
EP2217041A4 (en) * 2007-11-14 2014-08-13 Panasonic Corp LIGHTING DEVICE AND LIGHTING APPARATUS USING THE DEVICE
CN101616521B (zh) * 2008-06-23 2012-11-21 台达电子工业股份有限公司 可调光的发光二极管驱动电路
US8773030B2 (en) * 2008-10-02 2014-07-08 Hunter Industries, Inc. Low voltage outdoor lighting power source and control system
KR100971757B1 (ko) 2009-02-17 2010-07-21 주식회사 루미네이처 Led 조명장치
US8847519B2 (en) * 2009-04-21 2014-09-30 Koninklijke Philips N.V. System for driving a lamp
US8664876B2 (en) * 2009-06-29 2014-03-04 Tai-Her Yang Lighting device with optical pulsation suppression by polyphase-driven electric energy
KR100942234B1 (ko) 2009-07-23 2010-02-12 (주)로그인디지탈 발광다이오드 조명장치
TW201123979A (en) * 2009-12-30 2011-07-01 Delta Electronics Inc Back light driving circuit for LCD panel
EP2533307B1 (en) * 2010-02-03 2015-04-08 Citizen Holdings Co., Ltd. Led drive circuit
KR100979432B1 (ko) 2010-04-22 2010-09-02 엔엘티테크주식회사 엘이디 조명용 엘이디 구동회로
KR100997050B1 (ko) 2010-05-06 2010-11-29 주식회사 티엘아이 광량을 향상시키는 엘이디 조명 장치
KR101197934B1 (ko) * 2010-07-12 2012-11-05 삼성전기주식회사 발광 다이오드 구동용 전원 공급 장치
CN103312187B (zh) * 2012-03-09 2016-02-03 台达电子工业股份有限公司 一种变流器系统
GB2522646B (en) * 2014-01-31 2016-04-06 Tdk Lambda Uk Ltd Converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040135B1 (ko) * 2008-02-26 2011-06-13 심현섭 교류전원에 의해 구동하는 엘이디 조명장치
JP2010212267A (ja) * 2009-03-06 2010-09-24 Sharp Corp Led駆動回路、led照明灯具、led照明機器、及びled照明システム
JP2011192646A (ja) * 2010-02-22 2011-09-29 Esa:Kk Led駆動回路及び電源回路
KR100995793B1 (ko) * 2010-08-20 2010-11-22 김남규 발광 다이오드 어레이 구동회로
KR101110380B1 (ko) * 2010-12-16 2012-02-24 이동원 교류 구동 엘이디 조명장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198993A4 (en) * 2014-09-23 2017-09-06 Huizhou Light Engine Ltd. Method and circuit for driving light emitting diodes from three-phase power source

Also Published As

Publication number Publication date
US9271358B2 (en) 2016-02-23
US20150022104A1 (en) 2015-01-22
CN104137655A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2014081145A1 (ko) 변조지수가 개선된 엘이디 조명장치
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2010104297A9 (ko) 능동형 정전력 공급장치
WO2012144800A2 (ko) Led 구동 장치 및 이를 이용한 led 구동 방법
WO2014189298A1 (ko) 발광다이오드 구동장치
WO2009136691A2 (ko) 교류전원 엘이디 조명시스템
WO2013162308A1 (ko) Led 디머, 이를 포함하는 led 조명장치 및 led 조명장치의 디밍 제어 방법
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2013039361A1 (en) Illumination apparatus including semiconductor light emitting diodes
WO2014126392A1 (ko) 발광다이오드의 점멸주파수를 변환시키는 전원공급회로
WO2014048157A1 (zh) 一种led驱动装置及其驱动方法
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2015180136A1 (zh) 调光开关及其调光方法
WO2015152548A1 (ko) 발광 모듈
WO2014189310A1 (ko) 발광 다이오드 조명 장치
WO2013129782A1 (ko) 플리커가 개선된 엘이디 조명장치
WO2015190646A1 (ko) Led 구동 회로
WO2011159048A2 (ko) Led 형광 램프
WO2013032181A2 (en) Lighting device
WO2012086956A2 (ko) 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치
WO2016104940A1 (ko) 발광 소자 구동 장치
WO2012161528A2 (ko) 엘이디 구동 제어 장치 및 이의 구동 전류 제어 방법
WO2015020463A1 (ko) 전원 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14382187

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755512

Country of ref document: EP

Kind code of ref document: A1