WO2012086956A2 - 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치 - Google Patents

상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치 Download PDF

Info

Publication number
WO2012086956A2
WO2012086956A2 PCT/KR2011/009561 KR2011009561W WO2012086956A2 WO 2012086956 A2 WO2012086956 A2 WO 2012086956A2 KR 2011009561 W KR2011009561 W KR 2011009561W WO 2012086956 A2 WO2012086956 A2 WO 2012086956A2
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
voltage
current
emitting group
led
Prior art date
Application number
PCT/KR2011/009561
Other languages
English (en)
French (fr)
Other versions
WO2012086956A3 (ko
Inventor
이동원
Original Assignee
Lee Dong-Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110049434A external-priority patent/KR101397953B1/ko
Application filed by Lee Dong-Won filed Critical Lee Dong-Won
Priority to JP2013544389A priority Critical patent/JP2014505328A/ja
Publication of WO2012086956A2 publication Critical patent/WO2012086956A2/ko
Publication of WO2012086956A3 publication Critical patent/WO2012086956A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation

Definitions

  • the present invention relates to an AC-driven LED lighting device supporting two types of commercial power, and more specifically, to separate the load LED into a first LED light emitting group and a second LED light emitting group, wherein a large commercial power is provided In case of switching, the first LED light emitting group and the second LED light emitting group are controlled in series so as to be connected in series, and when a small commercial power is provided, the first LED light emitting group and the second LED light emitting group are connected in parallel.
  • the present invention relates to an AC-driven LED lighting device that supports two kinds of commercial power supplies that can drive LEDs efficiently and at the same brightness even when the commercial power is changed by switching control.
  • the light emitting diode is an all-optical semiconductor device that emits light when a current flows, and is widely used in a display backlight and the like. Due to the development of technology, the all-optical conversion efficiency is higher than that of a conventional incandescent lamp and a fluorescent lamp.
  • the light emitting diode has a large current change even with a slight voltage fluctuation. This requires precise current control.
  • an AC power supply 910 for supplying an AC voltage and a rectifier circuit for converting an AC voltage supplied from the AC power supply 910 into a rectified voltage Vrect of DC ( 940, an LED light emitting block 970 driven by a rectified voltage Vrect output of the rectifying circuit 940, and a current slope setting resistor 930 for setting a current slope of the LED light emitting block 970. It is composed.
  • the voltage-current characteristic curve 950 is a quote from the characteristic curve of AX3220, a product of Seoul Semiconductor Co., Ltd., made by arranging a plurality of LEDs in series, and it can be seen that the threshold voltage at which current starts to flow in earnest is 132V.
  • the light emitting block 970 having the voltage-current characteristic curve 950 is well lit, but in the commercial power supply 110V, the light emission block 970 is turned on because the threshold voltage of the light emitting block 970 is higher than the commercial power supply. There is a problem that is not.
  • multistage driving circuit 3 shows another conventional procedure circuit, which is often referred to as a “multistage LED light emitting block driving circuit” (hereinafter, referred to as " multistage driving circuit ").
  • the circuit configuration of FIG. 3 includes an AC power supply 910 for supplying an AC voltage, a rectification circuit 940 for converting an AC voltage supplied from the AC power supply 910 into a rectified voltage Vrect of DC, and a light emitting block.
  • a controller (941) for controlling the number of light emitting blocks to be lit according to the instantaneous rectified voltage, switches arranged in parallel (SW1) (SW2) (SW3) (SW4) and a switch block for blocking / conducting the actual load current path and a current source (I1) (I2) (I3) (I4) for supplying the current according to the number of light-emitting blocks.
  • the voltage waveform 920V shows a rectified waveform of a commercial power supply 220V / 50Hz.
  • the current waveform 920A illustrates an example of a current waveform that is preferable when the voltage waveform 920V is supplied to the circuit of FIG. 3.
  • the instantaneous rectified voltages in the preferred current waveform 920A will be described based on the case of 50V, 100V, 150V, and 200V, respectively.
  • two light emitting blocks are turned on (hereinafter referred to as "two-stage lighting"). That is, the controller 941 cuts off the first switch SW1 and conducts the second switch SW2 to open the first light emitting block 871 and the second light emitting block 872 using the second current source I2. It is on. At this time, the flowing load current is shown in FIG. 3 as 10mA.
  • the controller 941 cuts off the first switch SW1 and the second switch SW2 and the third switch SW3 conducts the first light emitting blocks 871 to 1st by using the third current source I3. All of the 3 light emitting blocks 873 are turned on. At this time, the flowing load current is shown in FIG. 3 as 15 mA.
  • the controller 941 cuts off all of the first switch SW1 to the third switch SW3 and the fourth switch SW4 conducts the first light emitting block 871 to the fourth light source I4 using the fourth current source I4. All of the fourth light emitting blocks 874 are turned on. At this time, the flowing load current is shown as 20 mA.
  • the multi-stage driving circuit 1) improves the power factor, and 2) the lighting period of the LED light emitting block in one cycle of the rectified voltage is longer than that of the prior art, so that the brightness becomes brighter than the conventional, but has the following problems.
  • the voltage waveform 910V shows one cycle of the rectified voltage of commercial power supply 110V / 50Hz
  • the current waveform 910A shows the zero-stage lighting to the second stage when the voltage waveform 910V is supplied to the circuit of FIG.
  • the load current waveform 910A by lighting.
  • the first problem which occurs when the commercial voltage is changed from 220V to 110V, is reduced to about 1/2 because the light emitting block is lit only 1/2.
  • the second problem is that the maximum value of the load current is lowered to 1/2 of 220VAC, and the lighting period is shorter than 220VAC. That is, when the commercial voltage is changed from 220V to 110V, there is a problem that the brightness is reduced to 1/4 or less.
  • the AC driving LED supporting two types of commercial power sources capable of driving LEDs efficiently and at the same brightness even when the first LED light emitting group and the second LED light emitting group are connected and controlled to be connected in parallel.
  • the AC driving LED lighting apparatus supporting two types of commercial power source includes a rectifier circuit for rectifying the AC voltage to convert the rectified voltage of direct current; A first LED light emitting group and a second LED light emitting group each having at least one LED as a load supplied with current from the rectifier circuit; A commercial voltage selection switch for changing a circuit such that the first LED light emitting group and the second LED light emitting group are connected in series or in parallel; And measuring the effective value of the AC voltage and, when the measured effective value of the AC voltage is high, controlling the commercial voltage selection switch so that the first LED light emitting group and the second LED light emitting group are connected in series. And a controller for controlling the commercial voltage selection switch so that the first LED light emitting group and the second LED light emitting group are connected in parallel when the effective AC voltage effective value is low.
  • each of the first LED light emitting group and the second LED light emitting group has a plurality of light emitting blocks connected in series, and further includes a switch block composed of a plurality of switches to drive the optional one of the light emitting blocks in multiple stages.
  • the controller may control the switch block to adjust the number of lighting of the light emitting block according to the instantaneous voltage of the AC voltage.
  • a current source current limiting device controlled by the controller.
  • the controller may further include a function of calculating a sine wave design current value calculated based on the AC voltage and providing the calculated design current value as a control signal Csin, and adjusting the current supplied to the load.
  • the current source preferably adjusts the current supplied to the load by the control signal Csin of the controller.
  • the switches of the switch block are arranged in series or in parallel.
  • the load LED is divided into a first LED light emitting group and a second LED light emitting group, and when a large commercial power is provided, the first LED light emitting group and the second LED light emitting group Switching control so as to be connected in series, and when a small commercial power supply is provided, switching control so that the first LED group and the second LED group is connected in parallel.
  • the LED can be efficiently moved even if the commercial power fluctuates by moving from the place of use of the large commercial power supply (eg 220V) to the place of use of the small commercial power supply (eg 110V) or vice versa.
  • the LEDs can be driven with the same brightness.
  • FIG. 1 is a view showing a conventional LED lighting apparatus.
  • FIG. 3 is a view showing a conventional multi-stage driving LED lighting device.
  • FIG. 5 is a circuit of a first embodiment of the present invention.
  • 6 is a light emitting module linear model suitable for the first embodiment of the present invention.
  • Fig. 10 is a circuit of a third embodiment of the present invention.
  • FIG. 11 is a current waveform according to a third embodiment of the present invention.
  • 13 is a light emitting module linear model suitable for the fourth embodiment of the present invention.
  • the present invention divides an LED array as a load into two light emitting groups, and drives two light emitting groups in series when a high commercial voltage (for example, 220V) is supplied.
  • a high commercial voltage for example, 220V
  • a low commercial voltage for example, 110V
  • two light emitting groups are connected in parallel so that all light emitting blocks are turned on even at a low commercial voltage.
  • a circuit configuration includes an AC power supply 1, a rectifier circuit 2, and a load, a controller 3, and a second LED light emitting group 7 and a second LED light emitting group 8. And a commercial voltage selection switch implemented by the first commercial voltage switch VSW1a and the second commercial voltage switch VSW1b.
  • the first light emitting group 7 and the second light emitting group 8 are composed of one or more LEDs, and a plurality of LEDs may be configured in a series arrangement, a parallel arrangement, or a serial / parallel arrangement. Since the first light emitting group 7 and the second light emitting group 8 may be configured by a well-known technique, a detailed description thereof will be omitted herein for the sake of simplicity.
  • the controller 3 measures the effective value of the AC voltage, and when the high commercial voltage (for example, 220V) is supplied, the first light emitting group 7 and the second light emitting group 8 are connected in series.
  • the commercial voltage selection switch VSW1a (VSW1b) generates a control signal LVS1 (Line Voltage Selection) and a low commercial voltage (for example, 110V) is supplied, the first light emitting group 7 and the first voltage are supplied. It is preferable to generate the signal LVS1 for controlling the commercial voltage selection switches VSW1a and VSW1b so that the two light emitting groups 8 are connected in parallel.
  • the first commercial voltage switch VSW1a allows the second light emitting group 8 to be connected in series with the first light emitting group 7 when a high commercial voltage is supplied, and the second commercial voltage switch VSW1a when the low commercial voltage is supplied. It is preferable that the light emitting group 8 is connected to the rectified voltage Vrect to operate in parallel with the first light emitting group 7.
  • the second commercial voltage switch VSW1b is cut off when a high commercial voltage is supplied, so that the second light emitting group 8 is connected in series with the first light emitting group 7, and when the low commercial voltage is supplied, the second commercial voltage switch VSW1b is turned on. Therefore, it is preferable to connect the output terminal of the first light emitting group 1 with the ground Vss.
  • the straight line model 52 shows the characteristic curve 50 as a simple linear model. It can be seen from FIG. 6 that the threshold voltage of the linear model 52 is 132V and the rectified voltage flowing 20mA is 220V.
  • the linear model 52 is an example of a model to be applied when a high commercial voltage is supplied. That is, when the first light emitting group 7 and the second light emitting group 8 are connected in series to drive the model.
  • Another light emitting group linear model 51 is to model each light emitting group when the light emitting group straight model 52 is equally divided into two light emitting groups. That is, the first light emitting group 7 and the second light emitting group 8 are modeled. Since the linear model 51 has an equivalent series resistance of 1/2 than the linear model 52, the threshold voltage is lowered to 66V, which is 1/2 of the conventional 132V, and a voltage of 20 mA is applied. It is lowered to 110V, which is 1/2 at 220V.
  • FIG. 7 shows simulation results of the commercial voltage 220V and the commercial voltage 110V using the linear model 51 and the linear model 52 for one period of the rectified voltage.
  • the current waveform 52AA is connected to the first light emitting group 7 and the second light emitting group 8 in series when 220 V, which is a high commercial voltage, is supplied to the load. This is the result of simulation of the flowing current.
  • each of the light emitting groups is performed by the linear model 51. This is the result of simulating the current flowing in the
  • the time when the high commercial voltage 220V passes the threshold voltage 132V and the time when the low commercial voltage 110V passes the threshold voltage 66V are the same.
  • the instantaneous current by the linear model 52 used for the high commercial voltage and the instantaneous current by the linear model 51 used for the low commercial voltage are equal to 20 mA when the rectified voltage is 90 degrees, the model 51 The currents by 52 are all represented by the same waveform 52AA.
  • the current waveform 51AA is driven when the first light emitting group 7 and the second light emitting group 8 are connected in parallel when the commercial voltage 110V is supplied, so that the current supplied from the AC power source 1 emits light. It shows that the current flowing in the group is doubled. In other words, the waveform doubled by the current waveform 52AA is the waveform 51AA.
  • the current waveform 52S is a sinusoidal (sine) waveform in phase with the rectified voltage when the commercial voltage of 220 V is supplied, and the current waveform 51S is supplied with a commercial voltage of 110 V, indicating an ideal current waveform having a power factor of 1. will be.
  • the current waveform 51S of the low commercial power supply is twice as high as the current waveform 52S of the high commercial power. This is because the same power is required to realize the same light brightness regardless of high and low commercial voltages. In other words, if the voltage is reduced to 1/2, the current should be increased by 2 times.
  • FIG. 8 is a circuit of the LED lighting apparatus according to the second embodiment of the present invention, which is an improvement of the prior art 2. As shown in FIG.
  • a circuit configuration includes an AC power supply 1, a rectifier circuit 2, a load including a first LED light emitting group 11 and a second LED light emitting group 12, and the first LED light emitting group 12.
  • the controller 4 the current sources 11a, 12a, 13a and 14a, and switches SW1a and SW2a arranged in parallel, constituting a switch block for controlling the flow of current by the command of the controller 4; (SW3a) (SW4a) and a commercial voltage selection switch (VSW2).
  • each of the first and fourth light emitting blocks 11a to 12b constituting the first LED light emitting group 11 and the second LED light emitting group 12 is composed of one or more LEDs, Multiple LEDs can be configured in series, in parallel, or in series / parallel arrays. Since the first light emitting block 11a to the fourth light emitting block 12b may be configured by a well-known technique, a detailed description thereof will be omitted for simplicity of description.
  • the controller 4 measures the AC voltage rms value and connects the first light emitting group 11 and the second light emitting group 12 in series when a high commercial voltage (for example, 220V) is supplied.
  • a high commercial voltage for example, 220V
  • the controller 4 measures the AC voltage rms value and sets the first switch SW1a to the fourth switch SW4a in the same manner as in the prior art when a high commercial voltage (for example, 220V) is supplied. Control method, and when a low commercial voltage (for example, 110V) is supplied, the first light emitting block 11a and the first light emitting block 11a of the first LED light emitting group 11 are first. It is preferable to conduct or block the third light emitting block 12a as the light emitting block in the same manner. That is, according to the order of the light emitting blocks in the first LED light emitting group 11 and the second light emitting group, it is preferable that the switches of the same order are controlled to have the same operation state.
  • a high commercial voltage for example, 220V
  • a low commercial voltage for example, 110V
  • the switches of the same order are controlled to have the same operation state.
  • the commercial voltage selection switch VSW2 allows the second light emitting group 12 to be connected in series with the first light emitting group 11 when a high commercial voltage is supplied, and the second light emission when a low commercial voltage is supplied. It is preferable that the input terminal of the group 12 is connected to the rectified voltage Vrect to be connected in parallel with the first light emitting group 11.
  • the controller 4 measures the AC voltage rms value and supplies the load by the respective current sources I1a, I2a, I3a, I4a when a low commercial voltage (for example, 110V) is supplied. It is preferable to control the amount of current supplied to be different from the case of high commercial voltage.
  • a low commercial voltage for example, 110V
  • the first current source I1a to the fourth current source I4a are controlled to supply 5 mA, 10 mA, 15 mA, and 20 mA of current to the load when a high commercial voltage is supplied, and a low commercial voltage.
  • the current waveform 60S represents a sine wave current having the same phase as the rectified voltage and represents an ideal power supply current waveform having a power factor of 1
  • the current waveform 62A black dotted line
  • To fourth current sources I4a represent currents flowing in series connected by controlling to supply currents of 5 mA, 10 mA, 15 mA, and 20 mA to the load, respectively, when a high commercial voltage is supplied, and different current waveforms (61A, red).
  • the solid line controls the first current source I1a to the fourth current source I4a to supply 10 mA, 20 mA, 10 mA, and 20 mA of current to the load, respectively, when a low commercial voltage is supplied. It is shown.
  • the shaded area 61d represents a current amount that is insufficient when a low commercial voltage is supplied, compared to when a high commercial voltage is supplied, and is compared with the current waveform 920A and the current waveform 910A of FIG. It can be seen that this embodiment is further improved.
  • a circuit configuration including a load consisting of an AC power source 1, a rectifier circuit 2, a first LED light emitting group 7, and a second LED light emitting group 8, and a first commercial voltage switch ( And a commercial voltage selection switch implemented by VSW3a) and a second commercial voltage switch VSW3b, and a controller 5 and a current source CS1 under the control of the controller 5.
  • control signal Csin generated in the current source CS1 and the controller 5 added to the present embodiment will be described.
  • the controller 5 generates a sinusoidal (sine) wave signal of the same phase as the AC voltage, rectifies the sinusoidal (sine) wave signal (converts the negative voltage to a positive voltage), and also the rectified sinusoidal wave.
  • the current amount control signal Csin is made by adjusting the size of the current supply signal, and the current amount control signal Csin is supplied to the current source CS1.
  • the reason why the controller 5 generates a sine wave in phase with the AC voltage is because the AC current supplied from the AC power source 1 is a sinusoidal wave having the same phase as the AC voltage, and thus the power factor is improved. In addition, the load current flowing through the load will be obvious that the AC current is rectified.
  • the current source CS1 is disposed at both ends of the current source CS1 when the load current is greater than a current corresponding to the control signal Csin received from the controller 5 (usually called a desired current or design current).
  • the voltage across the load is adjusted to cause a voltage drop, so that a desired current is supplied to the load, and when the load current is lower than the desired current, the voltage across the current source CS1 is minimized (current source saturation voltage) to allow the load to flow. To allow the maximum current to flow.
  • the controller 5 when the controller 5 is lowered from the commercial voltage 220V to 110V by 1/2, the controller 5 preferably generates the desired current setting control signal Csin twice as high. This is due to the fact that in a low commercial power supply, the load is divided into two groups and driven in parallel, requiring twice the power current.
  • FIG 11 shows an example of the current waveform according to the present embodiment.
  • the current waveforms 72S, 72AL and 72AH are shown for one period of the rectified voltage of a commercial power supply of 220 V / 50 Hz, where the desired current, the sine wave current of the same phase as the rectified voltage, is the waveform 72 S. Represented by.
  • the current waveform 72AL shows the load current when the commercial power supply is supplied at the lower design limit value, which is a special case where the load current is always lower than the desired current in one period of the rectified voltage.
  • the current waveform 72AH shows the load current when the commercial power supply is supplied with a voltage higher than the design lower limit, and a voltage drop corresponding to the surplus voltage occurs at both ends of the current source CS1 in one period of rectified voltage.
  • the load current matches the desired current.
  • the current waveforms 71S, 71AL and 71AH are shown for one period of the rectified voltage of the 110 V / 50 Hz commercial power supply, where the desired current that is the sine wave current of the same phase as the rectified voltage is the waveform 71 S. )to be.
  • the desired current 71S is twice as high as the desired current 72S to achieve the same brightness.
  • the current waveform 71AL shows the load current when the commercial power supply is supplied at the lower design limit value, and shows a special case where the load current is always lower than the desired current in one period of the rectified voltage.
  • the current waveform 71AH shows a load current when the commercial power supply is supplied with a voltage higher than a design lower limit, and a voltage drop corresponding to the surplus voltage occurs at both ends of the current source CS1 in one period of rectified voltage.
  • the load current matches the desired current.
  • a circuit configuration includes an AC power supply 1, a rectifier circuit 2, a load including a first LED light emitting group 11 and a second LED light emitting group 12, and the first LED light emitting group 12.
  • each of the first and fourth light emitting blocks 11a to 12b constituting the first LED light emitting group 11 and the second LED light emitting group 12 is composed of one or more LEDs.
  • the four LEDs can be configured in series, parallel or serial / parallel arrays. Since the first light emitting blocks 11a to 4th light emitting blocks 12b may be configured by a well-known technique, detailed description thereof will be omitted for simplicity of description.
  • control signal Csin generated in the current source CS2 and the controller 6 added to the present embodiment will be described.
  • the controller 6 generates a sinusoidal (sine) wave signal of the same phase as the AC voltage, rectifies the sinusoidal (sine) wave signal (converts the negative voltage to a positive voltage), and also the rectified sinusoidal signal.
  • the magnitude of the (sine) wave is adjusted to generate a current amount control signal Csin, and the control signal Csin is supplied to the current source CS2.
  • the reason why the controller 6 generates a sinusoidal wave in phase with the alternating voltage is because the alternating current supplied from the alternating current power source 1 is a sinusoidal wave having the same phase as the alternating voltage so that the power factor is improved.
  • the load current flowing through the load will be obvious that the AC current is rectified.
  • the current source CS2 applies a voltage drop across the current source CS2 when the load current is greater than a current corresponding to the control signal Csin received from the controller 6 (hereinafter referred to as a desired current).
  • a desired current a current corresponding to the control signal Csin received from the controller 6
  • the load can flow by making the voltage across the current source CS2 minimum (current source saturation voltage). The maximum current flows.
  • the controller 6 when the controller 6 is 1/2 lower from the commercial voltage 220V to 110V, it is preferable to generate the desired control signal Csin twice as high. This is due to the fact that in a low commercial power supply, the load is divided into two groups and driven in parallel, requiring twice the power current.
  • 13 is a linear model of the light emitting block required for this embodiment.
  • the voltage-current characteristic curve 50 of the light emitting block is shown by referring to the characteristic curve 950 in FIG.
  • the straight line model 74 represents the characteristic curve 50 as a simple linear model. It can be seen from FIG. 13 that the threshold voltage of the linear model 74 is 132V and the rectified voltage flowing at 20mA is 220V.
  • the light emission block linear model 71 models each light emission block when the light emission block linear model 74 is equally divided into four light emission blocks. That is, the first light emitting block 11a, the second light emitting block 11b, the third light emitting block 12a and the fourth light emitting block 12b are modeled. Since the linear model 71 has 1/4 equivalent series resistance than other linear models 74, the threshold voltage is lowered to 33V, which is 1/4 of the conventional 132V, and the voltage at which the current flows 20mA is It is lowered to 55V, which is 1/4 of 220V.
  • the light emission block linear model 72 models each light emission block when the light emission block linear model 74 is equally divided into two light emission blocks. That is, the first LED light emitting group 11 and the second LED light emitting group 12 are modeled. Since the linear model 72 has an equivalent series resistance of 1/2 than the linear model 74, the threshold voltage is lowered to 66 V, which is 1/2 of the conventional 132 V, and the voltage at which the current flows 20 mA is 1/2 of 220 V. Lowers to 110V.
  • the light emitting block linear model 73 divides the other light emitting block linear model 74 equally into four light emitting blocks and connects the three light emitting blocks in series. Since the linear model 73 has an equivalent series resistance of 3/4 than that of the other linear models 74, the threshold voltage is lowered to 99V, which is 3/4 of the conventional 132V, and the current flowing 20 mA is 3/4 of 220V. Lowers to 165V.
  • FIG. 14 illustrates a simulation result of an example in which the first LED light emitting group 11 and the second LED light emitting group 12 are connected and driven in series when a high commercial voltage is applied.
  • the voltage waveform (72V) shows one period of the rectified voltage of 230V / 50Hz, and the sine wave desired current which is in phase with the rectified voltage is shown by the current waveform (70S, dashed black line).
  • the current waveforms 71a and 71b are represented in conjunction with the voltage waveform 72V and the current of the first linear model 71 is connected to the voltage waveform 72V.
  • the current waveforms 72a and 72b are represented by the current waveforms 72a and 72b, and the current waveforms 73a and 73b are represented by the current of the third linear model 73 in connection with the voltage waveform 72V.
  • the current waveforms 74a and 74b are shown in conjunction with the voltage waveform 72V.
  • the waveform 72AA (red dotted line), which is actually the current flowing in the load, is the desired current 70S and the linear models 71a, 72a, 73a, 74a, 71b, 72b, 73b and 74b.
  • 'model currents' the magnitudes of the currents
  • FIG. 15 illustrates a simulation result of a case in which the first LED light emitting group 11 and the second LED light emitting group 12 are connected and driven in parallel when a low commercial voltage is applied.
  • the voltage waveform 71V shows one period of the rectified voltage of 120V / 50Hz, and the sine wave desired current having the same phase as the rectified voltage flowing through each of the light emitting groups 11 and 12 is the current waveform 70S, Black dashed line).
  • the current waveforms 71c and 71d are shown in connection with the voltage waveform 72V and the current of the linear model 71 is connected to the voltage waveform 72V. Shown are current waveforms 72c and 72d.
  • the waveform 71AA (the red dotted line), which is actually the current flowing in the load, is the magnitude of the current (hereinafter referred to as model current) by the desired current 70S and the linear models 71c, 72c, 71d and 72d.
  • model current the magnitude of the current (hereinafter referred to as model current) by the desired current 70S and the linear models 71c, 72c, 71d and 72d.
  • the model current is higher than the desired current (i.e., the design current)
  • the voltage across both loads is adjusted so that the load current matches the desired current.
  • the current source CS2 doubles the desired current at a low commercial power supply than the desired current at a high commercial power supply. It is natural to set a high brightness to achieve the same brightness.
  • the rectifier circuit, the current source, the controller, and the switch described in detail in the present embodiment can be manufactured in one semiconductor device.

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은 상용전원 2 종류를 지원하는 교류구동 LED 조명장치에 관한 것으로, 특히 부하인 LED를 제1 LED 발광그룹과 제2 LED 발광그룹으로 분리하고, 이때 크기가 큰 상용전원이 제공되는 경우에는 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬로 연결되도록 스위칭 제어하고, 크기가 작은 상용전원이 제공되는 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 병렬로 연결되도록 스위칭 제어하여 상용전원의 변동에도 LED를 효율적이면서 동일한 밝기로 구동할 수 있는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치에 관한 것이다.

Description

상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치
본 발명은 상용전원 2 종류를 지원하는 교류구동 LED 조명장치에 관한 것으로, 더욱 상세하게는 부하인 LED를 제1 LED 발광그룹과 제2 LED 발광그룹으로 분리하고, 이때 크기가 큰 상용전원이 제공되는 경우에는 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬로 연결되도록 스위칭 제어하고, 크기가 작은 상용전원이 제공되는 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 병렬로 연결되도록 스위칭 제어하여 상용전원의 변동에도 LED를 효율적이면서 동일한 밝기로 구동할 수 있는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치에 관한 것이다.
발광다이오드는 전류가 흐르면 빛을 방출하는 전광변환 반도체소자로서, 표시기 백라이트 등에 널리 사용되고 있으며, 기술의 발달로 전광변환 효율이 기존의 백열등 및 형광등보다 높아져서 현재는 일반 조명용으로 그 범위를 넓혀가고 있다.
그러나, 발광 다이오드(Light Emitting diode, LED)는 미량의 전압변동에도 전류가 크게 변화된다. 이 때문에 정밀한 전류제어가 요구된다.
<종래기술 1>
종래의 LED 조명장치는 도 1에 도시된 바와 같이, 교류전압을 공급하는 교류전원(910), 상기 교류전원(910)으로부터 공급받은 교류전압을 직류의 정류전압(Vrect)으로 변환하는 정류회로(940), 상기 정류회로(940)의 출력인 정류전압(Vrect)으로 구동되는 LED 발광블럭(970) 및 상기 LED 발광블럭(970)의 전류기울기를 설정하는 전류 기울기 설정 저항(930)을 포함하여 구성된다.
그런데 종래의 LED 조명장치에서는, 교류입력전압이 낮아지면 LED 발광블럭 (970)에 흐르는 전류도 계속 감소하고, 상기 발광블럭(970)의 문턱전압 이하가 되면 상기 발광블럭(970)은 소등되어 조명으로서의 기능을 상실한다.
이하 도 2를 사용하여 종래기술 1의 문제점을 설명한다.
전압-전류 특성곡선(950)은 LED 를 다수개 직렬로 배열하여 만든 서울반도체사의 제품 AX3220 의 특성곡선을 인용한 것으로서, 전류가 본격적으로 흐르기 시작하는 문턱전압은 132V 임을 알 수 있다.
즉, 상용전원 220V 에서는 상기 전압-전류 특성곡선(950)을 갖는 발광블럭(970)은 점등이 잘 되지만, 상용전원 110V 에서는 상기 발광블럭(970)의 문턱전압이 상용전원보다 높은 132V 이기 때문에 점등이 되지 않는 문제점이 있다.
<종래기술 2>
이하 도 3 및 도 4를 사용하여 설명한다.
도 3은 또 다른 종래시술 회로를 도시한 것으로, 흔히 "다단 LED 발광블럭 구동회로"라 불리 운다.(이하, "다단구동회로"라 칭함)
먼저, 도 3의 회로구성은, 교류전압을 공급하는 교류전원(910), 상기 교류전원 (910)으로부터 공급받은 교류전압을 직류의 정류전압(Vrect)으로 변환하는 정류회로(940), 발광블럭(871)(872)(873)(874)들로 구성된 부하, 순시 정류전압에 따라 점등될 발광블럭의 개수를 제어하는 제어기(941), 병렬로 배치된 스위치 (SW1)(SW2)(SW3)(SW4)들로 구성되며 실제 부하전류의 경로를 차단/도통 시키는 스위치블럭 및 점등되는 발광블럭 개수에 따라 전류를 공급하는 전류원 (I1)(I2)(I3)(I4)를 포함하여 구성된다.
이하, 도 4를 사용하여 상기 도 3 회로의 동작을 설명한다.
먼저, 전압파형(920V)는 상용전원 220V / 50Hz 의 정류파형을 도시한 것이다. 그리고 전류파형(920A)는, 상기 도 3의 회로에 상기 전압파형(920V)가 공급될 경우에 바람직한 전류파형의 일 예를 도시한 것이다.
이하, 상기 바람직한 전류파형(920A)에서 순시정류전압이 각각 50V, 100V, 150V 및 200V 인 경우를 기준으로 살펴본다.
1)순시정류전압이 50V 미만인 경우에는, 전체를 소등(이하, "0단 점등"이라 칭함)한다. 즉 상기 제어기(941)가 상기 제1 스위치(SW1) 내지 제4 스위치(SW4)를 모두 차단하여 상기 제1 발광블럭(871) 내지 제4 발광블럭(874) 모두를 소등하는 것이다.
2)순시정류전압이 50V 이상 100V 미만인 경우에는, 발광블럭을 1개만 점등(이하, "1단 점등"이라 칭함)한다. 즉 상기 제어기(941)이 제1 스위치(SW1)을 도통시켜서 제1 전류원(I1)을 사용하여 제1 발광블럭(871)만 점등하는 것이다. 이때 흐르는 부하전류는 5mA 라고 도 3에 도시되어 있다.
3)순시정류전압이 100V 이상 150V 미만인 경우에는, 발광블럭을 2개를 점등(이하, "2단 점등"이라 칭함)한다. 즉 상기 제어기(941)이 제1 스위치(SW1)을 차단하고 제2 스위치(SW2)를 도통시켜서 제2 전류원(I2)을 사용하여 제1 발광블럭(871) 및 제2 발광블럭(872)를 점등하는 것이다. 이때 흐르는 부하전류는 10mA 라고 도 3에 도시되어 있다.
*4)순시정류전압이 150V 이상인 200V 미만인 경우에는, 발광블럭을 3개를 점등(이하, "3단 점등"이라 칭함)한다. 즉 상기 제어기(941)가 제1 스위치(SW1) 및 제2 스위치(SW2)를 차단하고 제3 스위치(SW3)는 도통시켜서 제3 전류원(I3)을 사용하여 제1 발광블럭(871) 내지 제3 발광블럭(873) 모두를 점등하는 것이다. 이때 흐르는 부하전류는 15mA 라고 도 3에 도시되어 있다.
5)순시정류전압이 200V 이상인 경우에는, 발광블럭을 4개를 점등(이하, "4단 점등"이라 칭함)한다. 즉 상기 제어기(941)가 제1 스위치(SW1) 내지 제3 스위치(SW3)을 모두 차단하고 제4 스위치(SW4)는 도통시켜서 제4 전류원(I4)을 사용하여 제1 발광블럭(871) 내지 제4 발광블럭(874) 모두를 점등하는 것이다. 이때 흐르는 부하전류는 20mA 라고 도 3에 도시되어 있다.
이상, 상기 0단 점등 내지 4단 점등의 결과로 구성되는 상기 부하 전류파형 (920A)를 살펴보았다.
상기 다단구동회로는 1) 역율이 개선되고, 2)정류전압 한 사이클에서 LED 발광블럭의 점등기간이 종래보다 길어져서 밝기가 종래보다 밝아지는 효과가 있지만, 아래와 같은 문제점이 있다.
도 4에 상기 종래기술 2의 문제점을 설명하기 위하여, 전압파형(910V) 및 부하 전류파형(910A)를 나타내었다. 상기 전압파형(910V)는 상용전원 110V / 50Hz 의 정류전압 한 싸이클을 도시한 것이고, 전류파형(910A)는 상기 전압파형 (910V)가 상기 도 2 회로에 공급되었을 때 상기 0단 점등 내지 2단 점등에 의한 부하 전류파형(910A) 이다.
상기 도 2회로에서 상용전압이 220V 에서 110V 로 변경 되었을때 발생하는, 첫 번째 문제점으로는, 발광블럭이 1/2 만 점등되기 때문에 밝기가 약 1/2 로 낮아진다. 그리고 두 번째 문제점으로는 부하전류의 최대값이 220VAC 의 1/2 로 낮아지고, 점등기간도 220VAC 보다 짧아진다. 즉, 상용전압이 220V 에서 110V 로 변경되면 밝기가 1/4 이하로 줄어는 문제점이 있다.
이상의 문제점은, 전류 흐름을 제어하는 상기 제1 스위치(SW1) 내지 제4 스위치(SW4)가 병렬로 배치된 다단구동회로에서만 발생하는 것이 아니고, 상기 제1 스위치(SW1) 내지 제4 스위치(SW4)가 직렬로 배치된 다단구동회로(본 발명인이 출원한 출원특허 10-2010-0136001에 상세히 설명되어 있음)에서도 발생함은 당연하다.
본 발명의 전술한 바와 같은 문제점을 해결하기 위하여 제안된 것으로서, 큰 상용전원이 제공되는 경우에는 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬로 연결되도록 스위칭 제어하고, 크기가 작은 상용전원이 제공되는 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 병렬로 연결되도록 스위칭 제어하여 상용전원의 변동에도 LED를 효율적이면서 동일한 밝기로 구동할 수 있는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치를 제공하고자 한다.
이를 위해, 본 발명에 따른 상용전원 2 종류를 지원하는 교류구동 LED 조명장치는 교류전압을 정류하여 직류의 정류전압으로 변환하는 정류회로와; 상기 정류회로로부터 전류를 공급받는 부하로서 각각 1개 이상의 LED를 갖는 제1 LED 발광그룹 및 제2 LED 발광그룹과; 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬 또는 병열 중 어느 하나로 연결되도록 회로를 변경하는 상용전압 선택스위치; 및 상기 교류전압의 실효값을 측정하고 상기 측정된 교류전압의 실효값이 높은 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬로 연결되도록 상기 상용전압 선택스위치를 제어하고, 상기 측정된 교류전압 실효값이 낮은 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 병렬로 연결되도록 상기 상용전압 선택스위치를 제어하는 제어기;를 포함하는 것을 특징으로 한다.
이때, 상기 제1 LED 발광그룹과 제2 LED 발광그룹은 각각 직렬로 연결된 복수개의 발광블럭을 구비하고, 상기 각 발광블럭들 중 선택적 것을 다단으로 구동하기 위해 다수개의 스위치로 구성된 스위치블럭을 더 포함하며, 상기 제어기는 상기 교류전압의 순시전압에 따라 상기 발광블럭의 점등 개수를 조절하도록 상기 스위치블럭을 제어하는 것이 바람직하다.
또한, 상기 제어기에 의하여 제어되는 전류원(전류제한장치)을 더 포함하는 것이 바람직하다.
또한, 상기 제어기는 상기 교류전압을 기초로 산정된 정현파 설계전류 값을 산출하고 상기 산출된 설계전류 값을 제어신호(Csin)로서 제공하는 기능을 더 포함하며, 상기 부하에 공급되는 전류를 조절하는 전류원은 상기 제어기의 제어신호(Csin)에 의하여 상기 부하로 공급되는 전류를 조절하는 것이 바람직하다.
또한, 상기 스위치블럭의 스위치는 직렬 또는 병렬로 배치되어 있는 것이 바람직하다.
이상과 같은 본 발명에 의하면, 부하인 LED를 제1 LED 발광그룹과 제2 LED 발광그룹으로 분리하고, 이때 크기가 큰 상용전원이 제공되는 경우에는 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬로 연결되도록 스위칭 제어하고, 크기가 작은 상용전원이 제공되는 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 병렬로 연결되도록 스위칭 제어한다.
따라서, 크기가 큰 상용전원(예: 220V)을 제공하는 사용장소에서 크기가 작은 상용전원(예: 110V)을 제공하는 사용장소로 이동하거나, 혹은 그 반대로 이동하여 상용전원이 변동되더라도 LED를 효율적으로 구동할 수 있음은 물론, 계속해서 동일한 밝기로 LED를 구동할 수 있게 한다.
도 1은 종래의 LED 조명장치를 나타낸 도면이다.
도 2는 종래기술의 따른 전압-전류 특성곡선이다.
도 3은 종래의 다단구동 LED 조명장치를 나타낸 도면이다.
도 4는 종래의 다단구동회로에 따른 전류 파형이다.
도 5는 본 발명의 제1 실시예 회로이다.
도 6은 본 발명에 제1 실시예에 적합한 발광모듈 직선모델 이다.
도 7은 본 발명의 제1 실시예 따른 전류파형이다.
도 8은 본 발명의 제2 실시예 회로이다.
도 9은 본 발명의 제3 실시예 따른 전류파형이다.
도 10는 본 발명의 제3 실시예 회로이다.
도 11은 본 발명의 제3 실시예 따른 전류파형이다.
도 12은 본 발명의 제4 실시예 회로이다.
도 13은 본 발명에 제4 실시예에 적합한 발광모듈 직선모델 이다.
도 14은 본 발명의 제4 실시예에 따른 전류파형의 예이다.
도 15은 본 발명의 제4 실시예에 따른 또 다른 전류파형의 예이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때 첨부된 도면에서 동일한 구성요소는 가능한 동일한 부호로 나타내고 있음에 유의하여야 한다. 또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석해서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 그리고 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공기구성 및 기능에 대한 상세한 설명을 생략한다.
먼저 본 발명의 핵심 개념에 대해 설명하면, 본 발명은 부하인 LED 어레이를 2개의 발광그룹으로 나누고, 높은 상용전압(일 예를 들면 220V)이 공급될 때는 2개의 발광그룹을 직렬로 연결하여 구동하고, 낮은 상용전압(일 예를 들면 110V)이 공급될때는 2개의 발광그룹을 병렬로 연결하여 낮은 상용전압에서도 모든 발광블럭이 점등 되도록 하는 것이다.
실시예 1
이하 도 5 내지 도 7을 사용하여 본 발명의 제1 실시예를 상세히 설명한다.
도 5는 본 발명의 제1 실시예에 따른 LED 조명장치 회로로서 종래기술 1 을 개선한 것이다.
먼저 도 5를 참조하여 회로구성을 살펴보면, 교류전원(1), 정류회로(2) 그리고 제1 LED 발광그룹(7) 및 제2 LED 발광그룹(8)으로 구성된 부하, 제어기(3) 및 제1 상용전압 스위치(VSW1a)와 제2 상용전압 스위치(VSW1b)로 구현되는 되는 상용전압 선택스위치를 포함하여 구성된다.
바람직하게, 상기 제1 발광그룹(7) 및 제2 발광그룹(8)은 1개 이상의 LED 로 구성되며, 다수개의 LED 가 직렬배열, 병렬배열 또는 직/병렬 배열로 구성될 수 있다. 상기 제1 발광그룹(7) 및 제2 발광그룹(8)은 널리 알려진 공지기술로 구성할 수 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다
그리고, 상기 제어기(3)은, 교류전압의 실효값을 측정하여 높은 상용전압 (일 예를 들면 220V)이 공급될 때는 상기 제1 발광그룹(7) 및 제2 발광그룹(8)이 직렬로 연결되도록 상용전압 선택스위치(VSW1a)(VSW1b)를 제어신호(LVS1, Line Voltage Selection)를 발생하고, 낮은 상용전압(일 예를 들면 110V)이 공급될 때는 상기 제1 발광그룹(7) 및 제2 발광그룹(8)이 병렬로 연결하도록 상용전압 선택스위치(VSW1a)(VSW1b)를 제어하는 신호(LVS1)을 발생하는 것이 바람직하다.
그리고 상기 제1 상용전압 스위치(VSW1a)는 높은 상용전압이 공급될 때는 제2 발광그룹(8)이 제1 발광그룹(7)과 직렬로 연결되도록 하고, 낮은 상용전압이 공급될 때는 상기 제2 발광그룹(8)이 정류전압(Vrect)와 연결되어서 제1 발광그룹(7)과 병렬이 되도록 동작하는 것이 바람직하다.
또한 상기 제2 상용전압 스위치(VSW1b)는 높은 상용전압이 공급될 때는 차단되어서 제2 발광그룹(8)이 제1 발광그룹(7)과 직렬로 연결되도록 하고, 낮은 상용전압이 공급될 때는 도통 되어서 상기 제1 발광그룹(1)의 출력단을 접지(Vss)와 연결하는 것이 바람직하다.
도 6은 상기 부하인 발광그룹을 선형으로 모델링한 것이다.
먼저, 발광그룹의 전압-전류 특성곡선(50)은 종래기술을 설명한 도 4에서의 특성곡선(950)을 인용하여 나타낸 것이다. 상기 특성곡선(50)을 간단한 선형 모델로 나타낸 것이 직선모델(52)이다. 상기 직선모델(52)의 문턱전압은 132V 이고 20mA 가 흐르는 정류전압은 220V 임을 도 6에서 알 수 있다. 상기 직선모델(52)는 높은 상용전압이 공급될 때에 적용할 모델의 일 예이다. 즉, 상기 제1 발광그룹(7) 및 제2 발광그룹(8)을 직렬로 연결하여 구동할 때를 모델링 한 것이다.
그리고 또 다른 발광그룹 직선모델(51)은 상기 발광그룹 직선모델(52)를 2개의 발광그룹으로 균등하게 나누었을 때 각 발광그룹을 모델링 한 것이다. 즉, 제1 발광그룹(7) 및 제2 발광그룹(8)을 모델링 한 것이다. 상기 직선모델(51)은 상기 직선모델(52)보다 등가직렬저항(Equivalent Series Resistance)이 1/2 이기 때문에 문턱전압이 종래 132V 에서 1/2 인 66V 로 낮아지고, 전류가 20mA가 흐르는 전압이 220V 에서 1/2 인 110V로 낮아진다.
도 7은 상기 직선모델(51)과 상기 직선모델(52)를 사용하여 상용전압 220V 및 상용전압 110V 에 대하여 모의시험한 결과를 정류전압 한 주기에 대하여 나타낸 것이다.
상기 도 7에서, 전류파형(52AA)는 높은 상용전압인 220V 가 공급되었을 때 제1 발광그룹(7) 및 제2 발광그룹(8)이 직렬로 연결되어서, 상기 직선모델(52)로 부하에 흐르는 전류를 모의시험한 결과이다.
또한 상기 전류파형(51AA)는 상용전압 110V 가 공급되었을 때 상기 제1 발광그룹(7) 및 상기 제2 발광그룹(8)이 병렬로 연결되는 경우, 상기 직선모델(51)로 각각의 발광그룹에 흐르는 전류를 모의시험한 결과이다.
높은 상용전압 220V 가 문턱전압 132V 를 통과하는 시각과, 낮은 상용전압 110V 가 문턱전압 66V 를 통과하는 시각은 동일하다. 또한 정류전압이 위상 90도일 때 높은 상용전압에 사용된 직선모델(52)에 의한 순시전류와 낮은 상용전압에 사용된 직선모델(51)에 의한 순시전류가 모두 20mA 로 같으므로 상기 모델(51)(52)에 의한 전류는 모두 동일한 파형(52AA)으로 나타난다.
전류파형(51AA)는 상용전압 110V 가 공급되는 경우 상기 제1 발광그룹(7)과 상기 제2 발광그룹(8)이 병렬로 연결되어 구동되므로 상기 교류전원(1)에서 공급되는 전류는 각 발광그룹에 흐르는 전류의 2배가 된 것을 나타낸 것이다. 즉 전류파형(52AA) 2배가 된 파형이 파형(51AA)이다.
전류파형(52S)는 상용전압 220V 가 공급되었을 때, 그리고 전류파형(51S)는 상용전압 110V 가 공급되었을 때, 정류전압과 동일한 위상인 정현(사인)파여서 역율이 1 인 이상적인 전류파형을 나타낸 것이다.
여기서 상기 전류파형(51S) 및 상기 전류파형(52S)를 비교해 보면, 낮은 상용전원의 전류파형(51S)의 경우가, 높은 상용전원의 상기 전류파형(52S) 보다 2배 높은 것을 알 수 있다. 이것은 상용전압의 높고 낮음에 관계없이 동일한 빛 밝기를 구현하기 위하여 동일한 전력이 필요하기 때문이다. 즉 전압이 1/2 로 감소하면 전류는 2배 증가하여야 함을 나타낸다.
이상 본 발명의 제1 실시예를 상세히 설명하였다.
실시예 2
이하 도 8 내지 도 9을 사용하여 본 발명의 제2 실시예를 상세히 설명한다.
도 8은 본 발명의 제2 실시예에 따른 LED 조명장치의 회로로서, 종래기술 2 를 개선한 것이다.
먼저 도 8를 참조하여 회로구성을 살펴보면, 교류전원(1), 정류회로(2) 그리고 제1 LED 발광그룹(11)과 제2 LED 발광그룹(12)으로 구성된 부하, 상기 제1 LED 발광그룹(11)을 구성하는 제1 발광블럭(11a) 및 제2 발광블럭(11b), 상기 제2 LED 발광그룹(12)을 구성하는 제3 발광블럭(12a) 및 제4 발광블럭(12b), 제어기(4), 전류원 (11a)(12a)(13a)(14a), 상기 제어기(4)의 명령에 의하여 전류의 흐름을 제어하는 스위치블럭을 구성하며 병렬로 배치된 스위치(SW1a)(SW2a)(SW3a)(SW4a) 및 상용전압 선택스위치(VSW2)을 포함하여 구성된다.
바람직하게, 상기 제1 LED 발광그룹(11) 및 제2 LED 발광그룹(12)을 구성하는 상기 제1 발광블럭(11a) 내지 제4 발광블럭(12b)은 각각 1개 이상의 LED로 구성되며, 다수개의 LED가 직렬배열, 병렬배열 또는 직/병렬 배열로 구성될 수 있다. 상기 제1발광블럭(11a) 내지 제4발광블럭(12b)은 널리 알려진 공지기술로 구성할 수 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
그리고, 상기 제어기(4)는 교류전압 실효값을 측정하여 높은 상용전압(일 예를 들면 220V)이 공급될 때는 상기 제1 발광그룹(11) 및 상기 제2 발광그룹(12)를 직렬로 연결하도록 상기 상용전압 선택스위치(VSW2)를 제어하는 제어신호(LVS2, Line Voltage Selection)를 발생하고, 낮은 상용전압(일 예를 들면 110V)이 공급될 때는 상기 상기 제1 발광그룹(11) 및 상기 제2 발광그룹(12)을 병렬로 연결하도록 상용전압 선택스위치(VSW2)를 제어하는 제어신호(LVS2)을 발생하는 것이 바람직하다.
또한, 바람직하게 제어기(4)는 교류전압 실효값을 측정하여 높은 상용전압(일 예를 들면 220V)이 공급될 때는 상기 제1 스위치(SW1a) 내지 제4 스위치(SW4a)를 종래의 기술과 동일한 방법으로 제어하고, 낮은 상용전압(일 예를 들면 110V)이 공급될때는 제1 LED 발광그룹(11)의 첫번째 발광블럭인 제1 발광블럭(11a)와 제2 LED 발광그룹(12)의 첫번째 발광블럭인 제3발광블럭(12a)를 동일하게 도통 또는 차단하는 것이 바람직하다. 즉, 제1 LED 발광그룹(11)과 제2 발광그룹 내부에 있는 발광블럭의 순서에 따라 동일한 순서의 스위치는 동일한 조작상태를 가지도록 제어하는 것이 바람직하다.
그리고 상기 상용전압 선택스위치(VSW2)는 높은 상용전압이 공급될 때는 제2 발광그룹(12)이 제1 발광그룹(11)과 직렬로 연결되도록 하고, 낮은 상용전압이 공급될때는 상기 제2 발광그룹(12)의 입력단을 정류전압(Vrect)에 연결하여 제1 발광그룹 (11)과 병렬로 연결되도록 동작하는 것이 바람직하다.
또한, 바람직하게 상기 제어기(4)은 교류전압 실효값을 측정하여 낮은 상용전압(일 예를 들면 110V)이 공급될 때는 상기 각 전류원(I1a)(I2a)(I3a)(I4a)에 의하여 부하에 공급되는 전류량을 높은 상용전압의 경우와는 다르게 되도록 제어하는 것이 바람직하다.
구체적인 수치를 예를 들어 설명하면, 상기 제1 전류원(I1a) 내지 제4 전류원(I4a)는 높은 상용전압 공급될 때는 각각 전류 5mA, 10mA, 15mA 및 20mA를 부하에 공급하도록 제어하고, 낮은 상용전압이 공급될 때는 각각 전류 10mA, 20mA, 10mA 및 20mA 를 부하에 공급하도록 제어하는 것이 바람직하다.
도 9에서 전류파형(60S)는 정류전압과 동일한 위상인 정현(사인)파 전류로서 역율이 1 인 이상적인 전원 전류파형을 나타낸 것이고, 전류파형(62A, 검은색 점선)는 상기 제1 전류원(I1a) 내지 제4 전류원(I4a)는 높은 상용전압 공급될 때는 각각 전류 5mA, 10mA, 15mA 및 20mA를 부하에 공급하도록 제어하여 직렬로 연결된 부하에 흐르는 전류를 나타낸 것이며, 다른 전류파형(61A,붉은색 실선)는 상기 제1 전류원(I1a) 내지 제4 전류원(I4a)는 낮은 상용전압이 공급될 때 각각 전류 10mA, 20mA, 10mA 및 20mA를 부하에 공급하도록 제어하여 병렬로 연결된 각 부하에 흐르는 전류를 나타낸 것이다.
도 9에서 빗금친 면적(61d)은 낮은 상용전압이 공급될때 높은 상용전압이 공급될 때보다 부족한 전류량을 나타낸 것이고, 종래기술을 설명한 도 4의 전류파형 (920A) 및 전류파형(910A)과 비교하면 본 실시예가 더욱 개선된 것을 알 수 있다.
이상 본 발명의 일 실시예를 전류 흐름을 제어하는 상기 제1 스위치(SW1a) 내지 제4 스위치(SW4a)가 병렬로 배치된 다단구동회로를 사용하여 설명하였다. 그러나 상기 제1 스위치(SW1a) 내지 제4 스위치(SW4a)가 직렬로 배치된 다단구동회로에서도 구현 가능함은 당연하다.
실시예 3
이하 도 10 내지 도 11을 사용하여 본 발명의 제3 실시예를 상세히 설명한다.
도 10은 본 발명의 제1 실시예를 더욱 개선한 것이다.
먼저 도 10을 참조하여 회로구성을 살펴보면, 교류전원(1), 정류회로(2), 제1 LED 발광그룹(7) 및 제2 LED 발광그룹(8)으로 구성된 부하, 제1 상용전압 스위치(VSW3a) 및 제2 상용전압 스위치(VSW3b)로 구현되는 되는 상용전압 선택스위치, 제어기(5) 및 상기 제어기(5)의 제어를 받는 전류원(CS1)을 포함하여 구성된다.
본 실시예에 추가된 전류원(CS1) 및 제어기(5)에서 발생하는 제어신호(Csin)를 설명한다.
바람직하게 상기 제어기(5)는 교류전압과 동일한 위상의 정현(사인)파 신호를 발생시키고, 상기 정현(사인)파 신호를 정류(음전압을 양전압으로 변환하고)하고, 또한 상기 정류된 정현파의 크기를 조절하여 전류량 조절신호(Csin)을 만들고, 상기 전류량 조절신호(Csin)을 전류원(CS1)에 공급한다.
여기서 상기 제어기(5)가 교류전압과 동위상의 정현(사인)파를 발생하는 이유는 교류전원(1)에서 공급되는 교류전류가 교류전압과 동일한 위상의 정현파 이어서 역율이 개선되기를 바라기 때문이다. 그리고, 부하에 흐르는 부하전류는 상기 교류전류가 정류된 것임은 당연할 것이다.
그리고, 바람직하게 상기 전류원(CS1)은 부하전류가 상기 제어기(5)로부터 받은 상기 조절신호(Csin)에 상응하는 전류(보통 희망전류 혹은 설계전류라 함)보다 많으면, 상기 전류원(CS1) 양단에 전압강하를 유발하여서 상기 부하 양단전압을 조절하여, 희망전류가 부하에 공급되도록 하고, 부하전류가 상기 희망전류보다 낮으면 상기 전류원(CS1) 양단전압을 최소(전류원 포화전압)로 만들어 부하가 흘릴 수 있는 최대 전류가 흐르도록 하는 것이다.
상기 전류원(CS1) 및 제어신호(Csin)의 동작에 관한 상세한 설명은 본 발명인이 출원한 출원특허 10-2010-0129538 에 상세히 설명되어 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
또한, 상기 상용전압 선택스위치(VSW3a)(VSW3b)에 의한 상기 제1 LED 발광그룹(7) 및 제2 LED 발광그룹(8)과의 관계는 본 발명의 실시예 1과 동일하므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
본 실시예에서 상기 제어기(5)는 상용전압 220V 에서 110V 로 1/2 낮아지면 동일한 전력으로 부하를 구동하기 위하여, 상기 희망전류 설정용 제어신호 (Csin)를 2배 높게 발생하는 것이 바람직하다. 이는 낮은 상용전원에서는 부하가 2개의 그룹으로 나누어 병렬로 구동되어 전원전류가 2배 필요하기 때문임은 당연하다.
도 11은 본 실시예에 의한 전류파형 일 예를 도시한 것이다.
먼저 전류파형(72S)(72AL)(72AH)는 220V / 50Hz 상용전원의 정류전압 한 주기에 대하여 도시한 것이며, 여기서 정류전압과 동일한 위상의 정현(사인)파 전류인 희망전류는 파형(72S)로 나타내었다.
이때, 전류파형(72AL)은 상기 상용전원이 설계 하한값으로 공급될 때의 부하전류를 도시한 것으로서, 정류전압 한 주기에 있어서 부하전류가 희망전류보다 항상 낮은 특별한 경우이다.
그리고, 전류파형(72AH)은 상기 상용전원이 설계 하한값보다 높은 전압이 공급될때 부하전류를 도시한 것으로서, 정류전압 한 주기에 있어서 상기 전류원(CS1)의 양단에 잉여전압에 상응하는 전압강하가 생겨서 부하전류가 희망전류와 일치하는 구간이 있는 것을 도시한 일 예이다.
또한, 전류파형(71S)(71AL)(71AH)는 110V / 50Hz 상용전원의 정류전압 한 주기에 대하여 도시한 것이며, 여기서 정류전압과 동일한 위상의 정현(사인)파 전류인 희망전류는 파형(71S)이다. 상기 희망전류(71S)가 상기 희망전류(72S)보다 2배 높은 것은 동일한 밝기를 구현하기 위해서는 당연하다.
이때, 전류파형(71AL)은 상기 상용전원이 설계 하한값으로 공급될때의 부하전류를 도시한 것으로서, 정류전압 한 주기에 있어서 부하전류가 희망전류보다 항상 낮은 특별한 경우를 나타낸 것이다.
그리고, 전류파형(71AH)은 상기 상용전원이 설계 하한값보다 높은 전압이 공급될때 부하전류를 도시한 것으로서, 정류전압 한 주기에 있어서 상기 전류원(CS1)의 양단에 잉여전압에 상응하는 전압강하가 생겨서 부하전류가 희망전류와 일치하는 구간이 있는 것을 도시한 일 예이다.
실시예 4
이하 도 12 내지 도 15을 사용하여 본 발명의 제4 실시예를 상세히 설명한다.
도 12는 본 발명의 제2 실시예를 더욱 개선 한 것이다.
먼저 도 12를 참조하여 회로구성을 살펴보면, 교류전원(1), 정류회로(2) 그리고제1 LED 발광그룹(11)과 제2 LED 발광그룹(12)으로 구성된 부하, 상기 제1 LED 발광그룹(11)을 구성하는 제1 발광블럭(11a) 및 제2 발광블럭(11b), 상기 제2 LED 발광그룹(12)을 구성하는 제3 발광블럭(12a) 및 제4 발광블럭(12b), 제어기(6), 전류원(CS2), 상기 제어기(6)의 명령에 의하여 전류의 흐름을 제어하는 스위치블럭을 구성하며 병렬로 배치된 스위치(SW1b)(SW2b)(SW3b)(SW4b) 및 상용전압 선택스위치 (VSW4)을 포함하여 구성된다.
바람직하게, 상기 제1 LED 발광그룹(11) 및 제2 LED 발광그룹(12)을 구성하는 제1 발광블럭(11a) 내지 제4 발광블럭(12b)은 각각 1개 이상의 LED로 구성되며, 다수개의 LED가 직렬배열, 병렬배열 또는 직/병렬 배열로 구성될 수 있다. 상기 제1 발광블럭(11a) 내지 제4 발광블럭(12b)은 널리 알려진 공지기술로 구성할 수 있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
본 실시예에 추가된 전류원(CS2) 및 제어기(6)에서 발생하는 제어신호(Csin)를 설명한다.
바람직하게 상기 제어기(6)은 교류전압과 동일한 위상의 정현(사인)파 신호를 발생시키고, 상기 정현(사인)파 신호를 정류(음전압을 양전압으로 변환하고)하고, 또한 상기 정류된 정현(사인)파의 크기를 조절하여 전류량 조절신호(Csin)을 만들고, 상기 조절신호(Csin)을 전류원(CS2)에 공급한다.
여기서 상기 제어기(6)가 교류전압과 동위상의 정현(사인)파를 발생하는 이유는 교류전원(1)에서 공급되는 교류전류가 교류전압과 동일한 위상인 정현파여서 역율이 개선되기를 바라기 때문이다. 그리고, 부하에 흐르는 부하전류는 상기 교류전류가 정류된 것임은 당연할 것이다.
그리고, 바람직하게 상기 전류원(CS2)은 부하전류가 상기 제어기(6)로부터 받은 상기 조절신호(Csin)에 상응하는 전류(이하 희망전류라 칭함)보다 많으면, 상기 전류원(CS2) 양단에 전압강하를 유발하여서, 상기 부하 양단전압을 조절하여, 희망전류가 부하에 공급되도록 하고, 부하전류가 상기 희망전류보다 낮으면 상기 전류원(CS2) 양단전압을 최소(전류원 포화전압)로 만들어 부하가 흘릴 수 있는 최대 전류가 흐르도록 하는 것이다.
상기 전류원(CS2) 및 제어신호(Csin)의 동작에 관한 상세한 설명은 본 발명인이 출원한 출원특허 10-2010-0129538 에 상세히 설명되어있으므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다.
또한, 상기 상용전압 선택스위치(VSW4)에 의한 상기 제1 LED 발광그룹(11) 및 상기 제2 발광그룹(12)과의 관계는 본 발명의 실시예 2와 동일하므로, 본 명세서에서는 설명의 간략화를 위하여 이에 대한 구체적인 기술은 생략한다
본 실시예에서 상기 제어기(6)은 상용전압 220V 에서 110V 로 1/2 낮아지면 상기 희망전류 설정용 제어신호(Csin)를 2배 높게 발생하는 것이 바람직하다. 이는 낮은 상용전원에서는 부하가 2개의 그룹으로 나누어 병렬로 구동되어 전원전류가 2배 필요하기 때문임은 당연하다.
도 13은 본 실시예에 필요한 발광블럭을 선형으로 모델링한 것이다.
먼저, 발광블럭의 전압-전류 특성곡선(50)은 종래기술을 설명한 도 4에서의 특성곡선(950)을 인용하여 나타낸 것이다. 상기 특성곡선(50)을 간단한 선형 모델로 나타낸 것이 직선모델(74)이다. 상기 직선모델(74)의 문턱전압은 132V 이고 20mA 가 흐르는 정류전압은 220V 임을 도 13에서 알 수 있다.
그리고 발광블럭 직선모델(71)은 상기 발광블럭 직선모델(74)를 4개의 발광블럭으로 균등하게 나누었을 때 각 발광블럭을 모델링 한 것이다. 즉, 제1 발광블럭(11a), 제2 발광블럭(11b), 제3 발광블럭(12a) 및 제4 발광블럭(12b)를 모델링한 것이다. 상기 직선모델(71)은 다른 직선모델(74)보다 등가직렬저항(Equivalent Series Resistance)가 1/4이기 때문에 문턱전압이 종래 132V 의 1/4 인 33V 로 낮아지고, 전류가 20mA 가 흐르는 전압은 220V 의 1/4 인 55V 로 낮아진다.
그리고 발광블럭 직선모델(72)은 상기 발광블럭 직선모델(74)를 2개의 발광블럭으로 균등하게 나누었을 때 각 발광블럭을 모델링 한 것이다. 즉, 제1 LED 발광그룹(11) 및 제2 LED 발광그룹(12)를 모델링 한 것이다. 상기 직선모델(72)은 상기 직선모델(74)보다 등가직렬저항이 1/2 이기 때문에 문턱전압이 종래 132V 의 1/2 인 66V 로 낮아지고, 전류가 20mA 가 흐르는 전압은 220V 의 1/2 인 110V 로 낮아진다.
그리고 발광블럭 직선모델(73)은 다른 발광블럭 직선모델(74)를 4개의 발광블럭으로 균등하게 나누고 3개의 발광블럭을 직렬로 연결한 것이다. 상기 직선모델 (73)은 상기 다른 직선모델(74)보다 등가직렬저항이 3/4 이기 때문에 문턱전압이 종래 132V 의 3/4 인 99V 로 낮아지고, 전류가 20mA 흐르는 전압은 220V 의 3/4 인 165V 로 낮아진다.
도 14는 높은 상용전압이 인가되었을 때 상기 제1 LED 발광그룹(11)과 제2 LED 발광그룹(12)을 직렬로 연결하여 구동하는 경우의 일 예를 모의시험한 결과이다. 전압파형(72V)는 230V / 50Hz 의 정류전압 한 주기를 도시한 것이고, 정류전압과 동일한 위상인 정현(사인)파 희망전류는 전류파형(70S, 검은색 점선)로 도시하였다.
이때, 제1 직선모델(71)의 전류를 상기 전압파형(72V)와 연계하여 나타낸 것이 전류파형(71a)(71b) 이고, 제2 직선모델(72)의 전류를 전압파형(72V)와 연계하여 나타낸 것이 전류파형(72a)(72b) 이고, 제3 직선모델(73)의 전류를 전압파형(72V)와 연계하여 나타낸 것이 전류파형(73a)(73b) 이며, 제4 직선모델(74)의 전류를 전압파형(72V)와 연계하여 나타낸 것이 전류파형(74a)(74b) 이다.
*여기서 실제로 부하에 흐르는 전류인 파형(72AA, 붉은색 점선)는 상기 희망전류(70S)와 상기 직선모델(71a)(72a)(73a)(74a)(71b)(72b)(73b)(74b)에 의한 전류(이하 '모델전류'라 함)의 크기를 비교하여, 희망전류(즉, 설계전류)보다 모델전류가 높을 경우 전류원(CS2)에 의하여 전압강하가 일어나서 부하양단의 전압이 감소하여 부하전류를 희망전류와 일치하도록 한 것이다.
도 15는 낮은 상용전압이 인가 되었을 때 상기 제1 LED 발광그룹(11)과 제2 LED 발광그룹(12)을 병렬로 연결하여 구동하는 경우를 모의시험한 결과이다. 전압파형(71V)는 120V / 50Hz 정류전압의 한 주기를 도시한 것이고, 상기 각 발광그룹 (11)(12)에 흐르는 정류전압과 동일한 위상의 정현(사인)파 희망전류는 전류파형 (70S, 검은색 점선)로 도시하였다.
이때, 상기 직선모델(71)의 전류를 상기 전압파형(72V)와 연계하여 나타낸 것이 전류파형(71c)(71d) 이고, 다른 직선모델(72)의 전류를 상기 전압파형(72V)와 연계하여 나타낸 것이 전류파형(72c)(72d) 이다.
여기서 실제로 부하에 흐르는 전류인 파형(71AA, 붉은색 점선)는 상기 희망전류(70S)와 상기 직선모델(71c)(72c)(71d)(72d)에 의한 전류(이하 모델전류라 칭함)의 크기를 비교하여, 희망전류(즉, 설계전류)보다 모델전류가 높을 경우 전류원(CS2)에 의하여 전압강하가 일어나서 부하양단의 전압을 조전하여 부하전류를 희망전류와 일치하도록 한 것이다.
그리고, 제1 LED 발광그룹(11) 및 제2 LED 발광그룹(12)가 병렬로 연결되어 구동되기 때문에, 상기 전류원(CS2)는 낮은 상용전원에서 희망전류를 높은 상용전원에서 희망전류보다 2배 높게 설정하여야함은 동일한 밝기를 구현하기 위해서 당연하다.
이상 본 발명의 일 실시예를 전류 흐름을 제어하는 상기 제1 스위치(SW1b) 내지 상기 제4 스위치(SW4b)가 병렬로 배치된 다단구동회로를 사용하여 설명하였다. 그러나 상기 제1 스위치(SW1b) 내지 제4 스위치(SW4b)가 직렬로 배치된 다단구동회로에서도 구현 가능함은 당연하다.
이상 본 발병의 실시예를 중심으로 상세히 설명하였다. 본 실시예에서 상세히 설명된 정류회로, 전류원, 제어기 및 스위치는 하나의 반도체 소자로 제작할 수 있음은 당연하다.
또한, 본 발명에 대하여 그 바람직한 실시예를 살펴보았으나 이는 예시에 불과하며, 본 기술 분야의 통상적인 지식을 가진 자라면 이로부터 다양한 변형된 실시예가 가능함을 이해하여야 할 것이다. 그러므로 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술내용을 쉽게 설명하고, 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다.

Claims (5)

  1. 교류전압을 정류하여 직류의 정류전압으로 변환하는 정류회로와;
    상기 정류회로로부터 전류를 공급받는 부하로서 각각 1개 이상의 LED를 갖는 제1 LED 발광그룹 및 제2 LED 발광그룹과;
    상기 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬 또는 병열 중 어느 하나로 연결되도록 회로를 변경하는 상용전압 선택스위치; 및
    상기 교류전압의 실효값을 측정하고 상기 측정된 교류전압의 실효값이 높은 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 직렬로 연결되도록 상기 상용전압 선택스위치를 제어하고, 상기 측정된 교류전압 실효값이 낮은 경우에는 상기 제1 LED 발광그룹과 제2 LED 발광그룹이 병렬로 연결되도록 상기 상용전압 선택스위치를 제어하는 제어기;를 포함하는 것을 특징으로 하는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치.
  2. 제1항에 있어서,
    상기 제1 LED 발광그룹과 제2 LED 발광그룹은 각각 직렬로 연결된 복수개의 발광블럭을 구비하고,
    상기 각 발광블럭들 중 선택적 것을 다단으로 구동하기 위해 다수개의 스위치로 구성된 스위치블럭을 더 포함하며,
    상기 제어기는 상기 교류전압의 순시전압에 따라 상기 발광블럭의 점등 개수를 조절하도록 상기 스위치블럭을 제어하는 것을 특징으로 하는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치.
  3. 제2항에 있어서,
    상기 제어기에 의하여 제어되는 전류원(전류제한장치)을 더 포함하는 것을 특징으로 하는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치.
  4. 제3항에 있어서,
    상기 제어기는 상기 교류전압을 기초로 산정된 정현파 설계전류 값을 산출하고 상기 산출된 설계전류 값을 제어신호(Csin)로서 제공하는 기능을 더 포함하며,
    상기 부하에 공급되는 전류를 조절하는 전류원은 상기 제어기의 제어신호(Csin)에 의하여 상기 부하로 공급되는 전류를 조절하는 것을 특징으로 하는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치.
  5. 제2항 또는 제3항에 있어서,
    상기 스위치블럭의 스위치는 직렬 또는 병렬로 배치되어 있는 것을 특징으로 하는 상용전원 2 종류를 지원하는 교류구동 LED 조명장치.
PCT/KR2011/009561 2010-12-20 2011-12-13 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치 WO2012086956A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544389A JP2014505328A (ja) 2010-12-20 2011-12-13 商用電源の2種類を支援する交流駆動led照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0131064 2010-12-20
KR20100131064 2010-12-20
KR10-2011-0049434 2011-05-25
KR1020110049434A KR101397953B1 (ko) 2010-12-20 2011-05-25 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치

Publications (2)

Publication Number Publication Date
WO2012086956A2 true WO2012086956A2 (ko) 2012-06-28
WO2012086956A3 WO2012086956A3 (ko) 2012-10-11

Family

ID=46314579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009561 WO2012086956A2 (ko) 2010-12-20 2011-12-13 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치

Country Status (1)

Country Link
WO (1) WO2012086956A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760064B1 (en) 2012-12-21 2014-06-24 Posco Led Company Ltd. LED lighting apparatus with improved total harmonic distortion in source current
CN105075398A (zh) * 2013-03-29 2015-11-18 普司科Led股份有限公司 交流驱动型led照明装置
WO2017178293A1 (de) * 2016-04-11 2017-10-19 Hella Kgaa Hueck & Co. Baukastensystem für beleuchtungseinrichtungen für kraftfahrzeuge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050068222A (ko) * 2003-12-29 2005-07-05 엘지.필립스 엘시디 주식회사 액정 표시소자의 백-라이트 장치
JP2007066897A (ja) * 2005-08-26 2007-03-15 Philips Lumileds Lightng Co Llc 統合された電子機器を用いたバックライティングのためのled光源
KR20090011276U (ko) * 2008-04-30 2009-11-04 삼성물산 주식회사 비상 겸용 야간 점등 led
KR100997050B1 (ko) * 2010-05-06 2010-11-29 주식회사 티엘아이 광량을 향상시키는 엘이디 조명 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050068222A (ko) * 2003-12-29 2005-07-05 엘지.필립스 엘시디 주식회사 액정 표시소자의 백-라이트 장치
JP2007066897A (ja) * 2005-08-26 2007-03-15 Philips Lumileds Lightng Co Llc 統合された電子機器を用いたバックライティングのためのled光源
KR20090011276U (ko) * 2008-04-30 2009-11-04 삼성물산 주식회사 비상 겸용 야간 점등 led
KR100997050B1 (ko) * 2010-05-06 2010-11-29 주식회사 티엘아이 광량을 향상시키는 엘이디 조명 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760064B1 (en) 2012-12-21 2014-06-24 Posco Led Company Ltd. LED lighting apparatus with improved total harmonic distortion in source current
CN105075398A (zh) * 2013-03-29 2015-11-18 普司科Led股份有限公司 交流驱动型led照明装置
WO2017178293A1 (de) * 2016-04-11 2017-10-19 Hella Kgaa Hueck & Co. Baukastensystem für beleuchtungseinrichtungen für kraftfahrzeuge

Also Published As

Publication number Publication date
WO2012086956A3 (ko) 2012-10-11

Similar Documents

Publication Publication Date Title
WO2014081145A1 (ko) 변조지수가 개선된 엘이디 조명장치
WO2012081878A2 (ko) 교류 구동 엘이디 조명장치
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2013039361A1 (en) Illumination apparatus including semiconductor light emitting diodes
WO2014104776A1 (ko) Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
WO2012144800A2 (ko) Led 구동 장치 및 이를 이용한 led 구동 방법
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2009136691A2 (ko) 교류전원 엘이디 조명시스템
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2013162308A1 (ko) Led 디머, 이를 포함하는 led 조명장치 및 led 조명장치의 디밍 제어 방법
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
JP2013541840A (ja) 直接駆動型高効率led回路
WO2014137099A1 (ko) 발광 다이오드 구동 장치
WO2014048157A1 (zh) 一种led驱动装置及其驱动方法
WO2016028043A1 (ko) 동기식 다채널 발광 다이오드 구동 장치
WO2015152548A1 (ko) 발광 모듈
WO2014189310A1 (ko) 발광 다이오드 조명 장치
WO2012086956A2 (ko) 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치
WO2016104940A1 (ko) 발광 소자 구동 장치
WO2012161528A2 (ko) 엘이디 구동 제어 장치 및 이의 구동 전류 제어 방법
WO2014073911A1 (ko) 교류 led 구동 및 조광 제어장치와 그 방법
WO2011159048A2 (ko) Led 형광 램프
WO2019208839A1 (ko) 발광다이오드 조명 장치
WO2016122182A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850711

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013544389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850711

Country of ref document: EP

Kind code of ref document: A2