WO2013129771A1 - 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치 - Google Patents

선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치 Download PDF

Info

Publication number
WO2013129771A1
WO2013129771A1 PCT/KR2013/000305 KR2013000305W WO2013129771A1 WO 2013129771 A1 WO2013129771 A1 WO 2013129771A1 KR 2013000305 W KR2013000305 W KR 2013000305W WO 2013129771 A1 WO2013129771 A1 WO 2013129771A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
chamber
fuel
gasifier
gas
Prior art date
Application number
PCT/KR2013/000305
Other languages
English (en)
French (fr)
Inventor
이시훈
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2013129771A1 publication Critical patent/WO2013129771A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/06Catalysts as integral part of gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates

Definitions

  • the present invention relates to a fixed bed biomass gasification apparatus having a swirl gas inlet formed therein, and more particularly, to form a swinging gas inlet at a lower side of a gasification reactor in which a gasification reaction is performed by receiving wood-based biomass. It is possible to increase the contact time between the turning gasification agent and the pyrolysis layer to promote gasification, and by installing a catalyst chamber in the portion where the syngas outlet is formed, the tar component contained in the syngas discharged is further added.
  • the present invention relates to a biomass gasifier for converting into syngas.
  • the biomass is a term that refers to a bioorganism including plants, cells, and animals that eat and live by photosynthesis of plants and microorganisms that receive solar energy. Therefore, it has a comprehensive meaning from starch-based resources such as biomass grains, cellulose-based resources including forest products and farmer products such as rice straw and chaff, sugar-based resources such as sugar cane and sugar beet and food waste. .
  • biomass is an attractive energy source compared to fossil fuels because of its essentially zero environmental impact from CO2.
  • Biomass as described above is considered as a key resource to replace petroleum through the use of fuel oil production through pyrolysis and synthesis gas production including hydrogen, and through the combination of various subsequent processes. It is difficult to expand the utilization because it is difficult to secure economic feasibility due to the large initial investment cost.
  • the biomass energy conversion process currently being developed includes a gasification process using a fixed bed, a fluidized bed, and a circulating fluidized bed, and a conventional biomass gasification process includes a gasifier, a reformer, a tar recovery tank, a wood liquor recovery tank, and a scrubber (registration).
  • a gasifier a reformer
  • a tar recovery tank a wood liquor recovery tank
  • a scrubber a scrubber
  • Patent 10-0742159 fluidized bed biomass pyrolysis and gasifiers that are operated at relatively low temperatures (500-900 ° C.) may be composed of fluidized bed gasifiers, cyclones, heat exchangers, etc.
  • Patent No. 10-0659497 there was an attempt to improve the purity by installing an additional tar removal system in the biomass gasification process.
  • the biomass gasifiers that have been developed and used in the past have improved utilization efficiency when the biomass resources of uniform size are used and additionally install low tar catalyst process, which increases the plant area and the temperature due to the direct injection of the gasifier.
  • There are disadvantages such as non-uniformity, and there is a problem that clogging may occur in the gasifier when supplying the waste wood discharged from the lumber as fuel.
  • the secondary gasifying agent is additionally supplied from the side to prevent the channeling phenomenon, the supply of the gasifying agent is made uniform, and the tar contained in the generated syngas. It is an object to provide an apparatus for converting components into syngas while increasing the amount of combustible gas produced while passing through the catalyst chamber.
  • a fuel supply device for continuously supplying wood-based biomass as a fuel, a fixed-bed gasification reactor for supplying the fuel to gasify the synthesis gas, and a cyclone for separating solid components in the synthesis gas discharged from the gasification reactor
  • the gasification reactor comprises: a fuel inlet formed at an upper end thereof; A gasification chamber in which gas supplied from the fuel inlet is combusted and pyrolyzed to form gas, and a syngas discharge port configured to discharge gasified syngas is formed at an upper side thereof; An introduction chamber positioned below the gasification chamber to collect ash discharged after the combustion or pyrolysis is completed from the gasification chamber, and a ash discharge outlet for discharging the collected ash on the side, and a gasification agent inlet for introducing a gasifier from the outside; ; A rotary stocker interposed between the gasification chamber and the introduction chamber to partition the two spaces, and having a plurality of through holes formed in multiple stages by a rotating shaft to rotate and supply
  • the fixed bed biomass gasification apparatus is provided with a swirl gas inlet of the present invention by the above solution means,
  • the gasification agent was supplied in two directions, vertical and swiveling, to ensure uniform supply while preventing channeling as much as possible, so that even gasification was performed in the gasification layer in the gasification reactor.
  • FIG. 1 is a block diagram of a fixed bed biomass gasifier according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a gasification reactor according to an embodiment of the present invention.
  • Figure 3 is a horizontal cross-sectional view of a gasification reactor showing a swirl gas inlet in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a catalyst chamber according to an embodiment of the present invention.
  • Figure 5 is a graph showing the synthesis gas composition change produced by the operating time of the gasifier according to the present invention.
  • FIG. 1 is a block diagram of a fixed bed biomass gasifier according to an embodiment of the present invention
  • Figure 2 is a schematic diagram showing a gasification reactor according to an embodiment of the present invention.
  • the gasifier 1 of the present invention includes a fuel supply device 2 and a gasification reactor 3 in which gas is supplied from the fuel supply device.
  • the fuel supply device 2 supplies quantitatively woody biomass using a conveyor, screw, etc., and the woody biomass to be supplied is provided in various forms such as pellet form or powder or wood shredded. At this time, it is preferable that the fuel is supplied in a fixed amount so that the fixed bed height of the gasifier is maintained.
  • the gasification reactor 3 is a cylinder in which gasification is performed by a fixed bed method, and a fuel inlet 10 is formed at an upper end thereof.
  • the fuel inlet is provided with a valve 11 in the upper and lower double to form a temporary hopper space between the two valves to block the outside air from flowing directly into the gasification reactor when the fuel supply by the fuel supply device.
  • the valve 11 is supplied with fuel by opening the upper knife valve using a knife valve, closing the upper knife valve, and then injecting an inert gas such as nitrogen or carbon dioxide into the space between the two valves to remove oxygen, and In the removed state, the lower knife valve is opened to supply fuel stored in the temporary hopper space into the gasification reactor so that gasification occurs.
  • the inside of the gasification reactor is partitioned into a gasification chamber 20 on the upper side and an introduction chamber 30 on the lower side by the rotary stocker 40.
  • the gasification chamber 20 is a chamber in which gasification is performed by burning and pyrolyzing fuel supplied from a fuel inlet into an intermediate region and an upper region in a gasification reactor.
  • the gasification chamber is gasified by the combustion and pyrolysis of the fuel stacked by the gasifier supplied from the bottom.
  • the ash burner layer 22 and the combustion layer 23 which have completed combustion are formed in a portion adjacent to the rotary stocker 40, and a pyrolysis layer 24 which is pyrolyzed by receiving combustion heat is formed on the combustion layer.
  • a drying layer 25 is formed on the pyrolysis layer to dry the fuel injected by the lower heat to facilitate pyrolysis, and a space is formed on the drying layer to collect pyrolyzed syngas and water vapor generated from the drying. do.
  • the synthesis gas discharge port 21 is formed on one side of the upper side of the gasification chamber to discharge the pyrolyzed synthesis gas.
  • the introduction chamber 30 is a region located below the gasification reactor, and supplies gasifier to the upper gasification chamber, or collects ashes in which pyrolysis and combustion are completed.
  • a gasification agent introduction port 31 for introducing a gasification agent from the outside and a ash discharge port 32 for discharging the collected ash is formed on the side of the introduction chamber.
  • the transfer screw 33 is further installed in the lower portion of the introduction chamber to facilitate the discharge of the collected ash to push the collected ash with a screw to be discharged to the ash discharge outlet (32).
  • the transfer screw may be installed horizontally on the lower surface of the introduction chamber to be discharged or installed to have a predetermined angle upward, for example, an upward angle of 45 degrees to allow discharge. In this transfer, the ash is externally discharged when the ash is introduced into the screw, but when the ash component is agglomerated, the tunnel is formed so that the ash is not introduced into the screw. It is to facilitate the introduction into the furnace.
  • the rotary stocker 40 is interposed between the gasification chamber 20 and the introduction chamber 30 and partitions the two spaces.
  • the grid-shaped grate 41 having a plurality of through holes is formed by the rotation shaft 42. It is installed to be rotatable.
  • the Great 41 is formed in one or multiple stages to rotate and evenly supply the gasifier through the Great while rotating, and the ash and wood-based mass of the combustion and pyrolysis is crushed to facilitate the discharge to the bottom.
  • the rotary shaft 42 is to be expressed to the outside by inserting the lower end of the gasification reactor, thereby receiving the power from the motor to be rotated.
  • the swirling gas inlet 50 is provided with a gasifier injection pipe in communication with the gasifier to supply a swirl, and the supplied gasifier is supplied to the stacked fuel combustion layer and the pyrolysis layer to promote gasification and complete combustion. do.
  • the additional swirl gasifier is supplied only when the gasifier is supplied only through the introduction chamber 30.
  • the gasifier is not evenly supplied and combustion is only partially performed and pyrolysis is performed.
  • the heat supply to the layer is also lowered, which causes a problem of lowering the thermal decomposition efficiency. Therefore, by additionally supplying the gasifier through the swinging gas inlet 50 having a different supply direction than the primary, the gasification agent is supplied in various directions to minimize the thermal decomposition efficiency caused by the channeling phenomenon. Can be.
  • the additional gasifier is supplied while turning the inner wall of the gasification chamber 20, the passage time and the contact area of the combustion layer and the pyrolysis layer are increased to increase the gasification efficiency.
  • the swiveling gas inlet 50 may be disposed at the same plane on the same plane in addition to the four, or arranged in two rows above and below, so that the gasifier can be supplied as uniformly as possible.
  • the portion of the synthesis gas discharge port 21 of the gasification chamber 20 is further provided with a catalyst chamber 60 is further decomposed by the catalytic reaction tar component contained in the discharged syngas Can be converted to syngas.
  • the catalyst chamber 60 includes a side wall 61 partitioning the gasification chamber and a space, a lower porous plate 62 through which the gasified synthesis gas is introduced from the gasification chamber, an inner wall surface of the gasification reactor, and the side wall and the porous plate. It is made of a tar conversion catalyst 63 is filled in the space formed as.
  • the side wall 61 is deflected from the central axis of the gasification reactor 3 to the outer shell so as not to interfere with the fuel supply through the fuel inlet 10, and the lower porous plate 62 has a smaller diameter hole than the catalyst.
  • 621 is preferably formed from a plate or mesh formed.
  • the tar conversion catalyst 63 to be filled may be selected from any one or two or more of alumina, silica, dolomite, olivine.
  • the dispersion cap 64 may be further installed in the through hole 621 of the porous plate 62.
  • the porous plate 62 is formed of a vertical pipe 641 in communication with the through hole 621 is installed vertically and a conical cap 642 spaced a predetermined distance from the top of the vertical pipe.
  • the lower end of the conical cap (642) is located below the upper end of the vertical pipe to prevent the catalyst 63 is discharged through the vertical pipe 641, the syngas discharged to the top of the vertical pipe While moving downward along the inner surface of the conical cap (642) to increase the passage length so as to move upward through the bottom of the conical cap discharged to the syngas outlet 21 to increase the reaction time with the catalyst.
  • the combustion and pyrolysis is made at a temperature of 700 ⁇ 1000 °C gasified syngas has a high temperature of 400 ⁇ 500 °C.
  • the high temperature synthesis gas contains a small amount of tar components therein, the tar component is decomposed into a combustible gas by the tar conversion catalyst 63 while passing through the catalyst chamber 60 together with the vapor evaporated in the drying process.
  • the cyclone 4 passes through the syngas discharged through the syngas discharge port 21 of the gasification chamber 20 to separate and remove a small amount of ash or water, such as steam, contained in the syngas, and then remove the cyclone. Synthetic gas removed by the foreign matter to lower the temperature through the heat exchanger (5).
  • the fuel inlet 10 of the gasification reactor 3 opens and closes the fuel while opening and closing the double valve 11 sequentially. Supply to the gasification chamber 20.
  • the fuel laminated in the gasification chamber 20 of the gasification reactor is burned by the gasification agent supplied through the introduction chamber 30 and the rotary stocker 40, and the ash layer 22 and the combustion layer 23 from the bottom to the top. ),
  • the pyrolysis layer 24 and the dry layer 25 are formed sequentially. That is, the pyrolysis is performed by the burned heat, and the fuel is dried while the residual heat of the pyrolysis and the high temperature synthesis gas rise.
  • the gasifier is supplied while turning the inner wall of the gasification chamber 20 through the swinging gas inlet 50 so that the contact time between the gasifier and the combustion layer or the pyrolysis layer is increased and uniformly supplied. Improve the pyrolysis effect by ensuring even pyrolysis at.
  • the gasified syngas passes through the catalyst chamber 60 formed inside the gasification reactor and converts a small amount of tar contained in the syngas into flammable gas, and the syngas discharged is discharged from the cyclone 4 and the heat exchanger. While passing through (5) sequentially, keep foreign substances and temperature lower.
  • the rotary stocker 40 is rotated by receiving power to discharge the ash is completed combustion to the introduction chamber 30, the ash collected in the introduction chamber is discharged through the ash discharge port (32).
  • Gasification reaction experiment was performed using the fixed bed gasifier according to the present invention.
  • gasifier injection was performed both through the introduction chamber and through the secondary gas injection port.
  • the injected fuel was tested with water 8.78%, 75.07% volatile matter, 15.89% fixed carbon, 0.26% ash, and the gasification chamber was operated stably at 800 ° C.
  • the present invention relates to a fixed bed biomass gasifier with a swirl gas inlet, which is applicable to the biomass gasifier industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치에 관한 것으로, 더 상세하게는 목질계 바이오매스를 공급받아 가스화반응이 이루어지는 가스화반응기의 하부측에는 선회식 가스주입구를 형성하여 가스화제가 선회식으로 공급되도록 함으로써 선회하는 가스화제와 열분해층의 접촉시간을 증대시켜 가스화를 촉진시킬 수 있고, 상부에는 배출구가 형성된 부분에 촉매챔버를 설치하여 배출되는 합성가스 내에 포함된 타르성분을 추가로 합성가스로 전환시키는 바이오매스 가스화장치에 관한 것이다.

Description

선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치
본 발명은 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치에 관한 것으로, 더 상세하게는 목질계 바이오매스를 공급받아 가스화반응이 이루어지는 가스화반응기의 하부측에는 선회식 가스주입구를 형성하여 가스화제가 선회식으로 공급되도록 함으로써 선회하는 가스화제와 열분해층의 접촉시간을 증대시켜 가스화를 촉진시킬 수 있고, 상부의 합성가스배출구가 형성된 부분에 촉매챔버를 설치하여 배출되는 합성가스 내에 포함된 타르성분을 추가로 합성가스로 전환시키는 바이오매스 가스화장치에 관한 것이다.
대부분의 에너지원으로 이용되는 화석 연료의 고갈 위험 및 이에 따른 급격한 가격 변동, 온실가스를 포함한 유해한 물질들의 배출로 인한 에너지 이용 시스템의 신뢰성 약화, 자국 내의 에너지 자원 이용 확대 등이 사회적으로 큰 문제로 대두되면서 국내에서 지속가능하게 이용가능한 바이오매스가 핵심적인 에너지 자원으로서 인식되고 있다.
상기 바이오매스란 태양에너지를 받은 식물과 미생물의 광합성에 의하여 생성되는 식물체, 균체와 이를 먹고 살아가는 동물체를 포함하는 생물유기체를 지칭하는 용어이다. 따라서 바이오매스곡물 등의 전분질계자원과 임목 및 볏짚, 왕겨와 같은 농부산물을 포함하는 셀롤로오스계의 자원, 사탕수수, 사탕무우와 같은 당질계의 자원 및 음식폐기물에 이르기까지 포괄적인 의미를 갖는다.
현재 지구상에는 건조중량으로 약 1.8 내지 2 조 톤의 바이오매스가 존재하고, 이 양의 약 10%에 해당하는 2000억톤의 바이오매스가 매년 생산되고 있으며, 이는 지구상에 내려 쬐는 태양에너지의 0.1%가 바이오매스로 축적되고 있는 것에 해당하며, 또한 바이오매스는 근본적으로 CO2에 의한 환경영향이 제로이기 때문에 화석연료에 비해 매력적인 에너지원이다.
상기한 바와같은 바이오매스는 열분해를 통한 연료유 생산, 수소를 포함하는 합성가스 생산에 이용되고 다양한 후속 공정들의 결합을 통해서 석유를 대체할 수 있는 핵심 자원으로서 검토되고 있으나, 바이오매스 자원의 불균일성과 초기투자비가 크게 소요되어 경제성을 확보하기 어렵다는 점에서 이용확대에 어려움이 있다.
현재 개발되고 있는 바이오매스 에너지 전환 공정은 고정층, 유동층, 순환유동층을 이용한 가스화 공정이 있으며, 통상적인 바이오매스 가스화 공정은 가스화기, 개질기, 타르 회수조, 목초액 회수조, 스크러버 등으로 구성된다(등록특허 제10-0742159호). 또한 비교적 저온(500-900℃)에서도 운전되는 유동층 바이오매스 열분해 및 가스화기는 유동층 가스화기, 싸이클론, 열교환기 등으로 구성되기도 한다(등록특허 제10-0659497호). 더불어 바이오매스 가스화 공정에 추가적인 타르 제거 시스템을 설치하여 순도를 향상시키려는 시도도 있었다(특허출원 10-2009-0129730).
그러나 기존에 개발되어 이용되는 바이오매스 가스화기들은 균일한 크기의 바이오매스 자원들이 이용되어야 운전 효율이 향상되고 저타르 촉매 공정을 추가적으로 설치해야 함으로 시설면적이 증가되고, 가스화제의 직접 주입에 따른 온도의 불균일성 등의 단점이 있으며, 목재소에서 배출되는 폐목재를 연료로 공급할 때에는 가스화기에서 막힘현상이 발생될 수 있는 문제점이 있다.
이에 본 발명의 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치는,
하부에서 상부로 공급되는 1차 가스화제 이외에 측면에서 추가로 2차 가스화제를 선회식으로 공급하여 채널링현상을 방지하고, 가스화제의 공급이 균일하게 이루어지도록 하고, 생성된 합성가스에 포함된 타르성분은 촉매챔버를 통과하면서 합성가스로 전환되어 가연성가스의 생성량을 증대시키는 장치의 제공을 목적으로 한다.
상기 과제를 해소하기 위한 본 발명의 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치는,
연료인 목질계 바이오매스를 연속 공급하는 연료공급장치와, 상기 연료를 공급받아 합성가스로 가스화가 이루어지는 통체의 고정층 가스화반응기와, 상기 가스화반응기에서 배출되는 합성가스 내의 고체성분을 분리하는 사이클론을 포함하여 구성되는 고정층 바이오매스 가스화장치에 있어서, 상기 가스화반응기는, 상단에 형성된 연료투입구와; 연료투입구로부터 공급된 연료를 연소 및 열분해하여 가스화가 이루어지며, 상부 측면에는 가스화된 합성가스를 배출하는 합성가스배출구가 형성된 가스화챔버와; 상기 가스화챔버 하부에 위치하여 가스화챔버로부터 연소 또는 열분해가 완료되어 배출된 회재를 포집하고, 측면에는 포집된 회재를 배출하는 회재배출구와, 외부로부터 가스화제를 도입하는 가스화제도입구가 형성된 도입챔버와; 상기 가스화챔버와 도입챔버 사이에 개재되어 두 공간을 구획하고, 다수의 통공이 형성된 그레이트를 회전축에 의해 다단으로 설치되어 회전하면서 가스화제를 상부로 공급하고 회재를 하부로 배출하는 회전스토커와; 상기 회전스토커와 근접한 상부 가스화챔버 내벽면에 접선방향으로 4개를 등각으로 설치하여 가스화제가 선회하면서 공급되도록 하는 선회식 가스주입구;를 포함하여 구성된다.
상기 해결수단에 의한 본 발명의 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치는,
가스화제를 수직과 선회 두 방향으로 공급하여 채널링현상을 최대한 방지하면서 균일한 공급이 이루어지도록 해 가스화반응기 내의 가스화층에서 고른 가스화가 이루어지도록 하였다.
또한, 가스화반응기 내부의 배출측에 촉매챔버를 구비함으로 시설면적이 증대되는 것을 방지하면서 가스화한 합성가스 내에 포함된 타르성분을 합성가스로 추가 전환시켜 합성가스 생성량을 증대시킬 수 있는 유용한 장치의 제공이 가능하게 되었다.
도 1은 본 발명의 실시예에 따른 고정층 바이오매스 가스화장치의 구성도.
도 2는 본 발명의 실시예에 따른 가스화반응기를 도시한 개략도.
도 3은 본 발명의 실시예에 따른 선회식 가스주입구를 도시한 가스화반응기의 수평단면도.
도 4는 본 발명의 실시예에 따른 촉매챔버를 도시한 개략단면도.
도 5는 본 발명에 따른 가스화장치의 운전시간에 따른 생성된 합성가스 조성변화를 나타낸 그래프.
이하 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다. 그러나 첨부된 도면은 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
도 1은 본 발명의 실시예에 따른 고정층 바이오매스 가스화장치의 구성도이고, 도 2는 본 발명의 실시예에 따른 가스화반응기를 도시한 개략도이다.
참조한 바와같이 본 발명의 가스화장치(1)는 연료공급장치(2)와 상기 연료공급장치로부터 연료를 공급받아 가스화가 이루어지는 가스화반응기(3)를 구비한다.
상기 연료공급장치(2)는 목질계 바이오매스를 컨베이어, 스크류 등을 이용하여 정량 공급하며, 공급되는 목질계 바이오매스는 펠릿 형태 또는 분말 또는 목재를 파쇄한 형태 등 다양한 형태로 제공된다. 이 때 상기 연료의 투입은 정량으로 공급되도록 하여 가스화장치의 고정층 층고가 유지되도록 하는 것이 바람직하다.
상기 가스화반응기(3)는 고정층 방식에 의해 가스화가 이루어지는 통체로 상단에는 연료투입구(10)가 형성된다.
상기 연료투입구는 상부와 하부 이중으로 밸브(11)를 설치하여 두 밸브 사이에 임시호퍼공간이 형성되도록 함으로써 연료공급장치에 의해 연료공급시 외부의 공기가 가스화반응기 내부로 직접 유입되는 것을 차단하도록 한다. 예컨대 상기 밸브(11)는 나이프밸브를 사용하여 상부 나이프밸브를 개방하여 연료를 공급받고 상부 나이프밸브를 닫은 다음 두 밸브 사이 공간을 질소 또는 이산화탄소 등의 비활성가스를 주입시켜 산소를 제거하고, 산소가 제거된 상태에서 하부 나이프밸브를 개방하여 임시호퍼공간에 저장된 연료를 가스화반응기 내부로 공급하여 가스화가 이루어지도록 하는 것이다.
다음으로 상기 가스화반응기 내부는 회전스토커(40)에 의해 상부의 가스화챔버(20)와, 하부의 도입챔버(30)로 구획된다.
상기 가스화챔버(20)는 가스화반응기 내부에서 중간과 상부 영역으로 연료투입구로부터 공급된 연료를 연소 및 열분해하여 가스화가 이루어지는 챔버이다. 상기 가스화챔버는 하부로부터 공급되는 가스화제에 의해 적층된 연료가 연소 및 열분해되어 가스화가 이루어진다. 예컨대 회전스토커(40)와 근접된 부분에는 연소가 완료된 회재층(22) 및 연소층(23)이 형성되고, 상기 연소층 상부에는 연소열을 공급받아 열분해가 이루어지는 열분해층(24)이 형성되며, 상기 열분해층 상부에는 하부 열에 의해 투입된 연료를 건조하여 열분해가 용이하게 이루어지도록 하는 건조층(25)이 형성되며, 상기 건조층 상부에는 열분해된 합성가스 및 건조에서 발생된 수증기가 포집되는 공간이 형성된다. 또한, 상기 가스화챔버의 상부 일측면에는 합성가스배출구(21)가 형성되어 열분해된 합성가스의 배출이 이루어지도록 한다.
상기 도입챔버(30)는 가스화반응기의 하부에 위치하는 영역으로 가스화제를 상부의 가스화챔버로 공급하거나, 열분해 및 연소가 완료된 회재를 포집한다. 상기 도입챔버의 측면에는 외부로부터 가스화제를 도입시키는 가스화제도입구(31)와 포집된 회재를 배출하는 회재배출구(32)가 형성된다. 이 때 포집된 회재배출이 용이하도록 상기 도입챔버의 하부에는 이송스크류(33)를 더 설치하여 포집된 회재를 스크류로 밀어서 회재배출구(32)로의 배출이 이루어지도록 할 수 있다. 또한, 상기 이송스크류는 도입챔버 하부면에 수평으로 설치되어 배출이 이루어지도록 하거나 일정각 상향, 예컨대 45도의 상향 각도를 갖도록 설치하여 배출이 이루어지도록 할 수 있다. 여기서 상기 이송은 스크류 내에 회재가 유입되어야 외부배출이 이루어지나, 회재성분이 응집되면 터널이 형성되어 회재가 스크류로 유입되지 않게 됨으로 이를 방지하기 위해 일정각 상향 각도록 설치하여 회재 응집력을 낮춰 스크류내부로 유입이 용이하게 이루어지도록 하는 것이다.
아울러 상기 회전스토커(40)는 상기 가스화챔버(20)와 도입챔버(30) 사이에 개재되어 두 공간을 구획하는 장치로 다수의 통공이 형성된 격자모양의 그레이트(41)가 회전축(42)에 의해 회전가능하도록 설치되어 있다. 상기 그레이트(41)는 하나 또는 다단으로 형성되어 회전하면서 그레이트를 통해 가스화제를 상부로 고르게 공급하도록 하고, 연소 및 열분해가 완료된 회재 및 목질계 덩어리를 분쇄하여 하부로의 배출이 용이하게 이루어지도록 한다. 상기 회전축(42)은 가스화반응기 하단을 삽통하여 외부로 표출되도록 하고, 이에 모터로부터 동력을 전달받아 회전이 이루어지도록 한다.
상기한 바와같이 구성되는 가스화반응기(3)에는 회전스토커(40)와 근접한 상부에는 도 3을 참조한 바와같이 가스화챔버(20) 내벽면과 접선방향으로 4개의 선회식 가스주입구(50)가 등각으로 설치된다. 상기 선회식 가스주입구(50)에는 가스화제주입관이 연통설치되어 가스화제를 선회식으로 공급하고, 공급된 가스화제는 적층된 연료 연소층 및 열분해층에 공급되어 가스화를 촉진시키고 완전연소가 이루어지도록 한다.
이와같이 추가적인 선회식 가스화제의 공급이 이루어지는 것은 도입챔버(30)를 통해서만 가스화제의 공급이 이루어지면 연료적층구간에서 채널링현상이 발생되었을 때 가스화제가 고르게 공급되지 못하여 연소가 부분적으로만 이루어지고 열분해층으로의 열공급량도 낮아져 열분해효율이 낮아지는 문제점이 발생된다. 따라서, 1차와는 다른 방식의 공급방향을 갖는 선회식 가스주입구(50)를 통해 추가로 가스화제를 공급하여 다방면으로 가스화제 공급이 이루어지도록 하여 채널링현상에 의한 열분해효율이 낮아지는 것을 최소화할 수 있다. 또한, 추가로 공급되는 가스화제가 가스화챔버(20) 내벽면을 선회하면서 공급됨으로 연소층 및 열분해층의 통과시간과 접촉면적이 증가되어 가스화효율을 증대시킬 수 있다.
상기 선회식 가스주입구(50)는 도시된 바와같이 4개 이외에 다수개를 동일평면상에 등각으로 배치하거나 상하 2열에 의해 배치하여 가스화제를 최대한 균일하게 공급되도록 할 수 있다.
한편, 도 4를 참조한 바와같이 상기 가스화챔버(20)의 합성가스배출구(21)가 형성된 부분에는 촉매챔버(60)가 더 구비되어 배출되는 합성가스 내에 포함된 타르성분을 촉매반응에 의해 분해하여 합성가스로 전환시키도록 할 수 있다.
상기 촉매챔버(60)는 가스화챔버와 공간을 구획하는 측벽(61)과, 가스화챔버에서 가스화된 합성가스를 유입하는 하부의 다공판(62)과, 상기 가스화반응기 내벽면과 상기 측벽과 다공판으로 형성된 공간에 충전되는 타르전환촉매(63)로 이루어진다.
상기 측벽(61)은 가스화반응기(3)의 중심축에서 외각으로 편향되도록 하여 연료투입구(10)를 통한 연료공급에 방해되지 않도록 하며, 상기 하부 다공판(62)은 촉매보다 작은 직경의 통공(621)이 형성된 판체 또는 매쉬로 형성하는 것이 바람직하다. 또한 충전되는 타르전환촉매(63)로는 알루미나, 실리카, 백운석, 감람석 중 어느 하나 또는 둘이상 선택하여 사용할 수 있다.
또한, 상기 다공판(62)의 통공(621)에는 분산캡(64)을 더 설치할 수 있다. 상기 다공판(62)은 통공(621)과 연통되어 수직으로 설치된 수직관(641)과 상기 수직관의 상단과 일정거리 이격되는 원추형캡(642)으로 이루어진다. 이 때 상기 원추캡(642)의 하단은 수직관의 상단보다 하부로 위치하도록 하여 촉매(63)가 수직관(641)을 통해 배출되는 것을 방지하도록 하고, 수직관의 상단으로 배출된 합성가스는 원추형캡(642)의 내면을 따라 외각으로 하강 이동되면서 원추형캡의 하단을 통과하여 상향이동해 합성가스배출구(21)로 배출되도록 유로길이를 증가시켜 촉매와의 반응시간이 증대되도록 할 수 있다.
즉, 가스화챔버(20)에서는 연소 및 열분해가 700~1000℃의 온도에서 이루어짐으로 가스화된 합성가스는 400~500℃의 고온을 갖는다. 상기 고온 합성가스는 내부에 소량의 타르성분이 포함되어 있고, 건조과정에서 증발된 증기와 함께 촉매챔버(60)를 통과하면서 타르전환촉매(63)에 의해 타르성분이 가연성가스로 분해되어 합성가스 생성량을 증대시킨다.
상기 가스화챔버(20)의 합성가스배출구(21)를 통해 배출되는 합성가스에는 사이클론(4)을 통과시켜 합성가스에 포함된 미량의 회재나 수증기 등 고체 또는 액상물질을 분리하여 제거하도록 하고, 사이클론에 의해 이물질을 제거한 합성가스는 열교환기(5)를 통해 온도를 낮추도록 한다.
이와같이 구성되는 본 발명에 따른 고정층 바이오매스 가스화장치의 작동상태를 간략하게 설명하면,
먼저 연료공급장치(2)를 통해 목질계의 바이오매스를 가스화반응기(3)의 연료투입구(10)로 공급하면 연료투입구에서는 이중 밸브(11)를 순차적으로 개폐하면서 산소유입을 차단하면서 연료를 내부 가스화챔버(20)로 공급한다.
가스화반응기의 가스화챔버(20)에 적층된 연료는 도입챔버(30)와 회전스토커(40)를 통해 공급되는 가스화제에 의해 연소가 이루어지면서 하부로부터 상부로 회재층(22), 연소층(23), 열분해층(24), 건조층(25)이 순차적으로 형성된다. 즉, 연소된 열에 의해 열분해가 이루어지고 열분해의 잔여열 및 고온합성가스가 상승하면서 연료를 건조시키는 것이다.
여기서 추가로 선회식 가스주입구(50)를 통해 가스화챔버(20) 내벽면을 선회하면서 가스화제 공급이 이루어지도록 하므로써 가스화제와 연소층 또는 열분해층과의 접촉시간증가와 균일한 공급에 의해 전체면적에서 고른 열분해가 이루어지도록 하여 열분해 효과를 향상시킨다.
이와같이 가스화된 합성가스는 가스화반응기 내부에 형성된 촉매챔버(60)를 통과하면서 합성가스에 포함된 소량의 타르성분을 가연성가스로 전환하여 배출하게 되고, 배출된 합성가스는 사이클론(4)과 열교환기(5)를 순차적으로 통과하면서 이물질과 온도는 낮추도록 한다.
또한, 동력을 전달받아 회전하는 회전스토커(40)는 연소가 완료된 회재를 도입챔버(30)로 배출시키고, 도입챔버에 포집된 회재는 회재배출구(32)를 통해 배출이 이루어지도록 한다.
실시예1 - 선회식 가스주입구가 형성된 바이오매스 가스화장치의 가스화 운전시간에 따른 합성가스 조성변화
본 발명에 따른 고정층 가스화장치를 이용하여 가스화반응 실험을 하였다.
온도조건을 최대한 균일하게 하고 내부의 채널링현상이 일어나지 않도록 하기 위해 가스화제 주입은 도입챔버를 통한 1차주입과 선회식 가스주입구를 통한 2차주입 모두를 실행하였다.
투입된 연료는 수분 8.78%, 휘발분 75.07%, 고정탄소 15.89%, 회재 0.26%의 목재칩을 이용하여 실험하였으며, 이 때 가스화챔버는 800℃로 안정적으로 운전되었다.
상기 시간에 따른 생성되는 합성가스의 성분을 분석하여 도 5에 나타내었다.
참고한 바와같이 1시간 후부터 수소 9~14 vol%, 일산화탄소 12~15 vol%, 메탄 0.5~1.5 vol% 의 혼합비를 갖는 합성가스를 안정적으로 생산하였다.
본 발명은 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치에 관한 것으로, 바이오매스 가스화장치 산업에 이용가능하다.

Claims (4)

  1. 연료인 목질계 바이오매스를 연속 공급하는 연료공급장치(2)와, 상기 연료를 공급받아 합성가스로 가스화가 이루어지는 통체의 고정층 가스화반응기(3)와, 상기 가스화반응기에서 배출되는 합성가스 내의 고체성분을 분리하는 사이클론(4)을 포함하여 구성되는 고정층 바이오매스 가스화장치에 있어서,
    상기 가스화반응기(3)는
    상단에 형성된 연료투입구(10)와;
    연료투입구로부터 공급된 연료를 연소 및 열분해하여 가스화가 이루어지며, 상부 측면에는 가스화된 합성가스를 배출하는 합성가스배출구(21)가 형성된 가스화챔버(20)와;
    상기 가스화챔버 하부에 위치하여 가스화챔버로부터 연소 또는 열분해가 완료되어 배출된 회재를 포집하고, 측면에는 외부로부터 가스화제를 도입하는 가스화제도입구(31)와, 포집된 회재를 배출하는 회재배출구(32)가 형성된 도입챔버(30)와;
    상기 가스화챔버(20)와 도입챔버(30) 사이에 개재되어 두 공간을 구획하고, 다수의 통공이 형성된 그레이트(41)를 회전축에 의해 다단으로 설치되어 회전하면서 가스화제를 상부로 공급하고 회재를 하부로 배출하는 회전스토커(40)와;
    상기 회전스토커(40)와 근접된 상부 가스화챔버 내벽면에 접선방향으로 4개를 등각으로 설치하여 가스화제가 선회하면서 공급되도록 하는 선회식 가스주입구(50);를 포함하여 구성되는 것을 특징으로 하는 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치.
  2. 제1항에 있어서,
    상기 가스화챔버(20)의 합성가스배출구(21)가 형성된 부분에는 가스화챔버와 분리되도록 구획하는 측벽(61)과, 가스화된 합성가스를 유입하는 하부의 다공판(62)과, 가스화반응기 내벽면과 상기 측벽과 다공판으로 형성된 공간에 충전되는 타르전환촉매(63)로 이루어지는 촉매챔버(60)가 더 설치되어 배출되는 합성가스에 포함된 타르성분을 분해하여 가연성가스로 전환시키는 것을 특징으로 하는 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치.
  3. 제2항에 있어서,
    상기 촉매챔버(60)는 하부 다공판(62)의 통공(621)와 연통되어 수직으로 설치된 수직관(641)과, 상기 수직관의 상단과 일정거리 이격되는 원추형캡(642)으로 이루어진 분산캡(64)을 설치하여 충전된 촉매가 다공판을 통해 배출되는 것을 방지하면서 배출되는 합성가스의 배출유로 길이를 증가시키도록 한 것을 특징으로 하는 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치.
  4. 제1항에 있어서,
    상기 도입챔버(30)의 하부에는 포집된 회재를 회재배출구(32)로 배출시키기 위해 이송스크류(33)가 더 설치되는 것을 특징으로 하는 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치.
PCT/KR2013/000305 2012-02-27 2013-01-15 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치 WO2013129771A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120019931A KR101363270B1 (ko) 2012-02-27 2012-02-27 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치
KR10-2012-0019931 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013129771A1 true WO2013129771A1 (ko) 2013-09-06

Family

ID=49082930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000305 WO2013129771A1 (ko) 2012-02-27 2013-01-15 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치

Country Status (2)

Country Link
KR (1) KR101363270B1 (ko)
WO (1) WO2013129771A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632146B1 (ko) * 2015-03-31 2016-06-21 (주)정석이엔씨 바이오매스 가스화 장치
KR101655844B1 (ko) * 2015-09-10 2016-09-08 주식회사 대원지에스아이 무유동매체 업드래프트형 열분해 가스화 반응로
KR101938372B1 (ko) 2017-08-31 2019-01-14 고등기술연구원 연구조합 역청원료의 열분해 장치
KR102451467B1 (ko) * 2020-05-11 2022-10-12 비엔지코리아(주) 바이오매스를 저온열분해에 의해 제조하는 연료용 수성가스 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178567A (ja) * 1998-12-16 2000-06-27 Hitachi Ltd 石炭ガス化複合発電プラントおよび石炭ガス化ガス精製設備
JP2003089794A (ja) * 2001-09-19 2003-03-28 Hitachi Ltd 有機性廃棄物用ガス化炉および有機性廃棄物ガス化発電装置
KR100784851B1 (ko) * 2007-01-12 2007-12-14 한국에너지기술연구원 저타르 배출형 바이오매스 가스화 장치
KR100896933B1 (ko) * 2008-05-30 2009-05-14 한국에너지기술연구원 목질계 바이오매스 자원을 이용하는 회전식 스토커 가스화반응기를 구비한 가스화시스템
KR20110054947A (ko) * 2009-11-19 2011-05-25 한국에너지기술연구원 왕겨 가스화장치 및 그 장치를 이용한 합성가스 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178567A (ja) * 1998-12-16 2000-06-27 Hitachi Ltd 石炭ガス化複合発電プラントおよび石炭ガス化ガス精製設備
JP2003089794A (ja) * 2001-09-19 2003-03-28 Hitachi Ltd 有機性廃棄物用ガス化炉および有機性廃棄物ガス化発電装置
KR100784851B1 (ko) * 2007-01-12 2007-12-14 한국에너지기술연구원 저타르 배출형 바이오매스 가스화 장치
KR100896933B1 (ko) * 2008-05-30 2009-05-14 한국에너지기술연구원 목질계 바이오매스 자원을 이용하는 회전식 스토커 가스화반응기를 구비한 가스화시스템
KR20110054947A (ko) * 2009-11-19 2011-05-25 한국에너지기술연구원 왕겨 가스화장치 및 그 장치를 이용한 합성가스 제조 방법

Also Published As

Publication number Publication date
KR101363270B1 (ko) 2014-02-13
KR20130098092A (ko) 2013-09-04

Similar Documents

Publication Publication Date Title
Vamvuka Bio‐oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview
Skoulou et al. Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas
Jordan et al. Effect of CaO on tar production and dew point depression during gasification of fuel cane bagasse in a novel downdraft gasifier
Chopra et al. A review of fixed bed gasification systems for biomass
Brown Biochar production technology
AU2014295756B2 (en) Method for preparing hydrogen-rich gas by gasification of solid organic substance and steam
CN101108970B (zh) 生物质与煤快速共热解制备液体燃料的方法
CN100457870C (zh) 生产燃料气体的方法和气体发生器
US9255231B2 (en) Method and apparatus for fixed bed gasification
US9534180B2 (en) Biomass gasifier device
KR101632147B1 (ko) 바이오매스 발전설비
KR101632146B1 (ko) 바이오매스 가스화 장치
KR101813225B1 (ko) 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기 및 이를 포함하는 가스화 장치
WO2013129771A1 (ko) 선회식 가스주입구가 형성된 고정층 바이오매스 가스화장치
Mednikov A review of technologies for multistage wood biomass gasification
US9862899B2 (en) Gas distribution arrangement for rotary reactor
CN104479742B (zh) 生物质燃气制备系统
CN101967402A (zh) 生物质气化反应系统
CN213803653U (zh) 下吸式生物质气化炉
WO2013140418A1 (en) Multi-condition thermochemical gas reactor
CN101967405A (zh) 生物质气放散装置和使用该装置的生物质气化反应系统
CN103666572A (zh) 煤气发生装置
KR100596222B1 (ko) 코크스 건식 소화 장치에서의바이오매스(biomass)의 처리방법
CZ295171B6 (cs) Třízonový zplyňovač biomasy rostlinného původu s obchvatem
CN115109606B (zh) 一种生物质废弃物制取纯氢及多联产耦合系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755850

Country of ref document: EP

Kind code of ref document: A1