WO2013129383A1 - 電磁力平衡式計量装置 - Google Patents

電磁力平衡式計量装置 Download PDF

Info

Publication number
WO2013129383A1
WO2013129383A1 PCT/JP2013/054926 JP2013054926W WO2013129383A1 WO 2013129383 A1 WO2013129383 A1 WO 2013129383A1 JP 2013054926 W JP2013054926 W JP 2013054926W WO 2013129383 A1 WO2013129383 A1 WO 2013129383A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
electromagnetic force
plate
flat coil
yoke
Prior art date
Application number
PCT/JP2013/054926
Other languages
English (en)
French (fr)
Inventor
和文 内藤
孝造 照沼
一志 藤原
俊 池島
進一郎 石田
石原 好之
耕二 藤原
康人 高橋
久人 住友
Original Assignee
新光電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新光電子株式会社 filed Critical 新光電子株式会社
Priority to JP2014502242A priority Critical patent/JP6031505B2/ja
Priority to EP13754287.4A priority patent/EP2821760A4/en
Priority to US14/375,045 priority patent/US20140374173A1/en
Publication of WO2013129383A1 publication Critical patent/WO2013129383A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G7/00Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups
    • G01G7/02Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G7/00Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups
    • G01G7/02Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action
    • G01G7/04Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action with means for regulating the current to solenoids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G7/00Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups
    • G01G7/02Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action
    • G01G7/04Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action with means for regulating the current to solenoids
    • G01G7/045Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action with means for regulating the current to solenoids having a PID control system

Definitions

  • the present invention relates to, for example, an electromagnetic force balance type measuring apparatus used for measuring a product flowing in a manufacturing line, and the thickness in the width direction is reduced to reduce the installation area.
  • the balance of the electromagnetic force balance type includes a lever 10 supported by a fulcrum, a load receiving portion 11 for supporting a load on one side of the lever 10, and a coil 12 attached to the other of the lever 10.
  • a magnetic circuit 13 for applying a magnetic field of a permanent magnet to the coil 12, a photosensor 14 and a position detection unit 15 for detecting the positional displacement of the lever 10, and a PID controller 16 for supplying the coil 12 with a current for compensating for the positional displacement of the lever 10.
  • the weight of the load is calculated by the A / D converter 17 and the CPU 18 from the current supplied to the coil when the displacement of the lever is compensated, and the weight data is output to the outside through the interface 19. Ru.
  • Patent Document 1 discloses a built-in electromagnetic force balance type measuring device incorporated in a production line and measuring products, parts and the like flowing on the line.
  • the built-in weighing device 100 has the appearance shown in FIG. 19, and the housing is constituted of a stainless steel cover 20 and a stainless steel base 21, and only the load receiving portion 30 is exposed from the upper surface of the cover 20. doing.
  • a weighing pan (not shown) is placed on the load receiving portion 30, and an object to be measured (not shown) is placed on the weighing pan.
  • An electric unit including a lever 10, a coil 12, a magnetic circuit 13 and a photo sensor 14 shown in FIG. 18 is disposed in this case, and includes a position detection unit 15, a PID controller 16, an A / D converter 17 and a CPU 18. Is housed.
  • a plurality of the integration weighing devices 100 are arranged side by side between the loading conveyor 120 and the unloading conveyor 121.
  • a plurality of the objects to be measured 130 carried by the carry-in conveyor 120 are gripped by a chuck handle (not shown) or the like and placed on the weighing pans of the plurality of built-in weighing devices 100 simultaneously and weighed.
  • the object to be measured 130 whose measurement has been completed is gripped by the chuck handle, transferred to the unloading conveyor 121, and unloaded.
  • a magnetic circuit provided with a saddle type yoke (speaker type yoke) is used.
  • a permanent magnet 74 and a coil 54 are disposed along a plane orthogonal to the extension direction of the lever 36, and a yoke 70 is provided to surround the permanent magnet and the coil.
  • a magnetic circuit is disclosed in which 72 are arranged.
  • the thickness in the width direction (dimension D in FIG. 19) can be obtained by using a magnetic circuit having a saddle type yoke or a magnetic circuit described in Patent Document 2. ), Which makes it difficult to incorporate a large number of weighing devices into the production line and to make the production line compact.
  • the present invention has been made in consideration of the above circumstances, and an object thereof is to provide an electromagnetic force balance type measuring device having a small thickness in the width direction.
  • the present invention comprises a lever extending in the front and back of the fulcrum, a coil attached to the rear side of the fulcrum from the fulcrum, and a magnetic circuit for generating a magnetic field exerted on the coil.
  • An electromagnetic force balance type measuring device in which a force is compensated by supplying electricity to a coil, wherein the coil is provided with upper and lower sides parallel to the extension direction of the lever along a vertical plane parallel to the extension direction of the lever.
  • the magnetic circuit comprises a flat coil wound flat so as to produce a winding part of the magnetic circuit, the magnetic circuit being opposed to the upper or lower winding part of the flat coil and magnetized in a direction perpendicular to the vertical plane Alternatively, it is characterized by comprising a plurality of plate-like permanent magnets, and a yoke member for guiding magnetic lines of force of the permanent magnets such that magnetic flux in the direction orthogonal to the vertical surface is generated.
  • the flat coil is disposed vertically along the extension direction of the lever portion, and the magnetic circuit is disposed in parallel with the flat coil, so the thickness in the width direction of the weighing apparatus is thin. can do.
  • two permanent magnets facing each of the upper winding portion and the lower winding portion are provided on one side of the flat coil, and the magnetization directions of the two permanent magnets are reversed. ing.
  • this electromagnetic force balance type measuring device when the coil is energized, vertical forces in the same direction are generated at the positions of the upper and lower winding portions of the flat coil, so the force acting on the force point can be a small flat coil Can be compensated by
  • the thickness of the plate-like yokes can be reduced to narrow the width of the entire magnetic circuit, which is advantageous in achieving thinning of the device.
  • the plate-like yoke member has the same area as the permanent magnet facing each other through the flat coil. By doing this, it is possible to increase the amount of magnetic flux acting perpendicularly to the flat coil, and to ensure the symmetry of the magnetic flux density distribution at the flat coil position.
  • the magnetic circuit includes an upper permanent magnet facing the upper winding portion on one side of the flat coil, and a lower winding portion on the other side of the flat coil.
  • a yoke member, and the direction of the magnetization of the upper permanent magnet is opposite to the direction of the magnetization of the lower permanent magnet
  • the upper side and the lower side of the upper yoke member are provided with protrusions for narrowing the space with the upper permanent magnet
  • the upper and lower sides of the lower yoke member are provided with protrusions for narrowing the distance from the lower permanent magnet.
  • the strength of the electromagnetic force generated when a current is supplied to the flat coil hardly changes even if the position of the flat coil is changed. Therefore, even when the balance point of the system deviates for some reason, the change of the span can be avoided, and the assembling accuracy of the mechanism part can be relaxed.
  • the electromagnetic force balance type measuring device of the present invention it is desirable to cover the outside of the magnetic circuit with an electromagnetic steel plate.
  • the electromagnetic steel sheet absorbs the magnetic flux leaked from the yoke of the magnetic circuit and does not leak to the outside, so the thickness of the yoke can be reduced, and the thickness of the measuring device can be further reduced.
  • the electromagnetic force balance type measuring device of the present invention is suitable for a built-in measuring device which is used by being incorporated into a production line. Since the thickness in the width direction of the weighing device is small, a large number of weighing devices can be arranged side by side in a narrow area between the production lines, and the production line can be made compact.
  • the electromagnetic force balance type measuring device of the present invention can reduce the thickness in the width direction. Therefore, even when a plurality of units are arranged side by side, the occupied area can be small.
  • the permanent magnet facing the upper winding portion of the flat coil and the permanent magnet facing the lower winding portion are on different sides of the flat coil, and the upper side of the yoke member paired with the permanent magnets and
  • the balance balance of the system deviates for some reason because the strength of the generated electromagnetic force when the flat coil is energized hardly depends on the position of the flat coil in the electromagnetic force balance type measuring device in which the ridge is provided on the lower side Even in this case, a change in span can be avoided, and the assembling accuracy of the mechanism part can be relaxed.
  • Sectional view of an electromagnetic force balance type measuring device according to a first embodiment of the present invention
  • Top view of the electromagnetic force balance type measuring device of FIG. 1 Sectional view of the magnetic circuit portion at the AA position in FIG. 1
  • Sectional view of the magnetic circuit portion at position BB in FIG. 1 Diagram showing the magnetic flux of the magnetic circuit of FIG. 4
  • Diagram showing changes in leakage magnetic flux density and electromagnetic force with distance between permanent magnet (A) and distance between permanent magnet and peripheral yoke (B)
  • the figure which shows the modification of a magnetic circuit part (an example (a) which changed the position of a permanent magnet, and an example (b) which made permanent magnets face each other)
  • Diagram showing a magnetic circuit covered with electromagnetic steel sheet A figure showing a magnetic circuit of an electromagnetic force balance type measuring device concerning a 2nd embodiment of the present invention.
  • the figure which shows the magnetic flux density distribution of the magnetic circuit of FIG. A diagram showing the analysis position of the magnetic flux density distribution of FIG.
  • FIG.15 and FIG.16 Diagram showing the configuration of a conventional electromagnetic force balance type measuring device
  • FIG. 1 shows a cross-sectional view of an electromagnetic force balance type measuring device according to an embodiment of the present invention
  • FIG. 2 shows a plan view thereof.
  • the weighing device supports a load receiving portion 51, and a movable portion 52 which is displaced downward according to a load to be measured, two parallel robber valve mechanisms 53 each having one end connected to the movable portion 52, and a movable portion 52.
  • a fixed part connected to the connecting part 54 connected at one end, the lever 55 connected to the other end of the connecting member 54, and the fulcrum 56 of the lever 55, and the other end of the rover valve 53 connected.
  • the fixing portion 57 is fixed to the substrate 50 via a magnetic circuit described later.
  • the connection point (58) between the lever 55 and the connecting portion 54 is a power point 58 at which a force corresponding to the load acts on the lever 55.
  • the side on which the power point 58 of the lever portion 55 exists is referred to as the front side of the lever portion 55, and the opposite side is referred to as the rear side.
  • the rear end of the lever 55 supported by the fulcrum 56 can move in the vertical direction according to the force acting on the force point 58.
  • the movement of the lever 55 is immediately compensated by the energization of the flat coil 60 described later, so the lever 55 hardly moves.
  • the rear end of the lever 55 is provided with a slit 80 for detecting the vertical position.
  • a flat coil 60 configured by winding an electric wire in a track (competitive path) shape is attached.
  • the flat coil 60 has an upper winding portion (upper parallel winding portion) 61 parallel to the extension direction of the lever 55 and a lower winding portion (lower parallel winding portion) 62.
  • the lever 55 includes a flat coil holding portion 551 for attaching the flat coil 60.
  • the flat coil holding portion 551 extends vertically downward from the lever 55 and has a slightly larger area than the flat coil 60.
  • the flat coil holding portion 551 and a portion of the lever portion 55 integrated with the flat coil holding portion 551 are made of a nonmagnetic material such as an aluminum plate or a resin plate.
  • a magnetic circuit 70 generating a magnetic field exerted on the flat coil 60 is fixed to the substrate 50 so as to surround the flat coil 60.
  • the magnetic circuit 70 is provided with insertion holes 71 and 72 through which the lever 55 is inserted so as not to prevent the movement of the lever 55 (FIG. 1).
  • the rear end of the lever 55 protrudes from the rear insertion hole 72 of the magnetic circuit 70, and the rear end position (vertical position) of the lever 55 is detected using the slit 80 provided at the rear end.
  • a photo interrupter 81 is fixed to the magnetic circuit 70.
  • the photo interrupter 81 has a light emitting unit and a light receiving unit facing each other, and when the rear end of the lever 55 is at the reference position, the light receiving unit detects the light of the light emitting unit through the slit 80.
  • FIG. 3 shows the magnetic circuit 70 viewed from the cross section taken along the line AA in FIG. 1, and the lever 55 and the flat coil 60 surrounded by the magnetic circuit 70.
  • FIG. 4 shows the magnetic circuit 70 viewed from the cross section taken along the line BB in FIG. 1, and the lever 55 and the flat coil 60 surrounded by the magnetic circuit 70.
  • the magnetic circuit 70 surrounding the flat coil 60 comprises a first lateral side yoke 73 standing vertically along the longitudinal direction of the lever 55 and a second lateral side yoke standing vertically parallel to the first lateral side yoke 73.
  • a front side surface yoke 75 having an insertion hole 71 formed on the front side viewed from the fulcrum 56 side
  • a rear surface side yoke 76 having an insertion hole 72 standing on the rear side as viewed from the fulcrum 56
  • an upper yoke 77 closing the upper side of a space surrounded by the first lateral side yoke 73, the front side yoke 75, the second lateral side yoke 74 and the rear side yoke 76, and a lower side closing the lower side of the space.
  • a side yoke 78 is
  • a plate-like permanent magnet (upper plate-like permanent magnet) 91 is provided on the inner surface of the first lateral side yoke 73 at a position facing the upper parallel winding portion 61 of the flat coil 60.
  • a plate-like permanent magnet (lower plate-like permanent magnet) 92 is fixed at a position which is fixed and opposed to the lower parallel winding portion 62 of the flat coil 60.
  • the upper plate-like permanent magnet 91 and the lower plate-like permanent magnet 92 are both magnetized in the thickness direction, but the direction of the magnetization is reversed between the upper plate-like permanent magnet 91 and the lower plate-like permanent magnet 92 ing.
  • the upper plate-like permanent magnet 91 at the position facing the upper plate-like permanent magnet 91 on the inner surface of the second lateral side yoke 74 with the upper parallel winding portion 61 of the flat coil 60 interposed therebetween.
  • the upper plate-like yoke 93 having a small area and thickness is fixed, and the lower plate-like permanent magnet 92 is disposed so as to face the lower plate-like permanent magnet 92 with the lower parallel winding portion 62 of the flat coil 60 interposed therebetween.
  • a lower side plate-like yoke 94 having the same area as that in FIG.
  • FIG. 5 shows the magnetic flux flowing in the magnetic circuit of FIG.
  • the magnetic flux passing from the upper plate-like permanent magnet 91 to the upper yoke 77 is As a result, the magnetic flux density of the magnetic flux (the magnetic flux of a vector perpendicular to the plane of the flat coil 60) from the upper plate-like permanent magnet 91 to the upper plate-like yoke 93 decreases. Therefore, the electromagnetic force when the flat coil 60 is energized becomes small.
  • the relationship between the lower plate permanent magnet 92, the lower plate yoke 94 and the lower yoke 78 is the relationship between the lower plate permanent magnet 92, the lower plate yoke 94 and the lower yoke 78.
  • FIG. 6 shows the result of analysis of the influence of the distance between the upper plate permanent magnet 91 and the lower plate permanent magnet 92 and the distance between the upper plate permanent magnet 91 and the upper yoke 77 on the electromagnetic force.
  • the distance from the center (dotted line position) of the magnetic circuit to one end of the upper plate-like permanent magnet 91 is A
  • the distance from the other end of the upper plate-like permanent magnet 91 to the upper yoke 77 is As B
  • FIG. 7 shows the maximum value of the leakage magnetic flux density from the side and the electromagnetic force generated in the flat coil 60 change due to A and B.
  • the horizontal axis represents the distance (mm) between A and B
  • the vertical axis on the left represents the maximum value of leakage flux density (mT)
  • the vertical axis on the right represents the electromagnetic force generated in the flat coil 60 represents mN).
  • the change in the maximum value of the leakage flux density when A is changed is represented by solid line 1
  • the change in the maximum value of the leakage flux density when B is changed is represented by solid line 2.
  • the electromagnetic force when A is changed The change of is represented by dotted line 3
  • the change of the electromagnetic force when B is changed is represented by dotted line 4.
  • the distance (B) from the upper plate-like permanent magnet 91 to the upper yoke 77 is narrow, the amount of magnetic flux from the upper plate-like permanent magnet 91 to the upper yoke 77 increases, and the maximum value of the leakage flux density from the side surface To increase. Therefore, the magnetic flux density acting on the flat coil 60 is reduced, and the electromagnetic force generated in the flat coil 60 is reduced. Therefore, the distance of B needs to be expanded to some extent.
  • the distance between the upper plate-like permanent magnet 91 and the upper yoke 77 and the distance between the lower plate-like permanent magnet 92 and the lower yoke 78 are plate-like
  • the distance between the upper plate-like permanent magnet 91 and the lower plate-like permanent magnet 92 is set to 2/5 of the dimension of the plate-like permanent magnets 91, 92. doing.
  • the flat coil 60 is disposed vertically along the extension direction of the lever 55, and the plate-like permanent magnets 91 and 92 and the plate-like yoke 93 sandwiching the flat coil 60. , 94, and the left and right side yokes 73, 74 to which they are fixed are disposed in parallel with the flat coil 60, so that the dimension in the width direction (dimension D in FIG. 2) can be extremely reduced. Therefore, even if a plurality of electromagnetic force balance type measuring devices are arranged side by side on the production line, the occupied area can be small and the production line can be made compact.
  • the parallel winding portions 61 and 62 of the flat coil 60 are interposed therebetween, and the plate-like permanent magnets 91 and 92 having the same area are opposed to the plate-like yokes 93 and 94 at close positions.
  • a magnetic field having a dense magnetic flux density distribution (a large amount of magnetic flux) is generated in which the magnetic flux in the direction perpendicular to the plane of the flat coil 60 is homogeneously present.
  • the symmetry of the movement of the flat coil 60 is ensured by this magnetic field, and highly accurate measurement is possible.
  • the upper plate-like permanent magnet 91 and the lower plate-like permanent magnet 92 are disposed opposite to the upper parallel winding part 61 and the lower parallel winding part 62 of the flat coil 60, and the upper plate-like permanent magnet 91 is arranged. And since the magnetization direction of the lower plate-like permanent magnet 92 is reversed, when the flat coil 60 is energized, vertical forces in the same direction are applied to the upper parallel winding portion 61 and the lower parallel winding portion 62. Occur. Therefore, even if the small flat coil 60 is used, a force that compensates for the movement of the lever 55 can be secured.
  • the lengths of the upper parallel winding portion 61 and the lower parallel winding portion 62 of the flat coil 60 are extended, and the upper plate shape is adjusted accordingly.
  • the lengths of the permanent magnet 91 and the lower plate-like permanent magnet 92 may be expanded, or a plurality of the upper plate-like permanent magnet 91 and the lower plate-like permanent magnet 92 may be extended to the upper parallel winding portion 61 and the lower parallel winding portion 62 It is possible to cope by arranging them facing each other.
  • the upper plate-like permanent magnet 91 and the lower plate-like yoke 94 are fixed to the inner surface of the first lateral side yoke 73, and the upper side is placed on the inner surface of the second lateral side yoke 74.
  • the side plate yoke 93 and the lower plate permanent magnet 92 may be fixed.
  • plate-like permanent magnets 91 and 95 magnetized in the same thickness direction are disposed on both sides of the parallel winding portion 61 so as to face each other.
  • the plate-like permanent magnets 92 and 96 magnetized in the same thickness direction may be arranged opposite to each other on both sides (however, the magnetization directions of the plate-like permanent magnet 91 and the plate-like permanent magnet 92 are opposite to each other) The magnetization directions of the plate-like permanent magnet 95 and the plate-like permanent magnet 96 are opposite to each other.
  • the plate-like yokes 93 and 94 are disposed on the same side.
  • the above structure is advantageous in reducing the thickness of the device because the thickness of the plate-like yokes 93 and 94 can be reduced to narrow the width of the entire magnetic circuit.
  • the volumes of the plate-like permanent magnets 91 and 92 are the same in FIG. 4 and FIG. 8A, the force generated when the flat coil 60 is energized hardly changes.
  • a first side surface yoke 73, a front side surface yoke 75, a second side surface yoke 74, a rear side surface yoke 76, an upper side yoke 77, and a lower side yoke 78 that constitute the outer shell of the magnetic circuit.
  • the entire outer surface of the above may be covered with a magnetic steel plate 97 having a magnetic shielding function.
  • the electromagnetic steel plate 97 absorbs the magnetic flux leaked from the yoke of the magnetic circuit and does not leak to the outside. If the thickness of the yoke forming the outer shell of the magnetic circuit is reduced to further reduce the thickness of the measuring device, the magnetic flux leaking from the yoke increases. Leakage flux can be confined by this. Therefore, the influence of the leakage flux does not affect the adjacent weighing devices. Thus, by covering the entire magnetic circuit with the magnetic steel plate 97, it is possible to further reduce the thickness of the measuring device.
  • the electromagnetic force generated when a constant current is supplied to the flat coil 60 is the position of the flat coil 60 in the magnetic circuit 70. It is not desirable to change depending on When the relationship between the generated electromagnetic force and the current depends on the position of the flat coil 60, a large span change occurs when the displacement of the lever 55 becomes zero, that is, when the balance point of the system deviates for some reason Also, unless the assembly accuracy of the mechanism part is made strict, it is not possible to obtain the intended magnitude of the electromagnetic force.
  • the electromagnetic force balance type measuring device has a structure in which the relationship between the generated electromagnetic force and the current hardly changes depending on the position of the flat coil 60.
  • a cross-sectional view of the magnetic circuit of this electromagnetic force balance type measuring device is shown in FIG. 10 (a).
  • FIG. 10 (a) A cross-sectional view of the magnetic circuit of this electromagnetic force balance type measuring device is shown in FIG. 10 (a).
  • FIG. 8A the direction in which the upper plate-like permanent magnet 91 faces the upper plate-like yoke 193 at the position of the upper parallel winding portion 61 of the flat coil, and the lower parallel winding portion 62
  • the direction in which the lower plate-like permanent magnet 92 faces the lower plate-like yoke 194 is reversed at the position of.
  • the upper plate-shaped permanent magnet 91 facing the upper parallel winding portion 61 is fixed to the inner surface of the first lateral side yoke 73, and the upper plate faces the upper plate-shaped permanent magnet 91 via the upper parallel winding portion 61
  • Yoke 193 is fixed to the inner surface of the second side surface yoke 74
  • the lower plate permanent magnet 92 facing the lower parallel winding portion 62 is fixed to the inner surface of the second side surface yoke 74
  • a lower plate-like yoke 194 facing the lower plate-like permanent magnet 92 through the side parallel winding portion 62 is fixed to the inner surface of the first lateral side yoke 73.
  • the facing areas of the upper plate-like permanent magnet 91, the lower plate-like permanent magnet 92, the upper plate-like yoke 193 and the lower plate-like yoke 194 are the same.
  • the upper side plate-like yoke 193 and the lower side plate-like yoke 194 have protrusions 201 and 202 on the upper side and the lower side, as shown in an enlarged manner in FIG. At the position, the distance from the upper plate-like permanent magnet 91 or the lower plate-like permanent magnet 92 is narrowed by the thickness of the protrusions 201 and 202.
  • the distance between the upper plate permanent magnet 91 or the lower plate permanent magnet 92 becomes narrow.
  • the magnetic flux flowing from the opposing permanent magnet is increased.
  • the magnetic flux density distribution between the upper plate-like permanent magnet 91 and the upper plate-like yoke 193 and between the lower plate-like permanent magnet 92 and the lower plate-like yoke 194 becomes uniform in a wide range.
  • FIG. 11A shows the result of analysis of the magnetic flux density distribution when the plate-like yoke provided with the ridges and the plate-like permanent magnet are opposed to each other.
  • the dotted line position (a) close to the plate-like yoke side by 0.5 mm from the coil center the dotted line position (b) passing through the coil center and 0.5 mm from the coil center
  • the magnetic flux density at the dotted line position (c) close to is analyzed.
  • FIG. 11A shows, for comparison, the magnetic flux density distribution when the plate-like yoke does not have a ridge.
  • the graph of FIG. 13A shows the change of the electromagnetic force when the flat coil 60 is displaced in the y direction of FIG. 10A.
  • the line a shows the characteristics of an electromagnetic force balance type measuring device having the magnetic circuit of FIG. 10 (a)
  • the line b shows the magnetic circuit of FIG. Plate-shaped yokes, each of which has a permanent magnet opposite to each of the upper and lower winding portions of the flat coil on the same side of the flat coil and on the opposite side of the flat coil and paired with each permanent magnet 1 shows the characteristics of a device having a magnetic circuit).
  • the upper plate-like permanent magnet 91 is fixed to the first lateral side yoke 73
  • the lower plate-like permanent magnet 92 is fixed to the second lateral side yoke 74
  • the upper parallel winding portion 61 approaches the upper plate permanent magnet 91
  • the lower parallel winding portion 62 separates from the lower plate permanent magnet 92.
  • the magnetic field between the plate-like permanent magnet and the plate-like yoke becomes stronger as it approaches the plate-like permanent magnet.
  • the area of the plate-like permanent magnet and the plate-like yoke is finite, so a magnetic flux is generated from the plate-like permanent magnet to other than the plate-like yoke, and the magnetic flux density becomes higher as it approaches the plate-like permanent magnet. It is. Therefore, when the flat coil 60 is displaced in the x direction, the magnetic field for one of the upper parallel winding portion 61 and the lower parallel winding portion 62 is intensified and the magnetic field for the other is weakened. In the winding portion where the magnetic field is intensified, the generated electromagnetic force is increased, but in the winding portion where the magnetic field is weakened, the generated electromagnetic force is reduced, so that the change in the electromagnetic force is canceled and the electromagnetic force is kept substantially constant.
  • the graph of FIG. 14A shows the change of the electromagnetic force when the flat coil 60 is displaced in the x direction of FIG.
  • the line a shows the characteristics of an electromagnetic force balance type measuring device having the magnetic circuit of FIG. 10 (a)
  • the line b is a plate-like permanent magnet fixed on the same side as a comparative example.
  • the characteristic in the case of FIG. 4 is shown.
  • the electromagnetic force when the displacement of the flat coil 60 in the x direction is 0 is taken as a reference value, and the electromagnetic force at the position where the flat coil 60 is displaced in the x direction and the reference value The difference in% is shown.
  • FIGS. 14 (a) and 14 (b) in the electromagnetic force balance type measuring device provided with the magnetic circuit of FIG. 10 (a), even if the flat coil 60 is displaced in the x direction, the generated electromagnetic force changes substantially. Absent.
  • FIG. 15 and 16 show changes in characteristics when the widths of the protrusions 201 and 202 provided on the upper plate yoke 193 and the lower plate yoke 194 are changed.
  • the entire length of the plate-like yokes 193 and 194 is kept constant, and the width A of the protrusions 201 and 202 is changed to investigate the characteristic change.
  • FIG. 15 shows the results of investigation of the change in the electromagnetic force when the flat coil 60 is displaced in the y direction by changing the width A from 3.0 mm to 3.5 mm in 0.1 mm steps.
  • FIG. 16 shows how the electromagnetic force changes when the flat coil 60 is displaced in the x direction under the same conditions.
  • the electromagnetic force balance type measuring device provided with the magnetic circuit of FIG. 10A can be flat by appropriately selecting the width of the ridges 201 and 202 provided on the upper plate yoke 193 and the lower plate yoke 194. The change of the generated electromagnetic force due to the positional deviation of the coil 60 can be made substantially zero.
  • the configuration shown here is an example of the present invention, and the present invention is not limited thereto.
  • the electromagnetic force balance type measuring device of the present invention can be installed in a narrow place, and is used in a wide range of fields such as a manufacturing plant having a production line, a distribution facility having a transfer line, or a research facility or a medical facility. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

 テコ部55に取り付けられるコイルは、テコ部55の延伸方向に平行な垂直面に沿って、テコ部の延伸方向に平行な上側及び下側の巻線部分61、62が生じるように偏平に巻回された偏平コイル60から成り、磁気回路70は、偏平コイル60の上側または下側の巻線部分61、62に対向し、前記垂直面に直交する方向に磁化された一または複数の板状の永久磁石91、92と、前記垂直面に直交する向きの磁束が生成されるように永久磁石の磁力線を導くヨーク部材75,76、77、78とを備える。偏平コイル60をテコ部55の延伸方向に沿って垂直に配置し、この偏平コイル60と平行に磁気回路70を配置しているため、計量装置の幅方向の厚さを薄くできる。

Description

電磁力平衡式計量装置
 本発明は、例えば、製造ラインを流れる製品などの計量に用いる電磁力平衡式計量装置に関し、幅方向の厚みを薄くして設置面積の減少を図ったものである。
 電磁力平衡式の秤は、図18に示すように、支点で支えられたテコ10と、テコ10の一方で荷重を支える荷重受け部11と、テコ10の他方に取り付けられたコイル12と、永久磁石の磁界をコイル12に及ぼす磁気回路13と、テコ10の位置変位を検出するフォトセンサ14及び位置検出部15と、テコ10の位置変位を補償する電流をコイル12に供給するPIDコントローラ16とを備えており、テコの位置変位が補償されたときのコイルへの供給電流から、A/Dコンバータ17及びCPU18により荷重の重量が算出され、インターフェース19を介して重量データが外部に出力される。
 下記特許文献1には、生産ラインに組み込まれて、ライン上を流れる製品や部品などを計量する組込み用の電磁力平衡式計量装置が開示されている。この組込み用計量装置100は、図19に示す外観を有し、筐体が、ステンレス製のカバー20と、ステンレス製のベース21とで構成され、カバー20の上面から荷重受け部30だけが露出している。この荷重受け部30の上に計量皿(不図示)が載り、計量皿の上に被測定物(不図示)が置かれる。また、カバー20の後端には、コネクタが取り付けられた裏蓋22が固定されている。
 この筐体内には、図18に示す、テコ10、コイル12、磁気回路13及びフォトセンサ14が配置され、また、位置検出部15、PIDコントローラ16、A/Dコンバータ17及びCPU18を含む電気部が収容されている。
 この組込み用計量装置100は、例えば、図20に示すように、搬入コンベア120と搬出コンベア121との間に複数台が並べて設置される。搬入コンベア120で搬入された被測定物130は、その複数個がチャックハンドル(不図示)などで把持されて複数台の組込み用計量装置100の計量皿に同時に載せられ、計量される。計量が終了した被測定物130は、チャックハンドルで把持されて搬出コンベア121に移され、搬出される。
特開2012-13465号公報 米国特許第4,545,448号明細書
 従来の電磁力平衡式計量装置では、磁界をコイルに及ぼすために、図18に示すように、壷型ヨーク(スピーカ型ヨーク)を備える磁気回路が用いられている。
 また、前記特許文献2には、図21に示すように、テコ36の延伸方向と直交する面に沿って永久磁石74及びコイル54が配置され、この永久磁石及びコイルを囲むようにヨーク70、72が配置された磁気回路が開示されている。
 しかし、電磁力平衡式計量装置を生産ラインに組み込む場合には、壷型ヨークを備える磁気回路や、特許文献2に記載された磁気回路を使用すると、幅方向の厚さ(図19の寸法D)が増大し、そのため、生産ラインに多数の計量装置を組み込んだり、生産ラインをコンパクトに構成したりすることが困難になる。
 本発明は、こうした事情を考慮して創案したものであり、幅方向の厚さが薄い電磁力平衡式計量装置を提供することを目的としている。
 本発明は、支点の前後に延びるテコ部と、テコ部の支点より後側に取り付けられるコイルと、コイルに及ぼす磁界を生成する磁気回路と、を備え、テコ部の支点より前側の力点に作用する力がコイルに通電して補償される電磁力平衡式計量装置であって、コイルは、テコ部の延伸方向に平行な垂直面に沿って、テコ部の延伸方向に平行な上側及び下側の巻線部分が生じるように偏平に巻回された偏平コイルから成り、磁気回路は、偏平コイルの上側または下側の巻線部分に対向し、前記垂直面に直交する方向に磁化された一または複数の板状の永久磁石と、前記垂直面に直交する向きの磁束が生成されるように永久磁石の磁力線を導くヨーク部材と、を備えることを特徴とする。
 この電磁力平衡式計量装置は、偏平コイルをテコ部の延伸方向に沿って垂直に配置し、この偏平コイルと平行に磁気回路を配置しているため、計量装置の幅方向の厚さを薄くすることができる。
 また、本発明では、偏平コイルの一方の側に、上側の巻線部分及び下側の巻線部分の各々に対向する二つの永久磁石を設け、二つの永久磁石の磁化の方向を逆向きにしている。
 この電磁力平衡式計量装置では、コイルに通電したとき、偏平コイルの上下の巻線部分の位置で同一向きの垂直方向の力が発生するため、力点に作用する力を、小さい形状の偏平コイルで補償することができる。
 また、本発明では、偏平コイルの他方の側に、二つの永久磁石の各々と向かい合う二つの板状のヨーク部材を設けることが望ましい。
 このように板状ヨークを同じ側に配置する構造では、板状ヨークの厚さを薄くして磁気回路全体の幅を狭くできるため、装置の薄形化を図る上で有利である。
 また、本発明では、板状のヨーク部材が、偏平コイルを介して向かい合う永久磁石と同一面積を有することが望ましい。
 こうすることで、偏平コイルに垂直に作用する磁束量を増加させることができ、また、偏平コイル位置での磁束密度分布の対称性を確保することができる。
 また、本発明の電磁力平衡式計量装置は、磁気回路が、偏平コイルの一方の側で上側の巻線部分に対向する上側永久磁石と、偏平コイルの他方の側で下側の巻線部分に対向する下側永久磁石と、上側の巻線部分を介して上側永久磁石に向き合う板状の上側ヨーク部材と、下側の巻線部分を介して下側永久磁石に向き合う板状の下側ヨーク部材と、を有し、上側永久磁石の磁化の方向が下側永久磁石の磁化の方向と逆向きであり、上側ヨーク部材の上辺及び下辺に上側永久磁石との間隔を狭める突条が設けられ、下側ヨーク部材の上辺及び下辺に下側永久磁石との間隔を狭める突条が設けられていることを特徴とする。
 この電磁力平衡式計量装置は、偏平コイルに電流を流したときに発生する電磁力の強さが、偏平コイルの位置を変えても殆ど変化しない。そのため、系のバランス点が何らかの原因でずれたときでも、スパンの変化が回避でき、また、機構部分の組み立て精度が緩和される。
 また、本発明の電磁力平衡式計量装置では、磁気回路の外側を電磁鋼板で覆うことが望ましい。
 電磁鋼板は、磁気回路のヨークから漏れた磁束を吸収して外に漏らさないため、ヨークの厚さを薄くして、計量装置の一層の薄形化を図ることができる。
 また、本発明の電磁力平衡式計量装置は、生産ラインに組み込んで使用する組込み用計量装置に適している。
 計量装置の幅方向の厚さが薄いため、生産ライン間の狭い面積に多数の計量装置を並べて配置することができ、生産ラインのコンパクト化が可能になる。
 本発明の電磁力平衡式計量装置は、幅方向の厚みを薄くできる。そのため、複数台を並べて設置する場合でも、占有面積が少なくて済む。
 また、偏平コイルの上側巻線部分に対向する永久磁石と、下側巻線部分に対向する永久磁石とが、偏平コイルの異なる側に在り、それらの永久磁石と対を成すヨーク部材の上辺及び下辺に突条が設けられている電磁力平衡式計量装置は、偏平コイルに通電したときの発生電磁力の強さが偏平コイルの位置に殆ど依存しないため、系のバランス点が何らかの原因でずれたときでも、スパンの変化が回避でき、また、機構部分の組み立て精度が緩和される。
本発明の第1の実施形態に係る電磁力平衡式計量装置の断面図 図1の電磁力平衡式計量装置の平面図 図1のA-A位置における磁気回路部分の断面図 図1のB-B位置における磁気回路部分の断面図 図4の磁気回路の磁束を示す図 永久磁石間距離(A)及び永久磁石と周辺ヨークとの間の距離(B)に伴う漏洩磁束密度及び電磁力の変化を示す図 図6における距離A及びBを説明する図 磁気回路部分の変形例を示す図(永久磁石の位置を変更した例(a)と、永久磁石同士を対向させた例(b)) 電磁鋼板で覆った磁気回路を示す図 本発明の第2の実施形態に係る電磁力平衡式計量装置の磁気回路を示す図 図10の磁気回路の磁束密度分布を示す図 図11の磁束密度分布の解析位置を示す図 図10の磁気回路でコイルがy方向に変位したときの電磁力変化を示す図 図10の磁気回路でコイルがx方向に変位したときの電磁力変化を示す図 コイルのy方向の変位に伴う電磁力変化を突条間隔を変えて解析した図 コイルのx方向の変位に伴う電磁力変化を突条間隔を変えて解析した図 図15及び図16の測定条件を説明する図 従来の電磁力平衡式計量装置の構成を示す図 従来の組み込み用電磁力平衡式計量装置の外観を示す図 図19の装置が生産ラインに組み込まれた状態を示す図 従来の電磁力平衡式計量装置の他の構成を示す図
 (第1の実施形態)
 図1は、本発明の実施形態に係る電磁力平衡式計量装置の断面図を示し、図2は、その平面図を示している。
 この計量装置は、荷重受け部51を支持し、被測定荷重に応じて下方に変位する可動部52と、可動部52に一端が連結された二本の平行するロバーバル機構53と、可動部52に一端が連結された連結部54と、連結部54の他端に連結されたテコ部55と、テコ部55の支点56を保持し、且つ、ロバーバル機構53の他端が連結された固定部57とを有している。固定部57は、後述する磁気回路を介して基板50に固定されている。テコ部55と連結部54との連結点(58)は、荷重に応じた力がテコ部55に作用する力点58となる。
 この明細書では、テコ部55の力点58が存在する側をテコ部55の前側と言い、反対側を後側と言うことにする。
 支点56で支持されたテコ部55の後端は、力点58に作用する力に応じて、垂直方向に移動することが可能である。ただ、実際には、テコ部55の移動が後述する偏平コイル60への通電で即時に補償されるため、テコ部55は殆ど動かない。テコ部55の後端には、垂直方向の位置を検出するためのスリット80が設けられている。
 テコ部55のスリット80よりも前側の位置には、電線をトラック(競争路)形状に巻回して構成された偏平コイル60が取り付けられている。偏平コイル60は、テコ部55の延伸方向に平行な上側の巻線部分(上側平行巻線部分)61と下側の巻線部分(下側平行巻線部分)62とを有している。
 テコ部55は、偏平コイル60を取り付けるための偏平コイル保持部551を備えている。偏平コイル保持部551は、テコ部55から垂直下方に延びており、偏平コイル60よりも僅かに大きな面積を有している。偏平コイル保持部551、及び、それと一体化されたテコ部55の部分は、アルミ板や樹脂板などの非磁性体で構成されている。
 この偏平コイル60に及ぼす磁界を生成する磁気回路70は、偏平コイル60を取り囲むように基板50に固定されている。
 なお、磁気回路70には、テコ部55の動きを妨げないように、テコ部55が挿通される挿通孔71、72が設けられている(図1)。磁気回路70の後側の挿通孔72からはテコ部55の後端が突出し、この後端に設けられたスリット80を利用してテコ部55の後端位置(垂直方向の位置)を検出するフォトインタラプタ81が、磁気回路70に固定されている。フォトインタラプタ81は、対向する発光部及び受光部を有し、テコ部55の後端が基準位置にあるとき、受光部がスリット80を通して発光部の光を検出する。
 図3は、図1のA-A位置の切断面から見た磁気回路70と、磁気回路70に囲まれたテコ部55及び偏平コイル60を示している。
 また、図4は、図1のB-B位置の切断面から見た磁気回路70と、磁気回路70に囲まれたテコ部55及び偏平コイル60を示している。
 偏平コイル60を囲む磁気回路70は、テコ部55の長手方向に沿って垂直に立つ第1の横側面ヨーク73と、第1の横側面ヨーク73と平行に垂直に立つ第2の横側面ヨーク74と、支点56側から見て手前側に立つ、挿通孔71が形成された前側面ヨーク75と、支点56側から見て後ろ側に立つ、挿通孔72が形成された後側面ヨーク76と、第1の横側面ヨーク73、前側面ヨーク75、第2の横側面ヨーク74及び後側面ヨーク76によって四方が囲まれた空間の上側を塞ぐ上側ヨーク77と、この空間の下側を塞ぐ下側ヨーク78とを具備している。
 また、図4に示すように、第1の横側面ヨーク73の内面には、偏平コイル60の上側平行巻線部分61に対向する位置に板状の永久磁石(上側板状永久磁石)91が固定され、偏平コイル60の下側平行巻線部分62に対向する位置に板状の永久磁石(下側板状永久磁石)92が固定されている。上側板状永久磁石91及び下側板状永久磁石92は、共に厚さ方向に磁化されているが、磁化の方向は、上側板状永久磁石91と下側板状永久磁石92とで逆向きになっている。
 また、第2の横側面ヨーク74の内面には、偏平コイル60の上側平行巻線部分61を間に挟んで、上側板状永久磁石91と対向する位置に、上側板状永久磁石91と同一面積で厚さが薄い上側板状ヨーク93が固定され、偏平コイル60の下側平行巻線部分62を間に挟んで、下側板状永久磁石92と対向する位置に、下側板状永久磁石92と同一面積で厚さが薄い下側板状ヨーク94が固定されている。
 このように、同一面積の上側板状永久磁石91及び上側板状ヨーク93、並びに、下側板状永久磁石92及び下側板状ヨーク94を近接させて対向させると、それらの対向位置では、偏平コイル60の面に垂直な方向にベクトルを揃えた磁束密度の高い磁束が、上側平行巻線部分61及び下側平行巻線部分62を通過する。
 図5には、図4の磁気回路に流れる磁束を示している。
 ただし、上側板状永久磁石91と下側板状永久磁石92との距離が近過ぎると、永久磁石間に渡る磁束が増加し、偏平コイル60の面に垂直なベクトルの磁束密度が減少するため、偏平コイル60に通電したときの電磁力が小さくなる。
 また、上側板状永久磁石91と上側板状ヨーク93との対向位置から、その側方に位置する上側ヨーク77までの距離が近いと、上側板状永久磁石91から上側ヨーク77に渡る磁束が発生し、上側板状永久磁石91から上側板状ヨーク93に向かう磁束(偏平コイル60の面に垂直なベクトルの磁束)の磁束密度が減少する。そのため、偏平コイル60に通電したときの電磁力が小さくなる。これは、下側板状永久磁石92と下側板状ヨーク94と下側ヨーク78との関係においても同様である。
 図6は、上側板状永久磁石91と下側板状永久磁石92との磁石間距離、及び、上側板状永久磁石91と上側ヨーク77との距離が電磁力に与える影響について解析した結果を示している。
 ここでは、図7に示すように、磁気回路の中心(点線位置)から上側板状永久磁石91の一端までの距離をA、上側板状永久磁石91の他端から上側ヨーク77までの距離をBとして、側面からの漏れ磁束密度の最大値と偏平コイル60に生じる電磁力とがA及びBによりどのように変化するかを調べている。
 図6のグラフにおいて、横軸はA及びBの距離(mm)を表し、左側の縦軸は漏れ磁束密度の最大値(mT)を表し、右側の縦軸は偏平コイル60に生じる電磁力(mN)を表している。また、Aを変えたときの漏れ磁束密度の最大値の変化を実線1で表し、Bを変えたときの漏れ磁束密度の最大値の変化を実線2で表し、Aを変えたときの電磁力の変化を点線3で表し、また、Bを変えたときの電磁力の変化を点線4で表している。
 図6から分かるように、磁石間距離が狭い(Aが小さい)と、上側板状永久磁石91から下側板状永久磁石92に渡る磁束量が増加するため、偏平コイル60に作用する磁束密度が減少し、偏平コイル60に生じる電磁力が小さくなる。Aを拡げることで上側板状永久磁石91から上側板状ヨーク93に渡る磁束量が増加し、偏平コイル60に生じる電磁力が改善される。同時に、側面からの漏れ磁束密度の最大値も若干増加する。
 また、上側板状永久磁石91から上側ヨーク77までの距離(B)が狭いと、上側板状永久磁石91から上側ヨーク77に渡る磁束量が増加し、側面からの漏れ磁束密度の最大値が増加する。そのため、偏平コイル60に作用する磁束密度が減少し、偏平コイル60に生じる電磁力が小さくなる。そのため、Bの距離は、ある程度拡げる必要がある。
 こうした解析結果を踏まえて、この電磁力平衡式計量装置では、上側板状永久磁石91と上側ヨーク77との距離、及び、下側板状永久磁石92と下側ヨーク78との距離を、板状永久磁石91、92の寸法の1/3に設定し、上側板状永久磁石91と下側板状永久磁石92との磁石間距離を、板状永久磁石91、92の寸法の2/5に設定している。
 この電磁力平衡式計量装置では、テコ部55の垂直方法の動きを補償する電流が偏平コイル60に流れたときに、偏平コイル60の上側平行巻線部分61及び下側平行巻線部分62に、同じ向きの垂直方向の力が発生し、これらの合力でテコ部55は、基準位置に引き戻される。
 このように、この電磁力平衡式計量装置では、偏平コイル60がテコ部55の延伸方向に沿って垂直に配置され、また、偏平コイル60を挟む板状永久磁石91、92及び板状ヨーク93、94、並びに、それらが固定された左右の側面ヨーク73、74が、いずれも偏平コイル60と平行に配置されているため、幅方向の寸法(図2の寸法D)を極めて小さくできる。
 そのため、生産ラインに複数の電磁力平衡式計量装置を並べて配置しても、占有面積が小さくて済み、生産ラインのコンパクト化が可能になる。
 また、偏平コイル60の平行巻線部分61、62を間に挟み、同一面積の板状永久磁石91、92と板状ヨーク93、94とを近接位置で対向させているため、平行巻線部分61、62の位置には、偏平コイル60の面に垂直な向きの磁束が均質に存在する、磁束密度分布が密(磁束量が多い)な磁界が発生する。この磁界により偏平コイル60の動きの対称性が確保され、高精度の計量が可能になる。
 また、偏平コイル60の上側平行巻線部分61及び下側平行巻線部分62のそれぞれに対向させて上側板状永久磁石91と下側板状永久磁石92とを配置し、上側板状永久磁石91及び下側板状永久磁石92の磁化方向を逆向きにしているため、偏平コイル60に通電したとき、上側平行巻線部分61及び下側平行巻線部分62に、同じ向きの垂直方向の力が発生する。そのため、小型の偏平コイル60を使用しても、テコ部55の動きを補償する力が確保できる。
 なお、テコ部55の動きを補償する大きな力が必要なときは、偏平コイル60の上側平行巻線部分61及び下側平行巻線部分62の長さを拡張し、それに合わせて、上側板状永久磁石91及び下側板状永久磁石92の長さを拡張したり、上側板状永久磁石91及び下側板状永久磁石92の複数個を上側平行巻線部分61及び下側平行巻線部分62に対向させて配置したりすることで対応できる。
 また、図8(a)に示すように、第1の横側面ヨーク73の内面に上側板状永久磁石91と下側板状ヨーク94とを固定し、第2の横側面ヨーク74の内面に上側板状ヨーク93と下側板状永久磁石92とを固定しても良い。
 また、図8(b)に示すように、平行巻線部分61の両側に、同一の厚さ方向に磁化された板状永久磁石91、95を対向して配置し、平行巻線部分62の両側に、同一の厚さ方向に磁化された板状永久磁石92、96を対向して配置しても良い(ただし、板状永久磁石91と板状永久磁石92との磁化方向は逆向きとし、板状永久磁石95と板状永久磁石96との磁化方向は逆向きとする。)。
 なお、図8(a)の構造と図4の構造とを比較すると、同じ厚さの板状永久磁石91、92を使用する場合に、板状ヨーク93、94を同じ側に配置する図4の構造は、板状ヨーク93、94の厚さを薄くして磁気回路全体の幅を狭くすることができるため、装置の薄形化を図る上で有利である。なお、この場合、板状永久磁石91、92の体積は、図4と図8(a)とで同じであるため、偏平コイル60に通電したときに発生する力は殆ど変わらない。
 また、図9に示すように、磁気回路の外郭を構成する第1の横側面ヨーク73、前側面ヨーク75、第2の横側面ヨーク74、後側面ヨーク76、上側ヨーク77及び下側ヨーク78の外面全体を、磁気シールド機能を有する電磁鋼板97で覆うようにしても良い。電磁鋼板97は、磁気回路のヨークから漏れた磁束を吸収して外に漏らさない。
 この計量装置の一層の薄形化を進めるために、磁気回路の外郭を構成するヨークの厚さを薄くすると、ヨークから漏れる磁束が増えてしまうが、磁気回路の外面全体を電磁鋼板97で覆うことにより漏れ磁束を閉じ込めることができる。そのため、隣接する計量装置に対しても漏れ磁束の影響は及ばない。
 このように、磁気回路全体を電磁鋼板97で覆うことにより、計量装置の一層の薄形化が可能になる。
 (第2の実施形態)
 偏平コイル60に流れる電流から被測定物の重量を計測する電磁力平衡式計量装置では、偏平コイル60に一定電流を通電したときに発生する電磁力が、磁気回路70内の偏平コイル60の位置によって変わることは好ましくない。発生電磁力と電流との関係が偏平コイル60の位置に依存する場合は、テコ部55の変位が0になる位置、つまり系のバランス点が何らかの原因でずれたときに、大きなスパン変化が生じるからであり、また、機構部分の組み立て精度を厳密にしなければ、意図する大きさの電磁力を得ることができないからである。
 本発明の第2の実施形態に係る電磁力平衡式計量装置は、発生電磁力と電流との関係が偏平コイル60の位置によって殆ど変わらない構造を有している。
 この電磁力平衡式計量装置の磁気回路の断面図を図10(a)に示している。この磁気回路では、図8(a)と同様に、偏平コイルの上側平行巻線部分61の位置で上側板状永久磁石91が上側板状ヨーク193に向き合う方向と、下側平行巻線部分62の位置で下側板状永久磁石92が下側板状ヨーク194に向き合う方向とが逆になっている。
 即ち、上側平行巻線部分61に対向する上側板状永久磁石91は第1の横側面ヨーク73の内面に固定され、上側平行巻線部分61を介して上側板状永久磁石91に向き合う上側板状ヨーク193は第2の横側面ヨーク74の内面に固定され、また、下側平行巻線部分62に対向する下側板状永久磁石92は第2の横側面ヨーク74の内面に固定され、下側平行巻線部分62を介して下側板状永久磁石92に向き合う下側板状ヨーク194は第1の横側面ヨーク73の内面に固定されている。なお、上側板状永久磁石91、下側板状永久磁石92、上側板状ヨーク193及び下側板状ヨーク194の対向する面積は同一である。
 そして、上側板状ヨーク193及び下側板状ヨーク194は、図10(b)に拡大して示すように、上辺及び下辺に突条201、202を有しており、この突条201、202の位置では、突条201、202の厚さの分だけ、上側板状永久磁石91または下側板状永久磁石92との間隔が狭くなっている。
 この計量装置では、上側板状永久磁石91と下側板状永久磁石92とが偏平コイル60の異なる側に設置されているため、それらが同じ側に設置された図4の構造に比べて、上側板状永久磁石91と下側板状永久磁石92との間の直線距離が長く、永久磁石間で直接流出入する磁束が少ない。その結果、偏平コイルの上側平行巻線部分61及び下側平行巻線部分62に作用する有効磁束が増加する。
 また、上側板状ヨーク193及び下側板状ヨーク194の上辺及び下辺に設けられた突条201、202の位置では、上側板状永久磁石91または下側板状永久磁石92との間隔が狭くなるため、対向する永久磁石から流入する磁束が増加する。その結果、上側板状永久磁石91と上側板状ヨーク193との間、及び、下側板状永久磁石92と下側板状ヨーク194との間の磁束密度分布が、広い範囲で均一化する。
 図11(a)は、突条を設けた板状ヨークと板状永久磁石とを対向させたときの磁束密度分布について解析した結果を示している。ここでは、図12に示すように、コイル中心から0.5mmだけ板状ヨーク側に近付けた点線位置(a)、コイル中心を通る点線位置(b)及びコイル中心から0.5mmだけ永久磁石側に近付けた点線位置(c)の磁束密度を解析している。図11(a)では、(c)の位置での磁束密度の最大値を基準値に採り、板状ヨークの長さ方向(紙面の左右方向)の各位置における磁束密度の基準値からの差異を%で示している。図11(b)は、比較のため、板状ヨークが突条を持たない場合の磁束密度分布を示している。
 図11(a)、図11(b)を比較して明らかなように、板状ヨークの上辺及び下辺に突条を設けることで、磁束密度分布の均一な領域が拡大している。
 そのため、図10(a)のy方向に偏平コイル60が変位した場合でも、上側平行巻線部分61及び下側平行巻線部分62は、それぞれ、磁束密度分布が略均一な領域内で位置を変えることになり、偏平コイル60に流れる電流と発生電磁力との関係に変化が生じない。
 図13(a)のグラフは、図10(a)のy方向に偏平コイル60が変位したときの電磁力の変化を示している。図13(a)において、線aは、図10(a)の磁気回路を有する電磁力平衡式計量装置の特性を示し、線bは、比較例として、図4の磁気回路(即ち、偏平コイルの上側巻線部分及び下側巻線部分の各々に対向する永久磁石が偏平コイルの同じ側に在り、偏平コイルの反対側に在って各永久磁石と対を成す板状ヨークが突条を持たない磁気回路)を有する装置の特性を示している。また、図13(b)のグラフは、偏平コイル60のy方向の変位が0のときの電磁力を基準値に採り、偏平コイル60がy方向に変位した位置での電磁力と基準値との差異を%で示している。
 図13(a)(b)から明らかなように、図10の磁気回路を備える電磁力平衡式計量装置は、偏平コイル60がy方向に変位しても、発生電磁力は殆ど変わらない。
 また、この電磁力平衡式計量装置では、上側板状永久磁石91が第1の横側面ヨーク73に固定され、下側板状永久磁石92が第2の横側面ヨーク74に固定されているため、図10(a)のx方向に偏平コイル60が変位すると、上側平行巻線部分61は上側板状永久磁石91に近付き、下側平行巻線部分62は下側板状永久磁石92から離れることになる。
 このとき、板状永久磁石と板状ヨークとの間の磁界は、板状永久磁石に近付く程、強くなる。これは、板状永久磁石及び板状ヨークの面積が有限であるため、板状永久磁石から板状ヨーク以外に向かう磁束が発生し、磁束密度は、板状永久磁石に近い程、高くなるからである。
 それ故、偏平コイル60がx方向に変位するとき、上側平行巻線部分61及び下側平行巻線部分62の一方に対する磁界は強まり、他方に対する磁界は弱まる。磁界が強まる巻線部分では、発生電磁力が増加するが、磁界が弱まる巻線部分で、発生電磁力が減少するため、電磁力の変化はキャンセルされ、電磁力が略一定に保たれる。
 図14(a)のグラフは、図10(a)のx方向に偏平コイル60が変位したときの電磁力の変化を示している。図14(a)において、線aは、図10(a)の磁気回路を有する電磁力平衡式計量装置の特性を示し、線bは、比較例として、板状永久磁石が同じ側に固定された図4の場合の特性を示している。また、図14(b)のグラフは、偏平コイル60のx方向の変位が0のときの電磁力を基準値に採り、偏平コイル60がx方向に変位した位置での電磁力と基準値との差異を%で示している。
 図14(a)(b)から明らかなように、図10(a)の磁気回路を備える電磁力平衡式計量装置は、偏平コイル60がx方向に変位しても、発生電磁力は殆ど変わらない。
 また、図15及び図16は、上側板状ヨーク193及び下側板状ヨーク194に設けた突条201、202の幅を変えたときの特性変化を示している。
 ここでは、図17に示すように、板状ヨーク193、194の全長を一定に保ち、突条201、202の幅Aを変えて特性変化を調べている。
 図15は、y方向に偏平コイル60が変位したときの電磁力の変化について、幅Aを3.0mmから3.5mmまで、0.1mm刻みで変えて調べた結果を示している。
 また、図16は、同様の条件の下でx方向に偏平コイル60が変位したときの電磁力の変化の様子を示している。
 図15から、突条の幅Aを3.3mmから3.4mmの間に設定すれば、偏平コイル60がy方向に変位しても、発生電磁力に変化が生じないことが分かる。
 また、図16から、突条の幅Aを3.3mmから3.4mmの間に設定したときには、偏平コイル60がx方向に変位しても、発生電磁力に変化が生じないことが分かる。
 このように、図10(a)の磁気回路を備える電磁力平衡式計量装置は、上側板状ヨーク193及び下側板状ヨーク194に設ける突条201、202の幅を適宜選定することにより、偏平コイル60の位置ずれによる発生電磁力の変化を略ゼロにすることができる。
 なお、ここで示した構成は、本発明の一例であり、本発明は、それだけに限定されるものではない。
 本発明の電磁力平衡式計量装置は、狭い場所に設置することが可能であり、生産ラインを持つ製造工場や搬送ラインを持つ物流施設、あるいは、研究施設や医療施設など、幅広い分野で利用することができる。
 10  テコ
 11  荷重受け部
 12  コイル
 13  磁気回路
 14  フォトセンサ
 15  位置検出部
 16  PIDコントローラ
 17  A/Dコンバータ
 18  CPU
 19  インターフェース
 20  カバー
 21  ベース
 22  裏蓋
 30  荷重受け部
 50  基板
 51  荷重受け部
 52  可動部
 53  ロバーバル機構
 54  連結部
 55  テコ部
 56  支点
 57  固定部
 58  力点
 60  偏平コイル
 61  上側平行巻線部分
 62  下側平行巻線部分
 70  磁気回路
 71  挿通孔
 72  挿通孔
 73  第1の横側面ヨーク
 74  第2の横側面ヨーク
 75  前側面ヨーク
 76  後側面ヨーク
 77  上側ヨーク
 78  下側ヨーク
 80  スリット
 81  フォトインタラプタ
 91  上側板状永久磁石
 92  下側板状永久磁石
 93  上側板状ヨーク
 94  下側板状ヨーク
 95  板状永久磁石
 96  板状永久磁石
 97  電磁鋼板
 100 組込み用計量装置
 120 搬入コンベア
 121 搬出コンベア
 130 被測定物
 193 上側板状ヨーク
 194 下側板状ヨーク
 201 突条
 202 突条
 551 偏平コイル保持部

Claims (7)

  1.  支点の前後に延びるテコ部と、前記テコ部の支点より後側に取り付けられるコイルと、前記コイルに及ぼす磁界を生成する磁気回路と、を備え、前記テコ部の支点より前側の力点に作用する力が前記コイルに通電して補償される電磁力平衡式計量装置であって、
     前記コイルは、前記テコ部の延伸方向に平行な垂直面に沿って、前記テコ部の延伸方向に平行な上側及び下側の巻線部分が生じるように偏平に巻回された偏平コイルから成り、
     前記磁気回路は、前記偏平コイルの上側または下側の前記巻線部分に対向し、前記垂直面に直交する方向に磁化された一または複数の板状の永久磁石と、前記垂直面に直交する向きの磁束が生成されるように前記永久磁石の磁力線を導くヨーク部材と、を備えることを特徴とする電磁力平衡式計量装置。
  2.  請求項1に記載の電磁力平衡式計量装置であって、前記磁気回路は、前記偏平コイルの一方の側で前記上側の巻線部分及び下側の巻線部分の各々に対向する二つの前記永久磁石を有し、前記二つの永久磁石の磁化の方向が逆向きであることを特徴とする電磁力平衡式計量装置。
  3.  請求項2に記載の電磁力平衡式計量装置であって、前記磁気回路は、前記偏平コイルの他方の側に、前記二つの永久磁石の各々と向かい合う二つの板状の前記ヨーク部材を有することを特徴とする電磁力平衡式計量装置。
  4.  請求項3に記載の電磁力平衡式計量装置であって、前記板状のヨーク部材は、前記偏平コイルを介して向かい合う前記永久磁石と同一面積を有することを特徴とする電磁力平衡式計量装置。
  5.  請求項1に記載の電磁力平衡式計量装置であって、前記磁気回路が、前記偏平コイルの一方の側で前記上側の巻線部分に対向する上側永久磁石と、前記偏平コイルの他方の側で前記下側の巻線部分に対向する下側永久磁石と、前記上側の巻線部分を介して前記上側永久磁石に向き合う板状の上側ヨーク部材と、前記下側の巻線部分を介して前記下側永久磁石に向き合う板状の下側ヨーク部材と、を有し、
     前記上側永久磁石の磁化の方向が前記下側永久磁石の磁化の方向と逆向きであり、
     前記上側ヨーク部材の上辺及び下辺に、前記上側永久磁石との間隔を狭める突条が設けられ、前記下側ヨーク部材の上辺及び下辺に、前記下側永久磁石との間隔を狭める突条が設けられていることを特徴とする電磁力平衡式計量装置。
  6.  請求項1から5のいずれかに記載の電磁力平衡式計量装置であって、前記磁気回路の外側を覆う電磁鋼板を備えることを特徴とする電磁力平衡式計量装置。
  7.  請求項1から6のいずれかに記載の電磁力平衡式計量装置であって、生産ラインに組み込まれて使用されることを特徴とする電磁力平衡式計量装置。
PCT/JP2013/054926 2012-02-28 2013-02-26 電磁力平衡式計量装置 WO2013129383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014502242A JP6031505B2 (ja) 2012-02-28 2013-02-26 電磁力平衡式計量装置
EP13754287.4A EP2821760A4 (en) 2012-02-28 2013-02-26 ELECTROMAGNETIC FORCE BALANCE
US14/375,045 US20140374173A1 (en) 2012-02-28 2013-02-26 Electromagnetic force balance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012041518 2012-02-28
JP2012-041518 2012-02-28
JP2012179114 2012-08-11
JP2012-179114 2012-08-11

Publications (1)

Publication Number Publication Date
WO2013129383A1 true WO2013129383A1 (ja) 2013-09-06

Family

ID=49082580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054926 WO2013129383A1 (ja) 2012-02-28 2013-02-26 電磁力平衡式計量装置

Country Status (4)

Country Link
US (1) US20140374173A1 (ja)
EP (1) EP2821760A4 (ja)
JP (1) JP6031505B2 (ja)
WO (1) WO2013129383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505904A (ja) * 2017-12-04 2021-02-18 メトラー−トレド・インストゥルメント (シャンハイ) カンパニー,リミテッド 重量測定センサおよび電子天秤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110930B4 (de) * 2017-05-19 2019-01-17 Sartorius Lab Instruments Gmbh & Co. Kg Magnettopf für eine Tauchspulenanordnung einer elektronischen Waage
DE102020130092A1 (de) * 2020-11-13 2022-05-19 Wipotec Gmbh Magnet-Spule-System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104517A (ja) * 1982-11-04 1984-06-16 ザルトリウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 電気ばかり
US4545446A (en) 1983-05-11 1985-10-08 Kabushiki Kaisha Ishida Koki Seisakusho Hopper in combinatorial weighing apparatus
JPH05142018A (ja) * 1991-11-20 1993-06-08 A & D Co Ltd 電磁平衡式秤量装置
JPH07270260A (ja) * 1994-03-31 1995-10-20 Shimadzu Corp 電磁式の天びんまたは力測定器
JP2001213465A (ja) 2000-02-03 2001-08-07 Katsutoshi Masuda 流動体吐出ポンプ
JP2012013465A (ja) * 2010-06-29 2012-01-19 Shinko Denshi Kk 電磁力平衡式計量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134057A (en) * 1960-07-11 1964-05-19 Sumitomo Metal Ind Magnetic circuit for the deflection of flux leakage
US3173067A (en) * 1962-03-22 1965-03-09 Westinghouse Electric Corp Temperature-compensated permanent-magnet devices
CH652501A5 (de) * 1980-07-31 1985-11-15 Sartorius Gmbh Waage mit elektromagnetischer kraftkompensation.
CH654411A5 (de) * 1981-06-02 1986-02-14 Mettler Instrumente Ag Elektrische waage.
DE3211163A1 (de) * 1982-03-26 1983-09-29 Sartorius GmbH, 3400 Göttingen Elektromagnetisch kraftkompensierende waage
CH661353A5 (de) * 1983-12-23 1987-07-15 Mettler Instrumente Ag Elektrische waage.
IT1185128B (it) * 1985-06-28 1987-11-04 Dataprocess Spa Trasduttore di massa a compensazione elettromagnetica
CH681327A5 (ja) * 1990-12-04 1993-02-26 Mettler Toledo Ag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104517A (ja) * 1982-11-04 1984-06-16 ザルトリウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 電気ばかり
US4545446A (en) 1983-05-11 1985-10-08 Kabushiki Kaisha Ishida Koki Seisakusho Hopper in combinatorial weighing apparatus
JPH05142018A (ja) * 1991-11-20 1993-06-08 A & D Co Ltd 電磁平衡式秤量装置
JPH07270260A (ja) * 1994-03-31 1995-10-20 Shimadzu Corp 電磁式の天びんまたは力測定器
JP2001213465A (ja) 2000-02-03 2001-08-07 Katsutoshi Masuda 流動体吐出ポンプ
JP2012013465A (ja) * 2010-06-29 2012-01-19 Shinko Denshi Kk 電磁力平衡式計量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821760A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505904A (ja) * 2017-12-04 2021-02-18 メトラー−トレド・インストゥルメント (シャンハイ) カンパニー,リミテッド 重量測定センサおよび電子天秤
JP7164621B2 (ja) 2017-12-04 2022-11-01 メトラー-トレド・インストゥルメント (シャンハイ) カンパニー,リミテッド 重量測定センサおよび電子天秤

Also Published As

Publication number Publication date
JP6031505B2 (ja) 2016-11-24
EP2821760A4 (en) 2015-09-02
JPWO2013129383A1 (ja) 2015-07-30
EP2821760A1 (en) 2015-01-07
US20140374173A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
WO2016080470A1 (ja) 磁気センサ及びその製造方法並びにそれを用いた電流量検出器
US10215780B2 (en) Current sensor
CN102667433B (zh) 磁性的力传感器
WO2013153986A1 (ja) 磁気センサ装置
JP2012247420A (ja) 電線を流れる電流を測定するための装置
US20120268114A1 (en) Current sensor with a magnetic core
KR101497836B1 (ko) 전류 감지 유니트
WO2013129383A1 (ja) 電磁力平衡式計量装置
JP2016148620A (ja) 電流センサ
JP2013096847A (ja) 位置検出装置
CN113597520B (zh) 具有磁执行器的振动隔离系统及磁执行器
KR20140109427A (ko) 자기회로
Stupakov et al. Applicability of local magnetic measurements
JP6825023B2 (ja) 電力変換装置
JP2018081024A (ja) 電流センサ
JP6015518B2 (ja) 磁気特性測定方法及び装置
WO2016125634A1 (ja) 磁気センサ装置
JP2012002690A (ja) 電流センサ、及び、電流センサアレイ
Arpaia et al. A flexible printed-circuit coil for scanning transversal magnetic-fields errors in accelerator magnets
WO2011158633A1 (ja) 電流センサ、及び、電流センサアレイ
JP2011174775A (ja) 電流センサ
JP7492474B2 (ja) センシング装置
CN111721327A (zh) 磁场发生组件、位置检测装置及磁场发生组件的制造方法
JPWO2019017219A1 (ja) 磁気センサ装置
WO2024095585A1 (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502242

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14375045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013754287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013754287

Country of ref document: EP