WO2013128941A1 - Valve-regulated lead-acid battery - Google Patents

Valve-regulated lead-acid battery Download PDF

Info

Publication number
WO2013128941A1
WO2013128941A1 PCT/JP2013/001263 JP2013001263W WO2013128941A1 WO 2013128941 A1 WO2013128941 A1 WO 2013128941A1 JP 2013001263 W JP2013001263 W JP 2013001263W WO 2013128941 A1 WO2013128941 A1 WO 2013128941A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
sulfate
separator
lead
acid battery
Prior art date
Application number
PCT/JP2013/001263
Other languages
French (fr)
Japanese (ja)
Inventor
松濤 白
和徳 下池
和成 安藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310050690.7A external-priority patent/CN103296234B/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013519289A priority Critical patent/JP5325359B1/en
Publication of WO2013128941A1 publication Critical patent/WO2013128941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to the technique which suppresses the malfunction by the short circuit (dendritic short) by the dendritic crystal at the time of production of a control valve type lead acid battery.
  • Lead batteries that are lower in cost and easier to operate than nickel-hydrogen batteries and lithium secondary batteries are widely used as main power sources for motorized carts and forklifts.
  • Lead-acid batteries are roughly classified into two types, that is, an open type and a control valve type, and the above-mentioned uses have been used for open-type lead-acid batteries capable of regular maintenance such as rehydration work.
  • a control valve type lead storage battery that does not require maintenance itself (particularly, a type in which the number of positive plates and negative plates is increased to improve high-rate charge / discharge characteristics). Used as the main power source.
  • control valve type lead-acid battery with an increased number of positive and negative electrode plates is set with a short distance between the electrode plates. It is known that dendrite shorts due to elution of lead ions are likely to occur when charging is continued after the implantation step.
  • the lead acid battery diffuses from the periphery of the electrode plate group toward the center of the electrode plate group after the injection and at the start of charging (internal formation), the sulfuric acid is consumed due to the chemical reaction, and the electrode plate group The pH value at the center will be relatively increased. And it becomes an environment favorable for elution of lead ion by the raise of pH value.
  • lead ions are reduced to lead metal in the separator, and the lead metal may penetrate the separator to connect the positive electrode plate / negative electrode plate to each other and cause a dendrite short circuit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-283810
  • Patent Document 1 discloses a sealed lead-acid battery separator in which inorganic powder is dispersed in a sheet mainly composed of fine glass fibers obtained by wet papermaking, and the inorganic powder is made of water-soluble inorganic salts. It is disclosed that it is fixed in the voids of the sheet. Water-soluble inorganic salts exist mainly in a state of being supported on the surface of the inorganic powder.
  • the role of the inorganic powder is to manipulate the pore structure of the separator by interposing it uniformly in the pore portion of the separator, and as a result, the pore structure of the separator becomes a complicated labyrinth, resulting in PbSO 4 Crystals can be prevented from penetrating the inside of the separator in a straight line, and this makes it possible to earn the distance (ie, time) required for the dendrite to pass through the separator and connect the two plates. The occurrence rate of dendrite shorts can be reduced.
  • the role of the water-soluble inorganic salt is mainly to fix the inorganic powder to the glass fiber and reduce the powder falling off when handling the separator.
  • the separator is obtained by impregnating a glass fiber mat sheet into a liquid prepared by dispersing and preparing inorganic powder and water-soluble inorganic salts.
  • the inorganic powder is silica, alumina, or titania.
  • the water-soluble inorganic salt may be a sulfate.
  • An object of the present invention is to solve the above-mentioned problems and to provide a control valve type lead-acid battery that greatly reduces the dendrite short when the battery is continuously charged after the electrolyte injection process, and has a high yield and reliability.
  • the present inventors have arranged sulfates that can serve as a supply source of sulfate ions at appropriate positions so that lead ions can be combined with sulfate ions of sulfates. It was confirmed that the formation of lead sulfate during charging can suppress dendrite shorts (precipitation of lead ions) caused by insufficient supply of sulfate ions. That is, the effect is not inside the separator, but at a position where the elution of lead ions is promoted, that is, between the separator and the electrode plate (positive electrode plate or negative electrode plate) or between two different separators (preferably between the separators). This can be achieved by placing sulfate on the surface.
  • the present invention relates to the following contents.
  • a control valve type lead-acid battery having a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolytic solution Because A control valve type lead acid battery in which a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate.
  • (6) arranged amount of the sulfate salt is 0.010 g / cm 2 or more 0.2 g / cm 2 or less, valve-regulated lead-acid battery according to (1) or (3).
  • valve-regulated lead-acid battery according to (1) wherein the sulfate is disposed at least in the center when the electrode plate group is divided into three equal parts in the vertical and horizontal directions in the electrode plate surface direction.
  • a control valve-type lead-acid battery having a resin battery case, an electrode plate group housed in the battery case and provided such that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolyte solution
  • the separator includes a first separator made of a glass fiber mat, and a second separator made of a glass fiber mat or a nonwoven fabric, The first separator is disposed in proximity to the positive electrode plate, the second separator is disposed in proximity to the negative electrode plate, Alkali metal at least between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, and between the first separator and the second separator.
  • the control valve type lead acid battery by which the sulfate containing an alkaline-earth metal is arrange
  • the arrangement of sulfate is 0.010 g / cm 2 or more 0.2 g / cm 2 or less, valve-regulated lead-acid battery according to (12) or (14).
  • the area of each of the positive electrode plate and the negative electrode plate is 135 cm 2 or more 288Cm 2 or less, valve-regulated lead-acid battery according to (12).
  • the elution of lead ions is suppressed by the arranged sulfate, and further, the occurrence of defects due to dendrite shorts is also suppressed.
  • a dendrite short circuit can be significantly reduced without deteriorating battery characteristics, thereby providing a control valve type lead storage battery suitable for a main power source of an electric vehicle.
  • the control valve-type lead-acid battery in the first embodiment of the present invention is a resin battery case, and an electrode plate group that is provided in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween. And a valve-regulated lead-acid battery having an electrolyte solution, and a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate Has been.
  • sulfate is disposed on the surface of the positive electrode plate and the negative electrode plate or the surface of the separator, whereby the sulfate is disposed between the separator and the positive electrode plate and between the separator and the negative electrode plate. It is preferable.
  • the separator may be chip-shaped, bag-shaped, or U-shaped.
  • the positive electrode plate may be wrapped with a U-shaped or bag-shaped separator.
  • FIG. 1 is a perspective view schematically showing an electrode plate group used in the first embodiment.
  • the positive electrode plates 1 and the negative electrode plates 2 are alternately stacked via separators 3a, and the ears of the plurality of positive electrode plates 1 and the ears of the plurality of negative electrode plates 2 are welded together.
  • the electrode plate group used in the first embodiment is configured.
  • a second embodiment of the present invention includes a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolytic solution.
  • a control valve type lead-acid battery having a first separator made of a glass fiber mat and a second separator made of a glass fiber mat or a nonwoven fabric, the first separator being arranged close to the positive electrode plate And the second separator is disposed close to the negative electrode plate, at least between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, and between the first separator and the second separator.
  • a sulfate containing an alkali metal or an alkaline earth metal is disposed between the two.
  • sulfate is disposed on the surface of the positive electrode plate and the negative electrode plate or the surface of the first separator and / or the surface of the second separator, thereby, between the first separator and the positive electrode plate, It is preferable that a sulfate containing an alkali metal or an alkaline earth metal is disposed between the second separator and the negative electrode plate or between the first separator and the second separator.
  • the first separator and the second separator may be chip-shaped, bag-shaped, or U-shaped.
  • the positive electrode plate may be wrapped with a U-shaped or bag-shaped first separator
  • the negative electrode plate may be wrapped with a U-shaped or bag-shaped second separator.
  • nonwoven fabric used for the second separator nonwoven fabric made of synthetic fibers such as polypropylene and subjected to various hydrophilic treatments can be used.
  • a glass fiber separator can absorb acid well, and a nonwoven fabric separator can effectively prevent a short circuit by having good strength.
  • FIG. 2 is a perspective view schematically showing an electrode plate group used in the second embodiment.
  • the positive electrode plate 1 wrapped with the first separator 3 made of glass fiber mat and the negative electrode plate 2 wrapped with the second separator 4 made of glass fiber mat or nonwoven fabric are alternately laminated.
  • the electrode plate group used in the second embodiment is formed by welding the ears of the plurality of positive electrode plates 1 and the ears of the plurality of negative electrode plates 2 together.
  • the sulfate used in the present invention is preferably an alkali metal sulfate or an alkaline earth metal sulfate.
  • the alkali metal may be Group IA lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr) in the periodic table of elements.
  • the alkaline earth metal may be group IIA beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra) in the periodic table of elements.
  • the sulfate is more preferably sodium sulfate. This is because sodium contained in sodium sulfate can exert an effect of suppressing the occurrence of a dendrite short when the battery is overdischarged, and sodium sulfate is cheaper than other materials.
  • each of the positive electrode plate and the negative electrode plate is 135 cm 2 or more 288Cm 2 or less. This is due to the following reason. That is, if the area of the electrode plate is smaller than 135 cm 2 , the diffusion rate of sulfuric acid is high, and the time for diffusing to the center of the electrode plate is short. As a result, the battery itself does not easily cause a dendrite short, and even if a sulfate is disposed, the effect of suppressing the dendrite short is not exhibited.
  • the area of the electrode plate exceeds 288 cm 2 , the area of the electrode plate is large, so that the diffusion rate of sulfuric acid is slow and the sulfuric acid is consumed, which leads to an environment where lead ions are likely to elute and avoid dendritic shorts This is because, similarly to the above, sulfate cannot exert an effect of suitably suppressing dendrite short.
  • the electrolytic solution is preferably a sulfuric acid aqueous solution containing sulfuric acid and water, and the specific gravity of the electrolytic solution is preferably 1.200 g / cm 3 or more and 1.310 g / cm 3 or less.
  • the electrolyte solution may further contain a small amount of additives that can be completely dissolved in the electrolyte solution, such as silica, sodium tetraborate, sodium sulfate, and the like.
  • the active material paste for the positive electrode plate and the negative electrode plate for example, the following active material paste is used. That is, an active material paste obtained by adding a synthetic resin fiber having resistance to sulfuric acid and various additives to a mixed powder of lead and lead oxide and kneading with water and dilute sulfuric acid is used. Among these, for the purpose of improving the efficiency of chemical conversion and improving the initial capacity characteristics, red lead may be added to the active material paste (positive electrode active material paste) used for the positive electrode plate.
  • the active material paste used for the negative electrode plate forms a lignin compound that can suppress the volume change (shrinkage and expansion) of the active material of the negative electrode plate and the generation nucleus of the discharge product (lead sulfate). Then, barium sulfate having a function of homogenizing the reaction is added. Then, the above-described positive electrode active material paste and negative electrode active material paste are filled in an expanded lattice made of a lead alloy (lead-calcium alloy, lead-tin alloy, etc.) that does not substantially contain antimony. You may stick the paste paper for prevention on the surface of an electrode plate. In this way, a positive electrode plate and a negative electrode plate are produced.
  • the distance between the positive electrode plate and the negative electrode plate is preferably 0.4 mm or more and 1.0 mm or less. If the distance is shorter than 0.4 mm, the pitch is insufficient, so that a short circuit due to contact between the positive electrode plate 1 and the negative electrode plate 2 is likely to occur. On the other hand, when the distance is longer than 1.0 mm, the decrease in battery capacity is relatively remarkable.
  • the particle diameter of the sulfate used in the present invention is preferably 500 ⁇ m or less. This is because if the particle size is too large, it will be difficult to adhere in the coating process, and the dissolution time of sodium sulfate after injection of the electrolyte will be prolonged, thereby affecting the effect of sodium sulfate coating.
  • the amount of sulfate per unit area is preferably 0.008 g / cm 2 or more and 0.3 g / cm 2 or less. If the amount of sulfate is less than 0.008 g / cm 2 , the occurrence of dendrite short becomes relatively remarkable, and the initial capacity and cycle life are reduced accordingly. However, if the amount of sulfate disposed exceeds 0.3 g / cm 2 , the sulfuric acid concentration increases due to excessive sulfate (sulfuric acid ion concentration also increases), so that lead sulfate as a discharge product is excessive before charging. This causes sulfation, resulting in a significant decrease in capacity due to insufficient charging and a decrease in cycle life.
  • the sulfate Arranged per unit area of the sulfate, it is further preferably 0.010 g / cm 2 or more 0.2 g / cm 2 or less, 0.1 g / cm 2 or more 0.2 g / cm 2 or less Even more preferred. This is particularly preferable when sodium sulfate is used as the sulfate.
  • the sulfate is preferably applied and arranged in a powder state. This is because the effect is not good even if the sulfate is dissolved in the electrolytic solution.
  • FIG. 3 is a diagram showing an optimum position for the arrangement of sulfates in the present invention.
  • the inventors of the present application have a central portion (fifth portion) when the electrode plate group is divided into three equal parts (total of nine equal parts) vertically (Y direction) and left and right (X direction) in the electrode plate surface direction, After injection of the electrolyte, it was confirmed that it was the slowest position of electrolyte penetration (sulfate ion supply). That is, the position is the position most likely to be the starting point of a dendrite short. Therefore, if a sulfate is disposed even at least in the central portion (fifth portion), a predetermined effect can be obtained even if the sulfate is not disposed in the entire plate surface direction.
  • an unformed semi-finished product is produced by attaching a lid to the upper part and bonding the lid to the battery case. After injecting the electrolyte from the injection port provided on the lid of the semi-finished product and conducting a chemical conversion treatment with electricity, a safety valve is attached to the injection port. Thereby, the control valve type lead acid battery of this invention is produced.
  • control valve type lead storage battery of the present invention will be described in more detail by way of examples.
  • a control including a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolytic solution.
  • a valve-type lead-acid battery comprising a first separator made of a glass fiber mat and a second separator made of a glass fiber mat or a non-woven fabric, the first separator being arranged close to the positive electrode plate, The second separator is disposed close to the negative electrode plate, and an alkali is provided between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, or between the first separator and the second separator.
  • a control valve type lead acid battery in which a sulfate containing a metal or an alkaline earth metal is arranged is produced.
  • a specific manufacturing method is as follows.
  • a Pb alloy containing about 0.07% by mass of Ca and about 1.3% by mass of Sn is formed into a 1.3 mm-thick lead sheet by casting extrusion, and an expanded lattice is obtained by a reciprocating expansion method. Thereafter, the expanded grid is filled with positive electrode lead paste. Then, a positive electrode plate is obtained by performing cutting
  • a negative electrode lead paste as a negative electrode active material is obtained by kneading raw material lead powder, water and dilute sulfuric acid at a weight ratio of about 100: 5: 10.
  • a Pb alloy raw material containing about 0.07% by mass of Ca and about 0.25% by mass of Sn is formed into a lead sheet having a predetermined thickness of, for example, 0.65 mm by casting extrusion, and expanded lattice by a reciprocating expansion method. Get. Thereafter, the expanded lead is filled with a negative electrode lead paste. Then, a negative electrode plate is obtained by performing cutting
  • the area of each of the produced positive electrode plate and negative electrode plate of lead-acid battery is a 135 cm 2 or more 288Cm 2 or less, walnuts in the first separator of U-shaped comprising a positive electrode plate of glass fiber mats, glass fiber mat or a negative electrode plate Wrapped with a bag-like second separator made of non-woven fabric, five positive plates and six negative plates are alternately stacked, and between the first separator and the positive plate, the second separator and the negative plate 2 or between the first separator and the second separator is applied in a powder state to dispose an alkali metal or alkaline earth metal sulfate, thereby obtaining the electrode plate group shown in FIG. . Then, the ear
  • the six electrode plate groups are respectively accommodated in six cell chambers partitioned by partition walls in a resin battery case.
  • the electrode plate groups are connected in series in order. That is, each cell (single cell) is connected in series.
  • the battery lid is attached to the opening of the battery casing. Subsequently, sulfuric acid having a specific gravity of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less is injected into each cell as an electrolytic solution from a pouring port provided on the battery lid, and chemical conversion is performed in the battery casing. After the formation, a lead storage battery is obtained by fixing a valve for releasing gas and pressure generated inside the battery to the liquid injection port.
  • Example 1 is an example of the first embodiment.
  • each area of the positive electrode plate and the negative electrode plate was 120 cm 2 and sulfuric acid having a specific gravity of 1.255 g / cm 3 was used.
  • sulfuric acid having a specific gravity of 1.255 g / cm 3 was used.
  • Table 1 and Table 2 the presence and type of sulfate and the arrangement position of sulfate in the stacking direction of the electrode plate group were changed.
  • a control valve type lead-acid battery battery 1 to battery 61
  • a nominal voltage of 12 V was produced according to the above-described method.
  • the distance between the positive electrode plate 1 and the negative electrode plate 2 is 0.7 mm
  • the amount of sulfate per unit area is 0.1 g / cm 2
  • the electrode plate surface of the electrode plate group The position of the sulfate in the direction was only the fifth part in FIG. 3 (partial arrangement).
  • the initial charge was performed with the charge capacity set to 0.41 Ah / g based on the amount of the active material of the positive electrode plate 1.
  • a battery was produced by reducing the injection rate of the electrolyte from the usual 50 ml / second to 15 ml / second so that a dendrite short circuit was likely to occur. Tables 1 and 2 show the evaluation conditions and results.
  • the battery 37 is highly effective from the battery 26 in which the sulfate is disposed between the first separator 3 and the second separator 4, this is considered to be due to the following reason. That is, the rate at which sulfate ions from sulfate in the present invention are combined with lead ions (disconnecting the source of dendrite) is slower than the rate at which lead ions are generated between the positive electrode plate 1 and the negative electrode plate 2. Therefore, it is better to place the sulfate in the position where the positive electrode plate 1 or the negative electrode plate 2 that is the source of lead ions is separated to some extent (between the first separator 3 and the second separator 4). This is probably because sulfate ions can be supplied to lead ions more smoothly than in the case where they are arranged around the generation source.
  • Example 2- The amount of sulfate per unit area was examined. And everything except the arrangement amount of a sulfate was produced similarly to said battery 27. The contents and results of the study are as follows.
  • the appropriate amount of sulfate is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
  • Example 3- The distance between the electrode plates was examined. And it was set as the structure similar to said battery 27 except the distance between electrode plates.
  • the examination contents are the same as the initial capacity confirmation test (including the dendrite short test) of Example 2.
  • the results are shown in FIG. From the obtained results, when the distance between the electrode plates is shorter than 0.4 mm, there is not enough space between the electrode plates, so that a short circuit is likely to occur due to contact between the positive electrode plate 1 and the negative electrode plate 2, while the distance between the electrode plates is 1 It can be seen that when the thickness exceeds 0.0 mm, the decrease in battery capacity becomes relatively significant. Therefore, it can be seen from the above results that the optimum distance between the electrode plates in the present invention is 0.4 mm or more and 1.0 mm or less.
  • a control having a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate are opposed to each other with a separator interposed therebetween, and an electrolytic solution.
  • a valve-type lead-acid battery in which a positive electrode plate is wrapped with a separator, and a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate A valve-type lead acid battery is produced.
  • the lead storage battery produced in the second embodiment uses only one type of separator (the second separator is not used), and the position of sulfate is slightly changed in accordance with this, but other conditions and The elements are completely the same as in the first embodiment. Therefore, the detailed description is abbreviate
  • Example 4 is an example of the second embodiment.
  • each area of the positive electrode plate and the negative electrode plate was 211 cm 2, and sulfuric acid having a specific gravity of 1.255 g / cm 3 was used.
  • the presence / absence and type of sulfate and the arrangement position of sulfate in the stacking direction of the electrode plate group were changed.
  • the second separator was not used.
  • control valve type lead-acid batteries battery 1a to battery 25a, battery 38a to battery 61a
  • having a nominal voltage of 12V were produced according to the method described in the first embodiment.
  • the distance between the positive electrode plate 1 and the negative electrode plate 2 is 0.7 mm
  • the amount of sulfate per unit area is 0.1 g / cm 2
  • the electrode plate surface of the electrode plate group The position of the sulfate in the direction was only the fifth part in FIG. 3 (partial arrangement).
  • the initial charge was performed with the charge capacity set to 0.41 Ah / g based on the amount of active material of the positive electrode plate 1.
  • a battery was produced by reducing the injection rate of the electrolyte from the usual 50 ml / second to 15 ml / second so that a dendrite short circuit was likely to occur. And the dendrite short test and evaluation were performed by the method similar to Example 1.
  • FIG. The results are as shown in Tables 3 and 4 below.
  • Example 5 The amount of sulfate per unit area was examined. Except for the amount of sulfate, the configuration is the same as that of the battery 15a in Table 3 above. Further, an initial capacity confirmation test and a cycle life test were performed in the same manner as in Example 2. The results obtained are shown in Table 5 below.
  • the appropriate amount of sulfate is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
  • Example 6- The distance between the electrode plates was examined. And it was set as the structure similar to the battery 15a in said Table 3 except the distance between electrode plates. The examination contents are the same as the initial capacity confirmation test (including the dendrite short test) of Example 2. The results obtained are shown in Table 6 below.
  • the optimum distance between the electrode plates in the present invention is 0.4 mm or more and 1.0 mm or less, and more preferably 0.5 mm or more and 1.0 mm or less.
  • Examples A-1 to A-12, Example B and Comparative Examples 1 to 8 The area of the electrode plate was examined by changing the area of the electrode plate. In addition to the electrode plate area, the amount of sulfate, that is, sodium sulfate, and the specific gravity of the electrolyte, that is, sulfuric acid were changed. Other than that, the electrode plate group and the lead storage battery were produced under the same installation conditions as the battery 15a in Example 4. Then, the initial capacity and cycle life of the obtained lead storage battery were measured. Specific installation conditions and obtained results are shown in Table 7 below.
  • Example B results obtained for Example B were compared with the results obtained for Comparative Example 1, and the results obtained for Examples A-1 to A-5 were compared with the results obtained for Comparative Examples 2 to 6, respectively.
  • the specific gravity and the electrode plate area of the electrolytic solution are the same, it can be seen that the cycle life is remarkably improved by the arrangement of the sulfate.
  • the present invention can suppress problems caused by dendrite shorts during the production of control valve type lead-acid batteries, it is not only highly industrially usable but also extremely useful.

Abstract

This valve-regulated lead-acid battery is characterized by having: a resin battery case; an electrode plate group that is housed in the battery case, and is disposed in such a manner that a positive plate (1) and a negative plate (2) face each other with a separator (3a) therebetween; and an electrolyte. The valve-regulated lead-acid battery is further characterized in that a sulfate containing an alkali metal or an alkaline earth metal is positioned between the separator (3a) and the positive plate (1), and/or the separator (3a) and the negative plate (2). The present invention provides a high-yield and highly-reliable valve-regulated lead-acid battery that significantly reduces dendrite shorts when continuously charging the battery after an electrolyte injection step.

Description

制御弁式鉛蓄電池Control valve type lead acid battery
 本発明は、制御弁式鉛蓄電池の生産時における樹枝状結晶による短絡(デンドライトショート)による不具合を抑制する技術に関する。 This invention relates to the technique which suppresses the malfunction by the short circuit (dendritic short) by the dendritic crystal at the time of production of a control valve type lead acid battery.
 近年、地球温暖化が問題視されており、ガソリンエンジン、ディーゼルエンジン等の内燃機関によって駆動される車両には、CO排出量の削減が求められている。特に、カートやフォークリフト等、倉庫等の密閉された作業空間において駆動される車両については、前記の要求がさらに大きい。このような要求に応えるため、内燃機関を動力とする車両を電動車両に切り替えることが急務として検討されている。 In recent years, global warming has been seen as a problem, and vehicles driven by internal combustion engines such as gasoline engines and diesel engines are required to reduce CO 2 emissions. In particular, for vehicles driven in a closed work space such as a warehouse, such as a cart or a forklift, the above requirement is even greater. In order to meet such a demand, switching from a vehicle powered by an internal combustion engine to an electric vehicle has been studied as an urgent matter.
 電動化されたカートやフォークリフト等の主電源として、ニッケル・水素蓄電池やリチウム二次電池よりもコストが低く且つ操作しやすい鉛蓄電池が広く用いられている。鉛蓄電池は、開放式と制御弁式との2種類に大別され、前記の用途としては、補水作業等の定期的なメンテナンスが可能な開放式鉛蓄電池に用いられてきた。しかしながら、近年、作業等による人的コスト等を低減するために、メンテナンス自体が不要な制御弁式鉛蓄電池(特に、正極板及び負極板の枚数を増やしてハイレート充放電特性を改善したタイプ)が主電源として用いられている。 Lead batteries that are lower in cost and easier to operate than nickel-hydrogen batteries and lithium secondary batteries are widely used as main power sources for motorized carts and forklifts. Lead-acid batteries are roughly classified into two types, that is, an open type and a control valve type, and the above-mentioned uses have been used for open-type lead-acid batteries capable of regular maintenance such as rehydration work. However, in recent years, in order to reduce human costs due to work, etc., there is a control valve type lead storage battery that does not require maintenance itself (particularly, a type in which the number of positive plates and negative plates is increased to improve high-rate charge / discharge characteristics). Used as the main power source.
 ハイレート充放電特性を改善するために正極板及び負極板の枚数を増やした制御弁式鉛蓄電池については、これに合わせて極板間の距離が短く設定されているため、電解液としての硫酸を注入する工程の後に引き続き充電を行う際、鉛イオンの溶出によるデンドライトショートが発生しやすいということが知られている。 In order to improve the high-rate charge / discharge characteristics, the control valve type lead-acid battery with an increased number of positive and negative electrode plates is set with a short distance between the electrode plates. It is known that dendrite shorts due to elution of lead ions are likely to occur when charging is continued after the implantation step.
 しかも、鉛蓄電池は注液後及び充電(内部化成)開始時に、硫酸が極板群の周囲から極板群の中心に向かって拡散するため、化学反応に伴って硫酸が消耗し、極板群中心部のpH値が相対的に上昇してしまう。そして、pH値の上昇により、鉛イオンの溶出に有利な環境となってしまう。充電開始時、鉛イオンはセパレータにおいて鉛金属に還元されており、鉛金属はセパレータを貫通して正極板/負極板を互いに接続させ、デンドライトショートを引き起こしてしまうおそれがある。 Moreover, since the lead acid battery diffuses from the periphery of the electrode plate group toward the center of the electrode plate group after the injection and at the start of charging (internal formation), the sulfuric acid is consumed due to the chemical reaction, and the electrode plate group The pH value at the center will be relatively increased. And it becomes an environment favorable for elution of lead ion by the raise of pH value. At the start of charging, lead ions are reduced to lead metal in the separator, and the lead metal may penetrate the separator to connect the positive electrode plate / negative electrode plate to each other and cause a dendrite short circuit.
 従来、デンドライトショートの抑制方法としては、電解液に一定量の添加剤を加えることが一般的であったが、この方法ではデンドライトショートの発生を根絶することができなかった。 Conventionally, as a method for suppressing a dendrite short, it has been common to add a certain amount of an additive to the electrolytic solution, but this method could not eradicate the occurrence of a dendrite short.
 また、デンドライトショート抑制のために、極板間に配置されるセパレータについてさまざまな検討が行われてきた。その中で、特開2001-283810号公報(以下、特許文献1と呼ぶ)において開示されているように、ガラス繊維を主体とするセパレータ内部の空隙内に無機化合物を固定化させることで、デンドライトの成長を物理的に防ぐことができると考えられてきた。 In addition, various studies have been made on separators arranged between electrode plates in order to suppress dendrite shorts. Among them, as disclosed in Japanese Patent Application Laid-Open No. 2001-283810 (hereinafter referred to as Patent Document 1), an inorganic compound is immobilized in voids inside a separator mainly composed of glass fibers, thereby dendrites. It has been thought that the growth of can be physically prevented.
 特許文献1には、湿式抄造して得た微細ガラス繊維主体のシートに無機粉体を分散状態で介在させた密閉形鉛蓄電池用セパレータが開示されており、無機粉体は水溶性無機塩類によってシートの空隙内に固定化されることが開示されている。水溶性無機塩類は、主に無機粉体表面に担持された状態で存在している。無機粉体の役割は、セパレータの孔部分に分散状態で均一に介在させることによって、セパレータの孔構造を操作することにあり、その結果、セパレータの孔構造が複雑迷路化することによって、PbSO4結晶がセパレータ内部を直線的に貫通することを防止することができ、これにより、デンドライトがセパレータを貫通して両極板間を連結するのに要する距離(即ち時間)を稼ぐことができるようになり、デンドライトショートの発生率を低減することができる。そして、水溶性無機塩類の役割は、主に無機粉体をガラス繊維に固定化して、セパレータ取扱い時の粉落ちを低減させることにある。セパレータは、ガラス繊維マットシートを、無機粉体と水溶性無機塩類とを分散、調製した液中に含浸処理することによって得られるものである。無機粉体は、シリカ、アルミナ又はチタニアである。水溶性無機塩類は、硫酸塩であってもよい。 Patent Document 1 discloses a sealed lead-acid battery separator in which inorganic powder is dispersed in a sheet mainly composed of fine glass fibers obtained by wet papermaking, and the inorganic powder is made of water-soluble inorganic salts. It is disclosed that it is fixed in the voids of the sheet. Water-soluble inorganic salts exist mainly in a state of being supported on the surface of the inorganic powder. The role of the inorganic powder is to manipulate the pore structure of the separator by interposing it uniformly in the pore portion of the separator, and as a result, the pore structure of the separator becomes a complicated labyrinth, resulting in PbSO 4 Crystals can be prevented from penetrating the inside of the separator in a straight line, and this makes it possible to earn the distance (ie, time) required for the dendrite to pass through the separator and connect the two plates. The occurrence rate of dendrite shorts can be reduced. The role of the water-soluble inorganic salt is mainly to fix the inorganic powder to the glass fiber and reduce the powder falling off when handling the separator. The separator is obtained by impregnating a glass fiber mat sheet into a liquid prepared by dispersing and preparing inorganic powder and water-soluble inorganic salts. The inorganic powder is silica, alumina, or titania. The water-soluble inorganic salt may be a sulfate.
 しかしながら、特許文献1(特許文献1に開示された従来の技術を含む)のようにデンドライトの成長経路を物理的に遮る方法を用いても、上記工程における不利な状況を大幅に改善することはできない。特許文献1のようにSiO等の無機化合物をガラス繊維マットからなるセパレータの内部に配置し、デンドライトショートを物理的に抑制する方法においては、充電時に用いる硫酸の濃度が低い場合、溶出した鉛イオンが急増するほか、無機化合物の配置のばらつきにも影響を受けるため、デンドライトショートを抑制することが困難である。 However, even if a method of physically blocking the dendrite growth path as in Patent Document 1 (including the prior art disclosed in Patent Document 1) is used, the disadvantageous situation in the above process is greatly improved. Can not. In a method in which an inorganic compound such as SiO 2 is disposed inside a separator made of glass fiber mat as in Patent Document 1 and dendrite short is physically suppressed, when the concentration of sulfuric acid used during charging is low, the eluted lead In addition to the rapid increase of ions, it is also affected by variations in the arrangement of inorganic compounds, so it is difficult to suppress dendrite shorts.
 本発明は、上記課題を解決し、電解液注入工程後に引き続き充電を行う際のデンドライトショートを大幅に低減し、歩留まり及び信頼性の高い制御弁式鉛蓄電池を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a control valve type lead-acid battery that greatly reduces the dendrite short when the battery is continuously charged after the electrolyte injection process, and has a high yield and reliability.
 本願発明者らは、上記課題を解決するために鋭意検討を重ねた結果、硫酸イオンの供給源となり得る硫酸塩を適切な位置に配置することで、鉛イオンが硫酸塩の硫酸イオンと結合し、充電時に硫酸鉛を形成することによって、硫酸イオンの供給不足により引き起こされるデンドライトショート(鉛イオンの析出)を抑制することができるということを確認した。つまり、当該効果は、セパレータの内部にではなく、鉛イオンの溶出が促進される位置、即ちセパレータと極板(正極板又は負極板)との間又は異なる2枚のセパレータ間(好ましくはセパレータの表面)に硫酸塩を配置することで発揮することができる。 As a result of intensive studies to solve the above problems, the present inventors have arranged sulfates that can serve as a supply source of sulfate ions at appropriate positions so that lead ions can be combined with sulfate ions of sulfates. It was confirmed that the formation of lead sulfate during charging can suppress dendrite shorts (precipitation of lead ions) caused by insufficient supply of sulfate ions. That is, the effect is not inside the separator, but at a position where the elution of lead ions is promoted, that is, between the separator and the electrode plate (positive electrode plate or negative electrode plate) or between two different separators (preferably between the separators). This can be achieved by placing sulfate on the surface.
 本発明は以下の内容に係る。 The present invention relates to the following contents.
 (1)樹脂製の電槽と、前記電槽に収容され正極板と負極板とがセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、
 前記セパレータと前記正極板との間及び前記セパレータと前記負極板との間の少なくとも一方には、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されている制御弁式鉛蓄電池。
(1) A control valve type lead-acid battery having a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolytic solution Because
A control valve type lead acid battery in which a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate.
 (2)前記硫酸塩はアルカリ金属硫酸塩又はアルカリ土類金属硫酸塩である、前記(1)に記載の制御弁式鉛蓄電池。 (2) The valve-regulated lead-acid battery according to (1), wherein the sulfate is an alkali metal sulfate or an alkaline earth metal sulfate.
 (3)前記硫酸塩は硫酸ナトリウムである、前記(2)に記載の制御弁式鉛蓄電池。 (3) The control valve-type lead acid battery according to (2), wherein the sulfate is sodium sulfate.
 (4)前記正極板と前記負極板との間の距離は0.4mm以上1.0mm以下である、前記(1)に記載の制御弁式鉛蓄電池。 (4) The valve-regulated lead-acid battery according to (1), wherein a distance between the positive electrode plate and the negative electrode plate is 0.4 mm or greater and 1.0 mm or less.
 (5)前記硫酸塩の配置量は0.008g/cm以上0.3g/cm以下である、前記(1)に記載の制御弁式鉛蓄電池。 (5) The control valve-type lead-acid battery according to (1), wherein the amount of the sulfate disposed is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
 (6)前記硫酸塩の配置量は0.010g/cm以上0.2g/cm以下である、前記(1)又は(3)に記載の制御弁式鉛蓄電池。 (6) arranged amount of the sulfate salt is 0.010 g / cm 2 or more 0.2 g / cm 2 or less, valve-regulated lead-acid battery according to (1) or (3).
 (7)前記極板群を極板面方向の上下及び左右にそれぞれ三等分したときの少なくとも中央部に前記硫酸塩が配置されている、前記(1)に記載の制御弁式鉛蓄電池。 (7) The valve-regulated lead-acid battery according to (1), wherein the sulfate is disposed at least in the center when the electrode plate group is divided into three equal parts in the vertical and horizontal directions in the electrode plate surface direction.
 (8)前記正極板及び前記負極板の表面或いは前記セパレータの表面に前記硫酸塩が配置されている、前記(1)又は(7)に記載の制御弁式鉛蓄電池。 (8) The valve-regulated lead acid battery according to (1) or (7), wherein the sulfate is disposed on a surface of the positive electrode plate and the negative electrode plate or on a surface of the separator.
 (9)前記正極板及び前記負極板のそれぞれの面積は135cm以上288cm以下である、前記(1)に記載の制御弁式鉛蓄電池。 (9) wherein the area of each of the positive electrode plate and the negative electrode plate is 135 cm 2 or more 288Cm 2 or less, valve-regulated lead-acid battery according to (1).
 (10)前記電解液は硫酸と水とを含む硫酸水溶液である、前記(1)に記載の制御弁式鉛蓄電池。 (10) The control valve type lead acid battery according to (1), wherein the electrolytic solution is an aqueous sulfuric acid solution containing sulfuric acid and water.
 (11)前記電解液の比重は1.200g/cm以上1.310g/cm以下である、前記(1)又は(10)に記載の制御弁式鉛蓄電池。 (11) The control valve type lead acid battery according to (1) or (10), wherein the electrolyte has a specific gravity of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less.
 (12)樹脂製の電槽と、前記電槽に収容され正極板と負極板とがセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、
 前記セパレータはガラス繊維マットからなる第1のセパレータと、ガラス繊維マット又は不織布からなる第2のセパレータとを備え、
 前記第1のセパレータは前記正極板と近接して配置され、前記第2のセパレータは前記負極板と近接して配置され、
 少なくとも、前記第1のセパレータと前記正極板との間、前記第2のセパレータと前記負極板との間、及び前記第1のセパレータと前記第2のセパレータとの間の何れかに、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されている制御弁式鉛蓄電池。
(12) A control valve-type lead-acid battery having a resin battery case, an electrode plate group housed in the battery case and provided such that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolyte solution Because
The separator includes a first separator made of a glass fiber mat, and a second separator made of a glass fiber mat or a nonwoven fabric,
The first separator is disposed in proximity to the positive electrode plate, the second separator is disposed in proximity to the negative electrode plate,
Alkali metal at least between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, and between the first separator and the second separator. Or the control valve type lead acid battery by which the sulfate containing an alkaline-earth metal is arrange | positioned.
 (13)前記硫酸塩はアルカリ金属硫酸塩又はアルカリ土類金属硫酸塩である、前記(12)に記載の制御弁式鉛蓄電池。 (13) The valve-regulated lead-acid battery according to (12), wherein the sulfate is an alkali metal sulfate or an alkaline earth metal sulfate.
 (14)前記硫酸塩は硫酸ナトリウムである、前記(13)に記載の制御弁式鉛蓄電池。 (14) The control valve type lead acid battery according to (13), wherein the sulfate is sodium sulfate.
 (15)前記正極板と前記負極板との間の距離は0.4mm以上1.0mm以下である、前記(12)に記載の制御弁式鉛蓄電池。 (15) The control valve type lead-acid battery according to (12), wherein a distance between the positive electrode plate and the negative electrode plate is 0.4 mm or more and 1.0 mm or less.
 (16)前記硫酸塩の配置量は0.008g/cm以上0.3g/cm以下である、前記(12)に記載の制御弁式鉛蓄電池。 (16) The control valve-type lead-acid battery according to (12), wherein an amount of the sulfate disposed is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
 (17)前記硫酸塩の配置量は0.010g/cm以上0.2g/cm以下である、前記(12)又は(14)に記載の制御弁式鉛蓄電池。 (17) the arrangement of sulfate is 0.010 g / cm 2 or more 0.2 g / cm 2 or less, valve-regulated lead-acid battery according to (12) or (14).
 (18)前記極板群を極板面方向の上下及び左右にそれぞれ三等分したときの少なくとも中央部に前記硫酸塩が配置されている、前記(12)に記載の制御弁式鉛蓄電池。 (18) The valve-regulated lead-acid battery according to (12), wherein the sulfate is arranged at least in the center when the electrode plate group is divided into three equal parts in the upper and lower and left and right directions in the electrode plate surface direction.
 (19)前記第1のセパレータ又は前記第2のセパレータの表面に前記硫酸塩が配置されている、前記(12)又は(18)に記載の制御弁式鉛蓄電池。 (19) The control valve type lead-acid battery according to (12) or (18), wherein the sulfate is disposed on a surface of the first separator or the second separator.
 (20)前記正極板及び前記負極板のそれぞれの面積は135cm以上288cm以下である、前記(12)に記載の制御弁式鉛蓄電池。 (20) the area of each of the positive electrode plate and the negative electrode plate is 135 cm 2 or more 288Cm 2 or less, valve-regulated lead-acid battery according to (12).
 (21)前記電解液は硫酸と水とを含む硫酸水溶液である、前記(12)に記載の制御弁式鉛蓄電池。 (21) The control valve type lead storage battery according to (12), wherein the electrolytic solution is a sulfuric acid aqueous solution containing sulfuric acid and water.
 (22)前記電解液の比重は1.200g/cm以上1.310g/cm以下である、前記(12)又は(21)に記載の制御弁式鉛蓄電池。 (22) The control valve-type lead acid battery according to (12) or (21), wherein the electrolyte has a specific gravity of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less.
 本発明によれば、配置した硫酸塩によって鉛イオンの溶出が抑制され、さらにはデンドライトショートによる不具合の発生も抑制される。その結果、電池特性を低下させることなくデンドライトショートを大幅に低減させることができ、それによって電動車両の主電源に適した制御弁式鉛蓄電池を提供することができる。 According to the present invention, the elution of lead ions is suppressed by the arranged sulfate, and further, the occurrence of defects due to dendrite shorts is also suppressed. As a result, a dendrite short circuit can be significantly reduced without deteriorating battery characteristics, thereby providing a control valve type lead storage battery suitable for a main power source of an electric vehicle.
本発明の制御弁式鉛蓄電池における極板群の一実施形態を模式的に示した斜視図である。It is the perspective view which showed typically one Embodiment of the electrode group in the control valve type lead acid battery of this invention. 本発明の制御弁式鉛蓄電池における極板群の他の実施形態を模式的に示した斜視図である。It is the perspective view which showed typically other embodiment of the electrode group in the control valve type lead acid battery of this invention. 本発明における硫酸塩の配置に最適な位置を示した図である。It is the figure which showed the optimal position for arrangement | positioning of the sulfate in this invention. (a)、(b)は本発明の制御弁式鉛蓄電池の効果を示した図である。(A), (b) is the figure which showed the effect of the control valve type lead acid battery of this invention. 本発明の制御弁式鉛蓄電池の効果を示した図である。It is the figure which showed the effect of the control valve type lead acid battery of this invention. 本発明の制御弁式鉛蓄電池の効果を示した図である。It is the figure which showed the effect of the control valve type lead acid battery of this invention.
 以下、図面を用いて本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 本発明の第1の実施形態における制御弁式鉛蓄電池は、樹脂製の電槽と、電槽に収容され正極板と負極板とがセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、セパレータと正極板との間及びセパレータと負極板との間の少なくとも一方には、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されている。 The control valve-type lead-acid battery in the first embodiment of the present invention is a resin battery case, and an electrode plate group that is provided in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween. And a valve-regulated lead-acid battery having an electrolyte solution, and a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate Has been.
 第1の実施形態において、正極板及び負極板の表面或いはセパレータの表面に硫酸塩が配置されており、それによってセパレータと正極板との間及びセパレータと負極板との間に硫酸塩が配置されていることが好ましい。 In the first embodiment, sulfate is disposed on the surface of the positive electrode plate and the negative electrode plate or the surface of the separator, whereby the sulfate is disposed between the separator and the positive electrode plate and between the separator and the negative electrode plate. It is preferable.
 セパレータはチップ状でも、袋状でも、U字形等の形状でもよい。極板群において、例えば、正極板をU字形又は袋状のセパレータでくるむようにしてもよい。 The separator may be chip-shaped, bag-shaped, or U-shaped. In the electrode plate group, for example, the positive electrode plate may be wrapped with a U-shaped or bag-shaped separator.
 図1は、第1の実施形態において用いる極板群を模式的に示した斜視図である。図1に示すように、正極板1と負極板2とをセパレータ3aを介して交互に積層するとともに、複数の正極板1の耳部及び複数の負極板2の耳部をそれぞれ溶接してまとめることで、第1の実施形態において用いられる極板群を構成している。 FIG. 1 is a perspective view schematically showing an electrode plate group used in the first embodiment. As shown in FIG. 1, the positive electrode plates 1 and the negative electrode plates 2 are alternately stacked via separators 3a, and the ears of the plurality of positive electrode plates 1 and the ears of the plurality of negative electrode plates 2 are welded together. Thus, the electrode plate group used in the first embodiment is configured.
 本発明の第2の実施形態は、樹脂製の電槽と、電槽に収容され正極板と負極板とがセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、セパレータはガラス繊維マットからなる第1のセパレータと、ガラス繊維マット又は不織布からなる第2のセパレータとを備え、第1のセパレータは正極板と近接して配置され、第2のセパレータは負極板と近接して配置され、少なくとも、第1のセパレータと正極板との間、第2のセパレータと負極板との間、及び第1のセパレータと第2のセパレータとの間の何れかに、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されている。 A second embodiment of the present invention includes a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolytic solution. A control valve type lead-acid battery having a first separator made of a glass fiber mat and a second separator made of a glass fiber mat or a nonwoven fabric, the first separator being arranged close to the positive electrode plate And the second separator is disposed close to the negative electrode plate, at least between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, and between the first separator and the second separator. A sulfate containing an alkali metal or an alkaline earth metal is disposed between the two.
 第2の実施形態において、正極板及び負極板の表面或いは第1のセパレータの表面及び/又は第2のセパレータの表面に硫酸塩が配置され、それによって第1のセパレータと正極板との間、第2のセパレータと負極板との間又は第1のセパレータと第2のセパレータとの間に、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されていることが好ましい。 In the second embodiment, sulfate is disposed on the surface of the positive electrode plate and the negative electrode plate or the surface of the first separator and / or the surface of the second separator, thereby, between the first separator and the positive electrode plate, It is preferable that a sulfate containing an alkali metal or an alkaline earth metal is disposed between the second separator and the negative electrode plate or between the first separator and the second separator.
 第1のセパレータや第2のセパレータはチップ状でも、袋状でも、U字形等の形状でもよい。極板群において、例えば、正極板をU字形又は袋状の第1のセパレータでくるみ、負極板をU字形又は袋状の第2のセパレータでくるんでもよい。 The first separator and the second separator may be chip-shaped, bag-shaped, or U-shaped. In the electrode plate group, for example, the positive electrode plate may be wrapped with a U-shaped or bag-shaped first separator, and the negative electrode plate may be wrapped with a U-shaped or bag-shaped second separator.
 また、第2のセパレータに用いる不織布としては、ポリプロピレン等の合成繊維からなり各種の親水化処理を施した不織布を用いることができる。 Also, as the nonwoven fabric used for the second separator, nonwoven fabric made of synthetic fibers such as polypropylene and subjected to various hydrophilic treatments can be used.
 通常、ガラス繊維セパレータは酸を良好に吸収することができ、不織布セパレータは良好な強度を有することで効果的に短絡を防ぐことができる。 Usually, a glass fiber separator can absorb acid well, and a nonwoven fabric separator can effectively prevent a short circuit by having good strength.
 図2は、第2の実施形態において用いられる極板群を模式的に示した斜視図である。図2に示すように、ガラス繊維マットからなる第1のセパレータ3でくるんだ正極板1と、ガラス繊維マット又は不織布からなる第2のセパレータ4でくるんだ負極板2とを交互に積層するとともに、複数の正極板1の耳部及び複数の負極板2の耳部をそれぞれ溶接してまとめることで、第2の実施形態において用いられる極板群を構成している。 FIG. 2 is a perspective view schematically showing an electrode plate group used in the second embodiment. As shown in FIG. 2, the positive electrode plate 1 wrapped with the first separator 3 made of glass fiber mat and the negative electrode plate 2 wrapped with the second separator 4 made of glass fiber mat or nonwoven fabric are alternately laminated. The electrode plate group used in the second embodiment is formed by welding the ears of the plurality of positive electrode plates 1 and the ears of the plurality of negative electrode plates 2 together.
 本発明において用いられる硫酸塩は、アルカリ金属硫酸塩又はアルカリ土類金属硫酸塩であることが好ましい。アルカリ金属は、元素の周期表における第IA族のリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)であってよい。アルカリ土類金属は、元素の周期表における第IIA族のベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)であってよい。このうち、硫酸塩は硫酸ナトリウムであることがさらに好ましい。これは、硫酸ナトリウムに含まれるナトリウムが、電池の過放電時にデンドライトショートの発生を抑制する作用を発揮できる上に、硫酸ナトリウムは価格も他の材料より安いからである。 The sulfate used in the present invention is preferably an alkali metal sulfate or an alkaline earth metal sulfate. The alkali metal may be Group IA lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr) in the periodic table of elements. The alkaline earth metal may be group IIA beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra) in the periodic table of elements. Of these, the sulfate is more preferably sodium sulfate. This is because sodium contained in sodium sulfate can exert an effect of suppressing the occurrence of a dendrite short when the battery is overdischarged, and sodium sulfate is cheaper than other materials.
 本発明の制御弁式鉛蓄電池において、正極板及び負極板のそれぞれの面積は135cm以上288cm以下であることが好ましい。これは以下の理由による。即ち、極板の面積が135cmよりも小さいと、硫酸の拡散速度が速く、極板の中心まで拡散する時間が短いため、硫酸拡散中の消耗により鉛イオンが溶出しやすい条件を生むということがないので、結果として電池自体がデンドライトショートを起こしにくいものとなっており、たとえ硫酸塩を配置してもデンドライトショートを抑制する作用を発揮することがないからである。また、極板の面積が288cmを上回ると、極板の面積が大きいため、硫酸の拡散速度が遅く、硫酸が消耗してしまい、それによって鉛イオンが溶出しやすい環境となり、デンドライトショートを避けることができず、上記と同様に硫酸塩がデンドライトショートを好適に抑制する作用を発揮できないからである。 In the valve-regulated lead-acid battery of the present invention, it is preferable area of each of the positive electrode plate and the negative electrode plate is 135 cm 2 or more 288Cm 2 or less. This is due to the following reason. That is, if the area of the electrode plate is smaller than 135 cm 2 , the diffusion rate of sulfuric acid is high, and the time for diffusing to the center of the electrode plate is short. As a result, the battery itself does not easily cause a dendrite short, and even if a sulfate is disposed, the effect of suppressing the dendrite short is not exhibited. Also, if the area of the electrode plate exceeds 288 cm 2 , the area of the electrode plate is large, so that the diffusion rate of sulfuric acid is slow and the sulfuric acid is consumed, which leads to an environment where lead ions are likely to elute and avoid dendritic shorts This is because, similarly to the above, sulfate cannot exert an effect of suitably suppressing dendrite short.
 本発明において、電解液は硫酸と水とを含む硫酸水溶液であることが好ましく、電解液の比重は1.200g/cm以上1.310g/cm以下であることが好ましい。電解液には、例えばシリカ、四ホウ酸ナトリウム、硫酸ナトリウム等、電解液に完全に溶けることが可能な少量の添加剤がさらに含まれていてもよい。 In the present invention, the electrolytic solution is preferably a sulfuric acid aqueous solution containing sulfuric acid and water, and the specific gravity of the electrolytic solution is preferably 1.200 g / cm 3 or more and 1.310 g / cm 3 or less. The electrolyte solution may further contain a small amount of additives that can be completely dissolved in the electrolyte solution, such as silica, sodium tetraborate, sodium sulfate, and the like.
 正極板及び負極板の活物質ペーストとしては、例えば以下の活物質ペーストを用いる。即ち、鉛と酸化鉛との混合粉末に耐硫酸性を有する合成樹脂繊維や各種の添加剤を添加し、水と希硫酸とで混練してなる活物質ペーストを用いる。この中で、化成の効率化や初期容量特性の向上を目的として、正極板に用いる活物質ペースト(正極活物質ペースト)に鉛丹を添加してもよい。また、負極板に用いる活物質ペースト(負極活物質ペースト)に、負極板の活物質の体積変化(収縮、膨張)を抑制できるリグニン化合物や、放電生成物(硫酸鉛)の生成核を形成して反応を均一化させる機能を有する硫酸バリウムを添加する。そして、実質的にアンチモンを含まない鉛合金(鉛-カルシウム合金、鉛-スズ合金等)からなるエキスパンド格子に上記の正極活物質ペーストと負極活物質ペーストとをそれぞれ充填するが、活物質の脱落防止のためのペースト紙を極板の表面に貼付してもよい。このようにして、正極板と負極板とが作製される。 As the active material paste for the positive electrode plate and the negative electrode plate, for example, the following active material paste is used. That is, an active material paste obtained by adding a synthetic resin fiber having resistance to sulfuric acid and various additives to a mixed powder of lead and lead oxide and kneading with water and dilute sulfuric acid is used. Among these, for the purpose of improving the efficiency of chemical conversion and improving the initial capacity characteristics, red lead may be added to the active material paste (positive electrode active material paste) used for the positive electrode plate. In addition, the active material paste used for the negative electrode plate (negative electrode active material paste) forms a lignin compound that can suppress the volume change (shrinkage and expansion) of the active material of the negative electrode plate and the generation nucleus of the discharge product (lead sulfate). Then, barium sulfate having a function of homogenizing the reaction is added. Then, the above-described positive electrode active material paste and negative electrode active material paste are filled in an expanded lattice made of a lead alloy (lead-calcium alloy, lead-tin alloy, etc.) that does not substantially contain antimony. You may stick the paste paper for prevention on the surface of an electrode plate. In this way, a positive electrode plate and a negative electrode plate are produced.
 正極板と負極板との間の距離は、0.4mm以上1.0mm以下であることが好ましい。距離が0.4mmより短いと、ピッチが足りないため、正極板1と負極板2との接触による短絡が発生しやすくなる。一方、距離が1.0mmよりも長いと、電池容量の低下が比較的顕著である。 The distance between the positive electrode plate and the negative electrode plate is preferably 0.4 mm or more and 1.0 mm or less. If the distance is shorter than 0.4 mm, the pitch is insufficient, so that a short circuit due to contact between the positive electrode plate 1 and the negative electrode plate 2 is likely to occur. On the other hand, when the distance is longer than 1.0 mm, the decrease in battery capacity is relatively remarkable.
 本発明において用いられる硫酸塩の粒径は、500μm以下であることが好ましい。これは、粒径が大きすぎると、塗布工程において付着しにくい上に、電解液注入後の硫酸ナトリウムの溶解時間が長くなることにより、硫酸ナトリウム塗布の効果に影響が出てしまうからである。 The particle diameter of the sulfate used in the present invention is preferably 500 μm or less. This is because if the particle size is too large, it will be difficult to adhere in the coating process, and the dissolution time of sodium sulfate after injection of the electrolyte will be prolonged, thereby affecting the effect of sodium sulfate coating.
 本発明の効果を充分に得るには、硫酸塩の単位面積当たりの配置量は0.008g/cm以上0.3g/cm以下であることが好ましい。硫酸塩の配置量が0.008g/cmを下回ると、デンドライトショートの発生が比較的顕著になり、初期容量及びサイクル寿命がその分低下してしまう。しかし、硫酸塩の配置量が0.3g/cmを超えると、過剰な硫酸塩によって硫酸濃度が高くなる(硫酸イオン濃度も増加する)ため、充電前に放電生成物としての硫酸鉛が過剰に生成されて硫酸塩化を引き起こし、充電不足による容量の低下が顕著になるとともに、サイクル寿命の低下も見られることとなる。 In order to sufficiently obtain the effects of the present invention, the amount of sulfate per unit area is preferably 0.008 g / cm 2 or more and 0.3 g / cm 2 or less. If the amount of sulfate is less than 0.008 g / cm 2 , the occurrence of dendrite short becomes relatively remarkable, and the initial capacity and cycle life are reduced accordingly. However, if the amount of sulfate disposed exceeds 0.3 g / cm 2 , the sulfuric acid concentration increases due to excessive sulfate (sulfuric acid ion concentration also increases), so that lead sulfate as a discharge product is excessive before charging. This causes sulfation, resulting in a significant decrease in capacity due to insufficient charging and a decrease in cycle life.
 硫酸塩の単位面積当たりの配置量は、0.010g/cm以上0.2g/cm以下であることがさらに好ましく、0.1g/cm以上0.2g/cm以下であることがより一層好ましい。特に、硫酸塩として硫酸ナトリウムを用いるときには、このようにすることがとりわけ好ましい。 Arranged per unit area of the sulfate, it is further preferably 0.010 g / cm 2 or more 0.2 g / cm 2 or less, 0.1 g / cm 2 or more 0.2 g / cm 2 or less Even more preferred. This is particularly preferable when sodium sulfate is used as the sulfate.
 本発明において、硫酸塩は粉末の状態で塗布されて配置されることが好ましい。これは、硫酸塩を電解液に溶かして配置しても効果が良好ではないからである。 In the present invention, the sulfate is preferably applied and arranged in a powder state. This is because the effect is not good even if the sulfate is dissolved in the electrolytic solution.
 図3は本発明における硫酸塩の配置に最適な位置を示した図である。本願発明者らは、極板群を極板面方向の上下(Y方向)及び左右(X方向)にそれぞれ三等分(合計九等分)したときの中央部(第5の部分)が、電解液注入後に電解液の浸透(硫酸イオンの供給)の最も遅い位置であることを確認した。即ち、当該位置はデンドライトショートの起点に最もなりやすい位置である。よって、少なくともこの中央部(第5の部分)にさえ硫酸塩を配置すれば、たとえ極板面方向の全体に硫酸塩を配置しなくても所定の効果を得ることができる。 FIG. 3 is a diagram showing an optimum position for the arrangement of sulfates in the present invention. The inventors of the present application have a central portion (fifth portion) when the electrode plate group is divided into three equal parts (total of nine equal parts) vertically (Y direction) and left and right (X direction) in the electrode plate surface direction, After injection of the electrolyte, it was confirmed that it was the slowest position of electrolyte penetration (sulfate ion supply). That is, the position is the position most likely to be the starting point of a dendrite short. Therefore, if a sulfate is disposed even at least in the central portion (fifth portion), a predetermined effect can be obtained even if the sulfate is not disposed in the entire plate surface direction.
 極板群を、セル室を有する樹脂製の電槽に収容した後、上部に蓋を取り付けるとともに蓋を電槽と接着することで、未化成の半製品が作製される。半製品の蓋に設けられた注液口から電解液を注入し、通電して化成処理を施した後、注液口に安全弁を取り付ける。これにより、本発明の制御弁式鉛蓄電池が作製される。 After the electrode plate group is accommodated in a resin battery case having a cell chamber, an unformed semi-finished product is produced by attaching a lid to the upper part and bonding the lid to the battery case. After injecting the electrolyte from the injection port provided on the lid of the semi-finished product and conducting a chemical conversion treatment with electricity, a safety valve is attached to the injection port. Thereby, the control valve type lead acid battery of this invention is produced.
 続いて、実施例により、本発明の制御弁式鉛蓄電池の効果についてさらに詳細な説明を行う。 Subsequently, the effect of the control valve type lead storage battery of the present invention will be described in more detail by way of examples.
 (第1の実施形態の実施例)
 第1の実施形態においては、樹脂製の電槽と、電槽に収容され正極板と負極板とがセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、セパレータがガラス繊維マットからなる第1のセパレータと、ガラス繊維マット又は不織布からなる第2のセパレータとを備え、第1のセパレータが正極板と近接して配置され、第2のセパレータが負極板と近接して配置され、第1のセパレータと正極板との間、第2のセパレータと負極板との間又は第1のセパレータと第2のセパレータとの間にアルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されている制御弁式鉛蓄電池を作製する。具体的な作製方法は以下の通りである。
(Example of the first embodiment)
In the first embodiment, a control including a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolytic solution. A valve-type lead-acid battery comprising a first separator made of a glass fiber mat and a second separator made of a glass fiber mat or a non-woven fabric, the first separator being arranged close to the positive electrode plate, The second separator is disposed close to the negative electrode plate, and an alkali is provided between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, or between the first separator and the second separator. A control valve type lead acid battery in which a sulfate containing a metal or an alkaline earth metal is arranged is produced. A specific manufacturing method is as follows.
 (1)正極板の作製
 原料の鉛粉(鉛と酸化鉛との混合物)、水及び希硫酸を約100:15:10の重量比で混練することにより、正極活物質としての正極鉛ペーストを得る。
(1) Production of positive electrode plate By mixing the raw material lead powder (a mixture of lead and lead oxide), water and dilute sulfuric acid in a weight ratio of about 100: 15: 10, a positive electrode lead paste as a positive electrode active material is obtained. obtain.
 一方、約0.07質量%のCaと約1.3質量%のSnとを含むPb合金を鋳造押出しにより1.3mm厚さの鉛シートに成形し、レシプロエキスパンド方式によってエキスパンド格子を得る。その後、エキスパンド格子に正極鉛ペーストを充填する。その後、切断、熟成、乾燥及び化成を行うことで、正極板が得られる。化成は極板群に組み立てる前に行ってもよく、極板群に組み立てて鉛蓄電池のケーシング内に実装した後に行ってもよい。 On the other hand, a Pb alloy containing about 0.07% by mass of Ca and about 1.3% by mass of Sn is formed into a 1.3 mm-thick lead sheet by casting extrusion, and an expanded lattice is obtained by a reciprocating expansion method. Thereafter, the expanded grid is filled with positive electrode lead paste. Then, a positive electrode plate is obtained by performing cutting | disconnection, ageing | curing | ripening, drying, and chemical conversion. The chemical conversion may be performed before assembling into the electrode plate group or after being assembled into the electrode plate group and mounted in the casing of the lead storage battery.
 (2)負極板の作製
 原料の鉛粉、水及び希硫酸を約100:5:10の重量比で混練することにより、負極活物質としての負極鉛ペーストを得る。
(2) Production of Negative Electrode Plate A negative electrode lead paste as a negative electrode active material is obtained by kneading raw material lead powder, water and dilute sulfuric acid at a weight ratio of about 100: 5: 10.
 また、約0.07質量%のCaと約0.25質量%のSnとを含むPb合金原料を鋳造押出しにより例えば0.65mmの所定厚さの鉛シートに成形し、レシプロエキスパンド方式によってエキスパンド格子を得る。その後、エキスパンド格子に負極鉛ペーストを充填する。その後、切断、熟成、乾燥及び化成を行うことで、負極板が得られる。化成は極板群に組み立てる前に行ってもよく、極板群に組み立てて鉛蓄電池のケーシング内に実装した後に行ってもよい。 Further, a Pb alloy raw material containing about 0.07% by mass of Ca and about 0.25% by mass of Sn is formed into a lead sheet having a predetermined thickness of, for example, 0.65 mm by casting extrusion, and expanded lattice by a reciprocating expansion method. Get. Thereafter, the expanded lead is filled with a negative electrode lead paste. Then, a negative electrode plate is obtained by performing cutting | disconnection, ageing | curing | ripening, drying, and chemical conversion. The chemical conversion may be performed before assembling into the electrode plate group or after being assembled into the electrode plate group and mounted in the casing of the lead storage battery.
 (3)鉛蓄電池の作製
 正極板及び負極板のそれぞれの面積は135cm以上288cm以下とし、正極板をガラス繊維マットからなるU字形の第1のセパレータでくるみ、負極板をガラス繊維マット又は不織布からなる袋状の第2のセパレータでくるみ、5枚の正極板と6枚の負極板とを交互に重ね合わせ、且つ第1のセパレータと正極板との間、第2のセパレータと負極板との間又は第1のセパレータと第2のセパレータとの間に粉末の状態で塗布を行ってアルカリ金属又はアルカリ土類金属硫酸塩を配置することによって、図2に示した極板群を得る。続いて、各正極板の耳部及び各負極板の耳部をそれぞれ溶接し、正極ストラップ及び負極ストラップを得る。
(3) the area of each of the produced positive electrode plate and negative electrode plate of lead-acid battery is a 135 cm 2 or more 288Cm 2 or less, walnuts in the first separator of U-shaped comprising a positive electrode plate of glass fiber mats, glass fiber mat or a negative electrode plate Wrapped with a bag-like second separator made of non-woven fabric, five positive plates and six negative plates are alternately stacked, and between the first separator and the positive plate, the second separator and the negative plate 2 or between the first separator and the second separator is applied in a powder state to dispose an alkali metal or alkaline earth metal sulfate, thereby obtaining the electrode plate group shown in FIG. . Then, the ear | edge part of each positive electrode plate and the ear | edge part of each negative electrode plate are welded, respectively, and a positive electrode strap and a negative electrode strap are obtained.
 6つの極板群を、樹脂製の電槽における隔壁によって区画された6つのセル室にそれぞれ収容する。一の極板群の負極板ストラップを隣接する極板群の正極ストラップと直列に接続することで、各極板群を順に直列に接続する。つまり、各セル(単電池)を直列に接続する。 The six electrode plate groups are respectively accommodated in six cell chambers partitioned by partition walls in a resin battery case. By connecting the negative electrode strap of one electrode plate group in series with the positive electrode strap of the adjacent electrode plate group, the electrode plate groups are connected in series in order. That is, each cell (single cell) is connected in series.
 それから、電池蓋を電池ケーシングの開口部に取り付ける。続いて、電池蓋に設けられた注液口から各セルに電解液として比重1.200g/cm以上1.310g/cm以下の硫酸を注入するとともに、電池ケーシング内で化成を行う。化成後、電池内部で発生する気体及び圧力を逃がすための弁を注液口に固定することにより、鉛蓄電池を得る。 Then, the battery lid is attached to the opening of the battery casing. Subsequently, sulfuric acid having a specific gravity of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less is injected into each cell as an electrolytic solution from a pouring port provided on the battery lid, and chemical conversion is performed in the battery casing. After the formation, a lead storage battery is obtained by fixing a valve for releasing gas and pressure generated inside the battery to the liquid injection port.
 -実施例1-
 実施例1は、第1の実施形態の実施例である。この例において、正極板及び負極板のそれぞれの面積は120cmとし、比重1.255g/cmの硫酸を用いた。それとともに、表1及び表2に示すように、硫酸塩の有無及び種類や、極板群の積層方向における硫酸塩の配置位置を変更した。その他については全て上記の方法に従い、公称電圧12Vの制御弁式鉛蓄電池(電池1から電池61)を作製した。また、これらの電池において、正極板1と負極板2との間の距離は0.7mmとし、硫酸塩の単位面積当たりの配置量は0.1g/cmとし、極板群の極板面方向における硫酸塩の配置位置は図3における第5の部分のみとした(部分的配置)。なお、正極板1の活物質量を基準として充電容量を0.41Ah/gとし、初期充電を行った。そして、デンドライトショートが発生しやすいように、電解液の注入速度を通常の50ml/秒から15ml/秒に低減して電池を作製した。表1及び表2に、評価条件及び結果を示す。
-Example 1-
Example 1 is an example of the first embodiment. In this example, each area of the positive electrode plate and the negative electrode plate was 120 cm 2 and sulfuric acid having a specific gravity of 1.255 g / cm 3 was used. At the same time, as shown in Table 1 and Table 2, the presence and type of sulfate and the arrangement position of sulfate in the stacking direction of the electrode plate group were changed. In all other respects, a control valve type lead-acid battery (battery 1 to battery 61) having a nominal voltage of 12 V was produced according to the above-described method. In these batteries, the distance between the positive electrode plate 1 and the negative electrode plate 2 is 0.7 mm, the amount of sulfate per unit area is 0.1 g / cm 2, and the electrode plate surface of the electrode plate group The position of the sulfate in the direction was only the fifth part in FIG. 3 (partial arrangement). The initial charge was performed with the charge capacity set to 0.41 Ah / g based on the amount of the active material of the positive electrode plate 1. A battery was produced by reducing the injection rate of the electrolyte from the usual 50 ml / second to 15 ml / second so that a dendrite short circuit was likely to occur. Tables 1 and 2 show the evaluation conditions and results.
 (デンドライトショート試験)
 25℃の環境において2.45Vで12時間の定電圧充電(最大電流24A)を行った後、電池を分解し、極板間に発生しているデンドライトショートの個数を目視で測定した。
(Dendrite short test)
After performing constant voltage charging (maximum current 24 A) at 2.45 V in an environment of 25 ° C. for 12 hours, the battery was disassembled and the number of dendrite shorts occurring between the electrode plates was visually measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、硫酸塩を配置していない電池1においては多数のデンドライトショートが発生しているが、硫酸塩を配置した他の電池においては、硫酸塩の種類を問わず、デンドライトショートが大幅に減少していた。 As shown in Table 1 and Table 2, many dendrite shorts occur in the battery 1 in which no sulfate is arranged, but in other batteries in which the sulfate is arranged, regardless of the type of sulfate. Dendrite shorts were significantly reduced.
 硫酸塩を配置していない電池1においては、正極板1と負極板2との間に発生する鉛イオンが、充電に伴い負極板2から電子を受け取って析出し、それによってデンドライトショートが発生しているものと考えられる。このことから、本発明のように正極板1と負極板2との間に硫酸塩を適切に配置することにより、デンドライトショートが大幅に低減されるということが分かる。 In the battery 1 in which no sulfate is arranged, lead ions generated between the positive electrode plate 1 and the negative electrode plate 2 receive and deposit electrons from the negative electrode plate 2 during charging, thereby causing a dendrite short circuit. It is thought that. From this, it can be seen that the dendrite short is greatly reduced by appropriately arranging the sulfate between the positive electrode plate 1 and the negative electrode plate 2 as in the present invention.
 これは、以下の理由によるものと考えられる。即ち、正極板1と負極板2との間に発生する鉛イオンが、適切に配置した硫酸塩から溶出した硫酸イオンと結合することにより、充電時に硫酸鉛となり、それによってデンドライトショートの元となる鉛イオンを大幅に減らすことができるからであると考えられる。 This is thought to be due to the following reasons. That is, lead ions generated between the positive electrode plate 1 and the negative electrode plate 2 are combined with sulfate ions eluted from the appropriately arranged sulfate, thereby becoming lead sulfate during charging, thereby causing a dendrite short circuit. This is probably because lead ions can be greatly reduced.
 しかしながら、特許文献1のように第1のセパレータ3の内部に硫酸塩を配置しても、鉛イオンは硫酸イオンと効果的に結合できないため、上記の効果がなくなってしまう(電池38から電池49)。この結果から、アルカリ金属又はアルカリ土類金属を含む硫酸塩をセパレータと正極板1との間、セパレータと負極板2との間又は第1のセパレータ3と第2のセパレータ4との間に配置することで、本発明の効果が得られるということが分かる。 However, even if sulfate is arranged inside the first separator 3 as in Patent Document 1, the above effect is lost because lead ions cannot be effectively combined with sulfate ions (battery 38 to battery 49). ). From this result, the sulfate containing alkali metal or alkaline earth metal is disposed between the separator and the positive electrode plate 1, between the separator and the negative electrode plate 2, or between the first separator 3 and the second separator 4. It can be seen that the effect of the present invention can be obtained.
 特に、硫酸塩を第1のセパレータ3と第2のセパレータ4との間に配置した電池26から電池37は効果が高いが、これは次の理由によるものと考えられる。即ち、正極板1と負極板2との間で鉛イオンが発生する速度に対して、本発明における硫酸塩からの硫酸イオンが鉛イオンと結合する(デンドライトの発生源を絶つ)速度はより遅いので、硫酸塩を鉛イオンの発生源である正極板1又は負極板2とある程度離れた位置(第1のセパレータ3と第2のセパレータ4との間)に配置したほうが、硫酸塩を鉛イオン発生源の周囲に配置した場合に比べて、よりスムーズに鉛イオンへ硫酸イオンを供給することができるからであると考えられる。 Particularly, although the battery 37 is highly effective from the battery 26 in which the sulfate is disposed between the first separator 3 and the second separator 4, this is considered to be due to the following reason. That is, the rate at which sulfate ions from sulfate in the present invention are combined with lead ions (disconnecting the source of dendrite) is slower than the rate at which lead ions are generated between the positive electrode plate 1 and the negative electrode plate 2. Therefore, it is better to place the sulfate in the position where the positive electrode plate 1 or the negative electrode plate 2 that is the source of lead ions is separated to some extent (between the first separator 3 and the second separator 4). This is probably because sulfate ions can be supplied to lead ions more smoothly than in the case where they are arranged around the generation source.
 -実施例2-
 硫酸塩の単位面積当たりの配置量について検討した。そして、硫酸塩の配置量以外は全て上記の電池27と同様に作製した。検討内容及び結果は以下の通りである。
-Example 2-
The amount of sulfate per unit area was examined. And everything except the arrangement amount of a sulfate was produced similarly to said battery 27. The contents and results of the study are as follows.
 (初期容量確認試験)
 25℃の環境において3倍のレート(1/3C)で放電深度が80%になるまで放電し、初期容量を確認した。その初期容量と、初期容量確認時に発生したデンドライトショートの個数とを、図4(a)及び(b)に示す。得られた結果から、たとえ硫酸塩を配置しても、硫酸塩の配置量が0.008g/cmを下回る場合には、デンドライトショートの発生が比較的顕著になり、初期容量がその分低下してしまうということが分かる。硫酸塩の配置量が0.008g/cm以上0.3g/cm以下である場合には、発生するデンドライトショートの個数が0個となり、且つ、初期容量も良好である。しかし、硫酸塩の配置量が0.3g/cmを超えると、過剰な硫酸塩によって硫酸濃度が上昇し、充電前に放電生成物としての硫酸鉛が過剰に生成されてしまうため、充電不足による容量の低下が顕著になる。
(Initial capacity confirmation test)
In an environment of 25 ° C., discharge was performed at a triple rate (1 / 3C) until the depth of discharge reached 80%, and the initial capacity was confirmed. 4A and 4B show the initial capacity and the number of dendrite shorts generated when the initial capacity is confirmed. From the obtained results, even if the sulfate is arranged, if the amount of the sulfate is less than 0.008 g / cm 2 , the occurrence of dendrite short becomes relatively remarkable, and the initial capacity is reduced accordingly. You can see that When the amount of sulfate disposed is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less, the number of dendrite shorts generated is zero and the initial capacity is also good. However, if the amount of sulfate is more than 0.3 g / cm 2 , the concentration of sulfuric acid increases due to excessive sulfate, and lead sulfate as a discharge product is excessively generated before charging. Decrease in capacity due to
 (サイクル寿命試験)
 25℃の環境において3倍のレート(1/3C)で放電深度が80%になるまで放電し、2.45Vで12時間の定電圧充電(最大電流24A)を行う、という充放電を1回のサイクルとして評価を行った。結果を図5に示す。そして、放電容量が初期容量実測値の75%以下になった時点をサイクル寿命の終結とした。
(Cycle life test)
Charge and discharge once in a 25 ° C environment at a triple rate (1 / 3C) until the depth of discharge reaches 80% and constant voltage charge (maximum current 24A) at 2.45V for 12 hours. Evaluation was performed as a cycle. The results are shown in FIG. The time when the discharge capacity became 75% or less of the actual measured initial capacity was regarded as the end of the cycle life.
 得られた結果から、たとえ硫酸塩を配置しても、硫酸塩の配置量が0.008g/cmを下回る場合には、デンドライトショートの発生が比較的顕著になり、サイクル寿命がその分低下してしまうということが分かる。硫酸塩の配置量が0.008g/cm以上0.3g/cm以下である場合には、1000サイクル以上の特性が得られている。しかし、硫酸塩の配置量が0.3g/cmを超えると、過剰な硫酸塩によって硫酸濃度が上昇し、充電前に放電生成物としての硫酸鉛が過剰に生成されて硫酸塩化を引き起こしてしまうため、サイクル寿命の低下が観察された。 From the obtained results, even if a sulfate is disposed, if the amount of the sulfate is less than 0.008 g / cm 2 , the occurrence of a dendrite short becomes relatively remarkable, and the cycle life is reduced accordingly. You can see that When the amount of sulfate disposed is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less, characteristics of 1000 cycles or more are obtained. However, when the amount of the sulfate is more than 0.3 g / cm 2 , the sulfuric acid concentration is increased by the excessive sulfate, and lead sulfate as a discharge product is excessively generated before charging to cause sulfation. Therefore, a decrease in cycle life was observed.
 以上の結果から、硫酸塩の適切な配置量は0.008g/cm以上0.3g/cm以下であることが分かる。 From the above results, it is understood that the appropriate amount of sulfate is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
 -実施例3-
 極板間の距離について検討した。そして、極板間の距離以外は上記の電池27と同様の構成とした。検討内容は実施例2の初期容量確認試験(デンドライトショート試験を含む)と同じである。結果を図6に示す。得られた結果から、極板間の距離が0.4mmよりも短いと、間隔が足りないため正極板1と負極板2との接触による短絡が起こりやすく、一方、極板間の距離が1.0mmを超えると、電池容量の低下が比較的顕著になるということが分かる。よって、以上の結果から、本発明において最適な極板間の距離は0.4mm以上1.0mm以下であるということが分かる。
-Example 3-
The distance between the electrode plates was examined. And it was set as the structure similar to said battery 27 except the distance between electrode plates. The examination contents are the same as the initial capacity confirmation test (including the dendrite short test) of Example 2. The results are shown in FIG. From the obtained results, when the distance between the electrode plates is shorter than 0.4 mm, there is not enough space between the electrode plates, so that a short circuit is likely to occur due to contact between the positive electrode plate 1 and the negative electrode plate 2, while the distance between the electrode plates is 1 It can be seen that when the thickness exceeds 0.0 mm, the decrease in battery capacity becomes relatively significant. Therefore, it can be seen from the above results that the optimum distance between the electrode plates in the present invention is 0.4 mm or more and 1.0 mm or less.
 (第2の実施形態の実施例)
 第2の実施形態においては、樹脂製の電槽と、電槽に収容され正極板と負極板とがセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、正極板をセパレータでくるみ、セパレータと正極板との間及びセパレータと負極板との間の少なくとも一方にはアルカリ金属又はアルカリ土類金属を含む硫酸塩を配置した制御弁式鉛蓄電池を作製する。
(Example of the second embodiment)
In the second embodiment, a control having a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate are opposed to each other with a separator interposed therebetween, and an electrolytic solution. A valve-type lead-acid battery in which a positive electrode plate is wrapped with a separator, and a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate A valve-type lead acid battery is produced.
 第2の実施形態において作製する鉛蓄電池は、1種類のセパレータのみを用い(第2のセパレータは用いない)、硫酸塩の配置位置をこれに合わせて若干変更しているが、その他の条件及び要素は第1の実施形態と完全に同じである。よって、その詳細な説明は省略する。 The lead storage battery produced in the second embodiment uses only one type of separator (the second separator is not used), and the position of sulfate is slightly changed in accordance with this, but other conditions and The elements are completely the same as in the first embodiment. Therefore, the detailed description is abbreviate | omitted.
 -実施例4-
 実施例4は、第2の実施形態の実施例である。この例において、正極板及び負極板のそれぞれの面積は211cmとし、比重1.255g/cmの硫酸を用いた。それとともに、表3及び表4に示すように、硫酸塩の有無及び種類や、極板群の積層方向における硫酸塩の配置位置を変更した。そして、第2のセパレータは用いなかった。その他については全て第1の実施形態において述べた方法に従い、公称電圧12Vの制御弁式鉛蓄電池(電池1aから電池25a、電池38aから電池61a)を作製した。また、これらの電池において、正極板1と負極板2との間の距離は0.7mmとし、硫酸塩の単位面積当たりの配置量は0.1g/cmとし、極板群の極板面方向における硫酸塩の配置位置は図3における第5の部分のみとした(部分的配置)。なお且つ、正極板1の活物質量を基準として充電容量を0.41Ah/gとし、初期充電を行った。そして、デンドライトショートが発生しやすいように、電解液の注入速度を通常の50ml/秒から15ml/秒に低減して電池を作製した。そして、実施例1と同様の方法によりデンドライトショート試験及び評価を行った。結果は以下の表3及び表4に示す通りである。
-Example 4-
Example 4 is an example of the second embodiment. In this example, each area of the positive electrode plate and the negative electrode plate was 211 cm 2, and sulfuric acid having a specific gravity of 1.255 g / cm 3 was used. At the same time, as shown in Tables 3 and 4, the presence / absence and type of sulfate and the arrangement position of sulfate in the stacking direction of the electrode plate group were changed. The second separator was not used. In all other respects, control valve type lead-acid batteries (battery 1a to battery 25a, battery 38a to battery 61a) having a nominal voltage of 12V were produced according to the method described in the first embodiment. In these batteries, the distance between the positive electrode plate 1 and the negative electrode plate 2 is 0.7 mm, the amount of sulfate per unit area is 0.1 g / cm 2, and the electrode plate surface of the electrode plate group The position of the sulfate in the direction was only the fifth part in FIG. 3 (partial arrangement). The initial charge was performed with the charge capacity set to 0.41 Ah / g based on the amount of active material of the positive electrode plate 1. A battery was produced by reducing the injection rate of the electrolyte from the usual 50 ml / second to 15 ml / second so that a dendrite short circuit was likely to occur. And the dendrite short test and evaluation were performed by the method similar to Example 1. FIG. The results are as shown in Tables 3 and 4 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 -実施例5-
 硫酸塩の単位面積当たりの配置量について検討した。そして、硫酸塩の配置量以外は、全て上記の表3における電池15aと同様の構成とした。また、実施例2と同様の方法によって初期容量確認試験及びサイクル寿命試験を行った。得られた結果を以下の表5に示す。
-Example 5
The amount of sulfate per unit area was examined. Except for the amount of sulfate, the configuration is the same as that of the battery 15a in Table 3 above. Further, an initial capacity confirmation test and a cycle life test were performed in the same manner as in Example 2. The results obtained are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、硫酸塩の適切な配置量は0.008g/cm以上0.3g/cm以下であることが分かる。 From the above results, it is understood that the appropriate amount of sulfate is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
 -実施例6-
 極板間の距離について検討した。そして、極板間の距離以外は、上記の表3における電池15aと同様の構成とした。検討内容は実施例2の初期容量確認試験(デンドライトショート試験を含む)と同じである。得られた結果を以下の表6に示す。
-Example 6-
The distance between the electrode plates was examined. And it was set as the structure similar to the battery 15a in said Table 3 except the distance between electrode plates. The examination contents are the same as the initial capacity confirmation test (including the dendrite short test) of Example 2. The results obtained are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、極板間の距離が0.4mmよりも短いと、間隔が足りないため、正極板1と負極板2との接触による短絡が発生しやすくなる一方、極板間の距離が1.0mmを超えると、電池容量の低下が比較的顕著になるということが分かる。この結果から、本発明において最適な極板間の距離は0.4mm以上1.0mm以下であり、0.5mm以上1.0mm以下であることがより好ましいということが分かる。 From the above results, when the distance between the electrode plates is shorter than 0.4 mm, there is not enough space between the electrode plates, so that a short circuit due to contact between the positive electrode plate 1 and the negative electrode plate 2 is likely to occur. It can be seen that when the thickness exceeds 1.0 mm, the battery capacity decreases relatively remarkably. From this result, it can be seen that the optimum distance between the electrode plates in the present invention is 0.4 mm or more and 1.0 mm or less, and more preferably 0.5 mm or more and 1.0 mm or less.
 -実施例A-1からA-12、実施例B並びに比較例1から8-
 極板の面積を変更することによって極板面積について検討した。そして、極板面積以外に、硫酸塩即ち硫酸ナトリウムの配置量及び電解液即ち硫酸の比重を変化させた。その他は全て実施例4における電池15aと同じ設置条件として、極板群及び鉛蓄電池を作製した。それから、上記の得られた鉛蓄電池について初期容量及びサイクル寿命を測定した。具体的な設置条件及び得られた結果を以下の表7に示す。
Examples A-1 to A-12, Example B and Comparative Examples 1 to 8
The area of the electrode plate was examined by changing the area of the electrode plate. In addition to the electrode plate area, the amount of sulfate, that is, sodium sulfate, and the specific gravity of the electrolyte, that is, sulfuric acid were changed. Other than that, the electrode plate group and the lead storage battery were produced under the same installation conditions as the battery 15a in Example 4. Then, the initial capacity and cycle life of the obtained lead storage battery were measured. Specific installation conditions and obtained results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例A-1からA-5について得られた結果から次のことが分かる。即ち、本発明の制御弁式鉛蓄電池において、電解液の比重と硫酸塩の配置量とを一定にした場合、極板面積が135cmから288cmの範囲で増加していくのに伴い、初期容量は高くなっていく一方、サイクル寿命は低下していくものの、サイクル寿命は依然として実用に堪え得る範囲に収まっている、ということが分かる。しかしながら、比較例7について得られた結果によると、極板面積が大きすぎる場合、初期容量は高いものの、サイクル寿命は大幅に低下する。一方、実施例Bについて得られた結果によると、極板面積が小さい場合、サイクル寿命は高いものの、初期容量が低くなる。 The following can be seen from the results obtained for Examples A-1 to A-5. That is, in the control valve type lead-acid battery of the present invention, when the specific gravity of the electrolyte and the amount of sulfate disposed are constant, the initial plate area increases in the range of 135 cm 2 to 288 cm 2. It can be seen that while the capacity increases, the cycle life decreases, but the cycle life is still within a practical range. However, according to the results obtained for Comparative Example 7, when the electrode plate area is too large, the initial capacity is high, but the cycle life is significantly reduced. On the other hand, according to the results obtained for Example B, when the electrode plate area is small, the cycle capacity is high, but the initial capacity is low.
 また、実施例Bについて得られた結果を比較例1について得られた結果と比べるとともに、実施例A-1からA-5について得られた結果をそれぞれ比較例2から6について得られた結果と比べると、電解液の比重及び極板面積を同じにした場合、硫酸塩の配置によってサイクル寿命が著しく向上するということが分かる。 In addition, the results obtained for Example B were compared with the results obtained for Comparative Example 1, and the results obtained for Examples A-1 to A-5 were compared with the results obtained for Comparative Examples 2 to 6, respectively. In comparison, when the specific gravity and the electrode plate area of the electrolytic solution are the same, it can be seen that the cycle life is remarkably improved by the arrangement of the sulfate.
 さらに、実施例A-6からA-12について得られた結果から次のことが分かる。即ち、本発明の制御弁式鉛蓄電池において、極板面積及び硫酸塩の配置量を同じにした場合には、電解液の比重の変化に伴って、初期容量を同じ値にしたときのサイクル寿命が明らかに変化し、電解液の比重が1.200g/cm以上1.310g/cm以下の範囲にあるときにサイクル寿命が比較的高い、ということが分かる。 Furthermore, the following can be understood from the results obtained for Examples A-6 to A-12. That is, in the valve-regulated lead-acid battery of the present invention, when the electrode plate area and the amount of sulfate arranged are the same, the cycle life when the initial capacity is set to the same value as the specific gravity of the electrolyte changes. Is clearly changed, and it can be seen that the cycle life is relatively high when the specific gravity of the electrolyte is in the range of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less.
 また、実施例A-11について得られた結果と比較例8について得られた結果とを比べると、たとえ極板面積及び電解液の比重をともに好ましい値にしても、硫酸塩を配置しなければ、サイクル寿命特性は著しく低下するということが分かる。 Further, comparing the results obtained for Example A-11 and the results obtained for Comparative Example 8, even if both the electrode plate area and the specific gravity of the electrolyte are preferable values, no sulfate should be disposed. It can be seen that the cycle life characteristics are significantly reduced.
 本発明は、制御弁式鉛蓄電池生産時のデンドライトショートによる不具合を抑制することができるため、産業上の利用可能性が高いだけでなく、その有用性も極めて高い。 Since the present invention can suppress problems caused by dendrite shorts during the production of control valve type lead-acid batteries, it is not only highly industrially usable but also extremely useful.
 1 正極板
 2 負極板
 3 第1のセパレータ
 4 第2のセパレータ
 3a セパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 1st separator 4 2nd separator 3a Separator

Claims (22)

  1.  樹脂製の電槽と、電槽に収容され正極板及び負極板がセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、
     前記セパレータと前記正極板との間、及び前記セパレータと前記負極板との間の少なくとも一方には、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されていることを特徴とする、制御弁式鉛蓄電池。
    A control valve type lead storage battery having a resin battery case, an electrode plate group that is accommodated in the battery case so that the positive electrode plate and the negative electrode plate face each other with a separator interposed therebetween, and an electrolyte solution,
    A control valve characterized in that a sulfate containing an alkali metal or an alkaline earth metal is disposed between at least one of the separator and the positive electrode plate and between the separator and the negative electrode plate. Lead acid battery.
  2.  前記硫酸塩は、アルカリ金属硫酸塩又はアルカリ土類金属硫酸塩であることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 2. The valve-regulated lead-acid battery according to claim 1, wherein the sulfate is an alkali metal sulfate or an alkaline earth metal sulfate.
  3.  前記硫酸塩は、硫酸ナトリウムであることを特徴とする、請求項2に記載の制御弁式鉛蓄電池。 3. The valve-regulated lead-acid battery according to claim 2, wherein the sulfate is sodium sulfate.
  4.  前記正極板と前記負極板との間の距離は、0.4mm以上1.0mm以下であることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 The control valve type lead-acid battery according to claim 1, wherein a distance between the positive electrode plate and the negative electrode plate is 0.4 mm or more and 1.0 mm or less.
  5.  前記硫酸塩の配置量は、0.008g/cm以上0.3g/cm以下であることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 The control valve type lead-acid battery according to claim 1, wherein an amount of the sulfate is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
  6.  前記硫酸塩の配置量は、0.010g/cm以上0.2g/cm以下であることを特徴とする、請求項1又は3に記載の制御弁式鉛蓄電池。 Arrangement of the sulfate is characterized in that it is 0.010 g / cm 2 or more 0.2 g / cm 2 or less, valve-regulated lead-acid battery according to claim 1 or 3.
  7.  前記硫酸塩は、前記極板群を極板面方向の上下及び左右にそれぞれ三等分したときの少なくとも中央部に配置されていることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 2. The control valve-type lead according to claim 1, wherein the sulfate is disposed at least in a central portion when the electrode plate group is divided into three equal parts in the upper and lower directions and the left and right in the electrode plate surface direction. Storage battery.
  8.  前記硫酸塩は、前記正極板及び前記負極板の表面或いは前記セパレータの表面に配置されていることを特徴とする、請求項1又は7に記載の制御弁式鉛蓄電池。 The valve-regulated lead-acid battery according to claim 1 or 7, wherein the sulfate is disposed on the surface of the positive electrode plate and the negative electrode plate or the surface of the separator.
  9.  前記正極板及び前記負極板のそれぞれの面積は、135cm以上288cm以下であることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 The area of each of the positive electrode plate and the negative electrode plate is characterized in that at 135 cm 2 or more 288Cm 2 or less, valve-regulated lead-acid battery of claim 1.
  10.  前記電解液は、硫酸と水とを含む硫酸水溶液であることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 2. The valve-regulated lead-acid battery according to claim 1, wherein the electrolytic solution is a sulfuric acid aqueous solution containing sulfuric acid and water.
  11.  前記電解液の比重は、1.200g/cm以上1.310g/cm以下であることを特徴とする、請求項1又は10に記載の制御弁式鉛蓄電池。 11. The control valve type lead-acid battery according to claim 1, wherein the electrolyte has a specific gravity of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less.
  12.  樹脂製の電槽と、前記電槽に収容され正極板及び負極板がセパレータを介して対向するように設けられてなる極板群と、電解液とを有する制御弁式鉛蓄電池であって、
     前記セパレータは、ガラス繊維マットからなる第1のセパレータと、ガラス繊維マット又は不織布からなる第2のセパレータとを備え、
     前記第1のセパレータは、前記正極板と近接して配置され、前記第2のセパレータは前記負極板と近接して配置され、
     少なくとも、前記第1のセパレータと前記正極板との間、前記第2のセパレータと前記負極板との間、及び前記第1のセパレータと前記第2のセパレータとの間の何れかに、アルカリ金属又はアルカリ土類金属を含む硫酸塩が配置されていることを特徴とする制御弁式鉛蓄電池。
    A control valve type lead storage battery having a resin battery case, an electrode plate group that is accommodated in the battery case so that a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolyte solution,
    The separator includes a first separator made of a glass fiber mat, and a second separator made of a glass fiber mat or a nonwoven fabric,
    The first separator is disposed in proximity to the positive electrode plate, the second separator is disposed in proximity to the negative electrode plate,
    Alkali metal at least between the first separator and the positive electrode plate, between the second separator and the negative electrode plate, and between the first separator and the second separator. Alternatively, a control valve type lead-acid battery in which a sulfate containing an alkaline earth metal is disposed.
  13.  前記硫酸塩は、アルカリ金属硫酸塩又はアルカリ土類金属硫酸塩であることを特徴とする、請求項12に記載の制御弁式鉛蓄電池。 The valve-regulated lead-acid battery according to claim 12, wherein the sulfate is an alkali metal sulfate or an alkaline earth metal sulfate.
  14.  前記硫酸塩は、硫酸ナトリウムであることを特徴とする、請求項13に記載の制御弁式鉛蓄電池。 14. The valve-regulated lead acid battery according to claim 13, wherein the sulfate is sodium sulfate.
  15.  前記正極板と前記負極板との間の距離は、0.4mm以上1.0mm以下であることを特徴とする、請求項12に記載の制御弁式鉛蓄電池。 The control valve type lead acid battery according to claim 12, wherein a distance between the positive electrode plate and the negative electrode plate is 0.4 mm or more and 1.0 mm or less.
  16.  前記硫酸塩の配置量は、0.008g/cm以上0.3g/cm以下であることを特徴とする、請求項12に記載の制御弁式鉛蓄電池。 The control valve type lead storage battery according to claim 12, wherein the amount of the sulfate disposed is 0.008 g / cm 2 or more and 0.3 g / cm 2 or less.
  17.  前記硫酸塩の配置量は、0.010g/cm以上0.2g/cm以下であることを特徴とする、請求項12又は14に記載の制御弁式鉛蓄電池。 Arrangement of the sulfate is characterized in that it is 0.010 g / cm 2 or more 0.2 g / cm 2 or less, valve-regulated lead-acid battery of claim 12 or 14.
  18.  前記硫酸塩は、前記極板群を極板面方向の上下及び左右にそれぞれ三等分したときの少なくとも中央部に配置されていることを特徴とする、請求項12に記載の制御弁式鉛蓄電池。 The control valve-type lead according to claim 12, wherein the sulfate is disposed at least in a central part when the electrode plate group is divided into three equal parts in the electrode plate surface direction. Storage battery.
  19.  前記硫酸塩は、前記第1のセパレータ又は前記第2のセパレータの表面に配置されていることを特徴とする、請求項12又は18に記載の制御弁式鉛蓄電池。 The control valve-type lead-acid battery according to claim 12 or 18, wherein the sulfate is disposed on a surface of the first separator or the second separator.
  20.  前記正極板及び前記負極板のそれぞれの面積は、135cm以上288cm以下であることを特徴とする、請求項12に記載の制御弁式鉛蓄電池。 The area of each of the positive electrode plate and the negative electrode plate is characterized in that at 135 cm 2 or more 288Cm 2 or less, valve-regulated lead-acid battery of claim 12.
  21.  前記電解液は、硫酸と水とを含む硫酸水溶液であることを特徴とする、請求項12に記載の制御弁式鉛蓄電池。 13. The control valve type lead-acid battery according to claim 12, wherein the electrolytic solution is a sulfuric acid aqueous solution containing sulfuric acid and water.
  22.  前記電解液の比重は、1.200g/cm以上1.310g/cm以下であることを特徴とする、請求項12又は21に記載の制御弁式鉛蓄電池。 The control valve type lead acid battery according to claim 12 or 21, wherein the electrolyte has a specific gravity of 1.200 g / cm 3 or more and 1.310 g / cm 3 or less.
PCT/JP2013/001263 2012-03-01 2013-03-01 Valve-regulated lead-acid battery WO2013128941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013519289A JP5325359B1 (en) 2012-03-01 2013-03-01 Control valve type lead acid battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-044972 2012-03-01
JP2012044972 2012-03-01
CN201310050690.7A CN103296234B (en) 2012-03-01 2013-02-08 Valve-regulated lead-acid battery
CN201310050690.7 2013-02-08

Publications (1)

Publication Number Publication Date
WO2013128941A1 true WO2013128941A1 (en) 2013-09-06

Family

ID=49082152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001263 WO2013128941A1 (en) 2012-03-01 2013-03-01 Valve-regulated lead-acid battery

Country Status (1)

Country Link
WO (1) WO2013128941A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849268A1 (en) * 2013-09-12 2015-03-18 GS Yuasa International Ltd. Valve regulated lead-acid battery, method for producing the same, and motorcycle
EP3059796A1 (en) * 2015-02-18 2016-08-24 GS Yuasa International Ltd. Lead-acid battery
JP2017188477A (en) * 2017-06-16 2017-10-12 株式会社Gsユアサ Lead storage battery
WO2019077657A1 (en) * 2017-10-16 2019-04-25 日立化成株式会社 Lead acid storage battery, vehicle with start-stop system, and micro-hybrid vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223867A (en) * 1993-01-22 1994-08-12 Japan Storage Battery Co Ltd Lead-acid battery
JPH08264202A (en) * 1995-03-24 1996-10-11 Japan Storage Battery Co Ltd Lead-acid battery
JP2002110220A (en) * 2000-09-29 2002-04-12 Furukawa Battery Co Ltd:The Lead-acid battery
JP2002151033A (en) * 2000-11-13 2002-05-24 Nippon Muki Co Ltd Separator for sealed lead acid battery
JP2002151034A (en) * 2000-11-13 2002-05-24 Nippon Muki Co Ltd Separator for sealed lead acid battery and sealed lead acid battery using the same
JP2004031277A (en) * 2002-06-28 2004-01-29 Du Pont Teijin Advanced Paper Kk Coated separator, manufacturing method of same, and electric/electronic part using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223867A (en) * 1993-01-22 1994-08-12 Japan Storage Battery Co Ltd Lead-acid battery
JPH08264202A (en) * 1995-03-24 1996-10-11 Japan Storage Battery Co Ltd Lead-acid battery
JP2002110220A (en) * 2000-09-29 2002-04-12 Furukawa Battery Co Ltd:The Lead-acid battery
JP2002151033A (en) * 2000-11-13 2002-05-24 Nippon Muki Co Ltd Separator for sealed lead acid battery
JP2002151034A (en) * 2000-11-13 2002-05-24 Nippon Muki Co Ltd Separator for sealed lead acid battery and sealed lead acid battery using the same
JP2004031277A (en) * 2002-06-28 2004-01-29 Du Pont Teijin Advanced Paper Kk Coated separator, manufacturing method of same, and electric/electronic part using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849268A1 (en) * 2013-09-12 2015-03-18 GS Yuasa International Ltd. Valve regulated lead-acid battery, method for producing the same, and motorcycle
EP3059796A1 (en) * 2015-02-18 2016-08-24 GS Yuasa International Ltd. Lead-acid battery
US10003069B2 (en) 2015-02-18 2018-06-19 Gs Yuasa International Ltd. Lead-acid battery
JP2017188477A (en) * 2017-06-16 2017-10-12 株式会社Gsユアサ Lead storage battery
WO2019077657A1 (en) * 2017-10-16 2019-04-25 日立化成株式会社 Lead acid storage battery, vehicle with start-stop system, and micro-hybrid vehicle
JP6569823B1 (en) * 2017-10-16 2019-09-04 日立化成株式会社 Lead acid battery, idling stop car and micro hybrid car

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
CN101908649B (en) Colloidal electrolyte formula for lead-acid storage battery
JP4953600B2 (en) Lead acid battery
US9570779B2 (en) Flooded lead-acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6977770B2 (en) Liquid lead-acid battery
WO2013128941A1 (en) Valve-regulated lead-acid battery
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2011181436A (en) Lead acid battery
JP2014123510A (en) Lead storage battery
JP6164266B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP5325359B1 (en) Control valve type lead acid battery
JP6592215B1 (en) Lead acid battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP2006086039A (en) Lead-acid storage battery
JP6136342B2 (en) Control valve type lead acid battery
JP7128482B2 (en) lead acid battery
JP2001102027A (en) Enclosed lead battery
JP7128484B2 (en) liquid lead acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6870266B2 (en) Lead-acid battery
JP2006155901A (en) Control valve type lead-acid storage battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013519289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754092

Country of ref document: EP

Kind code of ref document: A1