WO2013127650A1 - Sicherheitsetikett und ein verfahren zu seiner herstellung - Google Patents

Sicherheitsetikett und ein verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2013127650A1
WO2013127650A1 PCT/EP2013/053167 EP2013053167W WO2013127650A1 WO 2013127650 A1 WO2013127650 A1 WO 2013127650A1 EP 2013053167 W EP2013053167 W EP 2013053167W WO 2013127650 A1 WO2013127650 A1 WO 2013127650A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
embossed
optically variable
lithographic
structures
Prior art date
Application number
PCT/EP2013/053167
Other languages
English (en)
French (fr)
Inventor
Stefan BORGSMÜLLER
Kay Schulte-Wieking
Steffen Noehte
Bernd Terhalle
Original Assignee
Tesa Scribos Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa Scribos Gmbh filed Critical Tesa Scribos Gmbh
Priority to CN201380012081.0A priority Critical patent/CN104144796B/zh
Priority to EP13705157.9A priority patent/EP2819851B1/de
Publication of WO2013127650A1 publication Critical patent/WO2013127650A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/41Marking using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • G09F3/0294Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time where the change is not permanent, e.g. labels only readable under a special light, temperature indicating labels and the like
    • B42D2033/24
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0276Safety features, e.g. colour, prominent part, logo

Definitions

  • the invention relates to a tamper-proof carrier according to the preamble of claim 1 and to a method for producing a tamper-proof carrier.
  • Optically variable elements contain structures of very high resolution which produce special optical effects. Such structures are difficult to copy and usually can not be displayed with normal printing technology.
  • Optically variable elements may include structures that are visible and verifiable to the naked eye as well as structures that are verifiable with either simple or special readers.
  • Optically variable elements are widely known and are widely used.
  • the optically variable elements include, for example, holograms, kinegrams and lithographs.
  • optically variable elements may be holograms, specifically rainbow holograms, transmission holograms, reflection holograms, 2D holograms, 3D holograms, Fourier holograms, Fresnel holograms, volume holograms, and kinoforms.
  • holograms can either be generated optically directly or calculated in the computer.
  • diffractive structures may be included, in particular diffraction gratings.
  • Refractive structures such as Fresnel lenses or blazed gratings may be included. It may contain scattering elements, such as diffusers. Numerous other structures are described in the literature which may be contained in optically variable elements.
  • the various structures may be partially superimposed to accommodate two or more effects in the same region of the optically variable element.
  • the various structures can be used to design graphical elements such as guilloches, logos, images, lines, surfaces, etc.
  • textual elements can be designed, such as lettering, numeric or alphanumeric serial numbers, micro-typefaces.
  • functional elements can be designed, such as barcodes or other machine-readable structures.
  • Optically variable elements can be produced in a replication process.
  • a master stamp with a special overall design is created in a complex manner.
  • Such master embossing dies can be produced in an electron beam lithography method or in a dot matrix method, wherein high resolutions can be achieved. In the case of electron beam lithography, resolutions of down to a few nanometers can be achieved. In the case of the dot matrix method or other interference methods, diffraction gratings with a lattice constant of down to a few 100 nanometers can be produced. From the master stamp can in turn daughter stamping be generated and of these more daughter stamping. The embossing dies are then used in an embossing process to emboss a larger amount of optically variable elements. In such an embossing process, the generated optically variable elements are substantially all the same.
  • EP 0420 261 B1 which is regarded as the closest prior art, discloses a method in which individualization measures are introduced by changes at different points of the embossing process in order to make optically variable elements produced in an embossing process even safer and to add additional data to the optical system introduce variable elements. This allows batch information or serial number information to be added to the optically variable element.
  • the customization measures described are limited and relate to destruction, overprinting or non-use of certain areas in the original design, since the original design can not be redesigned by the measures mentioned.
  • no holographic, diffractive or otherwise optically variable individual structures can be produced by the individualization measures described.
  • the invention has for its object to make carriers even more tamper-proof and to provide a method for their preparation
  • the counterfeit-proof carrier according to the invention can take many forms.
  • they can be designed as a self-adhesive label or as a heat-sealable material.
  • the label shape or shape of the heat seal stamp may be arbitrary, e.g. circular, oval, polygonal, polygonal with rounded corners, etc.
  • the overall design may also be designed as a long strip which is sealed to the substrate in its entire length. Such strips are known from tickets, tickets or banknotes ago.
  • the security against forgery of carriers of optically variable elements can be increased if the optically variable elements have a non-individual embossed structure and the at least one optically variable element additionally has an individual laser lithographic structure with a resolution of less than 20 ⁇ m.
  • the inventive counterfeit-proof carrier has at least one metallized layer, wherein preferably the non-individual embossed structure as well as the individual laser lithographic structure are incorporated in the same metallized layer. The combined joining of non-individual embossing structure and individual laser lithographic structure in the same optically variable element significantly complicates its replication.
  • the lithographic structure has a resolution of less than 20 ⁇ m, preferably less than 5 ⁇ m.
  • resolution below 20 ⁇ or 5 ⁇ means that the structure-dependent embodiments have expansions of less than 20 ⁇ or 5 ⁇ and distances from each other of less than 20 ⁇ or 5 ⁇ . These expansions and distances are preferably maintained at each of the embodiments, but at least of a plurality of the embodiments.
  • this resolution means that the individual pixel should have a diameter of less than 20 ⁇ m or 5 ⁇ m and the distance between the pixels should be less than 20 ⁇ m or 5 ⁇ m, respectively.
  • the carrier can be deformable strips, in particular a strip-like multilayer film, an adhesive tape, but also a stiff strip.
  • a variable optical element or a plurality of variable optical elements preferably arranged along the carrier.
  • the carrier is separable between the optically variable elements so that each individual optically variable element can be used as a stickable or heat sealable label, Holospot or the like. is reusable.
  • Metallic films or metallized paints are used as the substrate material for the support. This can be first embossed and then metallized or vice versa. The relief of the embossing can be embossed into the metal layer. The metal layer is not destroyed by the embossing and serves as a reflection layer to reflect back the light diffracted by the embossed structure back into the room.
  • the metal layer may be partially demetallised. In the case of the embossed optically variable elements, this is usually accomplished in a second, independent of the embossing process.
  • DE 34 30 1 1 1 C1 describes such a process. It may be partially applied prior to metallization, a release layer, which is washed out after the metallization together with the metal layer. In areas where no release layer has been applied, the metal is retained. Here, there is the difficulty of aligning the embossing precisely to the partially demetallized metal layer. Furthermore, an individualization of such demetallizations is not described. Because printing processes are used to apply the release layer in such processes, the resolution in these processes is limited. Typically, a minimum of 20 microns is achieved.
  • the optically variable elements are not generated via a replication process, but introduced directly into the target substrate or in an intermediate product. This can e.g. by individually exposing a photosensitive film followed by development.
  • Another example is high-resolution laser lithography, in which the desired structures are introduced directly into a laser-sensitive layer by means of a laser beam. There are processes that require subsequent development and those in which the optically variable element no longer needs to be developed.
  • the high-resolution laser lithography is to be distinguished from the classic laser marking, since only in the high-resolution laser lithography so small feature sizes are achieved that a use of the exposed structure as an optically variable element is possible.
  • reference is exclusively made to the high-resolution laser lithography, in which the basic resolution and the structure sizes are smaller than 20 ⁇ m, preferably smaller than 5 ⁇ m.
  • a structure to be exposed is transferred into a substrate by means of a laser beam.
  • the structure to be exposed is specified or calculated by means of a computer and is available in the form of image or vector data.
  • the image or vector data is used by the laser lithograph to control the position of the laser beam relative to the substrate and to control the intensity and duration of the laser beam impinging on the substrate.
  • a writing beam can stand firmly in the room and the substrate can be moved relative to it. It can also be the substrate fixed in space and the writing beam are moved relative to this. Furthermore, both substrate and laser beam can be moved.
  • wavelengths are in the range of 0.2 ⁇ to 10 ⁇ , preferably in the range of 0.2 ⁇ to 1 ⁇ . Smaller wavelengths are also possible. At these wavelengths structures can be generated that are effective in the range of visible light (wavelength about 0.4 ⁇ to 0.7 ⁇ ).
  • diffraction gratings with lattice constants on the order of the visible light can be generated, which have large diffraction angles and therefore can be perceived particularly well.
  • Holograms also have correspondingly large diffraction angles.
  • Optically variable elements can be produced only with high-resolution laser lithography, wherein the base resolution must be less than 20 ⁇ , preferably less than 5 ⁇ .
  • optical elements produced by laser lithography can be fully customized in design. All structures can be designed individually. This can be done using numeric or alphanumeric serial numbers, or by individual graphic elements such as images or guilloches.
  • Metallic films or metallized coatings are used as the substrate material for the laser lithography, as in the embossed optically variable elements.
  • the wavelength, intensity, pulse duration, shape and writing energy of the laser beam can be adjusted so that the substrate material is demetallised at certain predefined locations and thus becomes transparent or semitransparent. This is done either by ablation of the metal layer, by shifting the metal layer towards the edges of the exposed area or by converting the metal layer into a transparent or semi-transparent oxide layer. There may also be a mixture of the three mentioned effects.
  • the demetallization can be aligned precisely with the other structures that can be generated by laser lithography, since it can be introduced in the same exposure process.
  • gray levels can be generated by suitable halftoning in a halftone process, wherein in a surface only a certain proportion of Surface rastered demetallometer.
  • gray value wedges the demetallised surface area gradually increases due to the adaptation of the screening in the area.
  • laser lithography also makes it possible to reduce the thickness of the metal layer by precisely adjusting the introduced laser energy during the writing process. By reducing the thickness of the metal layer, the light transmission of the metal layer increases. This also allows gray values and gray wedges to be generated.
  • the production of optically variable elements with high-resolution laser lithography is subject to certain limitations.
  • the basic resolution is limited by the wavelength of the write laser used and by the optics used. Since high write speeds and thus high throughput are to be achieved in a mass production, it is desirable to further reduce the resolution, since then larger areas can be exposed in a shorter time.
  • Typical base resolutions used here are 0.5 ⁇ to 5 ⁇ . So it is to be assumed in the laser lithography of a limited resolution.
  • diffractive structures e.g. Grids or holograms can not be reached by the limited resolution of all diffraction angles. Furthermore, the phase or amplitude modulation to be achieved with laser lithography is not ideal in the material, so that the theoretically maximum possible diffraction efficiency of the diffractive structures is not achieved.
  • embossed optically variable elements can not be fully customized in a simple manner, while this is the case with laser-lithographically produced optically variable elements.
  • Embossed optically variable elements can only be demetallized in a second process step, while laser-lithographically generated optically variable elements can be accurately exposed and demetallized in one process.
  • the demetallization of the embossed optically variable elements is done with low resolution, while the demetallization in the laser lithographic process can be done with full resolution of the process.
  • Laser-lithographically generated optically variable elements are usually limited in limiting a limited resolution, while such a limitation in the embossed optically variable elements does not exist. Furthermore, they are usually subject to the limitation of a limited diffraction efficiency, while with optically variable elements very high diffraction efficiencies can be achieved.
  • substrate material exists which is suitable both for embossed optically variable elements and is suitable for optically variable elements produced by laser lithography. Such materials are metallized films or paints in a composite layer.
  • the optical density (OD) should be as low as possible.
  • the smaller the OD the lower the degree of the degree of metallization of the metallized layer.
  • the range of 0.1 to 10 has been found, preferably 0.8 to 3.
  • a non-individual embossed structure is embossed into the metal layer of a carrier and, in addition, a laser-lithographic structure is exposed in the metallized layer by means of a laser.
  • the lithographic structure is produced with a resolution of less than 20 ⁇ m, preferably below 5 ⁇ m, and the embossed structure and the lithographic structure jointly form at least one optically variable element. But there are also higher resolutions of 1 ⁇ or less conceivable.
  • the optically variable elements are embossed in a first process step and exposed in a second process step laser lithography.
  • the optically variable elements are exposed in a first process step laser lithography and embossed in a second process step.
  • the optically variable elements are first embossed, then applied to an article, preferably glued or sealed and subsequently exposed in a further process step by laser lithography.
  • the article may be, for example, a product, a product package, a passport, a banknote, a document, a plastic card, a film or a label.
  • Suitable base materials for the optically variable elements relating to the invention are materials which can be imprinted as well as exposed by laser-lithography.
  • these are metallized paints or films, in particular polymer films, for example PET, PMMA, PVC, BoPP.
  • the metallized paints or films are in a layer composite in which other layers are present, for example, further lacquer layers or films, in particular polymer films or adhesive layers, for example acrylate adhesive or hot melt adhesive.
  • the base material is preferably label material with at least one adhesive layer.
  • the base material is a heat-sealing film containing a metallized layer and a hot-melt adhesive layer.
  • the base material is cold seal film containing a metallized layer.
  • the metallization of the paints or films can be produced by vapor deposition, sputtering or by printing with a metal pigment.
  • the metallization may be on the surface of the base material, or it may be internal.
  • embossing of the optically variable element according to the invention takes place with a non-individual overall design which is replicated in mass and which may, inter alia, contain all structures known from embossed optically variable elements.
  • This non-individual overall design is called embossing structure.
  • the overall laser-lithographic exposure design can include both static repeating structures and serial, varying structures, such as e.g. numeric or alphanumeric serial numbers, holograms of such serial numbers or individual graphics.
  • the overall design of the laser lithographic exposure may also include areas that are demetallized or that are rasterized demetallized.
  • the overall design of the laser lithographic exposure is called a laser lithographic structure.
  • the non-individual embossing structure and the individual laser lithographic structure jointly form at least one optically variable element.
  • the embossed structure and the laser lithographic structure or individual regions thereof may be arranged spatially separated from each other.
  • the embossed structure and the laser lithographic structure or individual regions thereof be arranged partially or completely overlapping.
  • the embossed structure and the laser lithographic structure or individual regions thereof may be interlaced or interlaced.
  • an optically variable element can be produced, which contains structures which can be produced exclusively by embossing as well as structures which can be produced exclusively by laser lithography.
  • the individual structures can be graphically and logically combined. The individual structures can complement each other. Due to the possibility of demetallization, which is offered by laser lithography, individual areas of the embossed structure can be individually destroyed.
  • the embossed structure By combining the embossed structure with the laser lithographic structure, new structures can arise which are not known from conventional optically variable elements not produced according to the invention.
  • the high-resolution demetallization possible in laser lithography can partially or completely destroy structures of the embossed structure. This destruction can be done individually. Since the demetallization is high-resolution, demultivation screening can be used, gradually destroying the embossment structure at these locations. In particular, by the screening a gray course in the demetalization and thus a gray course of the embossed structure can be generated, which is perceived by the human eye as a gradual transition. Such structures can not be produced by conventional methods.
  • a gray value or a gray gradient in the demetallization can also be achieved by targeted modulation of the laser power used during the laser lithographic exposure.
  • Another example of new structures are fine diffractive structures, such as lines or dots, with high diffraction efficiency and arbitrary diffraction angles, which can be individual.
  • a predetermined diffractive surface of the embossed design is largely demetallized so that only fine structures remain.
  • These leftover metallized fine structures can have a very high diffraction efficiency and arbitrary diffraction angles, since these two factors are determined by the embossment, and they can be individual and highly resolved since they are generated by laser lithography.
  • the fineness of the structures is due to the high Resolution of laser lithography given, which is much higher than the resolution of other methods for demetallization.
  • the laser lithographic exposure can be made precisely to the embossing. This can be done if the embossing takes place first in the production of the optically variable element and then the laser lithography.
  • the fitting accuracy can be ensured by special measures in laser lithography, e.g. by recording features from the pre-embossed structure by means of trigger sensors or cameras. Such features can be integrated as trigger marks specifically to achieve the high accuracy of fit in the embossed design. Since laser lithographs usually have a high accuracy and fidelity in the material transport, the precise alignment of the laser lithographic design to the embossed design does not make any extraordinary demands on the laser lithograph. A fitting accuracy on the order of the resolution of the laser lithograph can be achieved.
  • the embossing can be set precisely to the structures introduced by laser lithography.
  • the position of the laser lithographic structure must first be recorded by means of trigger sensors or cameras, and then the embossing position must be adapted to this position. This can be done by lateral or temporal displacement of the embossing process or by stretching the substrate material.
  • the pre-embossed structure or the laser lithographic structure can be dispensed with a tailor-made alignment of the two structures in a further embodiment of the invention. If e.g. one of the two structures contains repetitive graphical elements, e.g. Guilloches, sine lines, zigzag lines, stripes or dot patterns, due to the repetition of the structures no fit accuracy is necessary. Preference would be given to use embossed structures that require no accuracy of fit to the laser lithographic structure.
  • the tamper resistant carrier may be sealed or adhered to an object, eg a product, a product package, a pass, a document, a banknote, a plastic card, etc. with the optically variable element.
  • an object eg a product, a product package, a pass, a document, a banknote, a plastic card, etc.
  • the carrier is sealed or glued after its production on another label, which in turn is itself glued to an object.
  • the basic design of the object or of the further label is still available for the design in addition to the embossed structure and the laser-lithographic structure.
  • This basic design can be skilfully linked to the embossing patterns and lithographic designs associated with the embossing pattern and the laser lithographic structure. This can be done in addition to a graphical link and a logical link.
  • the basic design can contain both static elements as well as individual elements that can be created eg with an individual printing technique. Individual elements can be numeric or alphanumeric serial numbers, barcodes or individual graphics.
  • the individual parts of the basic design can be logically and graphically linked to the individual parts of the laser-lithographic design.
  • the basic design may include a numeric or alphanumeric serial number that is wholly or partially repeated in the laser lithographic design.
  • the basic design and laser-lithographic design may include numeric or alphanumeric numbers linked together through a database or through mathematical operations.
  • static elements of the basic design can also be linked to individual elements of the laser-lithographic design.
  • individual partial areas can be demetallised in the laser-lithographic design, which allow to see certain areas of the basic design. In this way, for example, numbers or color patches of the basic design can be made individually visible.
  • 1 shows a strip-shaped carrier according to the invention with embossed and lithographic design without fitting accuracy
  • 2 shows a strip-shaped carrier with an embossed design and a lithographic design with a fit
  • FIG. 3 shows the carrier according to FIG. 1 with punched lines for individual labels
  • FIG. 4 shows the carrier according to FIG. 2 stamped lines for individual labels
  • FIG. 8 is a design combined of an embossed design and a laser lithographic design
  • 10 is an embossed design, a laser lithographic design, a combined design on a label, a packaging surface, and the label applied to the packaging surface;
  • FIG. 11 shows an embossed design, a laser lithographic design, a combined design on a label, a packaging surface, and a label applied to the packaging surface.
  • Fig. 1 shows a carrier 1 with a metallized layer 2, which has both an embossed design A and a laser lithographic design B.
  • the reference symbols designate, on the one hand, the embossed design A or the laser-lithographic design B, but at the same time those of the designs A, B underlying embossed structure or laser lithographic structure within the metallizing layer 2.
  • the continuous wavy lines and the three parallel lines represent placeholders for static structures of the embossed design A.
  • the serial numbers and the ovals represent placeholders for individual and static structures of the laser-lithographic design B.
  • the placeholders are to be understood symbolically and represent any structures that can be produced with embossing or with laser lithography. The arrangement and the number of symbols are only to be understood as examples.
  • the embossing and the laser lithographic exposure are not arranged precisely to one another. This can be recognized by the fact that the serial number moves in comparison to the wavy line. Nevertheless, the two designs are linked, because the serial number always comes to lie on the wavy line. The linking is done by a fixed vertical relationship between the two designs.
  • FIG. 2 shows a carrier with an embossed design A arranged in perfect fit with one another and a laser-lithographic design B.
  • the embossing A and the laser-lithographic exposure B are arranged in perfect fit with one another. This can be seen by the fact that the serial number does not migrate compared to the wavy line. Due to the fitting accuracy, both designs can be completely linked together. The linking is done by a fixed horizontal and vertical relationship of the two designs A, B.
  • FIG. 3 shows the carrier 1 with an embossed design A which is not precise to one another and a lithographic design B according to FIG. 1, wherein punched lines 7 are shown around the individual optical elements 6.
  • the dotted circles represent the stamping lines 7 for labels or stamp dies for heat-sealing applications and thus the limitation of the optically variable element 6 on the object to which it is applied.
  • the punching line 7 need not be circular, but may be any other shape, e.g. oval, polygonal, polygonal with rounded corners etc.
  • the embossing A and the laser lithographic exposure B are not arranged precisely to one another.
  • the laser lithographic exposure B is arranged precisely matching the boundary of the optically variable element 6 and the support 1, so that each optically variable element 6 carries a unique individualization.
  • FIG. 4 shows a carrier 1, in which the embossing A and the laser lithographic exposure B are exactly matching one another and are arranged to delimit the optically variable element 6 and the carrier 1.
  • the dashed circles show stamped lines 7 for labels or stamp dies for heat-sealing applications and thus the delimitation of the optically variable element 6 in the end product.
  • Area A represents structures of the embossed design
  • area B represents structures of the laser-lithographic design.
  • the individual structures A, B can either occur separately from one another, or they can partially or completely overlap. In a design, subregions may overlap and other subareas may not overlap. In addition to the arrangements shown also combed or nested arrangements are possible.
  • the embossed design consists of a surface A containing embossed structures.
  • the laser lithographic design consists of a surface B consisting of a high-resolution screened gray wedge 8.
  • the gray wedge 8 is in this example in a gradual transition from non-demetallized to demetallized.
  • the embossed surface A in the region B is destroyed in a gradual transition, resulting in a gradual leakage of the embossed structures for the human observer.
  • the embossed structures are diffracting gratings that shimmer in rainbow colors, the iridescence in region B would gradually drain.
  • the embossed structures are a hologram, the visibility of the hologram in area B would gradually fade.
  • the punching line 7 in turn limits the optically variable element 6.
  • the embossed design consists of a surface A containing embossed structures.
  • the laser-lithographic design consists of a surface B in which large areas are demetalized and fine high-resolution lines are left standing.
  • the embossed area A in area B only fine embossed lines remain.
  • the embossed structures are diffractive gratings, which shimmer in rainbow colors, so would the fine lines in rainbow colors shimmer.
  • These grids could now be designed so that they could not be generated by the laser lithographic process. In this way, a structure is generated which could not be produced by embossing alone or by laser lithography alone. Again, the punching line 7 limits the optically variable element. 6
  • the embossed design A consists of a logo, fine guilloches and a full-surface area (hatched).
  • the three areas could consist of different structures, for example, the logo could be designed as a rainbow hologram, the guilloche as a 2D hologram and the full-area area as a refractive or diffractive structure.
  • the laser lithographic design B consists of a square structure, two fine lines, a first serial number and a second, inverse serial number.
  • the square structure could be a computer-generated Fourier hologram with individual content, the two fine lines could be diffraction gratings, the upper serial number could consist of a Fresnel hologram.
  • the lower, inverse serial number demetallizes the outer portion of the serial number.
  • the combined design results as the optically variable element 6.
  • This consists of separate areas, each coming from one of the two designs, such as the logo or Fourier hologram.
  • it consists of partially superimposed structures, such as the guilloches, the lines and the first serial number.
  • it consists of combined structures, such as the inverse laser-lithographed second serial number, which now carries in the numbers the refractive or diffractive structure from the embossing process.
  • FIG. 8 shows a logical link between the embossed design A and the laser lithographic design B.
  • the numbers 1 to 5.
  • a field is individually left which repeats the final digit of the serial number.
  • the optically variable element 6 represents the logical link.
  • FIG. 10 shows first the embossed design A, then the lithographic design B and in the third illustration of FIG. 10 the combination of embossed design A and lithographic design B.
  • the third illustration shows this optically variable element 6 in the form of a label.
  • the lower sequence of numbers of the laser lithographic design B is transparent.
  • the fourth figure shows the surface 1 1 of an article, for example, a package with a wavy structure shown here.
  • Fig. 1 1 shows, similar to Fig. 10, a logical link between the structure of the surface 1 1, which is additionally provided here with a serial number. According to the final digit of the serial number, a field 10 is individually demetallised. On the surface 1 1 of the article numbers 1 to 5 are printed statically; through the demetallinstrumente field 10 then the corresponding number on the surface 1 1 can be seen.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Credit Cards Or The Like (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

Die Erfindung betrifft einen fälschungssicheren Träger (1) mit mindestens einer metallisierten Schicht (2), in die wenigstens ein optisch variables Element (6) eingebracht ist, und das wenigstens eine optisch variable Element (6) weist eine nicht-individuelle Prägestruktur (A) auf, wobei das wenigstens eine optisch variable Element (6) eine individuelle laserlithographische Struktur (B) mit einer Auflösung von unter 20 µm aufweist.

Description

Beschreibung
Sicherheitsetikett und ein Verfahren zu seiner Herstellung Die Erfindung betrifft einen fälschungssicheren Träger nach dem Oberbegriff des Anspruchs 1 , sowie ein Verfahren zur Herstellung eines fälschungssicheren Trägers.
Als Fälschungsschutz für Produkte, Dokumente und Ausweise werden optisch variable Elemente eingesetzt. Optisch variable Elemente enthalten Strukturen sehr hoher Auflösung, die spezielle optische Effekte erzeugen. Solche Strukturen sind schwer zu kopieren und können meist mit normaler Drucktechnik nicht dargestellt werden. Optisch variable Elemente können Strukturen enthalten, die für das bloße Auge sichtbar und verifizierbar sind sowie Strukturen, die entweder mit einfachen oder mit speziellen Lesegeräten überprüfbar sind. Optisch variable Elemente sind weithin bekannt und werden vielfältig eingesetzt. Zu den optisch variablen Elementen zählen z.B. Hologramme, Kinegramme und Lithogramme. Die Strukturen, die in optisch variablen Elementen enthalten sind, können Hologramme sein, speziell Regenbogenhologramme, Transmissionshologramme, Reflektionshologramme, 2D-Hologramme, 3D-Hologramme, Fourierhologramme, Fresnelhologramme, Volumenhologramme und Kinoforms. Solche Hologramme können entweder direkt optisch erzeugt werden oder im Computer berechnet werden. Weiterhin können diffraktive Strukturen enthalten sein, insbesondere Beugungsgitter. Es können refraktive Strukturen enthalten sein, wie Fresnellinsen oder geblazte Gitter. Es können streuende Elemente enthalten sein, wie Diffusoren. In der Literatur sind noch zahlreiche weitere Strukturen beschrieben, die in optisch variablen Elementen enthalten sein können. Die verschiedenen Strukturen können teilweise überlagert werden, um in der gleichen Region des optisch variablen Elements zwei oder mehr Effekte unterbringen zu können. Die verschiedenen Strukturen können verwendet werden, um graphische Elemente zu gestalten, wie Guillochen, Logos, Bilder, Linien, Flächen usw. Weiterhin können textuelle Elemente gestaltet werden, wie Schriftzüge, numerische oder alphanumerische Seriennummern, Mikroschriften. Weiterhin können funktionale Elemente gestaltet werden, wie Barcodes oder andere maschinenlesbare Strukturen. Die verschiedenen Strukturen und Elemente werden auf geschickte Weise zu einem Gesamtdesign für das variable optische Element verbunden, welches nach Möglichkeit alle Anforderungen bezüglich Sicherheit, Funktionalität und ästhetischem Eindruck des variablen optischen Elements erfüllt.
Optisch variable Elemente können in einem Replikationsprozess hergestellt werden. Hierzu wird auf aufwändige Art und Weise ein Master-Prägestempel mit einem speziellen Gesamtdesign erstellt. Solche Master-Prägestempel können in einem Elektronenstrahllithographie-Verfahren oder in einem Dotmatrix-Verfahren hergestellt werden, wobei hohe Auflösungen erreicht werden können. Im Fall der Elektronenstrahllithographie können Auflösungen von bis hinunter zu wenigen Nanometern erreicht werden. Im Fall des Dotmatrix-Verfahrens oder anderer Interferenzverfahren können Beugungsgitter mit einer Gitterkonstante von bis hinunter zu wenigen 100 Nanometern erzeugt werden. Von dem Master-Prägestempel können wiederum Tochterprägestempel erzeugt werden und von diesen weitere Tochterprägestempel. Die Prägestempel dienen dann in einem Prägeprozess der Prägung einer größeren Menge von optisch variablen Elementen. Bei einem solchen Prägeprozess sind die erzeugten optisch variablen Elemente im Wesentlichen alle gleich.
Die als nächstkommender Stand der Technik angesehene EP 0420 261 B1 offenbart ein Verfahren, indem durch Änderungen an verschiedenen Stellen des Prägeprozesses Individualisierungsmaßnahmen eingebracht werden, um optisch variable Elemente, die in einem Prägeprozess hergestellt werden, noch sicherer zu machen und um zusätzliche Daten in die optisch variablen Elemente einzubringen. Dadurch lassen sich dem optisch variablen Element Batchinformationen oder Seriennummerninformationen hinzufügen. Die beschriebenen Individualisierungsmaßnahmen sind jedoch beschränkt und beziehen sich auf Zerstörung, Überdrucken oder Nichtbenutzung bestimmter Bereiche im ursprünglichen Design, da das ursprüngliche Design durch die genannten Maßnahmen nicht umgestaltet werden kann. Durch die beschriebenen Individualisierungsmaßnahmen lassen sich insbesondere keine holographischen, diffraktiven oder anderweitig optisch variablen individuellen Strukturen erzeugen. Der Erfindung liegt die Aufgabe zugrunde, Träger noch fälschungssicherer zu machen sowie ein Verfahren zu ihrer Herstellung zur Verfügung zu stellen
Die Aufgabe wird hinsichtlich des Erzeugnisses durch einen fälschungssicheren Träger mit den Merkmalen des Anspruchs 1 erfüllt. Bevorzugte Weiterbildungen sind Gegenstand der abhängigen Erzeugnisansprüche.
Die erfindungsgemäßen fälschungssicheren Träger können vielfältige Gestalt annehmen. Sie können insbesondere als selbstklebendes Etikett oder als Heißsiegelmaterial ausgelegt sein. Die Etikettenform bzw. die Form des Heißsiegelstempels kann beliebig sein, z.B. kreisförmig, oval, polygonal, polygonal mit abgerundeten Ecken usw. Im Falle des Heißsiegelmaterials kann das Gesamtdesign auch als langer Streifen ausgelegt sein, der auf das Substrat in gesamter Länge gesiegelt wird. Solche Streifen sind von Eintrittskarten, Fahrkarten oder Banknoten her bekannt. Überraschend hat sich gezeigt, dass die Fälschungssicherheit von Trägern von optisch variabler Elemente erhöht werden kann, wenn die optisch variablen Elemente eine nicht-individuelle Prägestruktur aufweisen und das wenigstens eine optisch variable Element zusätzlich eine individuelle laserlithographische Struktur mit einer Auflösung von unter 20 μηη aufweist. Der erfindungsgemäße fälschungssichere Träger weist mindestens eine metallisierte Schicht auf, wobei vorzugsweise die nicht-individuelle Prägestruktur wie auch die individuelle laserlithographische Struktur in dieselbe metallisierte Schicht eingebracht sind. Durch das kombinierte Zusammenfügen von nicht-individueller Prägestruktur und individueller laserlithographischer Struktur in demselben optisch variablen Element wird dessen Nachbau erheblich erschwert.
Die lithographische Struktur weist dafür eine Auflösung von unter 20 μηη, vorzugsweise unter 5 μηη auf. Dabei bedeutet Auflösung unter 20 μηη bzw. 5 μηη, dass die strukturbedingenden Verkörperungen Ausdehnungen von unter 20 μηη bzw. 5 μηη und Abstände voneinander von unter 20 μηη bzw. 5 μηη aufweisen. Diese Ausdehnungen und Abstände werden vorzugsweise an jeder der Verkörperungen, zumindest jedoch von einer Mehrzahl der Verkörperungen eingehalten. Bei durch einen Laser in die metallisierte Schicht eingebrachten Pixeln bedeutet diese Auflösung, dass der einzelne Pixel einen Durchmesser von unter 20 μηη bzw. 5 μηη und der Abstand der Pixel voneinander unter 20 μηη bzw. 5 μηη liegen soll. Der Begriff des Trägers ist hier sehr allgemein zu verstehen, es kann sich dabei um verformbaren Streifen, insbesondere eine streifenartige mehrschichtige Folie, ein Klebeband, aber auch um einen steifen Streifen handeln. Entlang des Trägers sind ein variables optisches Element oder auch mehrere variable optische Elemente, vorzugsweise entlang des Trägers angeordnet. Vorzugsweise ist der Träger zwischen den optisch variablen Elementen trennbar, so dass jedes einzelne optisch variable Element als klebbares oder heißsiegelbares Etikett, Holospot o.Ä. weiterverwendbar ist.
Als Substratmaterial für den Träger werden unter anderem metallisierte Folien oder metallisierte Lacke verwendet. Hierbei kann erst geprägt und dann metallisiert werden oder umgekehrt. Das Relief der Prägung kann dabei in die Metallschicht eingeprägt sein. Die Metallschicht wird durch die Prägung nicht zerstört und dient als Reflexionsschicht, um das von der geprägten Struktur gebeugte Licht wieder in den Raum zurück zu spiegeln.
In manchen Anwendungen, z.B. um die Sicherheit zu erhöhen, kann es wünschenswert sein, dass die Metallschicht teilweise demetallisiert wird. Dies wird im Falle der geprägten optisch variablen Elemente in der Regel in einem zweiten, von der Prägung unabhängigen Prozess bewerkstelligt.
DE 34 30 1 1 1 C1 beschreibt einen solchen Prozess. Es kann vor der Metallisierung eine Release-Schicht partiell aufgebracht werden, die nach der Metallisierung mitsamt der Metallschicht ausgewaschen wird. An den Stellen, an denen keine Release-Schicht aufgebracht wurde, bleibt das Metall erhalten. Hier besteht die Schwierigkeit, die Prägung passgenau zur partiell demetallisierten Metallschicht auszurichten. Weiterhin ist eine Individualisierung solcher Demetallisierungen nicht beschrieben. Da in solchen Verfahren Druckprozesse verwendet werden, um die Release Schicht aufzubringen, ist die Auflösung in diesen Verfahren begrenzt. Typischerweise werden minimal 20 Mikrometer erreicht.
Eine Möglichkeit der individuellen Demetallisierung beschreibt DE 41 31 964 A1 . Hier wird ein Laserbeschriftungsverfahren verwendet, um die Metallschicht eines Hologramms individuell zu demetallisieren. Allerdings lassen sich in diesem Verfahren durch den Laserstrahl keine holographischen, diffraktiven oder anderweitig optisch variablen individuellen Strukturen erzeugen. Weiterhin ist die Auflösung in der Demetallisierung eines solchen Laserbeschriftungsverfahrens begrenzt. Typischerweise werden minimal 20 Mikrometer erreicht.
Keine Einschränkungen bei der Individualisierung sind bei der direkten Herstellung von optisch variablen Elementen gegeben. Hierbei werden die optisch variablen Elemente nicht über einen Replikationsprozess erzeugt, sondern direkt in das Zielsubstrat oder in ein Zwischenprodukt eingebracht. Dies kann z.B. durch individuelles Belichten eines photoempfindlichen Films mit anschließender Entwicklung geschehen. Ein anderes Beispiel ist die hochauflösende Laserlithographie, bei der die gewünschten Strukturen mithilfe eines Laserstrahls direkt in eine lasersensible Schicht eingebracht werden. Hierbei gibt es Verfahren, die eine anschließende Entwicklung benötigen und solche, bei der das optisch variable Element nicht mehr entwickelt werden muss. Hierbei ist die hochaufgelöste Laserlithographie von der klassischen Laserbeschriftung abzugrenzen, da nur bei der hochaufgelösten Laserlithographie so kleine Strukturgrößen erreicht werden, dass eine Verwendung der belichteten Struktur als optisch variables Element möglich ist. Im Folgenden wird ausschließlich auf die hochaufgelöste Laserlithographie Bezug genommen, bei der die Basisauflösung und die Strukturgrößen kleiner als 20 μηη sind, bevorzugt kleiner als 5 μηη.
Bei der Laserlithographie wird eine zu belichtende Struktur mittels eines Laserstrahls in ein Substrat übertragen. Die zu belichtende Struktur wird vorgegeben oder mittels eines Computers berechnet und liegt in Form von Bild- oder Vektordaten vor. Die Bild- oder Vektordaten werden von dem Laserlithographen zur Steuerung von Position des Laserstrahls relativ zum Substrat verwendet sowie zur Steuerung der Intensität und der Einwirkdauer des auf das Substrat auftreffenden Laserstrahls. In der Laserlithographie haben sich mehrere Verfahren etabliert. So kann ein Schreibstrahl fest im Raum stehen und das Substrat relativ zu diesem bewegt werden. Es kann auch das Substrat fest im Raum stehen und der Schreibstrahl relativ zu diesem bewegt werden. Weiterhin können sowohl Substrat als auch Laserstrahl bewegt werden. Es ist auch möglich, den Schreibstrahl mittels eines Flächenlichtmodulators zu modulieren und so eine größere Fläche des Substrats auf einmal zu belichten. Auch bei diesem Prinzip können Schreibstrahl und Substrat bewegt werden. Bei der Laserlithographie ist die Auflösung durch die verwendete Wellenlänge und durch die verwendete Optik begrenzt. Um möglichst hochauflösende Strukturen erzeugen zu können, werden daher bevorzugt kleine Wellenlängen verwendet. Geeignete Wellenlängen sind im Bereich von 0.2 μηη bis 10 μηη, bevorzugt im Bereich von 0.2 μηη bis 1 μηη. Kleinere Wellenlängen sind ebenfalls möglich. Bei diesen Wellenlängen können Strukturen erzeugt werden, die im Bereich des sichtbaren Lichts (Wellenlänge ca. 0.4 μηη bis 0.7 μηη) wirksam sind. So können Beugungsgitter mit Gitterkonstanten in der Größenordnung des sichtbaren Lichts erzeugt werden, die große Beugungswinkel besitzen und deswegen besonders gut wahrgenommen werden können. Auch Hologramme haben entsprechend große Beugungswinkel. Optisch variable Elemente können nur mit hochaufgelöster Laserlithographie erzeugt werden, wobei die Basisauflösung kleiner als 20 μηη sein muss, bevorzugt kleiner als 5 μηη.
Mit Laserlithographie hergestellte optische Elemente können herstellungsbedingt im Design voll individualisiert sein. Sämtliche Strukturen können individuell ausgeführt sein. Dies kann mithilfe von numerischen oder alphanumerischen Seriennummern geschehen oder durch individuelle graphische Elemente wie Bilder oder Guillochen.
Als Substratmaterial für die Laserlithographie werden wie bei den geprägten optisch variablen Elementen unter anderem metallisierte Folien oder metallisierte Lacke verwendet. In diesem Fall lässt sich der Laserstrahl in Wellenlänge, Intensität, Pulsdauer, Form und Schreibenergie so einstellen, dass das Substratmaterial an bestimmten vordefinierten Stellen demetallisiert und dadurch transparent oder semitransparent wird. Dies geschieht entweder durch Ablation der Metallschicht, durch Verschiebung der Metallschicht zu den Rändern der belichteten Stelle hin oder durch Umwandlung der Metallschicht in eine transparente oder semitransparente Oxidschicht. Es kann auch eine Mischung der drei genannten Effekte stattfinden. Die Demetallisierung kann passgenau zu den anderen durch Laserlithographie erzeugbaren Strukturen ausgerichtet werden, da sie im selben Belichtungsvorgang eingebracht werden kann. Da die Demetallisierung bei der Laserlithographie prinzipiell mit der hohen Auflösung des laserlithographischen Prozesses erfolgt, können damit hochaufgelöste demetallisierte Strukturen erzeugt werden. Dazu zählen Mikroschriften, streuende Strukturen, Grauwerte oder Grauwertkeile. Solche Grauwerte können durch geeignete Rasterung in einem Halbtonverfahren erzeugt werden, wobei in einer Fläche nur ein gewisser Anteil der Fläche gerastert demetallisiert wird. Bei Grauwertkeilen nimmt der demetallisierte Flächenanteil durch Anpassung der Rasterung in der Fläche graduell zu.
Neben einer vollständigen Demetallisierung ist bei der Laserlithographie auch eine Reduzierung der Dicke der Metallschicht möglich durch exaktes Einstellen der eingebrachten Laserenergie während des Schreibprozesses. Durch die Reduzierung der Dicke der Metallschicht steigt die Lichtdurchlässigkeit der Metallschicht. Auch dadurch lassen sich Grauwerte und Graukeile erzeugen. Die Herstellung optisch variabler Elemente mit hochauflösender Laserlithographie ist gewissen Limitierungen unterworfen. So ist die Basisauflösung durch die verwendete Wellenlänge des Schreiblasers und durch die verwendete Optik begrenzt. Da bei einer Massenproduktion hohe Schreibgeschwindigkeiten und somit ein hoher Durchsatz erzielt werden sollen, ist es erstrebenswert, die Auflösung weiter zu reduzieren, da dann größere Flächen in kürzerer Zeit belichtet werden können. Typische verwendete Basisauflösungen sind hier 0.5 μηη bis 5 μηη. Es ist also bei der Laserlithographie von einer begrenzten Auflösung auszugehen. Bei der Herstellung von beugenden Strukturen, wie z.B. Gitter oder Hologramme können durch die begrenzte Auflösung nicht alle Beugungswinkel erreicht werden. Weiterhin ist die mit Laserlithographie zu erreichende Phasen- oder Amplitudenmodulation im Material nicht ideal, so dass nicht die theoretisch maximal mögliche Beugungseffizienz der beugenden Strukturen erzielt wird.
Erfindungsgemäß wurde erkannt, dass die Einschränkungen, denen die geprägten optisch variablen Elemente unterliegen und die Einschränkungen, denen die laserlithographisch erzeugten optisch variablen Elementen unterliegen, teilweise komplementär sind. So können geprägte optisch variable Elemente nicht auf einfache Weise voll individualisiert werden, während dies bei laserlithographisch erzeugten optisch variablen Elementen der Fall ist. Geprägte optisch variable Elemente können nur in einem zweiten Prozessschritt demetallisiert werden, während laserlithographisch erzeugte optisch variable Elemente in einem Prozess passgenau belichtet und demetallisiert werden können. Die Demetallisierung der geprägten optisch variablen Elemente erfolgt mit niedriger Auflösung, während die Demetallisierung im laserlithographischen Prozess mit voller Auflösung des Prozesses vorgenommen werden kann. Laserlithographisch erzeugte optisch variable Elemente unterliegen meist der Einschränkung einer begrenzten Auflösung, während eine solche Begrenzung bei den geprägten optisch variablen Elementen nicht besteht. Weiterhin unterliegen sie meist der Einschränkung einer begrenzten Beugungseffizienz, während mit optisch variable Elementen sehr hohe Beugungseffizienzen erzielt werden können. Erfindungsgemäß wurde erkannt, dass es Substratmaterial gibt, welches sowohl für geprägte optisch variable Elemente geeignet ist als auch für laserlithographisch erzeugte optisch variable Elemente geeignet ist. Bei solchen Materialien handelt es sich um metallisierte Folien oder Lacke in einem Schichtverbund. Um eine effiziente laserlithographische Belichtung zu ermöglichen, sollte die optische Dichte (OD) möglichst gering sein. Andererseits wird der Verspiegelungsgrad der metallisierten Schicht um so geringer, je geringer die OD ist. Als geeigneter Bereich für die OD hat sich der Bereich von 0.1 bis 10 herausgestellt, bevorzugt 0.8 bis 3.
Hinsichtlich des Verfahrens wird die Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 1 gelöst. Bevorzugte Weiterbildungen sind Gegenstand der abhängigen Unteransprüche.
Erfindungsgemäß wird eine nicht-individuelle Prägestruktur in die Metallschicht eines Trägers geprägt und zusätzlich eine laserlithographische Struktur in die metallisierte Schicht mittels eines Lasers belichtet. Dabei wird die lithographische Struktur mit einer Auflösung von unter 20 μηη erzeugt vorzugsweise unter 5 μηη belichtet, und die Prägestruktur und die lithographische Struktur bilden gemeinsam wenigstens ein optisch variables Element aus. Es sind aber auch höhere Auflösungen von 1 μηη oder weniger denkbar.
In einer bevorzugten Ausführungsform der Erfindung werden die optisch variablen Elemente in einem ersten Prozessschritt geprägt und in einem zweiten Prozessschritt laserlithographisch belichtet. In einer weiteren Ausführungsform der Erfindung werden die optisch variablen Elemente in einem ersten Prozessschritt laserlithographisch belichtet und in einem zweiten Prozessschritt geprägt. In einer weiteren Ausführungsform der Erfindung werden die optisch variablen Elemente zunächst geprägt, anschließend auf einen Gegenstand aufgebracht, bevorzugt aufgeklebt oder aufgesiegelt und in einem weiteren Prozessschritt anschießend laserlithographisch belichtet. In diesem Falle kann der Gegenstand z.B. ein Produkt, eine Produktverpackung, ein Ausweis, eine Banknote, ein Dokument, eine Plastikkarte, eine Folie oder ein Etikett sein. Als Basismaterial für die die Erfindung betreffenden optisch variablen Elemente kommen Materialien in Frage, die sowohl geprägt als auch laserlithographisch belichtet werden können. Insbesondere sind dies metallisierte Lacke oder Folien, insbesondere Polymerfolien, z.B. PET, PMMA, PVC, BoPP. Bevorzugt befinden sich die metallisierten Lacke oder Folien in einem Schichtverbund, in dem auch weitere Schichten vorhanden sind, z.B. weitere Lackschichten oder Folien, insbesondere Polymerfolien oder Kleberschichten, z.B. Acrylatklebemasse oder Heißkleber. Bevorzugt handelt es sich bei dem Basismaterial um Etikettenmaterial mit mindestens einer Kleberschicht. In einer weiteren bevorzugten Ausführungsform handelt es sich bei dem Basismaterial um Heißsiegelfolie, die eine metallisierte Schicht und eine Heißkleberschicht enthält. In einer weiteren bevorzugten Ausführungsform handelt es sich bei dem Basismaterial um Kaltsiegelfolie, die eine metallisierte Schicht enthält. Die Metallisierung der Lacke oder Folien kann durch Bedampfung, Sputtering oder durch Bedruckung mit einer Metallpigmentfarbe erzeugt werden. Die Metallisierung kann an der Oberfläche des Basismaterials sein, oder sie kann innenliegend sein.
Die erfindungsgemäße Prägung des optisch variablen Elements erfolgt mit einem nichtindividuellen Gesamtdesign, welches massenhaft repliziert wird und welches unter anderem alle von geprägten optisch variablen Elementen bekannten Strukturen enthalten kann. Dieses nicht-individuelle Gesamtdesign wird Prägestruktur genannt.
Das Gesamtdesign der laserlithographischen Belichtung kann sowohl statische, sich wiederholende Strukturen als auch serielle, sich ändernde Strukturen, wie z.B. numerische oder alphanumerische Seriennummern, Hologramme von solchen Seriennummern oder individuelle Grafiken enthalten. Das Gesamtdesign der laserlithographischen Belichtung kann auch Bereiche enthalten, die demetallisiert werden oder die gerastert demetallisiert werden. Das Gesamtdesign der laserlithographischen Belichtung wird laserlithographische Struktur genannt.
Erfindungsgemäß bilden die nicht-individuelle Prägestruktur und die individuelle laserlithographische Struktur gemeinsam wenigstens ein optisch variables Element aus. Hierbei können die Prägestruktur und die laserlithographische Struktur oder einzelne Bereiche daraus räumlich getrennt voneinander angeordnet sein. Weiterhin können die Prägestruktur und die laserlithographische Struktur oder einzelne Bereiche daraus teilweise oder ganz überlappend angeordnet sein. Weiterhin können die Prägestruktur und die laserlithographische Struktur oder einzelne Bereiche daraus verkämmt oder verschachtelt zueinander angeordnet sein. Durch die Erfindung kann ein optisch variables Element hergestellt werden, welches sowohl Strukturen enthält, die ausschließlich durch Prägung hergestellt werden können als auch Strukturen, die ausschließlich durch Laserlithographie hergestellt werden können. Durch die Verknüpfung der Prägestruktur mit der laserlithographischen Struktur können die einzelnen Strukturen graphisch und logisch kombiniert werden. Die einzelnen Strukturen können sich gegenseitig ergänzen. Durch die Möglichkeit der Demetallisierung, die die Laserlithographie bietet, können einzelne Bereiche der Prägestruktur individuell zerstört werden.
Durch die Verknüpfung der Prägestruktur mit der laserlithographischen Struktur können neue Strukturen entstehen, die von herkömmlichen, nicht gemäß der Erfindung erzeugten optisch variablen Elementen nicht bekannt sind. Beispielsweise können durch die bei der Laserlithographie mögliche hochaufgelöste Demetallisierung Strukturen der Prägestruktur partiell oder ganz zerstört werden. Diese Zerstörung kann individuell erfolgen. Da die Demetallisierung hochaufgelöst ist, kann eine Rasterung bei der Demetallisierung verwendet werden, wobei die Prägestruktur an diesen Stellen graduell zerstört wird. Insbesondere kann durch die Rasterung ein Grauverlauf in der Demetallisierung und somit ein Grauverlauf der Prägestruktur erzeugt werden, der vom menschlichen Auge als gradueller Übergang aufgefasst wird. Solche Strukturen sind mit herkömmlichen Methoden nicht herstellbar. Anstelle der Rasterung kann ein Grauwert oder ein Grauverlauf in der Demetallisierung auch durch gezielte Modulation der verwendeten Laserleistung während der laserlithographischen Belichtung erzielt werden. Ein weiteres Bespiel für neue Strukturen sind feine diffraktive Strukturen, z.B. Linien oder Punkte, mit hoher Beugungseffizienz und beliebigen Beugungswinkeln, die individuell sein können. Hierbei wird eine vorgegebene diffraktive Fläche des geprägten Designs weitgehend demetallisiert, so dass nur feine Strukturen übrig bleiben. Diese übrig gebliebenen metallisierten feinen Strukturen können eine sehr hohe Beugungseffizienz und beliebige Beugungswinkel haben, da diese beiden Faktoren von der Prägung bestimmt werden, und sie können individuell und hochaufgelöst sein, da sie laserlithographisch erzeugt werden. Die Feinheit der Strukturen ist durch die hohe Auflösung der Laserlithographie gegeben, die wesentlich höher ist als die Auflösung anderer Methoden zur Demetallisierung.
In einer bevorzugten Ausführungsform kann die laserlithographische Belichtung passgenau zur Prägung erfolgen. Dies kann geschehen, wenn in der Herstellung des optisch variablen Elements zunächst die Prägung erfolgt und anschließend die Laserlithographie. Die Passgenauigkeit kann durch spezielle Maßnahmen bei der Laserlithographie gewährleistet werden, z.B. durch die Aufnahme von Merkmalen aus der vorgeprägten Struktur mittels Triggersensoren oder Kameras. Solche Merkmale können als Triggermarken eigens zur Erzielung der hohen Passgenauigkeit in das geprägte Design integriert werden. Da Laserlithographen in der Regel eine hohe Genauigkeit und Führungstreue beim Materialtransport haben, stellt die passgenaue Ausrichtung des laserlithographischen Designs zum geprägten Design keine außergewöhnlichen Anforderungen an den Laserlithographen. Eine Passgenauigkeit in der Größenordnung der Auflösung des Laserlithographen kann erzielt werden.
Erfolgt im Herstellungsprozess zunächst die Laserlithographie und anschließend die Prägung, so kann die Prägung passgenau auf die durch Laserlithographie eingebrachten Strukturen gesetzt werden. Hierzu muss die Position der laserlithographischen Struktur zunächst mittels Triggersensoren oder Kameras aufgenommen werden und anschließend die Prägeposition an diese Position angepasst werden. Dies kann durch laterales oder zeitliches Versetzen des Prägeprozesses geschehen oder durch Dehnung des Substratmaterials. Bei geschickter Wahl der vorgeprägten Struktur oder der laserlithographischen Struktur kann in einer weiteren Ausführungsform der Erfindung auf eine passgenaue Ausrichtung der beiden Strukturen verzichtet werden. Wenn z.B. eine der beiden Strukturen sich ständig wiederholende graphische Elemente enthält, wie z.B. Guillochen, Sinuslinien, Zickzacklinien, Streifen oder Punktmuster, ist aufgrund der Wiederholung der Strukturen keine Passgenauigkeit notwendig. Bevorzugt würde man Prägestrukturen verwenden, die keine Passgenauigkeit zur laserlithographischen Struktur erfordern.
Der fälschungssichere Träger kann mit dem optisch variablen Element auf einen Gegenstand, z.B. ein Produkt, eine Produktverpackung, einen Ausweis, ein Dokument, eine Banknote, eine Plastikkarte usw. aufgesiegelt oder aufgeklebt werden. Es gibt auch die Möglichkeit, dass der Träger nach seiner Herstellung auf ein weiteres Etikett aufgesiegelt oder aufgeklebt wird, welches wiederum selbst auf einen Gegenstand aufgeklebt wird. In beiden Fällen hat man die Möglichkeit, das Design des Gegenstandes oder des weiteren Etiketts an das Design des optisch variablen Elements anzupassen. Dies ist insbesondere dann sinnvoll, wenn Teilbereiche des Trägers demetallisiert sind. Dann kann in den demetallisierten Teilbereichen auf das darunter liegende Design gesehen werden, welches sich auf dem Gegenstand oder auf dem weiteren Etikett befindet. Dies ist dadurch möglich, dass die demetallisierten Teilbereiche transparent oder semitransparent werden. Auf diese Weise hat man zur Gestaltung neben der Prägestruktur und der laserlithographischen Struktur noch das Basisdesign des Gegenstandes oder des weiteren Etiketts zur Verfügung. Dieses Basisdesign kann auf geschickte Weise mit den der Prägestruktur und der laserlithographischen Struktur zugeordneten Prägedesigns und lithographischen Designs verknüpft sein. Hierbei kann neben einer graphischen Verknüpfung auch eine logische Verknüpfung erfolgen. Das Basisdesign kann sowohl statische Elemente enthalten als auch individuelle Elemente, die z.B. mit einer individuellen Drucktechnik erzeugt werden können. Individuelle Elemente können numerische oder alphanumerische Seriennummern, Barcodes oder individuelle Graphiken sein. Die individuellen Anteile des Basisdesigns können logisch und graphisch mit den individuellen Anteilen des laserlithographischen Designs verknüpft werden. Beispielsweise kann das Basisdesign eine numerische oder alphanumerische Seriennummer enthalten, welche ganz oder teilweise in dem laserlithographischen Design wiederholt wird. Das Basisdesign und das laserlithographische Design können numerische oder alphanumerische Nummern enthalten, die über eine Datenbank oder über mathematische Operationen miteinander verknüpft sind. Es können aber auch statische Elemente des Basisdesigns mit individuellen Elementen des laserlithographischen Designs verknüpft sein. Es können z.B. im laserlithographischen Design individuell Teilbereiche demetallisiert werden, die es erlauben, auf gewisse Bereiche des Basisdesigns zu sehen. Auf diese Weise können z.B. Nummern oder Farbfelder des Basisdesigns individuell sichtbar gemacht werden.
Die Erfindung wird anhand von Ausführungsbeispielen in elf Figuren beschrieben, dabei zeigen:
Fig. 1 einen erfindungsgemäßen streifenförmigen Träger mit geprägtem und lithographischem Design ohne Passgenauigkeit, Fig. 2 einen streifenförmigen Träger mit einem Prägedesign und einem lithographischen Design mit Passgenauigkeit,
Fig. 3 den Träger gemäß Fig. 1 mit Stanzlinien für einzelne Etiketten,
Fig. 4 den Träger gemäß Fig. 2 Stanzlinien für einzelne Etiketten,
Fig. 5 fünf Einzelbeispiele für relative Anordnungen von Prägedesign und lithographischem Design und Stanzlinien,
Fig. 6 ein geprägtes Design, ein lithographisches und ein kombiniertes Graukeildesign,
Fig. 7 ein aus einem geprägten Design und aus einem lithographischen Design gefertigtes feinstrukturiges Design,
Fig. 8 ein aus einem geprägten Design und einem laserlithographischen Design kombiniertes Design,
Fig. 9 ein weiteres Beispiel für ein aus einem geprägten Design und einem laserlithographischen Design kombiniertes Design,
Fig. 10 ein aus einem geprägten Design, ein laserlithograhischen Design, ein kombiniertes design auf einem Etikett, eine Verpackungsoberfläche und das auf die Verpackungsoberfläche aufgebrachte Etikett,
Fig. 1 1 ein geprägtes Design, ein laserlithographisches Design, ein kombiniertes Design auf einem Etikett, eine Verpackungsoberfläche und auf die Verpackungsoberfläche aufgebrachtes Etikett.
Fig. 1 zeigt einen Träger 1 mit einer metallisierten Schicht 2, der sowohl ein geprägtes Design A als auch ein laserlithographisches Design B aufweist.
Die Bezugszeichen bezeichnen in den Figuren zum einen das geprägte Design A bzw. das laserlithographische Design B, gleichzeitig aber auch die den Designs A, B zugrundeliegende Prägestruktur bzw. laserlithographische Struktur innerhalb der metallisierenden Schicht 2.
Die durchgehenden Wellenlinien und die drei parallelen Linien stellen Platzhalter für statische Strukturen des geprägten Designs A dar. Die Seriennummern und die Ovale stellen Platzhalter für individuelle und statische Strukturen des laserlithographischen Designs B dar. Die Platzhalter sind symbolisch zu verstehen und stellen jegliche Strukturen dar, die mit Prägung bzw. mit Laserlithographie erzeugt werden können. Auch die Anordnung und die Anzahl der Symbole sind nur beispielhaft zu verstehen.
Die Prägung und die laserlithographische Belichtung sind nicht passgenau zueinander angeordnet. Dies erkennt man daran, dass die Seriennummer im Vergleich zur Wellenlinie wandert. Trotzdem sind die beiden Designs miteinander verknüpft, da die Seriennummer immer auf der Wellenlinie zu liegen kommt. Die Verknüpfung erfolgt durch eine feste vertikale Beziehung der beiden Designs.
Figur 2 zeigt einen Träger mit passgenau zueinander angeordnetem geprägtem Design A und laserlithographischem Design B. Die Prägung A und die laserlithographische Belichtung B sind passgenau zueinander angeordnet. Dies erkennt man daran, dass die Seriennummer im Vergleich zur Wellenlinie nicht wandert. Durch die Passgenauigkeit können beide Designs vollständig miteinander verknüpft werden. Die Verknüpfung erfolgt durch eine feste horizontale und vertikale Beziehung der beiden Designs A, B.
Fig. 3 zeigt den Träger 1 mit nicht zueinander passgenauem Prägedesign A und lithographischem Design B gemäß Fig. 1 , wobei um die einzelnen optischen Elemente 6 Stanzlinien 7 eingezeichnet sind. Die gestrichelten Kreise stellen die Stanzlinien 7 für Etiketten bzw. Stempelformen für Heißsiegelanwendungen dar und somit die Begrenzung des optisch variablen Elements 6 auf dem Gegenstand, auf den es aufgebracht wird. Die Stanzlinie 7 muss nicht kreisförmig sein, sondern kann jede andere beliebige Form aufweisen, z.B. oval, polygonal, polygonal mit abgerundeten Ecken usw.
Die Prägung A und die laserlithographische Belichtung B sind nicht passgenau zueinander angeordnet. Die laserlithographische Belichtung B ist jedoch passgenau zu der Begrenzung des optisch variablen Elementes 6 und des Trägers 1 angeordnet, so dass jedes optisch variable Element 6 eine eindeutige Individualisierung trägt. Fig. 4 zeigt einen Träger 1 , bei dem die Prägung A und die laserlithographische Belichtung B passgenau zueinander sind und zur Begrenzung des optisch variablen Elements 6 und des Trägers 1 angeordnet sind.
In Fig. 5 zeigen die gestrichelten Kreise Stanzlinien 7 für Etiketten bzw. Stempelformen für Heißsiegelanwendungen und somit die Begrenzung des optisch variablen Elements 6 im Endprodukt. Es sind verschiedene mögliche Anordnungen der Strukturen A, B dargestellt. Der Bereich A stellt Strukturen des geprägten Designs dar, der Bereich B stellt Strukturen des laserlithographischen Designs dar. Die einzelnen Strukturen A, B können entweder getrennt voneinander auftreten, oder sie können sich teilweise oder ganz überlappen. In einem Design können auch Teilbereiche sich überlappen und andere Teilbereiche sich nicht überlappen. Neben den dargestellten Anordnungen sind auch verkämmte oder verschachtelte Anordnungen möglich.
Gemäß Fig. 6 besteht das geprägte Design aus einer Fläche A, welche geprägte Strukturen enthält. Das laserlithographische Design besteht aus einer Fläche B, die aus einem hochaufgelösten gerasterten Graukeil 8 besteht. Der Graukeil 8 geht in diesem Beispiel in einem graduellen Übergang von nicht demetallisiert bis zu demetallisiert. Dadurch wird die geprägte Fläche A im Bereich B in einem graduellen Übergang zerstört, so dass sich für den menschlichen Betrachter ein graduelles Auslaufen der geprägten Strukturen ergibt. Handelt es sich bei den geprägten Strukturen um beugende Gitter, die in Regenbogenfarben schillern, so würde das Schillern im Bereich B graduell auslaufen. Handelt es sich bei den geprägten Strukturen um ein Hologramm, so würde die Sichtbarkeit des Hologramms im Bereich B graduell auslaufen. Die Stanzline 7 begrenzt wiederum das optisch variable Element 6.
Auf diese Weise wird eine Struktur erzeugt, die weder durch Prägung allein noch durch Laserlithographie allein erzeugt werden könnte.
Gemäß Fig. 7 besteht das geprägte Design aus einer Fläche A, welche geprägte Strukturen enthält. Das laserlithographische Design besteht aus einer Fläche B, in der große Bereiche demetallisiert werden und feine hochaufgelöste Linien stehen gelassen werden. Dadurch bleiben von der geprägten Fläche A im Bereich B nur noch feine geprägte Linien übrig. Handelt es sich bei den geprägten Strukturen um beugende Gitter, die in Regenbogenfarben schillern, so würden auch die feinen Linien in Regenbogenfarben schillern. Diese Gitter könnten nun so ausgelegt sein, dass sie mit dem laserlithographischen Prozess nicht erzeugt werden könnten. Auf diese Weise wird eine Struktur erzeugt, die weder durch Prägung allein noch durch Laserlithographie allein erzeugt werden könnte. Auch hier begrenzt die Stanzlinie 7 das optisch variable Element 6.
In Fig. 8 besteht das geprägte Design A aus einem Logo, aus feinen Guillochen und aus einem vollflächigen Bereich (schraffiert). Die drei Bereiche könnten aus verschiedenen Strukturen bestehen, beispielsweise könnte das Logo als Regenbogenhologramm ausgeführt sein, die Guillochen als 2D Hologramm und der vollflächige Bereich als refraktive oder diffraktive Struktur. Das laserlithographische Design B besteht aus einer quadratischen Struktur, aus zwei feinen Linien, aus einer ersten Seriennummer und aus einer zweiten, inversen Seriennummer. Die quadratische Struktur könnte ein computergeneriertes Fourierhologramm mit individuellem Inhalt sein, die beiden feinen Linien könnten aus Beugungsgittern bestehen, die obere Seriennummer könnte aus einem Fresnelhologramm bestehen. Bei der unteren, inversen Seriennummer wird der äußere Bereich der Seriennummer demetallisiert.
Werden die beiden Designs der Erfindung gemäß in die metallisierte Schicht 2 eingebracht, ergibt sich das kombinierte Design als das optisch variable Element 6. Dieses besteht zum einen aus getrennten Bereichen, die jeweils aus einem der beiden Designs kommen, wie das Logo oder das Fourierhologramm. Zum anderen besteht es aus teilweise überlagerten Strukturen, wie den Guillochen, den Linien und der ersten Seriennummer. Des Weiteren besteht es aus kombinierten Strukturen, wie der invers laserlithographierten zweiten Seriennummer, die nun in den Nummern die refraktive oder diffraktive Struktur aus dem Prägeprozess trägt.
Auf diese Weise wird eine Struktur erzeugt, die weder durch Prägung allein noch durch Laserlithographie allein erzeugt werden könnte.
Fig. 8 zeigt eine logische Verknüpfung zwischen dem geprägten Design A und dem laserlithographischen Design B. Im geprägten Design A befinden sich die Nummern 1 bis 5. Entsprechend der Endziffer der Seriennummer des laserlithographischen Designs B wird individuell ein Feld stehen gelassen, welches die Endziffer der Seriennummer wiederholt. Das optisch variable Element 6 stellt die logische Verknüpfung dar. Fig. 10 zeigt zunächst das Prägedesign A, dann das lithographische Design B und in der dritten Abbildung der Fig. 10 die Kombination aus Prägedesign A und lithographischem Design B. Die dritte Abbildung stellt das optisch variable Element 6 in Form eines Etiketts dar. Die untere Zahlenfolge des laserlithographischen Designs B ist durchsichtig. Die vierte Abbildung zeigt die Oberfläche 1 1 eines Gegenstandes beispielsweise einer Verpackung mit einer hier wellenartig dargestellten Struktur. Durch Aufbringen des optisch variablen Elementes 6 auf die Oberfläche 1 1 des Gegenstandes kann die Struktur des Gegenstandes, die sich unter dem durchsichtigen Bereich 10 des optisch variablen Elementes 6 befindet, hindurch scheinen. Fig. 1 1 zeigt, ähnlich wie Fig. 10, eine logische Verknüpfung zwischen der Struktur der Oberfläche 1 1 , die hier zusätzlich mit einer Seriennummer versehen ist. Entsprechend der Endziffer der Seriennummer wird individuell ein Feld 10 demetallisiert. Auf der Oberfläche 1 1 des Gegenstandes werden die Nummern 1 bis 5 statisch aufgedruckt; durch das demetallisierte Feld 10 kann dann die entsprechende Nummer auf der Oberfläche 1 1 gesehen werden.
Bezugszeichenliste
1 Träger
2 metallisierte Schicht
6 optisches Element
7 Stanzlinien
8 Graukeil
10 demetallisierter/durchsichtiger Bereich
1 1 Oberfläche
A geprägtes Design
B laserlithographisches Design

Claims

Patentansprüche
1 . Fälschungssicherer Träger (1 )mit mindestens einer metallisierten Schicht (2), in die wenigstens ein optisch variables Element (6) eingebracht ist, und
das wenigstens eine optisch variable Element (6) weist eine nicht-individuelle
Prägestruktur (A) auf,
dadurch gekennzeichnet, dass
das wenigstens eine optisch variable Element (6) eine individuelle
laserlithographische Struktur (B) mit einer Auflösung von unter 20 μηη aufweist.
2. Fälschungssicherer Träger (1 ) nach Anspruch 1 ,
dadurch gekennzeichnet, dass die Auflösung unter 5 μηη beträgt.
3. Fälschungssicherer Träger (1 ) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Prägestruktur (A) und die laserlithographische Struktur (B) in dieselbe metallisierte Schicht (2) eingebracht sind.
4. Fälschungssicherer Träger (1 ) nach Anspruch 1 , 2 oder 3,
dadurch gekennzeichnet, dass sich die Prägestruktur (A) und die
laserlithographische Struktur (B) zumindest in Teilbereichen überlappen.
5. Fälschungssicherer Träger (1 ) nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Prägestruktur (A) und die laserlithographische Struktur (B) passgenau zueinander angeordnet sind.
6. Fälschungssicherer Träger (1 ) nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die laserlithographische Struktur (B) wenigstens in einem Teilbereich (10) zumindest bereichsweise demetallisiert ist.
7. Fälschungssicherer Träger (1 ) nach Anspruch 6,
dadurch gekennzeichnet, dass der Teilbereich (10) vollständig demetallisiert ist.
8. Fälschungssicherer Träger (1 ) nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass der Teilbereich (10) gerastert demetallisiert ist.
9. Fälschungssicherer Träger (1 ) nach Anspruch 8,
dadurch gekennzeichnet, dass die Rasterung der Demetallisierung in dem
Teilbereich (10) graduell zunimmt.
10. Fälschungssicherer Träger (1 ) nach wenigstens einem der vorstehenden
Ansprüche, dadurch gekennzeichnet, dass das optisch variable Element (6) in einem Teilbereich (10) durchsichtig ist.
1 1 . Verfahren zur Herstellung eines fälschungssicheren Trägers (1 ) mit wenigstens einer metallisierten Schicht (2), indem
eine nicht-individuelle Prägestruktur (A) in die metallisierte Schicht (2) geprägt wird und eine individuelle laserlithographische Struktur (B) in die metallisierte Schicht (2) lithographisch mittels eines Lasers belichtet wird,
die lithographische Struktur (B) mit einer Auflösung von unter 20 μηη belichtet wird, durch die Prägestruktur (A) und die lithographische Struktur (B) gemeinsam wenigstens ein optisch variables Element (6) ausgebildet wird.
12. Verfahren nach Anspruch 1 1 ,
dadurch gekennzeichnet, dass entlang des Trägers (1 ) zunächst nicht-individuelle Prägestrukturen (A) in die metallisierte Schicht (2) geprägt werden und
anschließend individuelle laserlithographische Strukturen (B) in die metallisierte Schicht (2) belichtet werden.
13. Verfahren nach Anspruch 1 1
dadurch gekennzeichnet, dass entlang des Trägers (1 ) zunächst individuelle laserlithographische Strukturen (B) in die metallisierte Schicht (2) belichtet werden und anschließend nicht-individuelle Prägestrukturen (A) in die metallisierte Schicht (2) geprägt werden.
14. Verfahren nach wenigstens einem der Ansprüche 1 1 , 12 oder 13
dadurch gekennzeichnet, dass die laserlithographischen Strukturen (B) und die Prägestrukturen (A) passgenau zueinander in die metallisierte Schicht (2) eingebracht werden.
15. Verfahren nach wenigstens einem der Ansprüche 1 1 bis 14,
dadurch gekennzeichnet, dass Teilbereiche (1 1 ) der lithographischen Struktur (B) bis zur Durchsichtigkeit demetallisiert werden und Teilbereiche der Prägestrukturen (A) relativ zu den durchsichtigen Teilbereichen (10) angeordnet werden, dass sie durch die durchsichtigen Teilbereiche (10) hindurch scheinen.
16. Verfahren nach wenigstens einem der Ansprüche 1 1 bis 15,
dadurch gekennzeichnet, dass der Träger (1 ) zwischen den optische variablen Elementen (6) getrennt wird und die optisch variablen Elemente (6) auf
Gegenstände, insbesondere Verpackungen aufgebracht werden.
17. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, dass das optisch variable Element (6) mit durchsichtigen Teilbereichen (1 1 ) versehen wird und eine Oberflächenkennzeichnung des Gegenstandes durch den durchsichtigen Teilbereich (10) hindurch scheint.
PCT/EP2013/053167 2012-03-02 2013-02-18 Sicherheitsetikett und ein verfahren zu seiner herstellung WO2013127650A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380012081.0A CN104144796B (zh) 2012-03-02 2013-02-18 防伪载体及其制造方法
EP13705157.9A EP2819851B1 (de) 2012-03-02 2013-02-18 Sicherheitsetikett und ein verfahren zu seiner herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203350.5 2012-03-02
DE102012203350A DE102012203350A1 (de) 2012-03-02 2012-03-02 Sicherheitsetikett und ein Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO2013127650A1 true WO2013127650A1 (de) 2013-09-06

Family

ID=47740945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053167 WO2013127650A1 (de) 2012-03-02 2013-02-18 Sicherheitsetikett und ein verfahren zu seiner herstellung

Country Status (4)

Country Link
EP (1) EP2819851B1 (de)
CN (1) CN104144796B (de)
DE (1) DE102012203350A1 (de)
WO (1) WO2013127650A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020037A1 (de) * 2012-07-31 2014-02-06 Tesa Scribos Gmbh HEIßSIEGELFOLIE
WO2016170132A1 (de) * 2015-04-22 2016-10-27 Tesa Scribos Gmbh Sicherheitselement und verfahren zur herstellung eines sicherheitselements
DE102015210982A1 (de) 2015-06-15 2016-12-15 Tesa Scribos Gmbh Sicherheitsetikett mit Kippeffekt

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200595B4 (de) * 2014-01-15 2019-08-22 Tesa Scribos Gmbh Sicherheitsanordnung sowie Verfahren zur Herstellung einer Sicherheitsanordnung
DE102015202106A1 (de) 2015-02-06 2016-08-11 Tesa Scribos Gmbh Optisch variables Sicherheitselement
DE102016214407A1 (de) * 2016-08-04 2018-02-08 Tesa Scribos Gmbh Optisch variables Sicherheitselement
DE102016216878A1 (de) 2016-09-06 2018-03-08 Tesa Scribos Gmbh Sicherheitsetikett mit Metallschicht
DE102017215288B3 (de) 2017-08-31 2018-12-27 Tesa Scribos Gmbh Holografische Mehrschichtfolie, Produktverpackung, Portionskapsel, Getränkezubereitungssystem, Verfahren zur Herstellung einer holografischen Mehrschichtfolie und Verfahren zum Betrieb eines Getränkezubereitungssystems
DE102021203749A1 (de) 2021-04-15 2022-10-20 Scribos Gmbh Sicherheitsetikett, Serie an Sicherheitsetiketten, Authentifizierungssystem mit einer Serie an Sicherheitsetiketten sowie Verfahren zur Herstellung eines Sicherheitsetiketts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430111C1 (de) 1984-08-16 1985-10-24 Leonhard Kurz GmbH & Co, 8510 Fürth Folie,insbesondere Heisspraegefolie,mit einer dekorativen Metallschicht und Verfahren zu deren Herstellung
DE4131964A1 (de) 1991-09-25 1993-04-08 Holtronic Gmbh Verfahren zur beschriftung oder kennzeichnung von hologrammen
EP0420261B1 (de) 1989-09-28 1999-03-24 GAO Gesellschaft für Automation und Organisation mbH Datenträger mit einem optisch variablen Element und Verfahren zu seiner Herstellung
DE102006032234A1 (de) * 2006-07-12 2008-01-17 Tesa Scribos Gmbh Verfahren zum Aufbringen eines Sicherheitsmerkmals auf ein Sicherheitsdokument sowie Sicherheitsdokument mit einem Sicherheitsmerkmal
WO2010028758A1 (de) * 2008-09-10 2010-03-18 Giesecke & Devrient Gmbh Verfahren zur herstellung eines sicherheits- oder wertdokuments

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885072B1 (fr) * 2005-04-29 2007-07-27 Gemplus Sa Marquage de carte par laser
DE102007024298B3 (de) * 2007-05-23 2008-10-16 Zahedi Fariborz Martin Loessl Folienelement zur Echtheitserkennung, Sicherheitspapier, Sicherheitsdokument, Wertdokument, Münze, Jeton, Gebrauchsgegenstand, Gestaltungselement sowie Verfahren zur Herstellung eines Folienelements zur Echtheitserkennung und Verfahren zur Herstellung eines Sicherheitspapiers, eines Sicherheitsdokuments und eines Wertdokuments wie einer Banknote
FR2942811B1 (fr) * 2009-03-04 2011-05-06 Oberthur Technologies Element de securite pour document-valeur.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430111C1 (de) 1984-08-16 1985-10-24 Leonhard Kurz GmbH & Co, 8510 Fürth Folie,insbesondere Heisspraegefolie,mit einer dekorativen Metallschicht und Verfahren zu deren Herstellung
EP0420261B1 (de) 1989-09-28 1999-03-24 GAO Gesellschaft für Automation und Organisation mbH Datenträger mit einem optisch variablen Element und Verfahren zu seiner Herstellung
DE4131964A1 (de) 1991-09-25 1993-04-08 Holtronic Gmbh Verfahren zur beschriftung oder kennzeichnung von hologrammen
DE102006032234A1 (de) * 2006-07-12 2008-01-17 Tesa Scribos Gmbh Verfahren zum Aufbringen eines Sicherheitsmerkmals auf ein Sicherheitsdokument sowie Sicherheitsdokument mit einem Sicherheitsmerkmal
WO2010028758A1 (de) * 2008-09-10 2010-03-18 Giesecke & Devrient Gmbh Verfahren zur herstellung eines sicherheits- oder wertdokuments

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020037A1 (de) * 2012-07-31 2014-02-06 Tesa Scribos Gmbh HEIßSIEGELFOLIE
WO2016170132A1 (de) * 2015-04-22 2016-10-27 Tesa Scribos Gmbh Sicherheitselement und verfahren zur herstellung eines sicherheitselements
DE102015210982A1 (de) 2015-06-15 2016-12-15 Tesa Scribos Gmbh Sicherheitsetikett mit Kippeffekt
WO2016202840A1 (de) 2015-06-15 2016-12-22 Tesa Scribos Gmbh Sicherheitsetikett mit kippeffekt
US10618341B2 (en) 2015-06-15 2020-04-14 Tesa Scribos Gmbh Security label with tilt effect

Also Published As

Publication number Publication date
DE102012203350A1 (de) 2013-09-05
CN104144796A (zh) 2014-11-12
EP2819851A1 (de) 2015-01-07
EP2819851B1 (de) 2016-04-13
CN104144796B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
EP2819851B1 (de) Sicherheitsetikett und ein verfahren zu seiner herstellung
DE102004016596B4 (de) Sicherheitselement in Form eines mehrschichtigen Folienkörpers und Verfahren zur Herstellung eines Sicherheitselements
DE102009032697C5 (de) Mehrschichtkörper
DE102008005019B4 (de) Folienelement sowie die Verwendung dieses Folienelements
EP1501045B1 (de) Optisch variables Element mit nichtholographischen Daten und Verfahren zu seiner Herstellung
EP1800271B1 (de) Sicherheitsdokument
EP3065002B1 (de) Sicherheitselement sowie verfahren zur herstellung eines sicherheitselements
EP1716545B1 (de) Wertgegenstand mit moiré-muster
EP1648713A2 (de) Sicherheitselement
EP2885135B1 (de) Sicherheitseinrichtung
EP3337674B1 (de) Wertdokument
EP2897812B1 (de) Sicherheitselement mit darstellungsanordnung
DE102012105571A1 (de) Dekorelement, Sicherheitsdokument mit einem Dekorelement sowie Verfahren zur Herstellung eines Dekorelements
WO2012059208A2 (de) Sicherheitselement und verfahren zur herstellung eines sicherheitselements
DE102007005416B4 (de) Prägefolie und damit gebildeter Sicherheitsaufkleber
EP1599344B1 (de) Sicherheitselement
WO2014086715A1 (de) Sicherheitseinrichtung
EP1567364B1 (de) Sicherheitselement und verfahren zu seiner herstellung
EP3307551B1 (de) Sicherheitsetikett mit kippeffekt
WO2008086795A1 (de) Verfahren zum schreiben holographischer pixel
DE102014200595B4 (de) Sicherheitsanordnung sowie Verfahren zur Herstellung einer Sicherheitsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13705157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013705157

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE