WO2013127357A1 - 力发生装置 - Google Patents

力发生装置 Download PDF

Info

Publication number
WO2013127357A1
WO2013127357A1 PCT/CN2013/072032 CN2013072032W WO2013127357A1 WO 2013127357 A1 WO2013127357 A1 WO 2013127357A1 CN 2013072032 W CN2013072032 W CN 2013072032W WO 2013127357 A1 WO2013127357 A1 WO 2013127357A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
force
cup
pressure sensor
generating device
Prior art date
Application number
PCT/CN2013/072032
Other languages
English (en)
French (fr)
Inventor
黎鑫
Original Assignee
柳州市中晶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 柳州市中晶科技有限公司 filed Critical 柳州市中晶科技有限公司
Publication of WO2013127357A1 publication Critical patent/WO2013127357A1/zh
Priority to US14/469,556 priority Critical patent/US20140363275A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/91Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
    • B65G47/911Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers with air blasts producing partial vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups

Definitions

  • the present invention relates to the field of manufacturing technology, and more particularly to a force generating device capable of applying force to an object in a non-contact manner.
  • the swirling non-contact suction cup comprises: a cup body, a cavity around the fluid and a nozzle, wherein: the inside of the cup body is a cylindrical hole body, and the inner cavity is arranged around the fluid at the bottom of the cup body, the cup body and the inner cavity A cylindrical annular gap is left between the fluids, and a nozzle is arranged on the side near the bottom of the cup; and a 'non-contact conveying device' (publication number: CN101172540, publication date: May 7, 2008
  • the inner member of the non-contact conveying device having the supply port is mounted to the inside of the casing, and the casing and the inner member are connected together by a connecting bolt.
  • the air is delivered to the supply port of the internal component and is diverted into the annular passage via the communication passage, and then The air is directed outward from the plurality of extraction holes communicating with the annular passage in the swirling direction Draining into the annular groove facing the workpiece, by allowing air to flow along the annular groove, the workpiece can be held in a state of no contact with respect to the support surface of the inner member, wherein the cross section of the annular groove is made into a general body
  • the upper is trapezoidal.
  • Non-contact gripping device including a member having a casing shape and a blade provided in a recess of the casing-shaped member to generate a swirling flow.
  • Patent Document Japanese Laid-Open Patent Publication No. 2011-138948, Chinese Patent Application No.: 201010607157.2
  • Such a non-contact handling device or a non-contact grasping device is hereinafter referred to as a force generating device.
  • a force generating device In actual application, we want to know the magnitude of the attraction or repulsive force exerted by the force generating device on the object. However, because it is a non-contact type of force, there is no contact between the object and the device. Therefore, there is no way to directly measure the amount of force acting on the object by conventional means, such as using a force sensor.
  • the problem to be solved by the present invention is to provide a force generating device capable of estimating the pressure distribution or the magnitude of the force.
  • the technical solution adopted by the present invention is to have a cup-shaped member having a concave portion having a circular cross section at one end and a suction portion communicating with the bottom port of the concave portion.
  • a blade provided in the concave portion of the cup member, the air is sucked from the suction port by the rotation of the blade, and a swirl is generated in the concave portion, and a calculation unit for calculating pressure and force is provided.
  • the calculation department calculates the pressure and force basis:
  • Pi(r) 1/2 ⁇ r 2 ⁇ 2 +C, where Pi(r) is the pressure at the distance r between the cup-shaped member and the center of rotation of the blade in the bottom port of the recess, ⁇ For the density of the gas, ⁇ is the angular velocity of the swirl and C is the coefficient.
  • a more specific solution may further include: a pressure sensor that measures at least one position of the pressure sensor; and a rotational speed sensor that measures the swirling rotational angular velocity in the concave portion, wherein the calculating unit utilizes at least the Calculate the measured value of the pressure at a position and the rotational speed C value.
  • the detection position of the pressure sensor is at the fan shaft, and the pressure detected by the pressure sensor is Pi(0).
  • a pressure sensor having a pressure for measuring at least two positions of different radii in the concave portion, and the calculating unit calculates the coefficient C and the square of the rotational speed ⁇ 2 based on at least the measured values of the pressures of the two positions.
  • the detection position of the pressure sensor is at the fan shaft, and the pressure detected by the pressure sensor is Pi(0).
  • the inner side surface of the cup-shaped member is a cylindrical surface, and the diameter of the cylindrical surface is R 1 ;
  • the outer surface of the cup-shaped member is a cylindrical surface, and the diameter of the cylindrical surface is R 2 , the calculation
  • the present invention has the following beneficial effects:
  • the calculation unit can calculate the pressure and the force by the formula given by the present invention. So that the user can grasp the situation of pressure and force.
  • FIG. 1 is a schematic structural view of a non-contact gripping tool according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Fig. 3 is a plan view showing a non-contact gripping tool according to an embodiment of the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a blade of a second embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a blade according to a third embodiment of the present invention.
  • Fig. 6 is a pressure distribution diagram of the first embodiment of the present invention.
  • Fig. 7 is a view showing the relationship between the distance between the exhaust port and the suction workpiece and the suction force in the embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of the fourth embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a cup-shaped member according to an embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of the cup member of the fifth embodiment.
  • Figure 11 is a schematic view showing the structure of the cup member of the sixth embodiment.
  • Figure 12 is a schematic illustration of the distribution of the non-contact gripping tool and pressure of the present invention.
  • Figure 13 is a schematic structural view of Embodiment 1 of the present invention.
  • Fig. 14 is a view showing a pressure distribution calculation result and a pressure distribution measurement result according to the first embodiment of the present invention.
  • Figure 15 is a schematic structural view of Embodiment 7 of the present invention.
  • FIG. 1 , FIG. 2 , FIG. 3 , FIG. 9 and FIG. 13 there is a cup member 1 having a concave portion 2 having a circular cross section at one end and a concave portion 2 .
  • the suction port 3 communicating with the bottom port is provided in the blade 4 in the recess 2 of the cup member 1, and the air is sucked from the air inlet 3 by the rotation of the blade 4 to generate a swirling flow in the recess 2, the fan
  • the cross section of the leaf is an arcuate body, and the blade 4 is connected to the motor 6 mounted on the top of the cup member 1 via the rotating shaft 5, and the angle between the blade 4 and the rotating shaft 5 is 0.5-20 degrees, since the blade 4 is curved
  • the shape can suck air from the suction port 3, and the blade 4 has 8 pieces.
  • the rotation of the motor 6 drives the blade 4 to rotate in the direction of the arrow.
  • the workpiece 9 is placed at the bottom of the cup member 1, in which state the motor 6 starts to rotate and the rotational speed is 1000-20000 rpm, so that a swirl is generated in the concave portion 2 of the cup member 1, and the swirl flow generates a distribution of negative pressure inside the cup member 1, as shown in Fig. 6, the horizontal axis is the radial position r The vertical axis is the pressure; formed in the recess 2 of the cup member 1 Swirling, under the action of centrifugal force, the air in the cup will move to the outer circumference, causing the density of the air in the center to decrease and the pressure to drop below atmospheric pressure. At this time, the workpiece 9 is placed.
  • the negative pressure acts on the upper surface of the workpiece, and the negative pressure is shown in the dotted line of Figure 6.
  • the distribution is shown in the radial direction; due to the pressure difference between the upper and lower surfaces of the workpiece, the attraction is generated and the workpiece can be grasped by the non-touch gripping tool.
  • Figure 4 is a blade of the second embodiment, the blade being bent at a certain height.
  • Fig. 5 is a blade of the third embodiment, which is mounted obliquely along the rotation direction of the rotating shaft.
  • Figure 7 is the spacing between the bottom of the cup and the workpiece h In relation to the attraction, this curve shows that as the interval increases, there is a rising part of the attraction.
  • the dotted line in the figure indicates the gravity of the workpiece, and the dotted line intersects the curve of the attraction at a point. That is to say, in this position, gravity and attraction are balanced, and in a stable state, the workpiece will be suspended at this position.
  • the swirling may cause the workpiece to rotate together.
  • a plurality of non-contact gripping tools are usually used to grasp a workpiece, as in the second embodiment of FIG.
  • the non-contact gripping device has four non-touching gripping tools; the dashed line in the figure indicates the workpiece 9, in order to offset the rotational moments acting on the workpiece to zero, 4 No touch grip tool
  • the direction of the eddy current is different.
  • the upper two non-touching gripping tools produce a clockwise vortex
  • the lower two non-touching gripping tools form a counterclockwise vortex opposite thereto. Vortex generated by the touchless gripping tool
  • the directions can be interchanged.
  • Figure 9 is an embodiment of a cup-shaped part along the back A cross-sectional view in the direction of the rotation axis, the cross-section being cylindrical;
  • FIG. 10 is a cross-sectional view of the fifth cup member of the embodiment in the direction of the rotation axis, the cross section being slightly hemispherical;
  • FIG. 11 is a cross-sectional view of the sixth cup-shaped member in the direction of the rotary axis In cross section, the section is in the shape of a truncated cylinder; the shape of the fan blade 4 of the vortex fan is designed according to the shape of the recess of the cup member so that the blade and the recess do not come into contact.
  • a plurality of non-contact gripping tools are capable of grasping a pair of workpieces.
  • the force of the non-contact gripping tool may vary, thereby causing the workpiece to tilt, thereby causing the workpiece to come into contact with the device.
  • the non-contact gripping tool When using a non-contact gripping tool for handling, the non-contact gripping tool will move up and down in the vertical direction when gripping the workpiece. If the non-contact gripping tool accelerates in the vertical direction too fast, The workpiece may not fall with the movement of the non-contact gripping tool. In order to solve this problem, we need to adjust the force according to the vertical acceleration of the non-contact gripping tool. Therefore, we It is necessary to presume the pressure distribution or force of the non-contact gripping tool.
  • Figure 12 shows the distribution of the non-contact gripping tool and pressure of the present invention
  • r is the radius of any position
  • R 1 is the inner diameter of the cup member 1
  • R 2 is the outer diameter of the cup member 1
  • the present invention non-contact gripping tool capable of producing a uniform air swirler having an angular velocity ⁇ 2 of the recess in the blade 4 by using a pressure swirl speed such uniform distribution Pi (r) in the radius r ⁇ R 1's
  • Pi (r) uniform distribution Pi (r) in the radius r ⁇ R 1's
  • is the density of the gas (air)
  • is the angular velocity of the swirl in the cup member 1
  • C is the coefficient; that is, the pressure distribution Pi (r) It is a parabolic shape, and in order to more accurately estimate the pressure Pi ( r ) by the equation (1), the smaller the spacing between the outermost end of the blade of the blade 4 and the inner wall of the side of the cup member 1 is preferably as small as possible.
  • the pressure Pi(r) in the range of r ⁇ R 1 can be approximated by the formula (1).
  • the pressure Po ( r ) is a gauge pressure, that is, the pressure distribution Po ( r ) of the non-contact gripping tool of this embodiment can be approximated by the formula ( 2 ) at R 1 ⁇ r ⁇ R 2 . .
  • the calculation unit 8 calculates the pressure distributions Pi ( r ) and Po ( r ) based on the equations (1) and (2), and the integral coefficient C of the unknown parameter in the equations (1) and (2). And the angular velocities ⁇ and Pi (R 1 ), these positional parameters change as the distance between the non-contact gripping tool and the workpiece 9 changes. Therefore, the non-contact gripping tool needs to determine the unknown parameters C, ⁇ , Pi(R 1 ) in real time, and the positional parameters can be obtained in real time by the pressure sensor 7 and the rotational speed sensor 10 mounted on the cup member 1.
  • the pressure sensor 7 measures the pressure of at least one point in the range r ⁇ R 1 at a certain sampling period, and the pressure sensor 7 is disposed above the cup member 1 at the same radius position, the pressure in the cup member 1 It is the same in the vertical direction, which we have verified by experimental investigation, so the pressure measured by the pressure sensor above the cup 1 is equivalent to the pressure at the same radial position on the workpiece 9.
  • the rotational speed sensor 10 measures the rotational speed of the blade at a certain sampling period, that is, the rotational speed of the swirl, for example, the rotational speed sensor 10
  • An external encoder can be used, or a Hall sensor built into the motor can be used, or the speed can be derived by detecting the current and voltage of the motor.
  • the coefficient C can be obtained by substituting the measured value P m of the measured value of the rotational speed r m and the measured value ⁇ m of the rotational speed into equation (3):
  • the non-contact grip tool can calculate the pressure distribution Pi(r) using (1'):
  • the pressure distribution Po ( r ) of the radius R 1 ⁇ r ⁇ R 2 can be calculated according to the formula (2).
  • Figure 14 is a comparison of the experimental results of the pressure distribution calculated based on equation (1) and the actual measurement.
  • the force generated by the non-contact gripping tool of the present invention can be obtained by calculating the area (1) and (2)
  • the formula is obtained by taking the integral as follows:
  • the calculation unit 8 calculates the force generated by the non-contact gripping tool according to the formula (5).
  • the cup member 21 has a calculation unit 28 and two pressure sensors 27a and 27b. .
  • Pressure sensors 27a, 27b mounted in the region r ⁇ R 1's, not the same distance from the center, at least at two positions r m1, r m2 mounting a pressure sensor for measuring pressure P m1, P m2.
  • the calculation unit 28 calculates the coefficient C and the square of the angular velocity ⁇ 2 using the pressure measurement values P m1 and P m2 of at least two positions.
  • the pressure measurements P m1 , P m2 at the 2 positions are calculated by the following two equations to calculate the coefficients C and ⁇ 2 .
  • the accuracy of the installation position of the sensor is not high, that is to say, the position of the installed pressure sensor is slightly deviated, and the pressure distribution result calculated by the equation (1) is not affected too much, and the measured value of the pressure P M1 is equal to the coefficient C, which simplifies the calculation process.
  • the calculation unit 28 calculates the pressure distributions Pi ( r ) and Po ( r ) based on the equations (1) and (2), and the calculation unit 28 integrates the pressure distribution Pi (r) with respect to the area. And Po ( r ), the magnitude of the force applied by the non-contact gripping tool to the workpiece can be calculated.
  • the above is about the ability to estimate the pressure distribution P ( r ) and the force F
  • the description of the non-contact gripping tool, based on this non-contact gripping tool, is able to resolve the pressure distribution P ( r ) and force F .
  • the force F estimated by the calculation unit is the non-contact gripping tool.
  • the weight that is to say, the non-contact gripping tool of this embodiment is capable of measuring the weight of the workpiece, so that we know the weight of the object, we can know the inertia when doing acceleration or deceleration in the vertical direction.
  • the magnitude of the force so that the rotational speed of the motor can be appropriately controlled, so that the force acting on the workpiece can be appropriately controlled F.
  • the embodiment illustrates the non-contact grasping of the workpiece by taking the application of the non-contact gripping tool as an example.
  • the present invention is not limited to this use.
  • the non-contact gripping tool can generate a repulsive force, and the repulsive force is FIG. The force generated when the integral value of the displayed pressure distribution is positive.
  • the non-contact gripping tool can accurately grasp the force exerted on the object by the device, is a force generating device that non-contactly applies force to the workpiece, and the non-contact gripping tool can also function as a non-contact gravimeter or non-contact.
  • the force measuring device is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种能够非接触地向物体施力的力发生装置,其具有杯状部件(1),所述杯状部件(1)具有一端底面设置了截面为略圆形的凹部(2)及与所述凹部(2)的底端口相连通的吸气口(3),设置于所述杯状部件(1)的凹部(2)里的扇叶(4),通过所述扇叶(4)的旋转将空气从所述吸气口(3)吸入并在所述凹部(2)里产生旋流,有计算压力及力的演算部(8),所述演算部(8)计算压力及力依据:Pi(r)=1/2pr 2 ω 2 +C,公式中,Pi(r)为所述杯状部件在所述凹部的底端口内与所述扇叶回转中心的距离r处的压力值,p为气体的密度,ω为旋流的角速度,为系数。该力发生装置的杯状部件具有演算部,演算部通过本发明给出的公式,即可能算出压力及力的大小,以便使用者能够掌握压力和力的情况。

Description

力发生装置 力发生装置
技术领域
本发明涉及生产制造技术领域,尤其是一个能够非接触地向物体施力的力发生装置。
技术背景
在半导体和玻璃基板的制造过程中,有许多专门用来抓持这些工件的工具和设备。以前的工具和设备在抓持的过程中会和工件发生触碰,从而导致工件的划伤和静电的产生,从而会产生废、次品。
因此,近年,很多无触碰式的抓持工具和设备被开发并利用于生产当中。如专利'旋流式非接触吸盘'(公开号: CN101264844 ,公开日: 2008 年 9 月 17 日),该旋流式非接触式吸盘包括:杯体、内腔绕流体和喷嘴,其中:杯体内部为圆柱状孔体,内腔绕流体设于杯体的底部,杯体与内腔绕流体之间留有圆柱环状间隙,杯体近底部的侧面设有喷嘴;再如'非接触式运送装置'(公开号: CN101172540 ,公开日: 2008 年 5 月 7 日)该非接触式运送装置具有供给端口的内部构件被安装到壳体的内部,壳体与内部构件通过连接螺栓连接到一起。空气被输送到内部构件的供给端口,并经连通通道被引流到环形通道中,而后, 空气被从与环形通道连通的多个引出孔沿旋流方向向外 引流到面对着工件的环形凹槽中,通过使空气沿环形凹槽流动,可将工件保持在相对于内部构件的支持表面不接触的状态下,其中环形凹槽的横截面被制成大体上为梯形。这些专利无触碰式的抓持工具通过在圆筒中产生旋转的空气旋流,从而在圆筒的中心部位产生负压,并利用这个负压,将物体吸附悬浮起来。
  并且此外,本申请的发明者发明了具备有壳体形状的部件和设置在壳体形状部件的凹部内能产生旋流的扇叶的非接触式抓持装置。(专利文献:日本特开2011-138948号公報、中国专利申请号: 201010607157.2 )
  现有技术中,还有日本的专利申请文件:
  【特许文献1】特开2005-51260号公報
  【特许文献2】特开2007-324382号公報
  【特许文献3】特开2011-138948号公報
  这样的非接触式搬运装置或非接触式抓持装置以下通称为力发生装置,在实际的应用过程中,我们想知道力发生装置对对象物体施加吸引力或是排斥力的大小。但是,因为是非接触式的施力方式,对象物体和装置之间不存在任何接触,因此,我们没有办法通过常规手段,比如使用力传感器来直接测量作用在物体上的力的大小。
发明内容
  本发明所要解决的问题是提供一个能够推测压力分布或是力的大小的力发生装置。
为了解决上述技术问题,本发明所采用的技术方案是:有杯状部件,所述杯状部件具有一端底面设置了截面为略圆形的凹部及与所述凹部的底端口相连通的吸气口,设置于所述杯状部件的凹部里的扇叶,通过所述扇叶的旋转将空气从所述吸气口吸入并在所述凹部里产生旋流,有计算压力及力的演算部,所述演算部计算压力及力依据:
Pi(r)=1/2ρrω+C,公式中,Pi(r)为所述杯状部件在所述凹部的底端口内与所述扇叶回转中心的距离r处的压力值,ρ为气体的密度,ω为旋流的角速度, C 为系数。
上述技术方案中,更具体的方案还可以是:具备至少测量一个位置的压力的压力传感器和测量所述凹部内的所述旋流旋转角速度的转速传感器,所述的演算部利用所述的至少一个位置的压力实测值及旋转速度来计算所述 C 值。
进一步的:所述压力传感器的检测位置在所述风扇轴处,该压力传感器检测的压力为Pi(0)。
进一步的:具有测量所述的凹部里不同半径的至少两个位置的压力的压力传感器,所述演算部至少依据这两个位置的压力实测值来计算系数 C 和转速的平方ω
进一步的:所述压力传感器的检测位置在所述风扇轴处,该压力传感器检测的压力为Pi(0)。
进一步的:所述的杯状部件的内侧面为圆柱面,该圆柱面的直径为R;所述的杯状部件的外侧面为圆柱面,该圆柱面的直径为 R ,所述演算部计算的压力及力还包括 Po(r) 部分, Po(r)=Pi(R)/ln(R/R)ln(r/R ) 。
由于采用上述技术方案,本发明具有如下有益效果:
由于杯状部件具有演算部,演算部通过本发明给出的公式,即可能算出压力及力的大小 , 以便于使用者能够掌握压力和力的情况 。
附图说明
  图 1 为本发明实施例一实施形态的非接触式抓持工具的结构示意图。
图 2 是图 1 的 A-A 截面图。
图 3 是本发明实施例一的实施形态的非接触式抓持工具的俯视图。
图 4 是本发明实施例二的扇叶的结构示意图。
图 5 是本发明实施例三的扇叶的结构示意图。
   图 6 是本发明实施例一的压力分布图。
图 7 是本发明实施例一排气口与吸附工件的间距与吸力的关系图。
   图 8 是本发明实施例四中的的结构示意图。
图 9 本发明实施例一杯状部件的结构示意图。
图 10 是实施例五的杯状部件的结构示意图。
图 11 是实施例六的杯状部件的结构示意图。
   图 12 是本发明的 非接触式抓持工具 与压力的分布示意图。
   图 13 是本发明实施例一的结构示意图。
   图 14 是本发明实施例一的压力分布计算结果和压力分布实测结果。
   图 15 是本发明实施例七的结构示意图。
具体实施方式
以下结合附图实例对本发明作进一步详述:
如图 1 、图 2 、图 3 、图 9 和图 13 所示的实施例一 , 有杯状部件 1 ,该杯状部件具有一端底面设置了截面为略圆形的凹部 2 及与凹部 2 的底端口相连通的吸气口 3 ,设置于杯状部件 1 的凹部 2 里的扇叶 4 ,通过扇叶 4 的旋转将空气从吸气口 3 吸入并在凹部 2 里产生旋流, 该扇叶的截面为弧形体,扇叶 4 通过转轴 5 与装在 杯状部件 1 的顶部的电机 6 连接, 扇叶 4 与转轴 5 的夹角为 0.5-20 度,由于扇叶 4 带有弯曲的形状,能够将空气从吸气口 3 吸入,扇叶 4 有 8 片, 电机 6 的转动带动扇叶 4 按箭头方向旋转,为了减小空气从杯状部件 1 的底部排出时的气阻,杯状部件 1 的底面内侧加工成斜面, 杯状部件 1 的顶部还设有一个压力传感器 7 ,该压力传感器的输出端与演算部 8 连接,演算部用来计算压力及力依据 Pi(r)=1/2ρ rω +C,公式中,Pi(r)为杯状部件 1 在凹部 2 的底端口内与扇叶 4 回转中心的距离r处的压力值, ρ 为气体的密度, ω 为旋流的角速度, C 为系数。
工件 9 放置于杯状部件 1 的底部,在这样的状态下,电机 6 开始旋转,旋转转速是 1000-20000rpm ,于是,杯状部件 1 的凹部 2 内产生旋流,旋流在杯状部件 1 的内部产生负压的分布,如图 6 所示,横轴是半径方向位置 r ,纵轴是压力;在杯状部件 1 的凹部 2 内 形成 的 旋流,在离心力的作用下,杯状部件内的空气会向外周移动,从而致使中心部的空气的密度降低,压力也会降至大气压以下,这时将工件 9 置于 杯状部件1下,负压就会作用在工件的上表面,并且负压如图6 的虚线 所示沿半径方向分布;由于工件上下表面存在着压力差,就会产生吸引力,工件就能被无触碰抓持工具所抓持。
图 4 是实施例二的扇叶,该扇叶在某一高度的地方弯折。
图 5 是实施例三的扇叶,该扇叶沿着转轴的旋转方向倾斜安装。
  图 7 是杯状部件的底部和工件之间的间距 h 与吸引力的关系,这个曲线显示,随着间隔的扩大,吸引力存在着上升的部分,图中的点划线表示的是工件的重力,点划线与吸引力的曲线相交于一点,也就是说在这个位置,重力和吸引力相平衡,在稳定的状态下,工件将悬浮于这个位置上。
  如果只使用一个图 1 的 非接触式抓持工具的话,旋流有可能会带动工件一起旋转,为了防止工件的旋转,通常使用多个非接触式抓持工具来抓持一个工件,如图8的实施例二,是具有多个非接触式抓持工具,无接触式抓持装置有4个无触碰抓持工具;在图中的虚线是表示工件9,为了使作用于工件的旋转力矩相互抵消为零,4个无触碰抓持工具 所形成的涡流方向不同,图中,上部的两个 无触碰抓持工具产生顺时针的涡流,在下部的两个无触碰抓持工具则形成与之相反的逆时针的涡流,两组无触碰抓持工具产生的涡流 方向可以互换。
图 9 是实施例一杯状部件沿回 转轴方向的截面图,该截面呈柱形;图10是实施例五杯状部件沿回转轴方向的截面图,该截面呈略半球形;图11是实施例六杯状部件沿回转轴方向的截面图,该截面呈圆台柱形;涡流扇的扇叶4的形状要根据杯状部件的凹部形状来设计,使扇叶和凹部不发生接触。
  如图 8 所示,多个非接触式抓持工具能够抓取一个对工件,在实际的搬运中,非接触式抓持工具的力会有差别,因此导致工件倾斜,从而导致工件与装置发生接触。为了能实现安全地完全无接触地抓取和搬运工件,我们必须要知道各非接触抓取装置所产生的力的大小。
  并且,在实际的搬运过程中,有时候会需要抓取和搬运不同重量的工件,这种情况下,我们需要根据工件的重量来调节控制非接触式抓持工具的力,为此我们必须在不接触工件的状态下测量出工件的重量。
  在使用非接触式抓持工具来进行搬运的时候,非接触式抓持工具在抓持工件时会在垂直方向上做上下运动,如果非接触式抓持工具在垂直方向上的加速度太快,工件有可能无法跟上非接触式抓持工具的运动而掉落,为了解决这个问题,我们需要根据非接触式抓持工具的垂直方向上的移动加速度来对力进行适当的调节,因此,我们有必要对非接触式抓持工具的压力分布或是力进行推定。
  鉴于这样的实际应用要求,我们需要知道本非接触式抓持工具所产生的力,这在实际应用中非常有必要,一方面,因为非接触式抓持工具和工件之间没有接触,传统的机械方法无法对力进行测量。
  因此,下面说明推定非接触式抓持工具的压力分布及力的技术。
  图 12 显示的是本发明的 非接触式抓持工具 与压力的分布, r 是任意位置的半径, R 是杯状部件 1 的内径, R 是杯状部件 1 的外径,本发明的 非接触式抓持工具 通过使用扇叶 4 能够在凹部 2 里产生具有均一角速度 ω 的空气旋流, 这样的均一转速的旋流的压力分布 Pi ( r )在半径 r<R 的范围里,流动的惯性力,也就是旋流的离心力起支配作用,可以用下面的方程式表示:
ρrω=dPi(r)/dr
在半径方向上对该微分方程进行积分,能得到以下的( 1 )式,在此,压力 Pi ( r )的单位是表压:
P i(r)=1/2ρr ω +C  …(1)
ρ是气体(空气)的密度,ω是杯状部件 1 里的旋流的角速度, C 是系数;也就是,压力分布 Pi ( r )是抛物线形状,并且,为了能更准确地用( 1 )式对压力 Pi ( r )进行推算,扇叶 4 的叶片最外端和杯状部件 1 的侧面内壁间的间距越小越好。
  本发明的实施形态的非接触式抓持工具能够产生均一转速的旋流,所以,r<R的范围的压力 Pi ( r )能够用( 1 )式来近似表达。
  并且,在半径为R<r<R范围里,空气的粘性起主要支配作用,压力分布 Po ( r )可以用下面的微分方程来表示:
 d(rdPo(r)/dr)/dr=0
在半径方向上对该微分方程进行积分,可得:
Po(r)=Pi(R)/ln(R/R)ln(r/R )  …(2)
在此,压力 Po ( r )是表压,也就是说,该实施形态的非接触式抓持工具在R<r<R的压力分布 Po ( r )能够用( 2 )式进行近似表达。
  如图 13 所示,演算部 8 是基于( 1 )式和( 2 )式来计算压力分布 Pi ( r )和 Po ( r ),式( 1 )及式( 2 )里有未知参数积分系数 C 和角速度ω和 Pi ( R1 ),这些位置参数会随着非接触式抓持工具和工件 9 间的距离的改变而发生改变。因此,非接触式抓持工具需要实时地求出未知参数C、ω、Pi(R),通过安装在杯状部件 1 上的压力传感器 7 和转速传感器 10 能实时地求取这些位置参数。
  压力传感器 7 以一定的采样周期测量r<R范围里的至少一个点的压力,并且,压力传感器 7 设置在杯状部件 1 的上面,在同一半径的位置上,杯状部件 1 里的压力在垂直方向上是一样的,这个我们已经通过实验调查得到验证,所以,压力传感器装在杯状部件 1 上方测量到的压力等同于工件 9 上的同一半径位置上的压力。
  转速传感器 10 以一定的采样周期测量扇叶的转速,也就是旋流的转速,例如,转速传感器 10 可以选用外置的光栅编码器,也可以使用内装于电机里的 Hall 传感器,也可以通过检测电机的电流和电压来推算出转速。
  把( 1 )式做变形整理可得( 3 )式:
C=Pi(r)-1/2ρrω   …(3)
把在半径 r 所测量的压力值 P 和转速的测量值 ω 代入( 3 )式可求出系数 C:
C=P-1/2ρr ω    …(4)
  在图 13 中的非接触式抓持工具中,压力传感器 7 设置在 r=0 的位置上测量压力 Pi ( 0 ),压力分布 Pi ( r )在半径 r=0 处的变化比较平缓,这样的话对压力传感器的安装位置的精度要求不高。也就是说,安装压力传感器的位置稍微出现点偏差,也不会对( 1 )式所计算的压力分布结果产生太大的影响。
  并且,在这种情况下,( 4 )式可以简化成 (4') 式,所测得的压力值 P 和系数 C 是一致的。
C=P   …(4')
也就是,非接触式抓持工具 可利用 (1') 式来计算压力分布 Pi(r):
Pi(r)=1/2ρrω +P   …(1')
  求出系数 C 的话,就能求出半径 r<R 范围的压力分布 Pi(r) ,求出 Pi(r) 后,就能计算出半径 r=R 的压力 Pi(R),有了 Pi(R) ,就能够根据(2)式计算出半径 R<r<R 的压力分布 Po ( r )。
  图 14 是基于( 1 )式所计算的压力分布和实际测量的实验结果的比较,实线( i )是实测值,虚线( ii )是计算值。除了在半径位置r=R的附近出现了少许误差,计算值都非常好地与实测值相吻合。
  本发明的非接触式抓持工具所产生的力可以通过对面积求( 1 )式和( 2 )式的积分来求取,计算式如下:
F=∫ R1[2πrPi(r)]dr+∫R1 R2[2πrPo(r)]dr   …(5)
演算部 8 是根据( 5 )式来计算非接触式抓持工具所产生的力。
  如图 15 所示的实施例七,杯状部件 21 上具有演算部 28 和两个压力传感器 27a 和 27b 。
  压力传感器 27a , 27b 安装在 r<R 的区域里,与中心的距离不一样,至少需要在两个位置 rm1、rm2 安装压力传感器,用于测量压力 Pm1、Pm2
  演算部 28 用至少两个位置的压力测量值 Pm1、Pm2 来计算系数 C 和角速度的平方 ω 。 2 个位置上的压力测量值 Pm1、Pm2 通过下面的两个方程式来计算系数 C 以及 ω
m1=1/2ρrm1 ω+C  …(1a)
m2=1/2ρrm2 ω+C  …(1b)
  实施例七中的非接触式抓持工具,压力传感器 27a 设置在 r=0 的位置上测量压力 Pm1 ,压力分布 Pi ( r )在半径 r=0 处的变化比较平缓,这样的话对压力传感器的安装位置的精度要求不高,也就是说,安装压力传感器的位置稍微出现点偏差,也不会对( 1 )式所计算的压力分布结果产生太大的影响,并且,压力实测值 Pm1 就等于系数 C ,这简化了计算处理。
ω 的计算可以通过( 6 )式进行求取:
ω=2(Pm2-Pm1)/rm2    …(6)
  压力传感器 27b 安装在 rm2=R 的位置上用来测量压力 Pm2
  演算部 28 求出 ω 和 C 后,并基于( 1 )式和( 2 )式来计算压力分布 Pi ( r )和 Po ( r ),并且,演算部 28 对面积积分压力分布 Pi ( r )和 Po ( r ),就可以计算出非接触式抓持工具施加给工件的力的大小。
  以上就是关于能够推定出压力分布 P ( r )和力 F 的非接触式抓持工具的说明,基于这个非接触式抓持工具,就能够结算处压力分布 P ( r )和力 F 。
  工件静止或是匀速运动时,演算部所推定的力 F 就是 非接触式抓持工具 的重量,也就是说,这个实施形态的非接触式抓持工具能够测量出工件的重量,于是,我们知道了对象物体的重量,我们就能够知道在垂直方向上做加速或是减速运动时惯性力的大小,从而能够适当地控制电机的转速,从而能够适当地控制作用于工件的力 F 。
  因为能够推定出力 F 的大小,我们就能够用力的推定值来构建力的负反馈控制系统,也就是说,利用演算部所推定的力 F 和力的目标值之间的差来对电机进行转速的控制,通过对电机的控制,我们就能够适当地控制 作用于工件的力 F 。比如,在非接触式抓持工具 在垂直方向上运动时,我们通过运动的加速度情况来对力 F 进行控制,从而防止工件掉落或是与 非接触式抓持工具 发生局部的接触。
  实施形态以非接触式抓持工具的应用为例说明了非接触抓取工件,但是,本发明并不限于这一用途,比如,非接触式抓持工具可以产生排斥力,排斥力是图 12 所显示的压力分布的积分值为正的时候所产生的力。
 
因此,非接触式抓持工具能够准确把握装置作用于物体上的力,是非接触地施力于工件的力发生装置,并且,非接触式抓持工具也能够作为非接触的重力计或是非接触的力测量装置来使用。

Claims (1)

  1. 1 、一种力发生装置,有杯状部件,所述杯状部件具有一端底面设置了截面为略圆形的凹部及与所述凹部的底端口相连通的吸气口,设置于所述杯状部件的凹部里的扇叶,通过所述扇叶的旋转将空气从所述吸气口吸入并在所述凹部里产生旋流,其特征在于:有计算压力及力的演算部,所述演算部计算压力及力依据:
    Pi(r)=1/2 ρ r ω +C,公式中,Pi(r)为所述杯状部件在所述凹部的底端口内与所述扇叶回转中心的距离r处的压力值,ρ为气体的密度,ω为旋流的角速度, C 为系数。
      2 、根据权利要求 1 所述的力发生装置,其特征在于:具备至少测量一个位置的压力的压力传感器和测量所述凹部内的所述旋流旋转角速度的转速传感器,所述的演算部利用所述的至少一个位置的压力实测值及旋转速度来计算所述 C 值。
    3 、根据权利要求 2 所述的力发生装置,其特征在于:所述压力传感器的检测位置在所述风扇轴处,该压力传感器检测的压力为Pi(0)。
    4 、根据权利要求 1 所述的力发生装置,其特征在于:具有测量所述的凹部里不同半径的至少两个位置的压力的压力传感器,所述演算部至少依据这两个位置的压力实测值来计算系数 C 和转速的平方ω
    5 、根据权利要求 4 所述的力发生装置,其特征在于:所述压力传感器的检测位置在所述风扇轴处,该压力传感器检测的压力为Pi(0)。
    6 、根据权利要求 4 所述的力发生装置,其特征在于:所述的杯状部件的内侧面为圆柱面,该圆柱面的直径为R;所述的杯状部件的外侧面为圆柱面,该圆柱面的直径为 R 2 ,所述演算部计算的压力及力还包括 Po(r) 部分, Po(r)=Pi(R)/ln(R/R)ln(r/R ) 。
PCT/CN2013/072032 2012-02-28 2013-02-28 力发生装置 WO2013127357A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/469,556 US20140363275A1 (en) 2012-02-28 2014-08-26 Force generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-041531 2012-02-28
JP2012041531A JP2013179137A (ja) 2012-02-28 2012-02-28 力発生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/469,556 Continuation-In-Part US20140363275A1 (en) 2012-02-28 2014-08-26 Force generating device

Publications (1)

Publication Number Publication Date
WO2013127357A1 true WO2013127357A1 (zh) 2013-09-06

Family

ID=49081650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072032 WO2013127357A1 (zh) 2012-02-28 2013-02-28 力发生装置

Country Status (4)

Country Link
US (1) US20140363275A1 (zh)
JP (1) JP2013179137A (zh)
CN (1) CN103318647A (zh)
WO (1) WO2013127357A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103640912B (zh) * 2013-12-02 2016-01-20 中国航天科技集团公司第五研究院第五一三研究所 一种纳米薄膜转运工装
CN105460097B (zh) * 2014-09-12 2019-01-29 浙江大学 攀爬机器车
WO2017017750A1 (ja) * 2015-07-27 2017-02-02 株式会社ニレコ 青果物把持具
CN105922189A (zh) * 2016-06-17 2016-09-07 深圳市创显光电有限公司 Led显示屏前维护气吸工具
CN118343498A (zh) * 2018-03-01 2024-07-16 杭州孚亚科技有限公司 吸紧装置
US20220099099A1 (en) * 2019-05-22 2022-03-31 Hewlett-Packard Development Company, L.P. Identification signals for fans
CN111170001A (zh) * 2020-02-18 2020-05-19 浙江大学 转盘机构
CN114552022B (zh) * 2021-09-02 2023-09-05 万向一二三股份公司 一种固体电池的制造装置和制造方法
CN114348644B (zh) * 2022-01-20 2022-12-13 汪子辉 一种具有旋转爪臂和运动式工作头的物流用程序控制机械手
CN115648270A (zh) * 2022-08-26 2023-01-31 贺建立 一种非接触吸盘
CN117400229B (zh) * 2023-12-14 2024-02-09 深圳市爱溪尔科技有限公司 一种可调的多工位用气动抓取机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228779A (ja) * 1992-02-21 1993-09-07 Olympus Optical Co Ltd 調心機能付チャック
JP2006114748A (ja) * 2004-10-15 2006-04-27 Taiheiyo Cement Corp 非接触吸着治具及び非接触チャック装置
JP2006341346A (ja) * 2005-06-09 2006-12-21 Fujifilm Holdings Corp 非接触型搬送装置
CN101172540A (zh) * 2006-10-02 2008-05-07 Smc株式会社 非接触式运送装置
CN101934931A (zh) * 2009-04-07 2011-01-05 三星康宁精密琉璃株式会社 非接触型抽吸抓取装置以及具有该装置的非接触型抽吸抓取框架
CN102101296A (zh) * 2009-12-21 2011-06-22 黎科 非接触搬运装置
CN102107782A (zh) * 2009-12-28 2011-06-29 黎鑫 无触碰抓持工具

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3686781D1 (de) * 1985-05-04 1992-10-29 Seibu Giken Kk Vorrichtung zum halten und/oder foerdern einer platte mittels eines fluids ohne koerperliche beruehrung.
US4969676A (en) * 1989-06-23 1990-11-13 At&T Bell Laboratories Air pressure pick-up tool
US6099056A (en) * 1996-05-31 2000-08-08 Ipec Precision, Inc. Non-contact holder for wafer-like articles
US6565321B1 (en) * 1999-05-21 2003-05-20 Vortex Holding Company Vortex attractor
US6427991B1 (en) * 2000-08-04 2002-08-06 Tru-Si Technologies, Inc. Non-contact workpiece holder using vortex chuck with central gas flow
US7204672B2 (en) * 2002-12-09 2007-04-17 Anemoid, Llc Multi-modal forced vortex device
JP2004351527A (ja) * 2003-05-27 2004-12-16 Koganei Corp 吸着検出方法および吸着検出装置
JP4437415B2 (ja) * 2004-03-03 2010-03-24 リンク・パワー株式会社 非接触保持装置および非接触保持搬送装置
JP2007176638A (ja) * 2005-12-27 2007-07-12 Harmotec Corp 非接触搬送装置
JP5406852B2 (ja) * 2008-11-18 2014-02-05 オイレス工業株式会社 非接触搬送装置
JP2011138877A (ja) * 2009-12-28 2011-07-14 Seiko Epson Corp 非接触保持体及び非接触保持ハンド
KR101187014B1 (ko) * 2011-03-08 2012-09-28 (주)디에스리퀴드 드로스로부터 알루미늄을 회수하기 위한 드로스 처리용 발열 플럭스 및 이를 이용하여 드로스 처리기로 이송된 드로스로부터 알루미늄 또는 알루미늄 합금을 회수하는 방법
US8905680B2 (en) * 2011-10-31 2014-12-09 Masahiro Lee Ultrathin wafer transport systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228779A (ja) * 1992-02-21 1993-09-07 Olympus Optical Co Ltd 調心機能付チャック
JP2006114748A (ja) * 2004-10-15 2006-04-27 Taiheiyo Cement Corp 非接触吸着治具及び非接触チャック装置
JP2006341346A (ja) * 2005-06-09 2006-12-21 Fujifilm Holdings Corp 非接触型搬送装置
CN101172540A (zh) * 2006-10-02 2008-05-07 Smc株式会社 非接触式运送装置
CN101934931A (zh) * 2009-04-07 2011-01-05 三星康宁精密琉璃株式会社 非接触型抽吸抓取装置以及具有该装置的非接触型抽吸抓取框架
CN102101296A (zh) * 2009-12-21 2011-06-22 黎科 非接触搬运装置
CN102107782A (zh) * 2009-12-28 2011-06-29 黎鑫 无触碰抓持工具

Also Published As

Publication number Publication date
US20140363275A1 (en) 2014-12-11
JP2013179137A (ja) 2013-09-09
CN103318647A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
WO2013127357A1 (zh) 力发生装置
US9786537B2 (en) Wafer edge measurement and control
US9434071B2 (en) Wafer handling traction control system
CN107379290B (zh) 切削装置
JP5730638B2 (ja) 基板処理装置の処理室内構成部材及びその温度測定方法
WO2017044201A1 (en) Substrate support with real time force and film stress control
WO2020219138A1 (en) Sensors and system for in-situ edge ring erosion monitor
CN203636513U (zh) 超声波振动辅助研磨/抛光的超精密加工系统
TWI602641B (zh) Cutting device and cutting method
US20130255092A1 (en) Measurement head for feeler for workpieces being machined
KR20190051825A (ko) 연마 방법 및 연마 장치
CN106553336B (zh) 三维打印机喷头与热床距离自动置零及调平系统
JP6971383B2 (ja) 基板処理装置、反応管形状測定方法及び半導体装置の製造方法
WO2018018597A1 (zh) 一种自动探测和规避障碍物的机器人、系统及方法
CN104185384A (zh) 部件的安装方法及安装装置
TWI753140B (zh) 靜電容量測定用之測定器
Nishinoiri et al. In situ monitoring of microfracture during plasma spray coating by laser AE technique
JPS62107935A (ja) 平面研削盤の自動補正機構
JP2023064325A (ja) セットアップ方法
JPH02134212A (ja) 切断方法
US10056071B2 (en) Device for inspecting workpiece surfaces and strip materials
JP4143777B2 (ja) 静電浮上搬送装置および静電浮上搬送装置付ロボット
CN112236274A (zh) 用于物体的非接触式处理的设备
KR101900137B1 (ko) 테이프 커팅 장치
Li et al. Dynamic modeling of vortex levitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754053

Country of ref document: EP

Kind code of ref document: A1