WO2013127287A1 - 喷射沉积-激光重熔复合成形工艺及设备 - Google Patents

喷射沉积-激光重熔复合成形工艺及设备 Download PDF

Info

Publication number
WO2013127287A1
WO2013127287A1 PCT/CN2013/071221 CN2013071221W WO2013127287A1 WO 2013127287 A1 WO2013127287 A1 WO 2013127287A1 CN 2013071221 W CN2013071221 W CN 2013071221W WO 2013127287 A1 WO2013127287 A1 WO 2013127287A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
laser
layer
temperature
spray
Prior art date
Application number
PCT/CN2013/071221
Other languages
English (en)
French (fr)
Inventor
林峰
张磊
张婷
张人佶
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2013127287A1 publication Critical patent/WO2013127287A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention belongs to the technical field of material processing, and in particular relates to a spray deposition-laser remelting composite forming process and equipment. Background technique
  • Spray deposition forming is a material processing process that utilizes a high-speed gas, atomizes a molten metal and forms a jet of minute metal droplets, and then deposits a formed material.
  • the resulting deposited compact has the advantages of fine grain size, no macrosegregation, and the like. . It is therefore a simple process, short process, high quality, and a wide range of material forming techniques. 5% ⁇
  • Laser beam remelting uses the high energy density and non-contact characteristics of a laser to scan a solid powder surface, melt it and deposit it, and fabricate solid parts by layer-by-layer stacking.
  • defects such as voids are inevitably present, and subsequent processes such as hot isostatic pressing are required to be dense to meet the use requirements.
  • the laser remelting deposition technique generally requires a material powder prepared in advance, so the flow is long, the process is greatly affected by the powder property, and impurities are easily introduced. Summary of the invention
  • the present invention is directed to solving at least some of the above technical problems or at least providing a useful commercial option.
  • the material structure of the spray deposition improves the performance of the deposited blank.
  • Another object of the present invention is to provide a spray deposition-laser remelting composite forming apparatus which reduces or eliminates deposited tissue by combining spray deposition with a laser (or electron beam) remelting deposition process for forming a deposited blank
  • a spray deposition-laser remelting composite forming process includes the following steps: spray deposition: spraying a molten metal into a deposition region on a deposition substrate to form a deposition layer in the deposition region; laser remelting: utilizing Excited Optically scanning the deposited layer to form a remelted layer by laser remelting and beam impingement of the deposited layer; and depositing blank forming: driving the deposited substrate to move and repeatedly performing the spray deposition during movement of the deposited substrate And laser remelting to form a deposited blank composed of a plurality of deposition-remelting layers on the deposition substrate.
  • a scanning remelting technique of a laser is combined with a spray deposition forming technique, and a laser (or a high energy beam such as an electron beam) is used.
  • the deposited layer structure of the spray deposition is synchronously scanned, and the pores and porosity in the deposited layer structure are reduced or eliminated by controlling the temperature of the deposition region and remelting the deposited layer, and the material structure of the spray deposited material is densified to further improve the performance.
  • the spray deposition-laser remelting composite forming process according to the above embodiment of the present invention may further have the following additional technical features:
  • the laser remelted region follows the spray deposited region along the same motion trajectory.
  • the spray deposition-laser remelting composite forming process further includes: detecting a surface temperature of the deposition substrate before spray deposition; and passing the surface temperature of the deposition substrate according to the detected The laser scanning preheats the surface of the deposition substrate to control the surface temperature of the deposition substrate before the spray deposition within a predetermined temperature range.
  • the spray deposition-laser remelting composite forming process further includes: detecting a surface temperature of the deposited layer during spray deposition; and passing the laser according to detecting a surface temperature of the deposited layer Scanning controls the surface of the deposited layer to be semi-liquid or semi-solid.
  • the spray deposition-laser remelting composite forming process further comprises: detecting each of the deposited layers and the remelted layer of each layer in the spray deposition and laser remelting process Temperature according to the detected temperature of the deposited layer and the remelted layer by changing a spray deposition parameter, a power of the laser, a frequency of the laser, a scan path of the laser, and a motion parameter of the deposition substrate At least a portion of the layer is controlled to control the temperature of the deposited layer and the remelted layer.
  • the spray deposition-laser remelting composite forming process further comprises scanning the deposition blank by the laser after the deposition blank is formed to control a cooling rate and a cooling process of the deposition blank The temperature field in the middle is hooked.
  • a spray deposition-laser remelting composite forming apparatus includes: a chamber body having a process chamber therein; a drive support device, wherein the drive support device is disposed in the process chamber And a spraying device, wherein the spraying device is connected to the chamber body for spraying molten metal into a deposition area on the deposition substrate, Forming a deposition layer in the deposition region; and a laser scanning device coupled to the chamber body for laser scanning the deposition layer to perform laser remelting of the deposition layer And beam impact.
  • the spray deposition-laser remelting composite forming apparatus may further have the following additional technical features:
  • the method further includes: a temperature detecting device connected to the chamber body, configured to detect a temperature of a surface of the deposition substrate, a temperature of the deposition layer, and the remelting a temperature of the layer; and a control device coupled to the laser scanning device, the ejection device, the driving support device, and the temperature detecting device, respectively, to control the laser scanning device, the ejection device, the driving support device, and the temperature detecting device Running.
  • a temperature detecting device connected to the chamber body, configured to detect a temperature of a surface of the deposition substrate, a temperature of the deposition layer, and the remelting a temperature of the layer
  • a control device coupled to the laser scanning device, the ejection device, the driving support device, and the temperature detecting device, respectively, to control the laser scanning device, the ejection device, the driving support device, and the temperature detecting device Running.
  • the spraying device includes an atomizing nozzle disposed in the process chamber;
  • the laser scanning device includes a laser for generating laser light and is disposed outside the process chamber a focus scanning device connected to the laser; and
  • the temperature detecting device is an infrared thermal imager disposed outside the process chamber.
  • the chamber body is provided with a laser window and a detection window
  • the process chamber is provided with dust removal gas for respectively removing the inner side of the laser window and the detection window.
  • a focus scanning device disposed at the laser window to emit laser light into the process chamber through the laser window
  • the infrared thermal imager being disposed at the detection window to detect the deposition through the detection window The temperature of the surface of the substrate, the temperature of the deposited layer, and the temperature of the remelted layer.
  • FIG. 1 is a schematic view of a spray deposition-laser remelting composite forming apparatus according to an embodiment of the present invention, in which a spray deposition-laser remelting composite formed tubular deposition blank is shown;
  • Figure 2 is a schematic view showing the surface of the tubular deposited blank shown in Figure 1;
  • FIG. 3 is a schematic view of a spray deposition-laser remelting composite forming apparatus according to another embodiment of the present invention, showing a spray deposition-laser remelting composite formed cylindrical deposit;
  • FIG. 4 is a schematic view of a spray deposition-laser remelting composite forming apparatus according to still another embodiment of the present invention, in which a spray deposition-laser remelting composite formed plate-like deposition blank is shown;
  • Figure 5 is a flow diagram showing a spray deposition-laser remelting composite forming process in accordance with an embodiment of the present invention. detailed description
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • the term “plurality” refers to two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or connected integrally; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is less than the second feature.
  • the deposited layer is referred to as “remelted layer” or “deposited-remelted layer” after remelting by the laser, and there is no difference in meaning between the two.
  • a spray deposition-laser remelting composite forming process includes the following steps: spray deposition: spraying a molten metal into a deposition region on a deposition substrate to form a deposition layer in the deposition region. .
  • Laser remelting The deposited layer is scanned with a laser to perform laser remelting and beam impingement on the deposited layer to form a remelted layer.
  • Deposit blank formation driving the deposition substrate movement and repeatedly performing the spray deposition and laser remelting during the movement of the deposition substrate to form a deposition blank composed of a multilayer deposition-remelting layer on the deposition substrate .
  • a scanning remelting technique of a laser is combined with a spray deposition forming technique, and a laser (or a high energy beam such as an electron beam) is used.
  • the deposited layer structure of the spray deposition is synchronously scanned, and the pores and porosity in the deposited layer structure are reduced or eliminated by controlling the temperature of the deposition region and remelting the deposited layer, and the material structure of the spray deposited material is densified to further improve the performance.
  • the laser remelted region follows the jet deposition region. As shown in FIG. 2, during the spray deposition process, the scanning region 32 moves behind the deposition region 31 along the same motion trajectory to remelt and beam deposit the deposited material just after deposition to improve the microstructure of the deposited layer.
  • the spray deposition-laser remelting composite forming process further comprises: detecting a surface temperature of the deposition substrate prior to spray deposition; and detecting a surface temperature of the deposition substrate
  • the surface of the deposition substrate is preheated by the laser scanning to control the surface temperature of the deposition substrate before the spray deposition within a predetermined temperature range.
  • the surface of the deposited substrate is preheated by scanning of the laser beam (or electron beam) and supplemented by temperature measurement and sensing to improve and control the temperature and the state of the initial deposited layer.
  • the spray deposition-laser remelting composite forming process further includes: detecting a surface temperature of the deposited layer during spray deposition; and passing the surface temperature of the deposited layer according to the detection
  • the laser scanning controls the surface of the deposited layer to be semi-liquid or semi-solid.
  • the spray deposition-laser remelting composite forming process further comprises: detecting each of the deposited layers and each layer in the spray deposition and laser remelting process Temperature of the remelted layer; changing the spray deposition parameter, the power of the laser, the frequency of the laser, the scan path of the laser, and the deposition substrate according to the detected temperature of the deposited layer and the remelted layer At least a portion of the motion parameters to control the temperature uniformity of the deposited layer and the remelted layer.
  • a closed control system constituting a surface temperature of the deposited layer to improve or maintain the temperature uniformity of the deposited layer and the remelted layer.
  • the spray deposition-laser remelting composite forming process further includes scanning the deposition blank by the laser to control a cooling rate of the deposition blank after the deposition blank is formed And the temperature field during the cooling process is hooked. Thereby, local looseness of the deposited blank can be avoided.
  • a spray deposition-laser remelting composite forming apparatus includes: a chamber body 1, a drive supporting device 2, an injection device 4, and a laser scanning device 5.
  • the chamber body 1 has a process chamber 11 therein.
  • the drive support device 2 is disposed within the process chamber 11. It is used to support the deposition of the substrate 3 and to drive the deposition of the substrate 3 in the process chamber 11.
  • the spraying device 4 is connected to the chamber body 1. It is used to spray a molten metal into the deposition region 31 on the deposition substrate 3 to form a deposition layer in the deposition region 31.
  • the laser scanning device 5 is connected to the chamber body 1. And performing laser scanning on the deposited layer to perform laser remelting and beam impact on the deposited layer to form a deposition-remelting layer.
  • a spray deposition-laser remelting composite forming apparatus combines a scanning remelting technique of a laser (or a high energy beam such as an electron beam) with a spray deposition forming technique, using a laser (or a high energy beam such as an electron beam),
  • the deposited layer structure of the spray deposition is synchronously scanned, and the pores and porosity in the deposited layer structure are reduced or eliminated by controlling the temperature of the deposition region and remelting the deposited layer, and the material structure of the spray deposited material is densified to further improve the performance.
  • the spray deposition-laser remelting composite forming apparatus further comprises: a temperature detecting device 6, and a control device (not shown).
  • the temperature detecting means 6 is connected to the chamber body 1 for detecting the temperature of the surface of the deposition substrate 3, the temperature of the deposited layer, and the temperature of the remelted layer.
  • the control device is connected to the laser scanning device 5, the ejection device 4, the drive supporting device 2, and the temperature detecting device 6, respectively, to control the operations of the laser scanning device 5, the ejection device 4, the drive supporting device 2, and the temperature detecting device 6.
  • the spray device 4 includes an atomizing nozzle 41 disposed within the process chamber 11.
  • the laser scanning device 5 includes a laser 51 for generating laser light and a focus scanning device 52 connected to the laser 51, which are disposed outside the process chamber 11.
  • the temperature detecting means 6 is an infrared thermal imager 61 provided outside the process chamber 11.
  • the chamber body 1 is provided with a laser window 12 and a detection window 13.
  • the process chamber 11 is provided with a dust removing nozzle 121 for dusting the inner side surface of the laser window 12 and a dust removing nozzle 131 for dusting the inner side surface of the detecting window 13.
  • a focus scanning device 52 is provided at the laser window 12 to emit laser light into the process chamber 11 through the laser window 12.
  • An infrared thermal imager 61 is provided at the detection window 13 to detect the temperature of the surface of the deposition substrate 3, the temperature of the deposition layer, and the temperature of the remelted layer through the detection window 13.
  • the laser scanning device 5 may be one set or multiple sets; in one laser scanning device 5, one laser 51 or a plurality of lasers 51 may be disposed.
  • the purpose is to enhance the effect of laser scanning to better perform laser remelting and beam impact on the deposited layer to form a deposition-remelting layer. This will be understood by those of ordinary skill in the art.
  • Figures 1 and 2 illustrate a specific embodiment of the invention that can be used to make tubular deposition parts.
  • the deposition substrate 3 can be rotated in the process chamber 11 about the central axis of the drive supporting device 2 and reciprocated along its central axis (i.e., the left-right direction as shown in Fig. 1).
  • the laser 51 (which may be a C02 laser, a YAG laser, a fiber laser, and a semiconductor laser) produces a high-energy laser beam with a laser power between 100 W and 10,000 W.
  • the surface of the deposition substrate 3 is scanned and heated by the focus scanning device 52, and the infrared thermal imager 61 detects the surface temperature of the deposition substrate 3.
  • the metal liquid is atomized at the atomizing nozzle 41 with high-pressure nitrogen gas or an inert gas (argon gas or helium gas), and is spray-deposited onto the deposition substrate 3.
  • the deposition substrate 3 keeps rotating And the axial reciprocating motion causes the deposition region 31 to continuously move on the surface of the deposition substrate 3 to gradually form a deposition layer.
  • the laser scanning region 32 follows the deposition region 31 to re-melt and beam the deposited layer immediately after the deposition to eliminate pores, pores and microscopic porosity.
  • the laser scanning region 32 should be slightly larger than the deposition region 31, whereby selective scanning heating is performed on the deposition region 31, particularly the deposition edge region, to control the temperature of the deposition region 31 and its uniformity, and to improve the deposition layer. Organizational status.
  • the infrared thermal imager 61 continuously monitors the deposition area 31, the laser scanning area 32, the deposition substrate 3, the deposition layer, and the remelted layer (which may also be a deposition-remelting layer). The temperature of the surface.
  • the laser output power is adjusted or the rotational and axial movement speed of the deposition substrate 3 is adjusted to ensure the stability of the spray deposition process.
  • the laser scanning path and power are adjusted, the number of scanning times and the laser power are increased for the low temperature region, and the scanning times and laser power are reduced for the high temperature region to improve or maintain the temperature of the deposition layer. All are hooked.
  • the laser scanning of the deposition substrate 3 is still maintained, and by the rotation and axial movement of the deposition substrate 3, the scanning area of the laser on the surface of the deposition substrate 3 is enlarged to control the cooling rate of the deposition blank and The temperature field of the cooling process to avoid local loosening.
  • the laser power can be between 100W and 10,000W, the focusing distance is between 300mm and 1500mm, and the angular velocity of scanning is between 1rad/ S and 30rad/ s .
  • the deposition temperature of the surface of the deposition layer and the remelted layer of the deposition substrate 3 is between 20 CTC and 1500 ° C.
  • the rotation speed of the deposition substrate 3 is between 10 rpm and 100 rpm, and the axial reciprocating speed is between 1 mm/s and 100 mm/ Between s.
  • Figure 3 illustrates another embodiment of the invention that can be used to make cylindrical deposition parts or spindles.
  • the deposition substrate 3 is rotatable about the central axis of the drive support device 2 and is moved up and down (i.e., in the up and down direction as shown in Fig. 3).
  • the central axis of the driving support device 2 has an angle of 0 to 50 ° with the vertical line.
  • the deposition substrate 3 is lifted and lowered along the central axis of the drive supporting device 2, adjusted to an appropriate distance from the atomizing nozzle 41 (for example, may be 300 mm to 1000 mm), and rotated around the central axis of the drive supporting device 2 ( The rotation speed can be from 10 rpm to 400 rpm).
  • the laser 51 generates a high-energy laser beam, and the surface of the deposition substrate 3 is scanned and heated by the focus scanning device 52, and the infrared thermal imager 61 detects the surface temperature of the deposition substrate 3.
  • the metal liquid is atomized at the atomizing nozzle 41 with high-pressure nitrogen gas or an inert gas, and spray deposited on the top surface side of the deposition substrate 3.
  • the rotation of the deposition substrate 3 causes the deposition layer to gradually cover the entire surface, and the deposition layer and the remelted layer are deposited layer by layer.
  • the laser scanning region 32 is on the deposition substrate 3 or the other side of the deposition layer.
  • the deposition layer immediately after deposition rapidly enters the laser scanning.
  • the laser re-melts and beam strikes to eliminate voids, pores and microscopic porosity and adjust the surface temperature.
  • the deposition substrate 3 is gradually lowered to maintain the position of the deposition layer and the remelted layer relative to the atomizing nozzle 4 and the stabilization of the deposition process.
  • the infrared thermal imager 61 continuously monitors the temperature of the deposition area 31, the laser scanning area 32, the deposited layer and the remelted layer, and the surface of the deposited substrate 3.
  • the laser output power is adjusted or the rotational and axial movement speeds of the deposition substrate 3 are adjusted to ensure the stability of the spray deposition process.
  • the temperature of the deposition forming zone is found to be uneven, the laser scanning path and power are adjusted, the number of scanning times and the laser power are increased for the low temperature region, and the scanning times and laser power are reduced for the high temperature region to improve or maintain the temperature of the deposition layer. All are hooked.
  • the laser temperature-controlled scanning of the surface of the deposited layer and the remelted layer is maintained, and by scanning the substrate 3, the scanning area of the laser on the surface of the deposited layer and the remelted layer is enlarged to control the deposition.
  • the cooling rate of the layer and the remelted layer and the temperature field of the cooling process to avoid local loosening of the deposited billet.
  • Figure 4 illustrates yet another embodiment of the present invention that can be used to make flat shaped deposition parts.
  • the deposition substrate 3 can be driven by the drive support device 2.
  • the movement mechanism 22 and the X-axis ie, the left-right direction shown in FIG. 4
  • movement mechanism 23 can be driven by the Y-axis (ie, the front-rear direction shown in FIG. 4) to perform two-dimensional planar motion, and in the lifting mechanism.
  • the movement is carried out by lifting (ie, the up and down direction as shown in FIG. 4).
  • the angle between the axis of the lifting mechanism and the vertical line is 0 ⁇ 50 °.
  • the elevating mechanism adjusts the deposition substrate 3 to an appropriate distance from the atomizing nozzle 41 (e.g., may be 300 mm to 1000 mm) before the start of the spray deposition.
  • the laser 51 generates a high-energy laser beam, and the surface of the deposition substrate 3 is scanned and heated by the focus scanning device 52, and the infrared thermal imager 61 detects the surface temperature of the deposition substrate 3.
  • the metal liquid is atomized at the atomizing nozzle 41 with high-pressure nitrogen gas or an inert gas, and is spray deposited onto the deposition substrate 3.
  • the deposition substrate 3 reciprocates along the Y-axis, so that the deposition layer gradually covers the deposition substrate 3 and forms a deposition zone; while the substrate 3 is deposited under the driving of the X-axis motion mechanism 23 Moving along the X axis causes the deposition zone in the Y direction to gradually spread in the X direction and cover the entire surface of the deposition substrate 3. Stacking layer by layer, a flat deposit is obtained.
  • the laser scanning region 32 follows the deposition region 31 to re-melt and beam the deposited layer immediately under the deposition zone to eliminate pores, pores or microscopic porosity.
  • the elevating mechanism is gradually lowered to maintain the position of the deposition layer and the remelted layer relative to the atomizing nozzle 41 and the deposition process.
  • the infrared thermal imager 61 continuously monitors the temperature of the deposition area 31, the laser scanning area 32, the deposited layer and the remelted layer, and the surface of the deposited substrate 3.
  • the laser output power is adjusted or the moving speeds of the Y-axis moving mechanism 22 and the X-axis moving mechanism 23 are adjusted to ensure the stability of the spray deposition process.
  • the laser scanning path and power are adjusted, and the low temperature area is Increasing the number of scans and laser power reduces the number of scans and laser power for high temperature areas to improve or maintain the temperature uniformity of the deposited layer.
  • the laser scanning of the deposited layer and the remelted layer is still maintained, and the laser is spread on the surface of the deposited layer and the remelted layer by the two-dimensional movement of the Y-axis moving mechanism 22 and the X-axis moving mechanism 23.
  • the scanning area is used to control the cooling rate of the deposited billet and the temperature field of the cooling process to avoid local loosening.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种喷射沉积-激光重熔复合成形工艺及设备。喷射沉积-激光重熔复合成形设备包括:具有工艺腔室(11)的腔室本体(1);驱动支撑装置(2)设在工艺腔室(11)内,用于支撑和驱动沉积基体(3)运动;喷射装置(4)与腔室本体(1)相连,用于向沉积基体3上的沉积区域(31)内喷射金属液;和激光扫描装置(5)与腔室本体(1)相连,用于对沉积层进行激光扫描,以将沉积层进行激光重熔和束流冲击。

Description

喷射沉积-激光重熔复合成形工艺及设备
技术领域
本发明属于材料加工技术领域, 具体地, 涉及到一种喷射沉积-激光重熔复合成形工艺 及设备。 背景技术
喷射沉积成形 (spray deposition forming) 是一种利用高速气体, 雾化金属熔液并 形成微小金属液滴射流, 然后沉积成形的材料加工工艺, 得到的沉积坯具有晶粒细小、 没 有宏观偏析等优点。 因此是一种工艺简单、 短流程、 高品质, 而且适用材料范围广的材料 成形技术。 但目前的喷射沉积成形工艺由于在沉积时含有一定量的凝固态材料, 再加上雾 化气体的影响, 沉积坯或制件或多或少存在孔隙和微观疏松, 孔隙率至少 0. 5%以上。 而这 些缺陷使沉积制件的机械性能大为下降, 必须进行热等静压、 挤压、 锻造或其它密实工艺, 消除或减少孔隙, 以达到使用要求。
激光重熔 (laser beam remelting) 是利用激光的高能量密度和非接触作用的特点, 扫描固体粉末表面, 使之熔化并沉积, 并通过逐层堆积的方式制造实体零件。 但由于要重 熔完全固态的粉末, 因此不可避免地存在孔隙等缺陷, 也需要进行热等静压等后续工艺进 行密实, 以满足使用要求。 同时激光重熔沉积技术一般都需要事先制备的材料粉末, 因此 流程较长, 工艺受粉末性质的影响较大, 易引入杂质。 发明内容
本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商业选 择。
为此, 本发明的一个目的在于提出一种喷射沉积 -激光重熔复合成形工艺, 该复合成形 工艺将喷射沉积与激光重熔沉积工艺结合, 减少或消除沉积层组织中的孔隙和疏松, 致密 化喷射沉积的材料组织, 提高了沉积坯的性能。
本发明的另一目的在于提出一种喷射沉积 -激光重熔复合成形设备,该设备通过将喷射 沉积与激光 (或电子束) 重熔沉积工艺结合进行沉积坯的成形, 减少或消除沉积组织中的 孔隙和疏松, 致密化喷射沉积的材料组织, 提高了沉积坯的性能。
根据本发明实施例的喷射沉积 -激光重熔复合成形工艺, 包括以下步骤: 喷射沉积: 向 沉积基体上的沉积区域内喷射金属液以在所述沉积区域内形成沉积层; 激光重熔: 利用激 光扫描所述沉积层以对所述沉积层进行激光重熔和束流冲击形成重熔层; 和沉积坯成形: 驱动所述沉积基体运动且在所述沉积基体运动过程中重复执行所述喷射沉积和激光重熔, 以在所述沉积基体上形成由多层沉积-重熔层构成的沉积坯。
根据本发明实施例的喷射沉积 -激光重熔复合成形工艺, 将激光 (或电子束等高能束) 的扫描重熔技术与喷射沉积成形技术结合, 利用激光(或电子束等高能束), 对喷射沉积成 形的沉积层组织进行同步扫描, 通过控制沉积区域的温度和重熔沉积层的方法, 减少或消 除沉积层组织中的孔隙和疏松, 致密化喷射沉积的材料组织, 以进一步提高其性能。
另外,根据本发明上述实施例的喷射沉积-激光重熔复合成形工艺还可以具有如下附加 的技术特征:
根据本发明的一个实施例, 所述激光重熔的区域沿相同的运动轨迹跟随所述喷射沉积 的区域。
根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括: 在喷射沉积 之前检测所述沉积基体的表面温度; 和根据检测到的所述沉积基体的表面温度通过所述激 光扫描预热所述沉积基体的表面以将喷射沉积之前的所述沉积基体的表面温度控制在预定 温度范围内。
根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括: 在喷射沉积 过程中检测所述沉积层的表面温度; 和根据检测所述沉积层的表面温度通过所述激光扫描 将所述沉积层的表面控制为半液态或半固态。
根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括: 在所述喷射 沉积和激光重熔过程中检测每一层所述沉积层和每一层所述重熔层的温度; 根据检测到的 所述沉积层和重熔层的温度通过改变喷射沉积参数、 所述激光的功率、 所述激光的频率、 所述激光的扫描路径和所述沉积基体的运动参数中的至少一部分, 以控制所述沉积层和重 熔层的温度均勾性。
根据本发明的一个实施例,所述喷射沉积-激光重熔复合成形工艺还包括在所述沉积坯 成形之后通过所述激光扫描所述沉积坯, 以控制所述沉积坯的冷却速度和冷却过程中的温 度场均勾性。
根据本发明实施例的喷射沉积 -激光重熔复合成形设备, 包括: 腔室本体, 所述腔室本 体内具有工艺腔室; 驱动支撑装置, 所述驱动支撑装置设在所述工艺腔室内, 用于支撑沉 积基体和驱动所述沉积基体在所述工艺腔室内运动; 喷射装置, 所述喷射装置与所述腔室 本体相连, 用于向所述沉积基体上的沉积区域内喷射金属液, 以在所述沉积区域内形成沉 积层; 和激光扫描装置, 所述激光扫描装置与所述腔室本体相连, 用于对所述沉积层进行 激光扫描, 以将所述沉积层进行激光重熔和束流冲击。 另外,根据本发明上述实施例的喷射沉积-激光重熔复合成形设备还可以具有如下附加 的技术特征:
根据本发明的一个实施例, 还包括: 温度检测装置, 所述温度检测装置与所述腔室本 体相连, 用于检测所述沉积基体表面的温度、 所述沉积层的温度和所述重熔层的温度; 和 控制装置, 所述控制装置分别与所述激光扫描装置、 喷射装置、 驱动支撑装置和温度检测 装置相连, 以控制所述激光扫描装置、 喷射装置、 驱动支撑装置和温度检测装置的运行。
根据本发明的一个实施例, 所述喷射装置包括设在所述工艺腔室内的雾化喷嘴; 所述 激光扫描装置包括设在所述工艺腔室外面的用于产生激光的激光器和与所述激光器相连的 聚焦扫描装置; 及所述温度检测装置为设在所述工艺腔室外面的红外热成像仪。
根据本发明的一个实施例, 所述腔室本体上设有激光窗口和检测窗口, 所述工艺腔室 内设有分别用于对所述激光窗口和所述检测窗口的内侧面进行除尘的除尘气嘴, 所述聚焦 扫描装置设在所述激光窗口处以通过所述激光窗口向所述工艺腔室内发射激光, 所述红外 热成像仪设在所述检测窗口处以通过所述检测窗口检测所述沉积基体表面的温度、 所述沉 积层的温度和所述重熔层的温度。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得明 显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解, 其中:
图 1是根据本发明实施例的喷射沉积-激光重熔复合成形设备的示意图,其中示出了喷 射沉积 -激光重熔复合成形管状沉积坯;
图 2是图 1中所示管状沉积坯的表面示意图;
图 3是根据本发明另一实施例的喷射沉积-激光重熔复合成形设备的示意图,其中示出 了喷射沉积-激光重熔复合成形圆柱状沉积坯;
图 4是根据本发明再一实施例的喷射沉积-激光重熔复合成形设备的示意图,其中示出 了喷射沉积 -激光重熔复合成形板状沉积坯; 和
图 5是根据本发明实施例的喷射沉积 -激光重熔复合成形工艺的流程示意图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 旨在用于解释本发明, 而不能理解为对本发明的限制。
在本发明中, 需要理解的是, 术语 "中心"、 "纵向"、 "横向"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底 " "内"、 "外"等指示的方位或位置关系 为基于附图所示的方位或位置关系, 仅是为了方便和简化描述本发明, 而非指示或暗示所 指的装置或元件必须具有特定的方位和定向、 以特定的方位和定向构造和操作, 因此不能 理解为对本发明的限制。
在本发明中, 术语 "第一"、 "第二"仅用于描述目的, 而不能理解为指示或暗示相对 重要性。 术语 "多个"指两个或两个以上, 除非另有明确的限定。
在本发明中, 除非另有明确的规定和限定, 术语 "安装"、 "相连"、 "连接"、 "固定" 等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可 以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以 是两个元件内部的连通。 对于本领域的普通技术人员而言, 可以根据具体情况理解上述术 语在本发明中的具体含义。
在本发明中, 除非另有明确的规定和限定, 第一特征在第二特征之 "上"或之 "下" 可以包括第一和第二特征直接接触, 也可以包括第一和第二特征不是直接接触而是通过它 们之间的另外的特征接触。 而且, 第一特征在第二特征 "之上"、 "上方"和 "上面"包括 第一特征在第二特征正上方和斜上方, 或仅仅表示第一特征水平高度高于第二特征。 第一 特征在第二特征 "之下"、 "下方"和 "下面"包括第一特征在第二特征正上方和斜上方, 或仅仅表示第一特征水平高度小于第二特征。
在本发明中, 除非另有明确的规定和限定, 所述沉积层经所述激光重熔后称为 "重熔 层"或 "沉积 -重熔层", 二者含义没有区别。
下面参考附图来详细描述根据本发明实施例的喷射沉积 -激光重熔复合成形工艺。 如图 5所示, 根据本发明实施例的喷射沉积 -激光重熔复合成形工艺, 包括一下步骤: 喷射沉积: 向沉积基体上的沉积区域内喷射金属液以在所述沉积区域内形成沉积层。 激光重熔: 利用激光扫描所述沉积层以对所述沉积层进行激光重熔和束流冲击形成重 熔层。
沉积坯成形: 驱动所述沉积基体运动且在所述沉积基体运动过程中重复执行所述喷射 沉积和激光重熔, 以在所述沉积基体上形成由多层沉积-重熔层构成的沉积坯。
根据本发明实施例的喷射沉积 -激光重熔复合成形工艺, 将激光 (或电子束等高能束) 的扫描重熔技术与喷射沉积成形技术结合, 利用激光(或电子束等高能束), 对喷射沉积成 形的沉积层组织进行同步扫描, 通过控制沉积区域的温度和重熔沉积层的方法, 减少或消 除沉积层组织中的孔隙和疏松, 致密化喷射沉积的材料组织, 以进一步提高其性能。 根据本发明的一个实施例, 所述激光重熔的区域跟随所述喷射沉积区域。 如图 2所示, 在喷射沉积过程中, 扫描区域 32在沉积区域 31后面, 沿相同的运动轨迹移动, 以对刚刚 沉积下的沉积材料进行重熔和束流沉积, 改善沉积层的组织状态。
有利地, 根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括: 在 喷射沉积之前检测所述沉积基体的表面温度; 和根据检测到的所述沉积基体的表面温度通 过所述激光扫描预热所述沉积基体的表面, 以将喷射沉积之前的所述沉积基体的表面温度 控制在预定温度范围内。 由此, 在喷射沉积初始阶段, 通过激光束 (或电子束) 的扫描, 并辅以温度测量和传感, 对沉积基体表面进行预热, 以改善和控制初始沉积层的温度及组 织状态。
进一步地, 根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括: 在喷射沉积过程中检测所述沉积层的表面温度; 和根据检测所述沉积层的表面温度通过所 述激光扫描将所述沉积层的表面控制为半液态或半固态。 由此, 通过控制沉积区域的温度 场, 保证沉积层表面处于最佳的半液态或半固态, 以获得最佳的沉积组织。
进一步地, 根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括: 在所述喷射沉积和激光重熔过程中检测每一层所述沉积层和每一层所述重熔层的温度; 根 据检测到的所述沉积层和重熔层的温度通过改变喷射沉积参数、 所述激光的功率、 所述激 光的频率、 所述激光的扫描路径和所述沉积基体的运动参数中的至少一部分, 以控制所述 沉积层和重熔层的温度均勾性。 由此, 通过检测和监测沉积区域及沉积层的表面温度, 并 根据实测温度, 实时调整喷射沉积参数、 激光的功率、 激光的频率、 激光的扫描路径和沉 积基体的运动参数中的一个或多个, 构成一个沉积层表面温度的闭合控制系统, 以改善或 维持沉积层和重熔层的温度均勾性。
进一步地, 根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形工艺还包括在 所述沉积坯成形之后, 通过所述激光扫描所述沉积坯以控制所述沉积坯的冷却速度和冷却 过程中的温度场均勾性。 由此, 可以避免沉积坯出现局部疏松。
下面参考附图来描述根据本发明实施例的喷射沉积-激光重熔复合成形设备。
如图 1-4所示, 根据本发明实施例的喷射沉积 -激光重熔复合成形设备, 包括: 腔室本 体 1, 驱动支撑装置 2, 喷射装置 4和激光扫描装置 5。
具体地说, 腔室本体 1内具有工艺腔室 11。
驱动支撑装置 2设在工艺腔室 11内。用于支撑沉积基体 3和驱动沉积基体 3在工艺腔 室 11内运动。
喷射装置 4与腔室本体 1相连。 用于向沉积基体 3上的沉积区域 31内喷射金属液, 以 在沉积区域 31内形成沉积层。 激光扫描装置 5与腔室本体 1相连。 用于对所述沉积层进行激光扫描, 以将所述沉积 层进行激光重熔和束流冲击, 形成沉积-重熔层。
根据本发明实施例的喷射沉积 -激光重熔复合成形设备, 将激光 (或电子束等高能束) 的扫描重熔技术与喷射沉积成形技术结合, 利用激光(或电子束等高能束), 对喷射沉积成 形的沉积层组织进行同步扫描, 通过控制沉积区域的温度和重熔沉积层的方法, 减少或消 除沉积层组织中的孔隙和疏松, 致密化喷射沉积的材料组织, 以进一步提高其性能。
有利地, 根据本发明的一个实施例, 所述喷射沉积 -激光重熔复合成形设备还包括: 温 度检测装置 6, 和控制装置 (未示出)。
温度检测装置 6与腔室本体 1相连, 用于检测沉积基体 3表面的温度、 所述沉积层的 温度和所述重熔层的温度。 所述控制装置分别与激光扫描装置 5、 喷射装置 4、 驱动支撑装 置 2和温度检测装置 6相连, 以控制激光扫描装置 5、 喷射装置 4、 驱动支撑装置 2和温度 检测装置 6的运行。
进一步地, 根据本发明的一个实施例, 喷射装置 4包括设在工艺腔室 11内的雾化喷嘴 41。 激光扫描装置 5包括设在工艺腔室 11外面的用于产生激光的激光器 51和与激光器 51 相连的聚焦扫描装置 52。 温度检测装置 6为设在工艺腔室 11外面的红外热成像仪 61。
进一步地, 根据本发明的一个实施例, 腔室本体 1上设有激光窗口 12和检测窗口 13。 工艺腔室 11内设有分别用于对激光窗口 12的内侧面进行除尘的除尘气嘴 121和对检测窗 口 13的内侧面进行除尘的除尘气嘴 131。 聚焦扫描装置 52设在激光窗口 12处以通过激光 窗口 12向工艺腔室 11内发射激光。 红外热成像仪 61设在检测窗口 13处以通过检测窗口 13检测沉积基体 3表面的温度、 所述沉积层的温度和所述重熔层的温度。
在此需要说明的是, 激光扫描装置 5可以是一套, 也可以是多套; 一套激光扫描装置 5 中, 可以设置一个激光器 51, 也可以设置多个激光器 51。 目的是加强激光扫描的效果, 以 更好地将所述沉积层进行激光重熔和束流冲击, 形成沉积-重熔层。这对于本领域的普通技 术人员来说, 是可以理解的。
图 1和图 2示出了本发明的一个具体实施例, 可用于制造管状沉积零件。
沉积基体 3可以在工艺腔室 11中进行绕驱动支撑装置 2的中心轴的旋转和沿其中心轴 向 (即如图 1中所示的左右方向) 的往复运动。
在喷射沉积开始前, 激光器 51 (可以是 C02激光器、 YAG激光器、 光纤激光器和半导 体激光器) 产生高能激光束, 激光功率在 100W~10, 000W之间。 在聚焦扫描装置 52的作用 下对沉积基体 3表面扫描加热, 而红外热成像仪 61检测沉积基体 3的表面温度。
当沉积基体 3的表面温度达到预定温度时, 开始用高压氮气或惰性气体(氩气或氦气) 将金属液体在雾化喷嘴 41处进行雾化, 并喷射沉积到沉积基体 3上。沉积基体 3保持旋转 和轴向往复运动, 使沉积区域 31在沉积基体 3表面不断移动, 逐渐形成沉积层。 而激光扫 描区域 32则紧随沉积区域 31, 对刚沉积下的沉积层进行重熔和束流冲击, 以消除孔隙、 气孔和显微疏松。 有利地, 激光扫描区域 32应略大于沉积区域 31, 由此, 对于沉积区域 31, 特别是沉积边缘区域进行选择性的扫描加热, 以控制沉积区域 31的温度及其均勾性, 改善沉积层的组织状态。
在沉积和重熔过程中, 红外热成像仪 61不间断地监测沉积区域 31、 激光扫描区域 32、 沉积基体 3、 所述沉积层和所述重熔层 (也可以是沉积-重熔层) 表面的温度。 当发现沉积 成形区域的温度低于或高于工艺要求时, 则调整激光输出功率或调整沉积基体 3的旋转和 轴向运动速度, 以保证喷射沉积过程的稳定性。
当发现沉积成形区域的温度出现不均勾时, 则调整激光扫描路径及功率, 对低温区域 增加扫描次数和激光功率, 对高温区域减小扫描次数和激光功率, 以改善或维持沉积层的 温度均勾性。
在喷射 -重熔沉积完成后, 仍然维持对沉积基体 3进行激光扫描, 而且通过沉积基体 3 的旋转和轴向运动, 扩大激光在沉积基体 3表面的扫描区域, 以控制沉积坯的冷却速度和 冷却过程的温度场, 以避免出现局部疏松。
激光功率可以在在 100W~10, 000W之间, 所述的聚焦距离在 300mm~1500 mm之间, 扫描 的角速度在 lrad/S~30rad/S之间。沉积基体 3所述沉积层和重熔层表面的加热温度在 20CTC ~1500 °C之间, 所述的沉积基体 3 的旋转速度在 10rpm~100rpm, 轴向往复运动速度在 lmm/ s~ 100mm/ s之间。
图 3示出了本发明的另一具体实施例, 可用于制造圆柱状沉积零件或锭子。
沉积基体 3可绕驱动支撑装置 2的中心轴旋转和升降 (即如图 3中所示的上下方向) 运动。 驱动支撑装置 2的中心轴与垂线有 0~50 ° 夹角。 在喷射沉积开始前, 沉积基体 3沿 驱动支撑装置 2的中心轴升降,调整到与雾化喷嘴 41适当距离(例如,可以是 300mm~1000 mm) , 并绕驱动支撑装置 2的中心轴旋转 (旋转速度可以为 10rpm~400rpm)。
激光器 51产生高能激光束,在聚焦扫描装置 52的作用下对沉积基体 3表面扫描加热, 而红外热成像仪 61检测沉积基体 3的表面温度。当沉积基体 3的表面温度达到预定温度时, 开始用高压氮气或惰性气体将金属液体在雾化喷嘴 41处进行雾化,并喷射沉积到沉积基体 3 的顶面上一侧。 沉积基体 3 的旋转使沉积层逐渐覆盖整个表面, 并逐层堆积得到沉积层 和重熔层。而激光扫描区域 32则在沉积基体 3或所述沉积层的另一侧, 随着沉积基体 3和 所述沉积层和重熔层的绕轴旋转, 刚沉积下的沉积层会迅速进入激光扫描区域 32, 激光对 其进行重熔和束流冲击, 以消除孔隙、 气孔和显微疏松, 并调整表面温度。
之后又迅速进入沉积区域 31, 进行下一层的喷射沉积。 随着沉积层和重熔层的逐渐增 厚, 沉积基体 3逐步下降, 保持沉积层和重熔层表面相对于雾化喷嘴 4的位置和沉积过程 的稳定。
在沉积和重熔过程中, 红外热成像仪 61不间断地监测沉积区域 31、 激光扫描区域 32、 沉积层和重熔层及沉积基体 3表面的温度。 当发现沉积成形区域的温度低于或高于工艺要 求时, 则调整激光输出功率或调整沉积基体 3的旋转和轴向运动速度, 以保证喷射沉积过 程的稳定性。 当发现沉积成形区域的温度出现不均勾时, 则调整激光扫描路径及功率, 对 低温区域增加扫描次数和激光功率, 对高温区域减小扫描次数和激光功率, 以改善或维持 沉积层的温度均勾性。
在喷射 -重熔沉积完成后, 仍然维持对沉积层和重熔层表面进行激光控温扫描, 而且通 过沉积基体 3的旋转, 扩大激光在沉积层和重熔层表面的扫描区域, 以控制沉积层和重熔 层的冷却速度和冷却过程的温度场, 以避免沉积坯出现局部疏松。
图 4示出了本发明的又一具体实施例, 可用于制造平板状沉积零件。
沉积基体 3可由驱动支撑装置 2驱动。 具体地, 可由 Y轴 (即图 4中所示的前后方向) 运动机构 22和 X轴 (即图 4中所示的左右方向) 运动机构 23驱动, 做二维平面运动, 并 在升降机构的驱动下进行升降 (即如图 4中所示的上下方向) 运动。 升降机构的轴线与垂 线夹角为 0~50 ° 。
在喷射沉积开始前, 升降机构将沉积基体 3调整到与雾化喷嘴 41适当距离 (例如, 可 以是 300mm~1000 mm)。 激光器 51产生高能激光束, 在聚焦扫描装置 52的作用下对沉积基 体 3表面扫描加热, 而红外热成像仪 61检测沉积基体 3的表面温度。 当沉积基体 3的表面 温度达到预定温度时, 开始用高压氮气或惰性气体将金属液体在雾化喷嘴 41处进行雾化, 并喷射沉积到沉积基体 3上。在 Y轴运动机构 22的驱动下,沉积基体 3沿 Y轴做往复移动, 使沉积层在沉积基体 3上逐渐覆盖并形成一个沉积带; 同时在 X轴运动机构 23的驱动下, 沉积基体 3沿 X轴移动, 使 Y向的沉积带逐渐沿 X向铺展, 并覆盖整个沉积基体 3的表面。 逐层堆积, 得到平板状沉积沉积层。
而激光扫描区域 32则紧随沉积区域 31,对沉积带中刚沉积下的沉积层进行重熔和束流 冲击, 以消除孔隙、 气孔或显微疏松。 随着沉积层和重熔层的逐渐增厚, 升降机构逐步下 降, 保持沉积层和重熔层表面相对于雾化喷嘴 41的位置和沉积过程的稳定。
在沉积和重熔过程中, 红外热成像仪 61不间断地监测沉积区域 31、 激光扫描区域 32、 沉积层和重熔层及沉积基体 3表面的温度。 当发现沉积成形区域的温度低于或高于工艺要 求时, 则调整激光输出功率或调整 Y轴运动机构 22和 X轴运动机构 23的运动速度, 以保 证喷射沉积过程的稳定性。
当发现沉积成形区域的温度出现不均勾时, 则调整激光扫描路径及功率, 对低温区域 增加扫描次数和激光功率, 对高温区域减小扫描次数和激光功率, 以改善或维持沉积层的 温度均勾性。
在喷射 -重熔沉积完成后, 仍然维持对沉积层和重熔层进行激光扫描, 而且通过 Y轴运 动机构 22和 X轴运动机构 23的二维运动, 扩大激光在沉积层和重熔层表面的扫描区域, 以控制沉积坯的冷却速度和冷却过程的温度场, 以避免出现局部疏松。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或者 特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意性表述 不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在 任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例, 可以理解的是, 上述实施例是示例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在不脱离本发明的原理和宗旨的情况 下在本发明的范围内可以对上述实施例进行变化、 修改、 替换和变型。

Claims

权利要求书
1、 一种喷射沉积 -激光重熔复合成形工艺, 其特征在于, 包括以下步骤:
喷射沉积: 向沉积基体上的沉积区域内喷射金属液以在所述沉积区域内形成沉积层; 激光重熔: 利用激光扫描所述沉积层以对所述沉积层进行激光重熔和束流冲击形成重 熔层; 和
沉积坯成形: 驱动所述沉积基体运动且在所述沉积基体运动过程中重复执行所述喷射 沉积和激光重熔, 以在所述沉积基体上形成由多层沉积-重熔层构成的沉积坯。
2、 根据权利要求 1所述的喷射沉积 -激光重熔复合成形工艺, 其特征在于, 所述激光 重熔的区域沿相同的运动轨迹跟随所述喷射沉积的区域。
3、 根据权利要求 1所述的喷射沉积 -激光重熔复合成形工艺, 其特征在于, 还包括: 在喷射沉积之前检测所述沉积基体的表面温度; 和
根据检测到的所述沉积基体的表面温度通过所述激光扫描预热所述沉积基体的表面, 以将喷射沉积之前的所述沉积基体的表面温度控制在预定温度范围内。
4、 根据权利要求 1-3中任一项所述的喷射沉积 -激光重熔复合成形工艺, 其特征在于, 还包括:
在喷射沉积过程中检测所述沉积层的表面温度; 和
根据检测所述沉积层的表面温度通过所述激光扫描将所述沉积层的表面控制为半液态 或半固态。
5、 根据权利要求 4所述的喷射沉积 -激光重熔复合成形工艺, 其特征在于, 还包括: 在所述喷射沉积和激光重熔过程中检测每一层所述沉积层和每一层所述重熔层的温 度;
根据检测到的所述沉积层和重熔层的温度通过改变喷射沉积参数、 所述激光的功率、 所述激光的频率、 所述激光的扫描路径和所述沉积基体的运动参数中的至少一部分, 以控 制所述沉积层和重熔层的温度均勾性。
6、 根据权利要求 5所述的喷射沉积 -激光重熔复合成形工艺, 其特征在于, 还包括在 所述沉积坯成形之后通过所述激光扫描所述沉积坯, 以控制所述沉积坯的冷却速度和冷却 过程中的温度场均勾性。
7、 一种喷射沉积 -激光重熔复合成形设备, 其特征在于, 包括:
腔室本体, 所述腔室本体内具有工艺腔室;
驱动支撑装置, 所述驱动支撑装置设在所述工艺腔室内, 用于支撑沉积基体和驱动所 述沉积基体在所述工艺腔室内运动; 喷射装置, 所述喷射装置与所述腔室本体相连, 用于向所述沉积基体上的沉积区域内 喷射金属液, 以在所述沉积区域内形成沉积层; 和
激光扫描装置, 所述激光扫描装置与所述腔室本体相连, 用于对所述沉积层进行激光 扫描, 以将所述沉积层进行激光重熔和束流冲击。
8、 根据权利要求 7所述喷射沉积 -激光重熔复合成形设备, 其特征在于, 还包括: 温度检测装置, 所述温度检测装置与所述腔室本体相连, 用于检测所述沉积基体表面 的温度、 所述沉积层的温度和所述重熔层的温度; 和
控制装置, 所述控制装置分别与所述激光扫描装置、 喷射装置、 驱动支撑装置和温度 检测装置相连, 以控制所述激光扫描装置、 喷射装置、 驱动支撑装置和温度检测装置的运 行。
9、 根据权利要求 8所述喷射沉积 -激光重熔复合成形设备, 其特征在于,
所述喷射装置包括设在所述工艺腔室内的雾化喷嘴;
所述激光扫描装置包括设在所述工艺腔室外面的用于产生激光的激光器和与所述激光 器相连的聚焦扫描装置; 及
所述温度检测装置为设在所述工艺腔室外面的红外热成像仪。
10、 根据权利要求 9所述喷射沉积 -激光重熔复合成形设备, 其特征在于, 所述腔室本 体上设有激光窗口和检测窗口, 所述工艺腔室内设有分别用于对所述激光窗口和所述检测 窗口的内侧面进行除尘的除尘气嘴, 所述聚焦扫描装置设在所述激光窗口处以通过所述激 光窗口向所述工艺腔室内发射激光, 所述红外热成像仪设在所述检测窗口处以通过所述检 测窗口检测所述沉积基体表面的温度、 所述沉积层的温度和所述重熔层的温度。
PCT/CN2013/071221 2012-02-29 2013-01-31 喷射沉积-激光重熔复合成形工艺及设备 WO2013127287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210050857.5 2012-02-29
CN201210050857.5A CN102653850B (zh) 2012-02-29 2012-02-29 喷射沉积-激光重熔复合成形工艺及设备

Publications (1)

Publication Number Publication Date
WO2013127287A1 true WO2013127287A1 (zh) 2013-09-06

Family

ID=46729578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071221 WO2013127287A1 (zh) 2012-02-29 2013-01-31 喷射沉积-激光重熔复合成形工艺及设备

Country Status (2)

Country Link
CN (1) CN102653850B (zh)
WO (1) WO2013127287A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653850B (zh) * 2012-02-29 2014-12-24 清华大学 喷射沉积-激光重熔复合成形工艺及设备
CN106563804A (zh) * 2016-10-12 2017-04-19 机械科学研究总院先进制造技术研究中心 激光引导多金属熔融沉积增材制造工艺及设备
CN107460426A (zh) * 2017-09-19 2017-12-12 湖南三泰新材料股份有限公司 一种喷射沉积棒料表面复合材料的装置
CN110369722B (zh) * 2019-07-22 2020-05-15 燕山大学 一种利用增材修复车轮踏面的装置
CN110865594A (zh) * 2019-11-18 2020-03-06 浙江长兴昊隆电子科技有限公司 一种高性能金属化薄膜的生产监控方法及装置
CN113305301A (zh) * 2021-05-18 2021-08-27 北京工业大学 一种基于熔化沉积与半固态搅拌的复合制造设备及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038551A1 (en) * 2002-08-29 2005-02-17 Jyoti Mazumder Method of fabricating composite tooling using closed-loop direct-metal deposition
CN101532134A (zh) * 2009-04-24 2009-09-16 太原理工大学 一种镁铝合金表面的激光重熔增强方法
US20110143042A1 (en) * 2009-03-24 2011-06-16 Peretti Michael W Methods for making near net shape airfoil leading edge protection
CN102653850A (zh) * 2012-02-29 2012-09-05 清华大学 喷射沉积-激光重熔复合成形工艺及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826921A (en) * 1973-04-26 1974-07-30 Atomic Energy Commission Monitor for radiation-induced heating
JPH10158809A (ja) * 1996-11-27 1998-06-16 Laser Oyo Kogaku Kenkyusho:Kk 耐エロージョン性の優れた被膜の形成方法
EP0852976B1 (en) * 1996-12-10 2003-08-13 Howmet Research Corporation Method and apparatus for spraycasting
DE19740205B4 (de) * 1997-09-12 2004-11-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Aufbringen einer Beschichtung mittels Plasmaspritzens
CN1932082A (zh) * 2006-10-12 2007-03-21 沈阳大陆激光成套设备有限公司 在结晶器表面激光快速熔覆制备耐磨抗热复合涂层工艺
CN100547113C (zh) * 2007-06-13 2009-10-07 华中科技大学 激光感应复合熔覆制备材料涂层的方法及装置
CN102021561B (zh) * 2009-09-17 2012-07-11 沈阳大陆激光技术有限公司 一种激光顶面熔覆方法
CN101818342B (zh) * 2009-12-15 2011-12-21 江苏大学 一种冶金热轧辊工作层的激光直接沉积制备方法和装置
CN102151828A (zh) * 2011-03-18 2011-08-17 西南交通大学 多坩埚多喷嘴喷射成形制备梯度材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038551A1 (en) * 2002-08-29 2005-02-17 Jyoti Mazumder Method of fabricating composite tooling using closed-loop direct-metal deposition
US20110143042A1 (en) * 2009-03-24 2011-06-16 Peretti Michael W Methods for making near net shape airfoil leading edge protection
CN101532134A (zh) * 2009-04-24 2009-09-16 太原理工大学 一种镁铝合金表面的激光重熔增强方法
CN102653850A (zh) * 2012-02-29 2012-09-05 清华大学 喷射沉积-激光重熔复合成形工艺及设备

Also Published As

Publication number Publication date
CN102653850A (zh) 2012-09-05
CN102653850B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2013127287A1 (zh) 喷射沉积-激光重熔复合成形工艺及设备
US11485043B2 (en) Additive manufacturing apparatus utilizing combined electron beam selective melting and electron beam cutting
WO2021073107A1 (zh) 三维打印方法及三维打印设备
KR101779364B1 (ko) 용사피막에 있어서의 치밀화층의 형성방법 및 용사피막 피복부재
EP3183108B1 (en) Method and system for additive manufacturing using a light beam
WO2020259719A1 (zh) 一种超声振动辅助铺平粉末的激光增材加工装置及方法
Zhou et al. Enhancement of laser ablation via interacting spatial double-pulse effect
JP6732502B2 (ja) 三次元造形方法、プログラム、記録媒体、及び三次元造形装置
EP2895293B1 (en) Laser cladding system filler material distribution apparatus
CN114160813A (zh) 可见光激光增材制造
JP2017141505A (ja) 造形物の製造装置、及び製造方法
CN111036905A (zh) 利用逐层多次激光重熔提高致密度并避免孔洞缺陷的方法
KR20210068987A (ko) 3차원 인쇄 방법 및 전도성 액체 3차원 인쇄 시스템
US20230286049A1 (en) Device and method for controlling size of molten pool in wire and arc additive manufacturing process
KR20180111860A (ko) 세라믹스 소결체의 제조 방법, 그리고 세라믹스 성형체의 제조 방법 및 제조 장치
CN108495940A (zh) 取向电工钢板的磁畴细化方法及其装置
EP3434396A1 (en) Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
JP2014042940A (ja) レーザ肉盛溶接装置、肉盛溶接方法及び肉盛溶接部品
JP2012006037A (ja) スプレイフォーミング堆積方法
CN114632944B (zh) 一种基于多能场的异种材料增材制造方法
RU2316612C1 (ru) Способ получения пленочных покрытий посредством лазерной абляции
CA3110446A1 (en) Additive manufacture
KR102570503B1 (ko) 진동부와 가열부를 구비한 금속 3d 프린터
EP1928623A1 (en) A method for spray forming a metal component and a spray formed metal component
KR101569807B1 (ko) 이중 분사주조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13755213

Country of ref document: EP

Kind code of ref document: A1