WO2013127149A1 - 释放舱与被测试物接触的表面的处理方法 - Google Patents

释放舱与被测试物接触的表面的处理方法 Download PDF

Info

Publication number
WO2013127149A1
WO2013127149A1 PCT/CN2012/078931 CN2012078931W WO2013127149A1 WO 2013127149 A1 WO2013127149 A1 WO 2013127149A1 CN 2012078931 W CN2012078931 W CN 2012078931W WO 2013127149 A1 WO2013127149 A1 WO 2013127149A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
test object
contact
processing
intermediate layer
Prior art date
Application number
PCT/CN2012/078931
Other languages
English (en)
French (fr)
Inventor
夏可瑜
Original Assignee
东莞市升微机电设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46525805&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013127149(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 东莞市升微机电设备科技有限公司 filed Critical 东莞市升微机电设备科技有限公司
Priority to US14/374,916 priority Critical patent/US20160122234A1/en
Priority to JP2014553598A priority patent/JP5938485B2/ja
Priority to EP12870268.5A priority patent/EP2821784B1/en
Publication of WO2013127149A1 publication Critical patent/WO2013127149A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0029Cleaning of the detector
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/002Test chambers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Definitions

  • the present invention relates to a method for treating a surface of a gas volatile organic compound (VOC), a semi-volatile organic substance (SVOC), and a test apparatus for detecting a high-boiling organic substance, which is in contact with a test object.
  • VOC gas volatile organic compound
  • SVOC semi-volatile organic substance
  • VOC gas volatile organic compounds
  • SVOC semi-volatile organic compounds
  • high-boiling organic matter testing devices such as the release chamber (also known as the sampler)
  • the cabins the doors connected to the cabin, the intake pipes, The exhaust pipe, the sampling pipe, the agitating fan and the air duct plate (8) installed in the cabin body, and the inner wall of the cabin and the surface of each component contacting the object to be tested have some chemical bonds for adsorbing the test object or
  • the strong surface tension makes it possible for the test object to be adsorbed on the inner wall of the cabin and the surface of each component in contact with the object to be tested, which is difficult to purify.
  • the adsorption force is stronger due to the influence of certain chemical bonds on the inner wall of the chamber and the surface of the components in contact with the test object. Therefore, the inner wall of the cabin and the surface of each component that is in contact with the test object must be treated so that the chemical bonds on the inner surface of the test device, such as hydrogen bonds, silanol groups, and Lewis acid activation points, are covered, and the test object is easily adsorbed on the inner wall of the cabin. And when the components are in contact with the test object, and the content of the test object is sampled and analyzed, the sample taken from the sampling tube of the test device is used for testing, because the inner wall of the cabin and the components are in contact with the test object. The surface adsorbs a large amount of the test object, so that the detection value obtained from the sample is lower than the actual value of the test object in the cabin, and the detection error is large, which cannot effectively meet the high-precision detection requirement.
  • the object of the present invention is to overcome the above-mentioned drawbacks in the prior art: a method for treating a surface in which a release chamber is in contact with a test object, which can greatly reduce the surface of the test object adsorbed on the inner wall of the cabin and the surface of each component in contact with the test object. In the above, the detection accuracy of the release cabin is effectively improved.
  • the technical solution provided by the present invention is as follows: a method for constructing a surface in which a release compartment is in contact with a test object, the release compartment comprising the following components: a cabin, a door connected to the cabin, an intake pipe, Exhaust pipe, sampling pipe, agitating fan installed in the cabin, air duct plate, the method is used for the cabin, the hatch, the intake pipe, the exhaust pipe, the sampling pipe, the stirring fan and the air duct plate Processing the surface of at least one component in contact with the test object, comprising the steps of:
  • the parts are made of stainless steel or glass.
  • the parts are first cleaned to remove contaminants.
  • the parts are made of stainless steel, they are first oxidized with acid, then washed with organic solvent and water, or oxidized for electrolysis. It is then washed with organic solvent and water; when the component is a glass component, it is corroded by HCL or HF, or the surface of the component is roughened by physical means, and other methods can be used to clean and remove contaminants;
  • the pore-forming agent is methyl cellosolve, ethyl cellosolve, glycol-methyl ether acetate, propylene glycol-methyl ether acetate and the like, Polyethylene glycol or polypropylene glycol, the epoxy compound is 2,2,2-tris-(2,3-epoxypropyl)-isocyanurate, and the amine compound is ethylenediamine, diya Ethyltriamine, triethylenetetramine, triethylenediamine, iminodipropylamine/bis(hexamethylene)triamine, 1,3,6-triaminomethylhexane , polymethylene diamine, trimethyl hexamethylene diamine, polyether diamine, isophorone diamine, menthane diamine, N-aminoethyl piperazine, 3,9-double (3 -aminopropyl) 2,4,8,10-tetraoxaspiro, bis
  • the processing of the deactivation layer is performed by coating, dipping or plating an organic compound having a low surface tension on the intermediate layer or on the surface of the component and baking at a high temperature of 300 ° C or higher; the processing of the deactivation layer or After the surface of the component or the intermediate layer after the step (1) is cleaned, immersed or plated with SiO2 sol, baked at a high temperature of 300 ° C or higher, and the solvent is used to remove excess material; the processing of the deactivated layer Or coating, dipping or plating polybenzimidazole (PY), polytetrafluoroethylene, polyfluoroalkane, orthosilicate or orthosilicate on the surface of the component or the intermediate layer after the step (1) cleaning. Baking after baking at a high temperature of 300 ° C or higher.
  • PY polybenzimidazole
  • the processing method of the surface of the release chamber in contact with the test object of the present invention has the beneficial effects of: processing the deactivated layer on the surface of the component after the step (1) cleaning by using the method, or first passing through the step (1)
  • the intermediate layer is processed on the surface of the cleaned component, and then the deactivated layer is processed on the surface of the intermediate layer.
  • the surface tension of the inner wall of the cabin and the surface of each component contacting the object to be tested is reduced, and the object to be tested is adsorbed on the inner wall of the cabin and the surface of each component in contact with the object to be tested, so that the obtained from the sampling tube is obtained.
  • the detected value obtained in the sample is closer to the actual value of the test object in the cabin, thereby effectively improving the detection accuracy of the release capsule.
  • FIG. 1 is a schematic view showing the structure of the release chamber of the present invention in which the release chamber is coated with an intermediate layer and a deactivation layer;
  • Figure 2 is an enlarged cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is an enlarged cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a schematic view showing the structure of the release chamber of the present invention in which the release chamber is coated with a cover layer;
  • Figure 5 is an enlarged cross-sectional view taken along line C-C of Figure 4.
  • Fig. 6 is an enlarged cross-sectional view taken along line D-D of Fig. 4;
  • the preferred embodiment of the method of treating the surface of the release chamber in contact with the test object of the present invention is not intended to limit the scope of the present invention.
  • a method for treating a surface in which a release compartment is in contact with a test object comprising the following components: a cabin 1 and a door 2 connected to the cabin 1 , the intake pipe 4, the exhaust pipe 5, the sampling pipe 6, the agitating fan 7 installed in the cabin 1, the duct plate 8, the method is used for the cabin 1, the door 2, the intake pipe 4,
  • the treatment of the surface of the exhaust pipe 5, the sampling pipe 6, the agitation fan 7, and the duct plate 8 in contact with the object to be tested includes the following steps:
  • the parts are made of stainless steel or glass.
  • the parts are first cleaned to remove contaminants.
  • the parts are made of stainless steel, they are first oxidized with acid, then washed with organic solvent and water, or oxidized for electrolysis. It is then washed with organic solvent and water; when the component is a glass component, it is corroded by HCL or HF, or the surface of the component is roughened by physical means, and other methods can be used to clean and remove contaminants;
  • the intermediate layer 9 is processed on the surface of the component after the step (1) cleaning, and then the deactivated layer 10 is processed on the surface of the intermediate layer 9.
  • the intermediate layer 9 is a SiO 2 layer, or a three-dimensional network or a porous skeleton phase, and has a thickness of submicron to micron thickness.
  • the deactivation layer 10 has a thickness of submicron to micron and is a liquid crystal film structure.
  • the intermediate layer 9 is processed by calcining the component after the step (1) is cleaned by using a monosilane at a high temperature of 500 ° C or higher. 2 layers; or after being coated, immersed or coated with organic silica gel on the surface of the parts after the step (1) cleaning, calcined at a high temperature of 500 ° C or higher to form SiO 2 layers; or coated, immersed or plated with polysiloxanes, cyclodextrin derivatives, calcined at temperatures above 500 °C 2 layers, the polysiloxane is polydimethylsiloxane, phenyl containing polysiloxane, cyano-containing polysiloxane, fluorine-containing polysiloxane, vinyl-added polysiloxane a terminal hydrocarbyl polysiloxane or a polysiloxane in which a spacer is introduced between a molecular chain and a functional group; the intermediate layer 9
  • the epoxy compound and the amine compound are polymerized at 60-200 ° C to form a gel, which is then coated or immersed on the surface of the part after the step (1), and the pore-forming agent is washed with a solvent to leave the skeleton phase and dried.
  • the pore-forming agent is methyl cellosolve, ethyl cellosolve, ethylene glycol-methyl ether acetate, propylene glycol-methyl ether acetate and the like , polyethylene glycol or polypropylene glycol
  • the epoxy compound is 2,2,2-tris-(2,3-epoxypropyl)-isocyanurate
  • the amine compound is ethylenediamine, two Ethylenetriamine, triethylenetetramine, triethylenediamine, iminodipropylamine/bis(hexamethylene)triamine, 1,3,6-triaminomethyl
  • polymethylene diamine trimethyl hexamethylene diamine
  • polyether diamine isophorone diamine, menthane diamine, N-aminoethyl piperazine, 3,9-double (3 -aminopropyl) 2,4,8,10-tetraoxaspiro, bis(4-a
  • the processing of the deactivation layer 10 is performed by coating, dipping or plating an organic compound having a low surface tension on the intermediate layer 9 or on the surface of the member and baking at a high temperature of 300 ° C or higher; the deactivation layer 10
  • the processing is performed by coating, immersing or plating SiO2 sol on the surface of the component or the intermediate layer 9 after the step (1) cleaning, baking at a high temperature of 300 ° C or higher, and removing excess material with a solvent;
  • the processing of the active layer 10 is either coating, dipping or plating polybenzimidazole pyrrolidone (PY), polytetrafluoroethylene, polyfluorocarbons, orthosilicon on the surface of the component or the intermediate layer 9 after the step (1) cleaning.
  • PY polybenzimidazole pyrrolidone
  • the acid fat or the ethyl orthosilicate is baked at a high temperature of 300 ° C or higher.
  • the low surface tension organic compound is a silane compound, a hydrogen-containing silicone oil or polyethylene glycol.
  • the silane compound is trimethylchlorosilane, hexamethyldisilazane, terminal hydrocarbyl polymethylsiloxane, phenyl-dimethylpolysilane, methyltrioxysilane, dimethylpolysilicon. Oxyalkane, diphenyltetramethylsilylamine, polysiloxane or fluoropolysiloxane.
  • Organic compounds having a low surface tension may also employ a fluorinated organic substance.
  • FIG. 5 a method for processing a surface of a release compartment in contact with an object to be tested, the release compartment comprising the following components: a cabin 1 and a door 2 connected to the cabin 1 , the intake pipe 4, the exhaust pipe 5, the sampling pipe 6, the agitating fan 7 installed in the cabin 1, the duct plate 8, the method is used for the cabin 1, the door 2, the intake pipe 4,
  • the treatment of the surface of the exhaust pipe 5, the sampling pipe 6, the agitation fan 7, and the duct plate 8 in contact with the object to be tested includes the following steps:
  • the parts are made of stainless steel or glass. When the parts are made of stainless steel, they are first oxidized with acid, then washed with organic solvent and water, or oxidized for electrolysis, and then washed with organic solvent and water; When it is a glass member, it is washed with an organic solvent and water;
  • the deactivation layer 10 is directly processed on the surface of the component after the step (1) cleaning.
  • the deactivation layer 10 has a thickness of submicron to micron and is a liquid crystal film structure.
  • the processing of the deactivation layer 10 is performed by coating, dipping or plating an organic compound having a low surface tension on the intermediate layer 9 or on the surface of the member and baking at a high temperature of 300 ° C or higher; the deactivation layer 10
  • the processing is performed by coating, immersing or plating SiO2 sol on the surface of the component or the intermediate layer 9 after the step (1) cleaning, baking at a high temperature of 300 ° C or higher, and removing excess material with a solvent;
  • the processing of the active layer 10 is either coating, dipping or plating polybenzimidazole pyrrolidone (PY), polytetrafluoroethylene, polyfluorocarbons, orthosilicon on the surface of the component or the intermediate layer 9 after the step (1) cleaning.
  • PY polybenzimidazole pyrrolidone
  • the acid fat or the ethyl orthosilicate is baked at a high temperature of 300 ° C or higher.
  • the low surface tension organic compound is a silane compound, a hydrogen-containing silicone oil or polyethylene glycol.
  • the silane compound is trimethylchlorosilane, hexamethyldisilazane, terminal hydrocarbyl polymethylsiloxane, phenyl-dimethylpolysilane, methyltrioxysilane, dimethylpolysilicon. Oxyalkane, diphenyltetramethylsilylamine, polysiloxane or fluoropolysiloxane.
  • Organic compounds having a low surface tension may also employ a fluorinated organic substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemically Coating (AREA)

Abstract

一种释放舱与被测试物接触的表面的处理方法,该方法包括以下步骤:(一)所述各部件由不锈钢或玻璃加工而成,部件为不锈钢构件时,先用酸氧化,再用有机溶剂及水清洗,或者氧化后进行电解,再用有机溶剂及水清洗;部件为玻璃构件时,采用HCL或HF腐蚀,或采用物理方法使部件表面粗糙化;(二)在经过步骤(一)清洗后的部件的表面加工去活层,或者先在经过步骤(一)清洗后的部件的表面加工中间层,然后在中间层的表面加工去活层。该方法降低了接触表面吸附力,大大减少被测试物在舱体内壁及各部件与被测试物接触的表面上的吸附,使得从采样管所取得的样品的检测值更接近于舱体内被测试物的实际值,有效提高释放舱的检测精度。

Description

释放舱与被测试物接触的表面的处理方法
技术领域
本发明涉及一种气体挥发性有机物(VOC)、半挥发性有机物(SVOC)及高沸点有机物检测用测试装置内部与被测试物接触的表面的处理方法。
技术背景
传统气体挥发性有机物(VOC)、半挥发性有机物(SVOC)及高沸点有机物检测用测试装置,如释放舱(也称采样仪)是由舱体,与舱体连接的舱门、进气管、排气管、采样管,装设在舱体内的搅拌风机和风道板(8)等部件构成,其舱体内壁及各部件与被测试物接触的表面,由于存在一些吸附被测试物的化学键或者较强的表面张力,使得被测试物吸附在舱体内壁及各部件与被测试物接触的表面上,很难吹扫下来。对于极性化合物,由于舱体内壁及各部件与被测试物接触的表面某些化学键的影响,吸附力更强。因此舱体内壁及各部件与被测试物接触的表面必须进行处理,使得测试装置内表面化学键,如氢键、硅醇基、路易氏酸活化点被覆盖,被测试物容易吸附在舱体内壁及各部件与被测试物接触的表面上,而取样分析被测试物的含量时,是用从测试装置的采样管的所取得的样品进行检测,由于舱体内壁及各部件与被测试物接触的表面吸附了大量的被测试物,导致从样品中得到的检测值低于舱体内被测试物的实际值,检测误差大,不能有效满足高精度的检测需要。
发明内容
本发明的目的在于克服现有技术中上述缺陷:提供一种释放舱与被测试物接触的表面的处理方法,能大大减少被测试物吸附在舱体内壁及各部件与被测试物接触的表面上,有效提高释放舱的检测精度。
为实现上述目的,本发明提供的技术方案如下:构造一种释放舱与被测试物接触的表面的处理方法,该释放舱包括以下部件:舱体,与舱体连接的舱门、进气管、排气管、采样管,装设在舱体内的搅拌风机,风道板,该方法用于对所述舱体、舱门、进气管、排气管、采样管、搅拌风机及风道板中至少一部件与被测试物接触的表面的进行处理,包括以下步骤:
(一)、所述各部件由不锈钢或玻璃加工而成,先将各部件清洗去除污染物,部件为不锈钢构件时,先用酸氧化,再用有机溶剂及水清洗,或者氧化后进行电解,再用有机溶剂及水清洗;部件为玻璃构件时,采用HCL或HF腐蚀,或采用物理方法使部件表面粗糙化,也可采用其他方法清洗去除污染物;
(二)、在经过步骤(一)清洗后的部件的表面加工去活层,或者先在经过步骤(一)清洗后的部件的表面加工中间层,然后在中间层的表面加工去活层。
部件为不锈钢构件时,所述中间层的加工是将经过步骤(一)清洗后的部件采用通入单硅烷在500℃以上的高温条件下煅烧而成SiO 2层;或者是在经过步骤(一)清洗后的部件的表面涂、浸或镀有机硅胶后在500℃以上的高温条件下煅烧而成SiO 2层;或者涂、浸或镀聚硅氧烷类、环糊精衍生物,高温500度以上煅烧而成SiO 2层,所述聚硅氧烷类是聚二甲基硅氧烷、含苯基聚硅氧烷、含氰基聚硅氧烷、含氟聚硅氧烷、加入乙烯基的聚硅氧烷、端烃基聚硅氧烷或者在分子链与官能团间引入间隔基的聚硅氧烷;所述中间层或者是采用在制孔剂中加入不含来源于芳香族的碳原子及杂环的环氧化合物和胺化合物在60-200℃下发生聚合反应,形成凝胶物,然后涂或浸在经过步骤(一)清洗后的部件表面,用溶剂清洗制孔剂,留下骨架相后干燥处理而成三维网状或孔状骨架相,所述制孔剂为甲基溶纤剂、乙基溶纤剂,乙二醇-甲醚乙酸酯、丙二醇-甲醚乙酸酯等酯类,聚乙二醇或者聚丙二醇,所述环氧化合物为2,2,2-三-(2,3-环氧丙基)-异氰尿酸酯,所述胺化合物为乙二胺、二亚乙基三胺、三亚乙基四胺、三缩四乙二胺、亚氨基双丙胺/双(六亚甲基)三胺、1,3,6-三氨基甲基己烷、聚亚甲基二胺、三甲基六亚甲基二胺、聚醚二胺、异佛尔酮二胺、薄荷烷二胺、N-氨基乙基哌嗪、3,9-双(3-氨丙基)2,4,8,10-四氧螺环、双(4-氨基环己基)甲烷或者由聚胺类与二聚酸构成的脂肪族聚酰胺类;部件为玻璃构件时,采用在部件表面沉积二氧化硅、氯化钠或者石墨碳黑来生成中间层。
所述去活层的加工是采用低表面张力的有机化合物涂、浸或镀在中间层上或者部件表面上并在300℃以上的高温条件下烘烤而成;所述去活层的加工或者是将经过步骤(一)清洗后的部件表面或者中间层表面涂、浸或镀SiO2溶胶后在300℃以上的高温条件下烘烤,用溶剂去除多余物质而成;所述去活层的加工或者是将经过步骤(一)清洗后的部件表面或者中间层表面涂、浸或镀聚苯并咪唑吡咯酮(PY)、聚四氟乙烯、聚氟烷类、正硅酸脂或者正硅酸乙脂类后300℃以上的高温条件下烘烤而成。
本发明所述释放舱与被测试物接触的表面的处理方法的有益效果是:通过采用该方法在经过步骤(一)清洗后的部件的表面加工去活层,或者先在经过步骤(一)清洗后的部件的表面加工中间层,然后在中间层的表面加工去活层。降低了舱体内壁及各部件与被测试物接触的表面的表面张力,能大大减少被测试物吸附在舱体内壁及各部件与被测试物接触的表面上,使得从采样管的所取得的样品中得到的检测值更接近于舱体内被测试物的实际值,从而有效提高释放舱的检测精度。
下面结合附图和实施例对本发明所述的释放舱与被测试物接触的表面的处理方法作进一步说明:
附图说明
图1是本发明释放舱与被测试物接触的表面的处理方法所述的释放舱涂有中间层及去活层的结构示意图;
图2是图1的A-A剖视放大图;
图3是图1的B-B剖视放大图;
图4是本发明释放舱与被测试物接触的表面的处理方法所述的释放舱涂有覆盖层的结构示意图;
图5是图4的C-C剖视放大图;
图6是图4的D-D剖视放大图。
具体实施方式
以下本发明所述释放舱与被测试物接触的表面的处理方法的最佳实施例,并不因此限定本发明的保护范围。
实施例一,参照图1、图2、图3,提供一种释放舱与被测试物接触的表面的处理方法,该释放舱包括以下部件:舱体1,与舱体1连接的舱门2、进气管4、排气管5、采样管6,装设在舱体1内的搅拌风机7,风道板8,该方法用于对所述舱体1、舱门2、进气管4、排气管5、采样管6、搅拌风机7及风道板8中至少一部件与被测试物接触的表面的进行处理,包括以下步骤:
(一)、所述各部件由不锈钢或玻璃加工而成,先将各部件清洗去除污染物,部件为不锈钢构件时,先用酸氧化,再用有机溶剂及水清洗,或者氧化后进行电解,再用有机溶剂及水清洗;部件为玻璃构件时,采用HCL或HF腐蚀,或采用物理方法使部件表面粗糙化,也可采用其他方法清洗去除污染物;
(二)、先在经过步骤(一)清洗后的部件的表面加工中间层9,然后在中间层9的表面加工去活层10。
所述中间层9为SiO 2层,或者为三维网状或孔状骨架相,厚度为亚微米到微米厚度。
所述去活层10的厚度为亚微米到微米厚度,为液晶膜结构。
部件为不锈钢构件时,所述中间层9的加工是将经过步骤(一)清洗后的部件采用通入单硅烷在500℃以上的高温条件下煅烧而成SiO 2层;或者是在经过步骤(一)清洗后的部件的表面涂、浸或镀有机硅胶后在500℃以上的高温条件下煅烧而成SiO 2层;或者涂、浸或镀聚硅氧烷类、环糊精衍生物,高温500度以上煅烧而成SiO 2层,所述聚硅氧烷类是聚二甲基硅氧烷、含苯基聚硅氧烷、含氰基聚硅氧烷、含氟聚硅氧烷、加入乙烯基的聚硅氧烷、端烃基聚硅氧烷或者在分子链与官能团间引入间隔基的聚硅氧烷;所述中间层9或者是采用在制孔剂中加入不含来源于芳香族的碳原子及杂环的环氧化合物和胺化合物在60-200℃下发生聚合反应,形成凝胶物,然后涂或浸在经过步骤(一)清洗后的部件表面,用溶剂清洗制孔剂,留下骨架相后干燥处理而成三维网状或孔状骨架相,所述制孔剂为甲基溶纤剂、乙基溶纤剂,乙二醇-甲醚乙酸酯、丙二醇-甲醚乙酸酯等酯类,聚乙二醇或者聚丙二醇,所述环氧化合物为2,2,2-三-(2,3-环氧丙基)-异氰尿酸酯,所述胺化合物为乙二胺、二亚乙基三胺、三亚乙基四胺、三缩四乙二胺、亚氨基双丙胺/双(六亚甲基)三胺、1,3,6-三氨基甲基己烷、聚亚甲基二胺、三甲基六亚甲基二胺、聚醚二胺、异佛尔酮二胺、薄荷烷二胺、N-氨基乙基哌嗪、3,9-双(3-氨丙基)2,4,8,10-四氧螺环、双(4-氨基环己基)甲烷或者由聚胺类与二聚酸构成的脂肪族聚酰胺类;部件为玻璃构件时,采用在部件表面沉积二氧化硅、氯化钠或者石墨碳黑来生成中间层9。
所述去活层10的加工是采用低表面张力的有机化合物涂、浸或镀在中间层9上或者部件表面上并在300℃以上的高温条件下烘烤而成;所述去活层10的加工或者是将经过步骤(一)清洗后的部件表面或者中间层9表面涂、浸或镀SiO2溶胶后在300℃以上的高温条件下烘烤,用溶剂去除多余物质而成;所述去活层10的加工或者是将经过步骤(一)清洗后的部件表面或者中间层9表面涂、浸或镀聚苯并咪唑吡咯酮(PY)、聚四氟乙烯、聚氟烷类、正硅酸脂或者正硅酸乙脂类后300℃以上的高温条件下烘烤而成。
所述低表面张力的有机化合物为硅烷类化合物、含氢硅油或者聚乙二醇。所述硅烷类化合物为三甲基氯硅烷、六甲基二硅氨烷、端烃基聚甲基硅氧烷、苯基-二甲基聚硅烷、甲基三氧基硅烷、二甲基聚硅氧烷、二苯基四甲基硅胺烷、聚硅氧烷或含氟聚硅氧烷。
低表面张力的有机化合物还可采用氟化有机物。
实施例二,参照图4、图5、图6,提供一种释放舱与被测试物接触的表面的处理方法,该释放舱包括以下部件:舱体1,与舱体1连接的舱门2、进气管4、排气管5、采样管6,装设在舱体1内的搅拌风机7,风道板8,该方法用于对所述舱体1、舱门2、进气管4、排气管5、采样管6、搅拌风机7及风道板8中至少一部件与被测试物接触的表面的进行处理,包括以下步骤:
(一)、所述各部件由不锈钢或玻璃加工而成,部件为不锈钢构件时,先用酸氧化,再用有机溶剂及水清洗,或者氧化后进行电解,再用有机溶剂及水清洗;部件为玻璃构件时,用有机溶剂及水清洗;
(二)直接在经过步骤(一)清洗后的部件的表面加工去活层10。
所述去活层10的厚度为亚微米到微米厚度,为液晶膜结构。
所述去活层10的加工是采用低表面张力的有机化合物涂、浸或镀在中间层9上或者部件表面上并在300℃以上的高温条件下烘烤而成;所述去活层10的加工或者是将经过步骤(一)清洗后的部件表面或者中间层9表面涂、浸或镀SiO2溶胶后在300℃以上的高温条件下烘烤,用溶剂去除多余物质而成;所述去活层10的加工或者是将经过步骤(一)清洗后的部件表面或者中间层9表面涂、浸或镀聚苯并咪唑吡咯酮(PY)、聚四氟乙烯、聚氟烷类、正硅酸脂或者正硅酸乙脂类后300℃以上的高温条件下烘烤而成。
所述低表面张力的有机化合物为硅烷类化合物、含氢硅油或者聚乙二醇。所述硅烷类化合物为三甲基氯硅烷、六甲基二硅氨烷、端烃基聚甲基硅氧烷、苯基-二甲基聚硅烷、甲基三氧基硅烷、二甲基聚硅氧烷、二苯基四甲基硅胺烷、聚硅氧烷或含氟聚硅氧烷。
低表面张力的有机化合物还可采用氟化有机物。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种释放舱与被测试物接触的表面的处理方法,该释放舱包括以下部件:舱体(1),与舱体(1)连接的舱门(2)、进气管(4)、排气管(5)、采样管(6),装设在舱体(1)内的搅拌风机(7),风道板(8),该方法用于对所述舱体(1)、舱门(2)、进气管(4)、排气管(5)、采样管(6)、搅拌风机(7)及风道板(8)中至少一部件与被测试物接触的表面的进行处理,其特征在于,包括以下步骤:
    (一)、所述各部件由不锈钢或玻璃加工而成,先将各部件清洗去除污染物;
    (二)、在经过步骤(一)清洗后的部件的表面加工去活层(10),或者先在经过步骤(一)清洗后的部件的表面加工中间层(9),然后在中间层(9)的表面加工去活层(10)。
  2. 根据权利要求1所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述各部件由不锈钢或玻璃加工而成,部件为不锈钢构件时,先用酸氧化,再用有机溶剂及水清洗,或者氧化后进行电解,再用有机溶剂及水清洗;部件为玻璃构件时,采用HCL或HF腐蚀,或采用物理方法使部件表面粗糙化。
  3. 根据权利要求1所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述中间层(9)为SiO 2层,或者为三维网状或孔状骨架相,厚度为亚微米到微米厚度。
  4. 根据权利要求1所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述去活层(10)的厚度为亚微米到微米厚度,为液晶膜结构。
  5. 根据权利要求3所述的释放舱与被测试物接触的表面的处理方法,其特征在于,部件为不锈钢构件时,所述中间层(9)的加工是将经过步骤(一)清洗后的部件采用通入单硅烷在500℃以上的高温条件下煅烧而成SiO 2层;或者是在经过步骤(一)清洗后的部件的表面涂、浸或镀有机硅胶后在500℃以上的高温条件下煅烧而成SiO 2层;或者涂、浸或镀聚硅氧烷类、环糊精衍生物,高温500度以上煅烧而成SiO 2层,所述聚硅氧烷类是聚二甲基硅氧烷、含苯基聚硅氧烷、含氰基聚硅氧烷、含氟聚硅氧烷、加入乙烯基的聚硅氧烷、端烃基聚硅氧烷或者在分子链与官能团间引入间隔基的聚硅氧烷;所述中间层(9)或者是采用在制孔剂中加入不含来源于芳香族的碳原子及杂环的环氧化合物和胺化合物在60-200℃下发生聚合反应,形成凝胶物,然后涂或浸在经过步骤(一)清洗后的部件表面,用溶剂清洗制孔剂,留下骨架相后干燥处理而成三维网状或孔状骨架相,所述制孔剂为甲基溶纤剂、乙基溶纤剂,乙二醇-甲醚乙酸酯、丙二醇-甲醚乙酸酯等酯类,聚乙二醇或者聚丙二醇,所述环氧化合物为2,2,2-三-(2,3-环氧丙基)-异氰尿酸酯,所述胺化合物为乙二胺、二亚乙基三胺、三亚乙基四胺、三缩四乙二胺、亚氨基双丙胺/双(六亚甲基)三胺、1,3,6-三氨基甲基己烷、聚亚甲基二胺、三甲基六亚甲基二胺、聚醚二胺、异佛尔酮二胺、薄荷烷二胺、N-氨基乙基哌嗪、3,9-双(3-氨丙基)2,4,8,10-四氧螺环、双(4-氨基环己基)甲烷或者由聚胺类与二聚酸构成的脂肪族聚酰胺类;部件为玻璃构件时,采用在部件表面沉积二氧化硅、氯化钠或者石墨碳黑来生成中间层(9)。
  6. 根据权利要求1所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述去活层(10)的加工是采用低表面张力的有机化合物涂、浸或镀在中间层(9)上或者部件表面上并在300℃以上的高温条件下烘烤而成;所述去活层(10)的加工或者是将经过步骤(一)清洗后的部件表面或者中间层(9)表面涂、浸或镀SiO2溶胶后在300℃以上的高温条件下烘烤,用溶剂去除多余物质而成;所述去活层(10)的加工或者是将经过步骤(一)清洗后的部件表面或者中间层(9)表面涂、浸或镀聚苯并咪唑吡咯酮(PY)、聚四氟乙烯、聚氟烷类、正硅酸脂或者正硅酸乙脂类后300℃以上的高温条件下烘烤而成。
  7. 根据权利要求6所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述SiO2溶胶成分为甲基三氧基硅烷和四乙氧基硅烷水解物。
  8. 根据权利要求6所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述低表面张力的有机化合物为氟化有机物。
  9. 根据权利要求6所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述低表面张力的有机化合物为硅烷类化合物、含氢硅油或者聚乙二醇。
  10. 根据权利要求9所述的释放舱与被测试物接触的表面的处理方法,其特征在于,所述硅烷类化合物为三甲基氯硅烷、六甲基二硅氨烷、端烃基聚甲基硅氧烷、苯基-二甲基聚硅烷、甲基三氧基硅烷、二甲基聚硅氧烷、二苯基四甲基硅胺烷、聚硅氧烷或含氟聚硅氧烷。
PCT/CN2012/078931 2012-02-29 2012-07-20 释放舱与被测试物接触的表面的处理方法 WO2013127149A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/374,916 US20160122234A1 (en) 2012-02-29 2012-07-20 Method for treating surface of releasing chamber in contact with test object
JP2014553598A JP5938485B2 (ja) 2012-02-29 2012-07-20 リリースキャビンにおける被試験物と接触する表面の処理方法
EP12870268.5A EP2821784B1 (en) 2012-02-29 2012-07-20 Method for treating surface of releasing chamber in contact with test object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210049393.6A CN102608265B (zh) 2012-02-29 2012-02-29 释放舱与被测试物接触的表面的处理方法
CN201210049393.6 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013127149A1 true WO2013127149A1 (zh) 2013-09-06

Family

ID=46525805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078931 WO2013127149A1 (zh) 2012-02-29 2012-07-20 释放舱与被测试物接触的表面的处理方法

Country Status (5)

Country Link
US (1) US20160122234A1 (zh)
EP (1) EP2821784B1 (zh)
JP (1) JP5938485B2 (zh)
CN (1) CN102608265B (zh)
WO (1) WO2013127149A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590458A (zh) * 2012-02-27 2012-07-18 东莞市升微机电设备科技有限公司 具有循环风道的释放舱
CN103575923B (zh) * 2013-10-16 2015-10-28 东莞市升微机电设备科技有限公司 多单元挥发性有机物测试系统
CN104914901B (zh) * 2015-05-20 2018-01-30 东莞市升微机电设备科技有限公司 可对各支路的温、湿度及流量进行均衡调节的微型挥发性有机物释放舱系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376641A (en) * 1981-12-14 1983-03-15 The Dow Chemical Company Coated capillary chromatographic column
CN1360644A (zh) * 1999-07-19 2002-07-24 辛辛那提大学 以乙烯基硅烷与双甲硅烷基氨基硅烷的水性混合物对金属表面的保护性处理
WO2011081653A1 (en) * 2009-12-15 2011-07-07 Restek Corporation Gas chromatography inlet liners and sample path containers
CN202502083U (zh) * 2012-02-29 2012-10-24 东莞市升微机电设备科技有限公司 低吸附力的释放舱

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD216257A1 (de) * 1983-06-27 1984-12-05 Netzschkau Maschf Nema Verfahren zur herstellung chemischer nickelueberzuege auf katalytischen oberflaechen
IN176027B (zh) * 1988-08-12 1995-12-23 Alcan Int Ltd
GB9007356D0 (en) * 1990-04-02 1990-05-30 Pawliszyn Janusz B Micro solid phase extraction with fused silica optical fibres
US5637135A (en) * 1995-06-26 1997-06-10 Capillary Technology Corporation Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels
EP1153740A4 (en) * 1998-09-16 2004-12-08 Matsushita Electric Ind Co Ltd FUNCTIONAL FILM AND METHOD FOR THEIR PRODUCTION, LIQUID CRYSTAL DISPLAY BASED ON THIS FILM AND ITS METHOD FOR THE PRODUCTION
JP2005511887A (ja) * 2001-08-03 2005-04-28 エリシャ・ホールディング・エルエルシー 金属表面を処理する無電解プロセスおよびそれにより生成される製品
KR100505361B1 (ko) * 2002-06-03 2005-08-03 정원조 소결 무기 분말 프릿이 장착된 금속 튜빙/프릿 및 이를이용하여 제작하는 크로마토그래피 컬럼
AU2003289705A1 (en) * 2002-11-01 2004-05-25 Clariant International Ltd Polysilazane-containing coating solution
US20050136687A1 (en) * 2003-12-19 2005-06-23 Honeywell International Inc Porous silica dielectric having improved etch selectivity towards inorganic anti-reflective coating materials for integrated circuit applications, and methods of manufacture
EP1809706B1 (en) * 2004-10-22 2012-05-02 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Substrate with an anti-soiling coating
DE102007036369A1 (de) * 2007-07-31 2009-02-05 Eckart Gmbh Metallic-Lack, Verfahren zu seiner Herstellung und Verwendungen desselben
JP5130008B2 (ja) * 2007-09-05 2013-01-30 中部電力株式会社 揮発性有機化合物の処理装置
JP2010038701A (ja) * 2008-08-04 2010-02-18 Foundation For The Promotion Of Industrial Science 準揮発性有機化合物の捕集管、準揮発性有機化合物の測定方法及び測定装置
CN101858876B (zh) * 2010-06-01 2012-03-21 东莞市升微机电设备科技有限公司 用于检测挥发性有机物的检测系统及湿度检测方法
CN102154625B (zh) * 2011-03-23 2012-08-15 浙江理工大学 一种发动机钢铁材料零件表面抗积碳涂层的制备方法
CN102268709B (zh) * 2011-07-06 2014-01-29 浙江大学 一种金属表面缓蚀剂的负载方法及用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376641A (en) * 1981-12-14 1983-03-15 The Dow Chemical Company Coated capillary chromatographic column
CN1360644A (zh) * 1999-07-19 2002-07-24 辛辛那提大学 以乙烯基硅烷与双甲硅烷基氨基硅烷的水性混合物对金属表面的保护性处理
WO2011081653A1 (en) * 2009-12-15 2011-07-07 Restek Corporation Gas chromatography inlet liners and sample path containers
CN202502083U (zh) * 2012-02-29 2012-10-24 东莞市升微机电设备科技有限公司 低吸附力的释放舱

Also Published As

Publication number Publication date
EP2821784A1 (en) 2015-01-07
EP2821784B1 (en) 2019-11-13
EP2821784A4 (en) 2015-11-04
CN102608265B (zh) 2014-11-19
CN102608265A (zh) 2012-07-25
US20160122234A1 (en) 2016-05-05
JP2015508505A (ja) 2015-03-19
JP5938485B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
Dorkenoo et al. Accelerated physical aging of thin poly [1-(trimethylsilyl)-1-propyne] films
WO2013127149A1 (zh) 释放舱与被测试物接触的表面的处理方法
Silverio et al. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition
CN101239256B (zh) 一种油气分离陶瓷复合膜管及其组件和制备方法
Dendooven et al. In situ monitoring of atomic layer deposition in nanoporous thin films using ellipsometric porosimetry
US20110254568A1 (en) Organic chemical sensor with microporous organisilicate material
Tanardi et al. PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents
CN105855151A (zh) 一种长效疏水疏油表面处理工艺
CN103635313B (zh) 在非晶形碳膜层上固定防水防油层的方法及由所述方法形成的层叠体
Tsapatsis et al. A kinetic model of membrane formation by CVD of SiO2 and Al2O3
Matsuyama et al. High-temperature propylene/propane separation through silica hybrid membranes
Adams et al. Pore morphology and temperature dependence of gas transport properties of silica membranes derived from oxidative thermolysis of polydimethylsiloxane
Nagano et al. Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous silica membrane synthesized by counter diffusion chemical vapor deposition
Esmeryan et al. Humidity tolerant organic vapor detection using a superhydrophobic quartz crystal microbalance
Kim et al. Silylated mesoporous silica membranes on polymeric hollow fiber supports: synthesis and permeation properties
CN105699441B (zh) 一种电阻式气体传感器及其制备方法
CN106902647A (zh) 一种提高mfi分子筛膜渗透汽化稳定性的方法
JP2010278121A5 (ja) 半導体装置の製造方法
Taschuk et al. Decoupling sensor morphology and material: Atomic layer deposition onto nanocolumn scaffolds
Costa et al. Screening effect of CVD graphene on the surface free energy of substrates
JP7063541B2 (ja) 流体デバイス用シリコーン部材およびその製造方法
Labropoulos et al. Comparative study of the rate and locality of silica deposition during the CVD treatment of porous membranes with TEOS and TMOS
CN112691552B (zh) 一种制备高性能有机气体分离膜的方法
WO2016093564A1 (ko) 기판 처리방법
JP6522802B2 (ja) シリコーンの製造で得られた処理排ガスの連続的洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012870268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374916

Country of ref document: US