WO2013127144A1 - 一种荧光分析方法和装置 - Google Patents

一种荧光分析方法和装置 Download PDF

Info

Publication number
WO2013127144A1
WO2013127144A1 PCT/CN2012/078714 CN2012078714W WO2013127144A1 WO 2013127144 A1 WO2013127144 A1 WO 2013127144A1 CN 2012078714 W CN2012078714 W CN 2012078714W WO 2013127144 A1 WO2013127144 A1 WO 2013127144A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
test
binding
sample
absorbing substance
Prior art date
Application number
PCT/CN2012/078714
Other languages
English (en)
French (fr)
Inventor
李久彤
Original Assignee
上海鑫谱生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海鑫谱生物科技有限公司 filed Critical 上海鑫谱生物科技有限公司
Publication of WO2013127144A1 publication Critical patent/WO2013127144A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Definitions

  • the invention belongs to the technical field of in vitro detection, and in particular relates to an analysis method and device based on measuring fluorescence intensity. Background technique
  • immunoreactivity analysis methods are derived based on "competitive inhibition and double-anti-sandwich", such as: radioimmunoassay, enzyme-linked immunosorbent assay, chemiluminescence assay, time-resolved fluorescence assay, and fluorescence immunoassay, etc. It can be used to identify pathogenic microorganisms, quantitatively detect specific proteins in the human body, and thus assist in the diagnosis or monitoring of diseases.
  • the capture antibody is usually immobilized on a solid phase carrier, then reacted with an antigen (target protein), washed, reacted with a labeled antibody, washed, and finally detected for radioactivity, solution absorbance or light signal, and thus reported.
  • concentration of the target protein in the sample is detected.
  • GICA colloidal gold immunoassay
  • Detection reagents such as markers (CN 200410027291.X); also applied to food, environmental (CN 031 16692.X) and veterinary (CN 02139704.X) fields. Since this method only needs to be observed by the naked eye, non-professionals can also operate, making it possible to carry out relevant tests in places such as emergency departments, primary hospitals, patient bedssides, and places far away from large laboratories, so the application range is quite extensive.
  • the present invention provides a test piece for quantitatively detecting a sample to be tested in a sample.
  • the present invention provides a method for quantitatively detecting a test object, which is highly sensitive and quantitatively accurate.
  • the invention also provides a detecting device for quantitatively detecting an object to be tested.
  • a first aspect of the present invention provides a test piece, the test piece comprising:
  • binding zone located at the proximal end of the loading zone, the binding zone comprising:
  • One or more flowable binding agents at least one of which is labeled with a light absorbing substance, the binding agent being capable of combining with the analyte or its equivalent to form a complex containing a light absorbing substance;
  • test zone located at the proximal end of the binding zone and at the distal end of the loading zone, the test zone comprising an immobilized capture agent for capturing the binding of the light-absorbing substance label moving from the binding zone to the test zone a compound or a composite containing a light absorbing substance, the test zone having fluorescence;
  • a sample absorption zone located at the proximal end of the test zone and distal to the binding zone, wherein the absorption zone has an absorptive capacity such that the sample applied to the sample application zone diffuses from the sample application zone to the terminal sample absorption zone;
  • the capturing agent when the capturing agent captures the binding agent labeled by the light absorbing substance or the complex containing the light absorbing substance, the light absorbing substance affects the fluorescence intensity of the test area.
  • the fluorescence of the test zone is the self-fluorescence of the test piece.
  • the light absorbing material affects the fluorescence intensity of the test zone resulting in a decrease in the fluorescence intensity of the test zone.
  • the analyte is an antigen or an antibody.
  • the binding agent specifically binds to the analyte or an equivalent thereof; preferably, the binding agent is an antigen, an antibody or an oligonucleotide.
  • the binding region may comprise two binding agents, wherein one binding agent labeled by the light absorbing substance and the other binding agent labeled with biotin, the two binding agents simultaneously The analytes are combined to form a biotin-labeled complex containing light absorbing material.
  • the light-absorbing substance-containing composite may contain the analyte or the analyte equivalent.
  • the capture agent specifically binds to a binding agent or a complex containing a light absorbing substance that is labeled with a light absorbing substance.
  • the capture agent is streptavidin, an antibody to the analyte, or an equivalent of the analyte.
  • the amount of the binding agent is greater than the amount of the analyte; the amount of the capturing agent is greater than the binding agent or the light absorbing material-containing composite labeled by the light absorbing substance moving from the binding zone to the test zone. The number of things.
  • the analyte comprises: a protein, a nucleic acid or a small molecule compound.
  • the analyte is a liquid phase (solution), a suspension or a solid phase.
  • the analyte comprises a specific protein such as a tumor marker or a myocardial marker.
  • the excitation or emission spectrum of the self-fluorescence of the test piece overlaps with the absorption spectrum of the light absorbing material in whole or in part.
  • the light absorbing material is selected from the group consisting of colloidal gold, nanogold rods, nanosilver rods, or combinations thereof.
  • the colloidal gold is colloidal gold particles having an average particle diameter of 10 to 70 nm.
  • At least one control zone is further included between the test zone and the sample absorption zone, the control zone containing an immobilized contrast agent, wherein the control agent is used to specifically bind to the light-absorbing substance. Binding agent.
  • control zone is used to reveal the validity of the test result of the test object.
  • a second aspect of the present invention provides a fluorescence analysis method for quantitatively detecting a test object, comprising the steps of:
  • a third aspect of the present invention provides a method for quantitatively detecting a fluorescence analysis of a test object, comprising the steps of: (a) providing a test piece according to the first aspect of the invention;
  • the analyte in the sample moves to the binding zone, and combines with the binding agent labeled by the light absorbing substance therein to form a flowable complex containing the light absorbing substance;
  • step (d) the remaining light-receiving substance-labeled binding agent in step (c) or the flowable light-absorbing substance-containing composite obtained in step (c) is moved to the test zone and combined with the capturing agent to form a fixed test a composite containing a light absorbing material;
  • the fluorescence intensity of the test zone is the self-fluorescence of the test piece.
  • the capturing agent when the capturing agent binds to the binding agent labeled by the light absorbing substance remaining in the step (C), the capturing agent is an antibody or antigen of the binding agent, or is equivalent to the analyte.
  • step (b) further comprises adding a solvent such as water or a buffer.
  • step (2) or step (e) the ratio of the fluorescence intensity F2 at the middle of the test zone to the control zone to the fluorescence intensity F1 of the test zone is compared with a standard curve to determine The number of objects measured; or
  • the fluorescence intensity F1 of the test zone is compared with a standard curve to determine the amount of the analyte.
  • the method further comprises the step of making a standard curve by measuring with a known concentration of the test object standard.
  • a fourth aspect of the invention provides a test kit comprising: a test piece according to the first aspect of the invention; and instructions for use.
  • a fifth aspect of the present invention provides a fluorescence measuring device for quantitatively detecting an object to be tested, the device comprising:
  • the apparatus further includes a light source and a computer.
  • the light source is irradiated to the detection line through the optical fiber, and the excited fluorescence enters the detector through the optical fiber, and is processed and analyzed by a computer.
  • Figure 1 is a schematic diagram of a test piece.
  • Figure 2 is a schematic view of the detecting device.
  • 3 is a standard curve of the AFP standard series concentration (C) and the corresponding fluorescence intensity ratio (F2/F1) of Example 1.
  • 4 is a graph showing the logarithm value lg(F2/Fl) of the ratio of the logarithmic value (lgC) of the CRP standard series concentration of Example 2 to the corresponding fluorescence intensity.
  • Fig. 5 is a graph showing the logarithm of the logarithmic value (lgC) of the AFP standard series concentration of Example 3 and the corresponding fluorescence intensity ratio lg (F2/Fl). detailed description
  • the present inventors have found a detection method based on the principle of fluorescence quenching, which can not only determine whether the object to be tested is contained by visually measuring the color of the test area, but also measure the fluorescence intensity of the test area.
  • the method for quantitatively detecting the analyte the above method can directly determine the amount of the analyte by the effect of the quenching substance on the self-fluorescence intensity of the test zone.
  • the method not only has the advantages of high sensitivity and quantitative accuracy, but also the operation is still simple, fast, and low in cost.
  • the method is based on a test piece provided by the present invention, and quantitative detection of a test object is achieved by a device containing a light source and a detector. On this basis, the inventors have completed the present invention.
  • Test piece provided by the present invention, and quantitative detection of a test object is achieved by a device containing a light source and a detector. On this basis, the inventors have completed the present invention.
  • test pieces of the present invention are now described in more detail. It should be noted that the specific configuration of the test piece may vary depending on the specific test in which the test piece is intended to be performed. It is also within the scope of the invention to make variations of test pieces outside of the examples.
  • the test piece 1 may include a backing sheet 2 having the same length as the test piece.
  • the sample application zone 3 is located at one end of the test piece, and the sample pad 31 is located in the sample application area and can be attached to the sample application area by an adhesive.
  • the absorption zone 7 is located at the other end of the test piece, and at the distal end of the application zone, the water absorbing pad 71 is located in the absorption zone.
  • the bonding zone 4 is located between the application zone and the absorption zone. At the proximal end of the sample application zone and the distal end of the absorption zone, the bonding pad 41 is located in the bonding zone.
  • a test zone 5 (also referred to as a test line) is located between the bond zone and the absorber zone.
  • the test zone is disposed on the diaphragm 56 through which the bond pad and the absorbent pad are attached.
  • the membrane is further provided with a control zone 6 (also called a quality control line), and the control zone is located between the test zone and the absorption zone, or between the test zone and the bonding zone, and between the test zone and the test zone. Have the right space.
  • test piece manufacturing method preferably, as shown in FIG. 1, the sample pad, the bonding pad, the film, and the water absorbing pad are respectively adhered to the backing plate by an adhesive, that is, the test piece is obtained.
  • the backing sheet can be made of any stable, non-porous material that is strong enough to support the material and stick to it. Its test piece. Because many assay waters are used as diffusion media, the backing sheet is preferably substantially water impermeable. In a preferred embodiment, the backing sheet is made of a polymer film, more preferably a polyvinyl chloride film (e.g., a PVC board).
  • the sample gasket can be made of any absorbent material.
  • materials that can be used include: cellulose, nitrocellulose, cellulose acetate, glass fiber, nylon, polyelectrolyte ion exchange membrane, propylene copolymer/nylon, and polyethersulfone.
  • the bonding pad or diaphragm may be made of any material as long as the material has sufficient porosity to allow capillary action of the fluid on the surface and inside.
  • the bonding pad or membrane should have sufficient porosity to allow the particles coated with antibodies or antigens to move.
  • the bonding pad or membrane may also be wetted by the liquid used in the sample containing the analyte to be detected (e.g., hydrophilic for aqueous liquids, hydrophobic for organic solvents).
  • the hydrophobicity can be altered to render it hydrophilic for use in aqueous liquids by methods such as those described in U.S. Patent No. 4,340,482 or U.S. Patent No. 4,618,533, which is incorporated herein by reference.
  • Examples of materials that can be used to make bonded gaskets or membranes include: polyester film, cellulose, nitrocellulose, cellulose acetate, glass fiber, nylon, polyelectrolyte ion exchange membrane, propylene copolymer/nylon, and polyethersulfone. (polyether S ulfon e ).
  • the bonding pad is made of a polyester film and the diaphragm is made of nitrocellulose.
  • the absorbent pad can be made of any material that absorbs the liquid as a sample and buffer.
  • the absorption capacity of the absorbent pad should be large enough to absorb the liquid added to the test piece. Examples of materials suitable for the absorbent pad include cellulose and glass fibers. Detection method
  • test strips of the present invention can be used in a number of different lateral flow assays involving the use of one or more flowable binders and an immobilized capture agent, as well as utilizing changes in the fluorescence intensity of the test zone. .
  • the method comprises the steps of:
  • the analyte in the sample is moved to a binding zone, the binding zone containing a binding agent, and the analyte is combined with the binding agent therein to form a complex containing the light absorbing substance;
  • the remaining light-absorbing substance-containing binder and the light-absorbing substance-containing complex formed in the binding zone are moved to the test zone to be combined with the capturing agent to form a test zone enriched with the light-absorbing substance.
  • the detection method of the present invention can pass the test test The area fluorescence intensity is used to determine the amount of the analyte.
  • a preferred detection method comprises: measuring the fluorescence intensity F2 at the middle of the test zone and the control zone and the fluorescence intensity Fl of the test zone, and determining the number of analytes based on the ratio of the fluorescence intensities F2 and F1.
  • the ratio of the fluorescence intensity F2 to F 1 includes (but is not limited to): F 1 /F2, F2/F 1 , F 1 /(F 1 +F2), F2/(F 1 +F2), (F1 +F2)/ Fl, (Fl+F2)/F2, F1/(
  • the terms “subject”, “its equivalent” or “analyte” refer to any component of a sample to be tested with a test piece and optionally quantified, the analyte or equivalent thereof.
  • substances or analytes include: proteins, such as hormones or other secreted proteins, enzymes and cell surface proteins; glycoproteins; peptides; small molecules; polysaccharides; antibodies (including monoclonal or polyclonal antibodies and fragments thereof); Drugs (including cardiotonic drugs such as digoxin); toxins; drugs; viral or viral particles; cell wall components; or other compounds with epitopes.
  • the analyte comprises a specific protein such as a tumor marker, a myocardial marker
  • the tumor marker is selected from the group consisting of: alpha fetoprotein (AFP), C-reactive protein (CRP), carcinoembry Antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), total prostate specific antigen (PSA), free prostate specific antigen (f-PSA), neuron-specific enolase (NSE), sugar chain antigen (CA242), cancer antigen
  • the binding agent used in the present invention may be any substance capable of binding to the analyte or its equivalent. Specifically, it is a substance that specifically binds the analyte or its equivalent. At least one of the binding agents is labeled with a light absorbing substance, and the binding agent can be combined with the analyte or an equivalent thereof to form a complex containing a light absorbing substance;
  • analyte binding agents there are a variety of different types of molecules that can be used as analyte binding agents, including, for example, oligonucleotides, antibodies, engineered proteins, peptides, haptens, or antigens that have an analyte binding site. Lysate of the source mixture. P. Holliger et al, Trends in Biotechnology 13: 7-9 (1995); SM Chamow et al, Trends in Biotechnology 14: 52-60 (1996). If the analyte to be detected is a ligand, a receptor that binds to the ligand can be used, and vice versa.
  • the test substance or its equivalent is an antigen
  • the binding agent is an antibody that binds to the antigen
  • the test substance or its equivalent is an antibody
  • the A binding agent is an antigen (anti-antibody) that binds to an antigen of the antibody or the antibody.
  • the capture agent used in the present invention may be any substance that binds to a complex and/or a binding agent containing a light absorbing substance, and includes, for example, an antibody, an engineered protein, a peptide, a hapten, or an antigen (the antigen has an analyte binding site). Point) a lysate of the heterogeneous mixture.
  • the capture agent is used to capture the light-absorbing substance-containing complex that moves from the binding zone to the test zone and/or the remaining light-absorbing substance-labeled binding agent, thereby enriching the light-absorbing substance in the test zone.
  • the capture agent can be combined with the binding of the antigen and the antibody or the specific binding of the oligonucleotide to the complementary nucleic acid single strand or by the combination of biotin and Streptavidin (SA).
  • SA biotin and Streptavidin
  • the binding of the capture agent to the complex containing the light absorbing material or the remaining binding agent labeled by the light absorbing substance is specific binding.
  • the capture agent is streptavidin, an antibody to the test substance or an analyte equivalent.
  • the light absorbing material used in the present invention should have a broad ultraviolet or even infrared absorption spectrum.
  • the general principle is that the absorption spectrum partially or completely overlaps with the excitation or emission spectrum of the self-fluorescence of the test piece.
  • Representative light absorbing materials include, but are not limited to, colloidal gold, nano gold rods, nano silver rods, etc., which have absorption spectra ranging from 300 to 1000 nm, as long as the absorption spectrum of the selected light absorbing material and the test piece are owned.
  • the fluorescence excitation or emission spectrum can be overlapped.
  • the colloidal gold particles can be produced by any conventional method, for example, as summarized in G. Frens, 1973 Nature Physical Science, 241: 20 (1973). Other methods are described in U.S. Patent Nos. 5,578,577, 5,141,850, 4,775,636, 4,853,335, 4,859,612, 5,079, 172, 5,202,267, 5,514,602, 5,616,467, 5,681,775 c
  • nano-gold rod refers to gold particles having a certain aspect ratio and having a horizontal axis and a longitudinal axis in the range of 5 to 200 nanometers.
  • a particularly preferred light absorbing material is colloidal gold, especially colloidal gold having a particle size of 20-40 nm.
  • the substance containing the light-absorbing substance After the substance containing the light-absorbing substance is captured by the capture reagent of the test area, the substance containing the light-absorbing substance is enriched in the test area, and the excitation or emission spectrum of the self-fluorescence of the test piece and the absorption spectrum of the light-absorbing substance are all or part of the absorption spectrum.
  • the light absorbing material When overlapping, due to the resonance energy transfer, the light absorbing material will quench the self-fluorescence of the test piece, that is, quench the fluorescence intensity of the test area.
  • the self-fluorescence of the diaphragm 56 itself is utilized.
  • a substance ie, a capture agent
  • the bonding agent is located on the bonding pad and is flowable. After the binding agent is dissolved by the sample, it combines with the analyte or its equivalent in the sample to form a complex containing the light absorbing substance during the chromatography process, and the composite stream is captured through the detection line, and the more the analyte is detected The more the complex is captured.
  • the composite partially quenched or fully quenched
  • the amount of the analyte can be determined by detecting the fluorescence intensity.
  • the sample is applied to the glass fiber sample gasket, and the analyte (such as antigen) in the sample moves toward the water absorbing pad under capillary action, and carries a binding agent (such as a gold-labeled antibody against the antigen, biotin label).
  • a binding agent such as a gold-labeled antibody against the antigen, biotin label.
  • test object such as antigen
  • the test object such as antigen
  • the bonding pad carrying the binding agent (such as the gold standard antibody of the antigen).
  • the binding agent is completely reconstituted, and the antigen and the binding agent form a "gold standard antibody-antigen" 2-ary complex during the chromatography, and is captured by the capture antibody at the detection line;
  • a binding agent such as a gold standard antibody
  • the sample is applied to a glass fiber sample spacer, wherein the object to be tested (such as an antigen) moves toward the water absorbing pad. Passing through the bonding pad carrying the binding agent and completely reconstituting it, during the liquid advancement process, the analyte in the sample and the binding agent on the bonding pad form a "golden antibody-antigen" first binary Complex” ;
  • the detection device of the present invention will now be described with reference to FIG. 2:
  • the apparatus may include: a test piece, a detector, a light source, an optical fiber, and a computer.
  • a description of the use of the test method can also be included.
  • the working principle of the test piece is as described above, and the method of detecting the fluorescence intensity can be as follows (but not limited to), and any method which can be used for detecting the fluorescence intensity can be used for the detecting device of the present invention. Fluorescence intensity detection
  • the light source is irradiated to the detection line through the optical fiber, and the excited fluorescence enters the detector through the optical fiber, and the obtained data is processed and analyzed by a computer.
  • the optical fibers may be Y-shaped and connected to a light source, a detection line, and a detector, respectively.
  • the light source is used to provide light of a certain emission wavelength, thereby exciting the test piece to emit fluorescence.
  • Any source that provides the appropriate wavelength can be used, including (but not limited to, LED, xenon, tungsten halogen, laser, etc.).
  • a preferred source of light is a laser source that can be produced by methods and equipment conventional in the art, such as a laser.
  • Representative lasers include, but are not limited to, semiconductor lasers, helium neon lasers, argon ion lasers, wavelength selective lasers, multi-wavelength lasers, and dual wavelength lasers.
  • the laser wavelength generated by the laser is related to the laser medium.
  • the common laser wavelengths are shown in the following table 1:
  • the detector in the present invention may be, but not limited to, a photomultiplier tube, a CCD or a photovoltaic cell or the like.
  • standard curve line
  • the amount of the analyte can be determined directly by measuring the fluorescence intensity at the detection line; or by measuring the fluorescence intensity F1 at the detection line and the fluorescence intensity F2 at the middle of the detection line and the quality control line. Calculate the ratio of F2 and F1 to determine the number of objects to be tested.
  • the standard curve can be obtained in the following ways:
  • the fluorescence intensity (Fl) at the detection line is measured, and the fluorescence intensity F2 at the middle of the detection line and the quality control line is calculated, and F2 is calculated.
  • the ratio of F1 (such as F2/F1), the concentration (C) or its logarithmic value (log C or lg C) and the corresponding fluorescence intensity ratio (such as F2/F1) or its logarithm (such as log F2/F1 or Lg F2/F1) is plotted to obtain a standard curve.
  • the present invention provides a test piece.
  • the present invention provides a method for detecting the above test piece, which is based on the principle of fluorescence quenching, and measures the amount of the test object by measuring the self-fluorescence intensity of the test piece, which is quick, simple, and low in cost. Moreover, the sensitivity is high and the quantitative is accurate.
  • the present invention also provides a detecting device which can be widely used in the field of quantitative detection based on the above detecting method.
  • the invention will be further elucidated below in conjunction with specific implementations. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the experimental methods in the following examples which do not specify the specific conditions are usually produced according to the conditions described in the conventional conditions, for example, Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturing conditions. The conditions recommended by the manufacturer. Percentages and parts are by weight unless otherwise stated.
  • AFP antigen was purchased from Biodesign;
  • BSA Calf serum albumin
  • USB4000-FL USB Ocean Optics
  • Gold-Abl gold standard antibody 1.3.1 Take 20ml of 20 ⁇ 30nm granular colloidal gold solution, slowly add 1.0ml (0.6mg/ml) of purified Abl antibody under magnetic stirring, and stir at room temperature for 30min;
  • the optical density (OD) of the gold standard antibody is about 100 OD, and the concentration of Abl antibody is lmg/ Ml, set at 4 ° C for storage;
  • Example 1 The procedure was the same as in Example 1, Step 1, except that the purified CRP monoclonal antibody was used in place of the Abl antibody, and the labeled colloidal gold O.D. value was 75, and the CRP monoclonal antibody concentration was 1 mg/ml.
  • the method of the invention only determines the quantity of the test substance by measuring the influence of the quenching substance on the self-fluorescence intensity of the test area, and overcomes the interference of the fluorescent signal caused by the self-fluorescence, and does not need to add any fluorescent substance mark.
  • the reagents significantly reduce the use of raw materials, save economic costs, and the experimental method is simpler.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种测试片(1),包括(i)可加入样品的加样区(3);(ii)位于加样区(3)近端的结合区(4),结合区(4)包含一种或多种可流动的结合剂,该结合剂中至少一种被吸光物质标记,该结合剂能与待测物或其等同物结合形成含有吸光物质的复合物;(iii)位于结合区(4)近端和加样区(3)远端的测试区(5),该测试区(5)包含固定化的捕获剂,该捕获剂用于捕获从结合区(4)移动至测试区(5)的被吸光物质标记的结合剂或含有吸光物质的复合物,并且该测试区(5)具有荧光;和(iv)位于测试区(5)近端和结合区(4)远端的样品吸收区(7)。当捕获剂捕获被吸光物质标记的结合剂或含有吸光物质的复合物时,吸光物质影响测试区的荧光强度。一种定量检测待测物的荧光测量装置,包括测试片和用于检测荧光强度的检测器;以及应用该测试片的荧光分析方法。

Description

一种荧光分析方法和装置
技术领域
本发明属于体外检测技术领域,具体地涉及一种基于测量荧光强度的分析方法 和装置。 背景技术
在免疫检测领域中, 常常需要对各类抗原或抗体进行定性或定量检测。 现有 技术中, 以"竞争抑制和双抗夹心 "为基础衍生出多种免疫反应分析方法, 如: 放 射免疫法、 酶联免疫法、 化学发光法、 时间分辨荧光法和荧光免疫法等, 可用于 确定病原微生物, 对人体的特异性蛋白定量检测, 从而对疾病进行辅助诊断或监 测等等, 用途非常广泛。 这类免疫反应分析方法, 通常将捕获抗体固定于固相载 体, 然后与抗原(目标蛋白)反应, 洗涤后再与标记抗体反应, 洗涤, 最后检测放 射性强度、 溶液吸光度或光信号等, 从而报告检测样本中目标蛋白的浓度。 上述 方法的自动化免去了人工洗涤的烦琐, 但正因为自动化, 使得仪器体积庞大价格 昂贵, 一般只在大型实验室使用。
1990年, Beggs 等综合胶体金和免疫分析技术, 建立了胶体金免疫层析法 (GICA), 用于检测人尿和血清中的 HCG(BEGGS M, NOVOTNY M, SAMPED O S . A selfperforming chromatographic immunoassay for the qualitative determination of human chorionicgonadotrophin(HCG)in urine and serum [J] . Clin Chem, 1990, 36: 1084-1085)。 此后 20年, 人们在 GICA的基础上, 开发出了用于病原体 (CN 031 15143.4)、 激素 (CN 200610014168.3)、 心脏标志物 (CN 20041001 1 165.5)、 肿瘤 标志物 (CN 200510104796.6)、 自身免疫病标志物 (CN 200410027291.X)等的检测试 剂; 同时也应用到食品、 环境 (CN 031 16692.X)和兽医 (CN 02139704.X)领域。 由于 该方法只需肉眼观察即可, 非专业人士也可操作, 使急诊、 基层医院、 病人床边 和现场等远离大型实验室的地方开展相关检测成为可能,所以应用范围相当广泛。
虽然这种免疫分析技术已经超过 20年的发展,但其基本的工作原理并未改变, 这决定了到目前为止, 它只用于定性或半定量检测 (根据检测线灰度深浅定量), 且灵敏度也不如前述的定量免疫分析方法, 其进一步的应用遇到了瓶颈。
因此, 本领域急需对现有的胶体金层析方法进行变革, 在赋予其高灵敏度和 定量准确的新优势的同时, 保持其快捷、 简便、 成本低廉等特点, 从而进一步扩 展其应用领域。 发明内容
本发明提供了一种测试片, 用于定量检测样品中的待测物。
本发明提供了一种定量检测待测物的检测方法, 所述方法灵敏度高, 定量准 确。
本发明还提供了一种定量检测待测物的检测装置。 本发明第一方面提供了一种测试片, 该测试片包括:
(i) 可加入样品的加样区;
(ii) 位于加样区近端的结合区, 所述结合区包含:
一种或多种可流动的结合剂, 所述结合剂中至少一种被吸光物质标记, 所述 结合剂能与待测物或其等同物结合形成含吸光物质的复合物;
(iii) 位于结合区近端和加样区远端的测试区, 所述测试区包含固定化的捕获 剂, 所述捕获剂用于捕获从结合区移动至测试区的被吸光物质标记的结合剂或含 吸光物质的复合物, 所述测试区具有荧光; 和
(iv) 位于测试区近端和结合区远端的样品吸收区,其中吸收区具有吸收能力, 从而使得加至加样区的样品从加样区扩散至末端样品吸收区;
其中, 当所述捕获剂捕获所述被吸光物质标记的结合剂或所述含吸光物质的 复合物时, 所述吸光物质影响所述测试区的荧光强度。
在另一优选例中, 所述测试区的荧光为所述测试片的自有荧光。
在另一优选例中, 所述的吸光物质影响所述测试区的荧光强度是导致测试区 的荧光强度下降。
在另一优选例中, 所述待测物为抗原或抗体。
在另一优选例中, 所述结合剂特异性结合待测物或其等同物; 较佳地, 所述 结合剂为抗原、 抗体或寡核苷酸。
在另一优选例中, 所述结合区可以包含两种结合剂, 其中, 一种被吸光物质 标记的结合剂, 另一种被生物素标记的结合剂, 所述两种结合剂同时与待测物结 合, 从而形成一种被生物素标记的含吸光物质的复合物。
在另一优选例中, 所述含吸光物质的复合物可以含有待测物, 也可以含有待 测物等同物。 在另一优选例中, 所述捕获剂特异性结合被吸光物质标记的结合剂或含吸光 物质的复合物。
在另一优选例中,所述捕获剂为链亲和素、待测物的抗体或待测物的等同物。 在另一优选例中, 所述结合剂的数量大于所述待测物的数量; 所述捕获剂的 数量大于从结合区移动至测试区的被吸光物质标记的结合剂或含吸光物质的复合 物的数量。
在另一优选例中, 所述的待测物包括: 蛋白、 核酸或小分子化合物。
在另一优选例中, 所述的待测物是液相 (溶液)、 悬浮液或固相。
在另一优选例中, 所述的待测物包括肿瘤标志物、 心肌标志物等特异性的蛋 白。
在另一优选例中, 所述测试片自有荧光的激发或发射光谱与所述吸光物质的 吸收光谱全部或部分重叠。
在另一优选例中, 所述的吸光物质选自下组: 胶体金、 纳米金棒、 纳米银棒 或其组合。
在另一优选例中, 所述的胶体金是平均粒径为 10-70nm的胶体金颗粒。
在另一优选例中, 在测试区和样品吸收区之间还包含至少一个对照区, 所述 对照区含有固定化的对照剂, 其中, 所述对照剂用于特异性结合被吸光物质标记 的结合剂。
在另一优选例中, 所述对照区用于揭示待测物的检测结果的有效性。
本发明第二方面提供了一种定量检测待测物的荧光分析方法, 包括步骤:
(1) 将待测物样品加至本发明第一方面所述的测试片的加样区;
(2) 测量所述测试片的测试区的荧光强度, 从而换算为待测物的数量。
本发明第三方面提供了一种定量检测待测物的荧光分析方法, 包括步骤: (a) 提供一本发明第一方面所述的测试片;
(b) 将待测物样品加至所述测试片的加样区;
(c) 样品中的待测物移动至结合区, 与其中的被吸光物质标记的结合剂结合, 从而形成可流动的含有吸光物质的复合物;
(d) 步骤 (c)中剩余的被吸光物质标记的结合剂或步骤 (c)得到的可流动的含有 吸光物质的复合物移动至测试区, 与其中的捕获剂结合, 从而形成固定于测试区 的含有吸光物质的复合物;
(e) 测量所述测试区的荧光强度, 从而换算为待测物的数量。 在另一优选例中, 所述测试区的荧光为所述测试片的自有荧光。
在另一优选例中, 当捕获剂结合步骤 (C)中剩余的被吸光物质标记的结合剂 时, 所述捕获剂为所述结合剂的抗体或抗原、 或为待测物等同物。
在另一优选例中, 当待测物样品为固相时, 步骤 (b)还包括加入溶剂 (如水或 缓冲液)。
在另一优选例中, 在步骤 (2)或步骤 (e)中, 将测试区与对照区中间处的荧光强 度 F2与测试区的荧光强度 F1的比值, 和标准曲线进行比较, 从而确定待测物的数 量; 或者
将测试区的荧光强度 F1和标准曲线进行比较, 从而确定待测物的数量。
在另一优选例中, 所述的方法还包括用已知浓度的待测物标准品进行测量, 从而制作标准曲线的步骤。
本发明第四方面提供了一种检测试剂盒, 所述试剂盒包括: 一本发明第一方 面所述的测试片; 和使用说明书。
本发明第五方面提供了一种定量检测待测物的荧光测量装置, 所述的装置包 括:
(a) 一本发明第一方面所述的测试片;
(b) 一用于检测荧光强度的检测器; 和
(c) 描述使用方法的使用说明。
在另一优选例中, 所述装置还包括光源和计算机。
所述光源通过光导纤维照射到检测线处, 激发出的荧光通过光导纤维进入检 测器, 由计算机进行数据处理和分析。 应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文 (如实施例) 中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。 限于篇幅, 在此不再一一累述。 附图说明
图 1是测试片示意图。
图 2是检测装置示意图。
图 3是实施例 1的 AFP标准系列浓度 (C)与相应荧光强度比值 (F2/F1)标准曲线 图。 图 4是实施例 2的 CRP标准系列浓度的对数值 (lgC)与相应荧光强度比值的对数 值 lg(F2/Fl)标准曲线图。
图 5是实施例 3的 AFP标准系列浓度的对数值 (lgC)与相应荧光强度比值的对数 值 lg(F2/Fl)标准曲线图。 具体实施方式
本发明人通过长期而深入的研究,发现了一种基于荧光淬灭原理的检测方法, 所述方法不仅可以通过目测测试区的颜色来判断是否含有待测物; 还可以通过测 量测试区荧光强度的方式来定量检测待测物, 上述方法可以直接通过淬灭物质对 测试区的自有荧光强度的影响, 从而测定待测物的数量。 所述方法不仅具有灵敏 度高, 定量准确的优点, 而且操作仍然十分简便、 快捷、 且成本低廉。 所述方法 是基于本发明提供的一种测试片, 通过一种含有光源和检测器的装置实现了对待 测物的定量检测。 在此基础上, 发明人完成了本发明。 测试片
现在更详细地描述用于制造本发明测试片的方法和材料。 应注意, 测试片的 具体构造可以变化, 这取决于意图用测试片来进行的具体测试。 在实施例之外制 造测试片的变动方法, 也落于本发明范围之中。
如图 1所示, 测试片 1可包括背衬片 2, 其长度与测试片相同。
加样区 3位于测试片的一端,样品垫片 31位于加样区, 可通过粘合剂粘贴于加 样区。
吸收区 7位于测试片的另一端, 在加样区的远端, 吸水垫片 71位于吸收区。 结合区 4位于加样区和吸收区之间,在加样区的近端和吸收区的远端, 结合垫 片 41位于结合区。
测试区 5(也称检测线)位于结合区和吸收区之间, 通常测试区设置在膜片 56 上,通过所述膜片连接结合垫和吸水垫。优选地,所述膜片上还设置有对照区 6(也 称质控线), 对照区位于测试区和吸收区之间, 也可以位于测试区和结合区之间, 并与测试区之间有适当的空间。
测试片制造方法, 优选地, 如图 1所示, 分别将样品垫片、 结合垫片、 膜片、 吸水垫片通过粘合剂粘贴于背衬板上, 即得所述测试片。
背衬片可以用任何稳定的、 无孔的材料制成, 其强度应足以支承材料和粘于 其的测试片。 因为许多测定用水作为扩散介质, 因此背衬片较佳地是基本上不透 水的。 在一个优选例中, 背衬片是用聚合物膜制成的, 更佳地是用聚氯乙烯膜制 成的 (如 PVC胶板)。
样品垫片可用任何吸收性材料制成。 可使用的材料例子包括: 纤维素、 硝酸 纤维素、 乙酸纤维素、 玻璃纤维、 尼龙、 聚电解质离子交换膜、 丙烯共聚物 /尼龙、 和聚醚砜。
结合垫片或膜片可以用任何材料制成, 只要该材料有足够孔隙度从而允许在 表面和内部发生流体的毛细管作用。 结合垫片或膜片应有足够的孔隙度, 从而允 许涂有抗体或抗原的颗粒移动。 结合垫片或膜片还可被含待检测分析物的样品中 所用的液体润湿 (例如, 对于水性液体具有亲水性, 对于有机溶剂具有疏水性)。 通过例如在美国专利 No. 4,340,482或 No. 4,618,533中所述的方法 (这些方法描述了 将疏水表面转变成亲水表面), 可以改变其疏水性从而使其具有亲水性以便用于水 性液体。 可用于制造结合垫片或膜片的材料例子包括: 聚脂膜、 纤维素、 硝酸纤 维素、 乙酸纤维素、 玻璃纤维、 尼龙、 聚电解质离子交换膜、 丙烯共聚物 /尼龙、 和聚醚砜 (polyetherSulfone)。 在一个优选例中, 结合垫片是用聚脂膜制成的, 膜片 是用硝酸纤维素制成的。
吸收垫片可以用任何能吸收作为样品和缓冲液的液体的材料制成。 吸收垫片 的吸收能力应足够大, 以便吸收添加至测试片的液体。 适用于吸收垫片的材料的 例子包括纤维素和玻璃纤维。 检测方法
本发明测试片可用于大量不同的侧流分析方法, 而这些分析方法涉及使用一 种或多种可流动的结合剂和一种固定化的捕获剂, 以及利用测试区自有的荧光强 度的变化。
优选地, 所述方法包括步骤:
(1) 将待测物样品加至本发明所述的测试片的加样区;
(2) 测量所述测试片的测试区的荧光强度, 从而换算为待测物的数量。
在加样后, 样品中的待测物移动至结合区, 所述结合区含有结合剂, 所述待 测物与其中的结合剂结合, 从而形成含吸光物质的复合物;
接着, 剩余的含吸光物质的结合剂和结合区中形成的含吸光物质的复合物移 动至测试区, 与其中的捕获剂结合, 从而形成富集有吸光物质的测试区。 具体地, 当所述富集在测试区的吸光物质影响 (部分淬灭或全部淬灭)所述测 试区的荧光强度 (测试片自有荧光)时, 本发明的检测方法即可通过检测测试区荧 光强度来测定待测物的数量。
一种优选的检测方法包括: 测量测试区与对照区中间处的荧光强度 F2与测试 区的荧光强度 Fl, 并基于荧光强度 F2和 F1的比值, 确定待测物的数量。 应理解, 荧光强度 F2和 F 1的比值包括(但并不限于): F 1 /F2、 F2/F 1、 F 1 /(F 1 +F2)、 F2/(F 1 +F2)、 (F1+F2)/ Fl、 (Fl+F2)/F2、 F1/(|F1-F2|)、 F2/(|F1-F2|)、 (|F1-F2|)/ Fl、 (|F1-F2|)/F2 等类似比值。 待测物或其等同物
如本文所用, 术语 "待测物" 、 "其等同物" 或 "分析物" 指待用测试片检 测以及可任选地被定量测定的、 样品中的任何组份, 待测物或其等同物或分析物 的例子包括: 蛋白质, 如激素或其他分泌蛋白质、 酶和细胞表面蛋白; 糖蛋白; 肽; 小分子; 多糖; 抗体 (包括单克隆抗体或多克隆抗体及其片段); 核酸; 药物 (包 括地高辛等强心甙类药物); 毒素; 毒品; 病毒或病毒颗粒; 细胞壁组份; 或其他 具有表位的化合物。
优选地, 所述的待测物包括肿瘤标志物、 心肌标志物等特异性的蛋白, 所述 肿瘤标志物选自下组: 甲胎蛋白 (AFP)、 C-反应蛋白 (CRP)、 癌胚抗原 (CEA)、 癌 抗原 125(CA125)、 糖抗原 19-9(CA19-9)、 总前列腺特异性抗原 (PSA)、 游离前列腺 特异性抗原 (f-PSA)、 神经原特异性烯醇化酶 (NSE)、 糖链抗原 (CA242)、 癌抗原
(CA15-3), 或人绒毛膜促性腺激素(β -HCG )。 结合剂
本发明所用的结合剂可以是任何能够结合于待测物或其等同物的物质。 具体 地, 为特异性结合待测物或其等同物的物质。 所述结合剂中至少一种是被吸光物 质标记, 所述结合剂能与待测物或其等同物结合形成含吸光物质的复合物;
有各种不同类型的分子可用作分析物结合剂, 其中包括例如: 寡核苷酸、 抗 体、 工程化蛋白、 肽、 半抗原、 或含有抗原 (该抗原具有分析物结合位点)的异源 混合物的裂解物。 P. Holliger等人, Trends in Biotechnology 13:7-9(1995); S.M. Chamow等人, Trends in Biotechnology 14: 52-60(1996)。如果待检测分析物是配体, 那么可使用结合于该配体的受体, 反之亦然。 优选地, 所述的待测物或其等同物是抗原, 且所述的结合剂是可结合于所述 抗原的抗体; 或者所述的待测物或其等同物是抗体, 且所述的结合剂是可结合于 所述抗体的抗原或所述抗体的抗体 (抗抗体)。 捕获剂
本发明所用的捕获剂可以是任何能结合含吸光物质的复合物和 /或结合剂的 物质, 包括例如: 抗体、 工程化蛋白、 肽、 半抗原、 或含有抗原 (该抗原具有分析 物结合位点)的异源混合物的裂解物。
所述捕获剂用于捕获从结合区移动至测试区的含吸光物质的复合物和 /或剩 余的被吸光物质标记的结合剂, 从而使得吸光物质富集在测试区。
优选地, 可以通过抗原和抗体的结合或寡核苷酸与互补核酸单链特异性结合 的方式或通过生物素 (biotin)和链亲和素 (Streptavidin, SA)的结合方式, 将捕获剂 与含吸光物质的复合物和 /或剩余的被吸光物质标记的结合剂结合, 从而将吸光物 质富集混合于测试区。
所述捕获剂和含吸光物质的复合物或剩余的被吸光物质标记的结合剂的结合 为特异性结合。 优选地, 所述的捕获剂是链亲和素、 待测物的抗体或待测物等同 物。 吸光物质的选择
用于本发明的吸光物质应有较宽泛的紫外可见甚至红外吸收光谱, 总的原则 是其吸收光谱与测试片自有荧光的激发或发射光谱部分或完全重叠。
最优的是完全重叠, 如此会有较高的检测灵敏度。
代表性的吸光物质包括 (但并不限于): 胶体金、 纳米金棒、 纳米银棒等组合, 它们的吸收光谱范围为 300〜1000nm不等, 只要所选吸光物质的吸收光谱与测试片 自有荧光激发或发射光谱重叠即可。
胶体金颗粒可用任何常规方法制造, 例如总结于 G. Frens, 1973 Nature Physical Science, 241 :20(1973)中的方法。 其他方法描述于美国专利 No. 5,578,577、 5, 141 ,850、 4,775,636、 4,853,335、 4,859,612、 5,079, 172、 5,202,267、 5,514,602、 5,616,467、 5,681 ,775 c
如本文所用, 术语 "纳米金棒" 指具有一定纵横比、 且横轴和纵轴处于 5-200 纳米范围的金颗粒。 一种特别优选的吸光物质是胶体金, 尤其是粒径为 20-40nm的胶体金。 荧光淬灭原理
含吸光物质标记的物质, 被测试区的捕获试剂捕获后, 含吸光物质标记的物 质会在测试区富集, 当测试片自有荧光的激发或发射光谱与该吸光物质的吸收光 谱全部或部分重叠时, 因共振能量转移, 吸光物质会对测试片自有荧光产生淬灭 作用, 即淬灭测试区的荧光强度。 工作原理
现结合图 1和具体的实施方式说明本发明检测方法的工作原理:
利用膜片 56本身的自有荧光。 检测线处固定能与结合剂结合的物质 (即捕获 剂)。 所述结合剂位于结合垫片, 可流动。 所述结合剂被样品溶解后, 在层析过程 中与样品中的待测物或其等同物结合形成含吸光物质的复合物, 所述复合物流经 检测线时被捕获, 待测物越多, 被捕获的所述复合物也就越多。 具体地, 当所述 复合物 (部分淬灭或全部淬灭)影响所述膜片检测线处的荧光强度时, 即可通过检 测荧光强度来测定待测物的数量。 本发明在此提供了基于上述原理的如下优选方法:
方法一:
(1.1) 样品加在玻璃纤维样品垫片上, 样品中的待测物 (如抗原)在毛细作用下 向吸水垫片方向移动, 途经载有结合剂 (如针对抗原的金标抗体、 biotin标记的抗 体)的结合垫片后, 将所述结合剂完全复溶, 层析过程中抗原与结合剂形成 "金标 抗体 -抗原 -biotin抗体" 的 3元复合物, 被检测线处的捕获剂 (如 Streptavidin)捕获; 3元复合物中的金淬灭膜条检测线处的自有荧光。
(1.2) 多余的游离金标抗体继续前移, 被固定在质控线处的对照剂 (如抗金标 抗体的抗体)捕获, 呈现红色, 说明检测有效。
(1.3) 分别测定膜条检测线处的荧光强度 F1及检测线与质控线中间处的荧光 强度 F2, 计算 F2和 F1的比值, 优选 F2/F1的值, 值越大说明待测物浓度越高, 反之 则越低; 如样本中无待测物时, 不能形成 3元复合物, 则 F2/F1 1。 方法二: 将捕获剂 (如针对待测物中抗原的捕获抗体)固定于检测线处。
(1.1) 样品加在玻璃纤维样品垫片上, 样品中的待测物 (如抗原)在毛细作用下 向吸水垫片方向移动, 途经载有结合剂 (如抗原的金标抗体)的结合垫片后, 将所 述结合剂完全复溶, 层析过程中抗原与结合剂形成 "金标抗体-抗原" 的 2元复合 物, 被检测线处的捕获抗体捕获;
2元复合物中的金淬灭膜条检测线处的自有荧光。
(1.2) 多余的游离金标抗体继续前移, 被固定在质控线处的对照剂 (如抗金标 抗体的抗体)捕获, 呈现红色, 说明检测有效。
(1.3) 分别测定膜条检测线处的荧光强度 F1及检测线与质控线中间处的荧光 强度 F2, 计算 F2和 Fl的比值, 优选 F2/F1的值, 值越大说明待测物浓度越高, 反之 则越低; 如样本中无待测物时, 不能形成 2元复合物, 则 F2/F1 1。 本发明还适用于竞争抑制法:
(1.1) 将待测物的等同物固定于检测线处作为捕获剂,结合剂的抗体固定于质 控线处;
(1.2) 将结合剂 (如金标抗体)滴加于附图 1的结合垫片处, 样品加在玻璃纤维 样品垫片上, 其中的待测物 (如抗原)向吸水垫片方向移动, 途经载有所述结合剂 的结合垫片并将其完全复溶, 液体前行过程中, 样品中的待测物和结合垫片上的 结合剂形成金标抗体-抗原的 "第 1二元复合物" ;
(1.3) 剩余的结合剂前行至膜片 56的检测线处,与待测物的等同物形成金标抗 体-待测物等同物的 "第 2二元复合物"而被捕获, 待测物浓度越高, 形成的 "第 2 二元复合物"越少, 相应地, 被捕获的 "第 2二元复合物"越少;
(1.4) 未被捕获的结合剂与 "第 1二元复合物" 继续前行, 被质控线处结合剂 的抗体捕获, 质控线显示红色, 试验有效;
(1.5) 分别测定膜条检测线处的荧光强度 F1及检测线与质控线中间处的荧光 强度 F2, 计算 F2和 Fl的比值, 优选 F2/F1的值, 值越大说明待测物浓度越小, 反之 则越大。 检测装置
现结合图 2说明本发明的检测装置:
如图 2所示, 所述装置可以包括: 测试片、检测器、光源、光导纤维和计算机。 还可以包括一份检测方法的使用说明。 其中测试片的工作原理如上所述, 荧光强 度的检测方法可以如下所述 (但不仅限于此), 任何可用于检测荧光强度的方法均 可用于本发明的检测装置。 荧光强度的检测
光源通过光导纤维照射到检测线处,激发出的荧光通过光导纤维进入检测器, 所得到的数据由计算机进行处理和分析。
所述光导纤维可以是 Y型的, 分别连接于光源、 检测线和检测器。
本发明中, 光源用于提供某一发射波长的光线, 从而激发测试片发出荧光。 可选用任何可以提供合适波长的光源, 包括 (但不限于 LED, 氙灯、 卤钨灯、 激光等。
一种优选的光源是激光光源,激光光源可用本领域常规的方法和设备 (如激光 器)产生。 代表性的激光器包括 (但并不限于): 半导体激光器、 氦氖激光器、 氩离 子激光器、 还包括波长可选的激光器、 多波长激光器和双波长激光器等。
激光器产生的激光波长与激光介质有关, 常见的激光波长见下表 1 :
表 1
Figure imgf000013_0001
本发明中的检测器可以是 (但不限于)光电倍增管、 CCD或光电池等。 标准曲线
在本发明中, 可以直接通过测定检测线处的荧光强度, 从而确定所述待测物 的数量; 也可以通过测定检测线处的荧光强度 F1和检测线与质控线中间处的荧光 强度 F2, 计算 F2和 F1的比值, 从而确定所述待测物的数量。
在优选例中, 可通过与标准曲线进行比较, 从而获得定量结果。
标准曲线可用以下方法获得:
将已知的不同浓度 (C)的待测物样品通过上述检测方法后,分别测量其在检测 线处的荧光强度 (F), 将各浓度 (C)或其对数值 (log C或 lg C)和相应的荧光强度 (F) 或其对数值 (log F或 lg F)作图, 得到标准曲线; 或者
将已知的不同浓度 (C)的待测物样品通过上述检测方法后,分别测量其在检测 线处的荧光强度 (Fl), 检测线与质控线中间处的荧光强度 F2, 计算 F2和 F1的比值 (如 F2/F1 ),将各浓度 (C)或其对数值 (log C或 lg C)和相应的荧光强度比值 (如 F2/F1) 或其对数值 (如 log F2/F1或 lg F2/F1)作图, 得到标准曲线。 本发明的主要优点有:
(1) 本发明提供了一种测试片。
(2) 本发明提供了一种上述测试片的检测方法, 所述方法基于荧光淬灭原理, 通过测量测试片自有荧光强度测定待测物的数量, 所述方法快捷、 简便、 成本低 廉, 而且灵敏度高, 定量准确。
(3) 本发明还提供了一种检测装置, 所述装置基于上述检测方法, 可广泛用 于定量检测领域。 下面结合具体实施, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本 发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通 常按照常规条件, 例如 Sambrook等人, 分子克隆: 实验室手册 (New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议的条 件。 除非另外说明, 否则百分比和份数按重量计算。 实施例
试剂和设备:
针对 AFP的 1对单克隆抗体 (Abl和 Ab2), 市售品; 针对 C-反应蛋白 (CRP)的单克隆抗体, 市售品;
CRP抗原, 市售品;
AFP抗原购自 Biodesign;
30nm的胶体金, 市售品;
Streptavidin(SA), 市售品;
小牛血清白蛋白 (BSA), 市售品;
Biotin, 市售品;
检测器: USB4000-FL (美国海洋光学公司);
光源: 532nm激光光源。 实施例 1: 血清中甲胎蛋白 (AFP)的检测 (利用膜片的自有荧光)
1、 金标抗体的制备
1.1 胶体金 -抗体保存液
Figure imgf000015_0001
加水溶解后用 6N HC1 调 pH至 7.4, 补水至 250ml, 用 0.45 μ m滤膜过滤后, 4°C保存。
1.2 工作液
Figure imgf000015_0002
加水溶解后用 6N HCL 调 pH至 7.0〜7.5补水至 1000ml, 用 0.45 μ ιη滤膜过滤
4〜8°C保存。
1.3 金标抗体 (Gold-Abl)的制备 1.3.1 取 20〜30nm颗粒胶体金液 20ml, 在磁力搅拌下缓慢加入已纯化的 Abl 抗体 1.0ml(0.6mg/ml), 在室温下搅拌 30min;
1.3.2 力口 10%的 BSA 0.8ml (终浓度 0·4%), 室温搅拌 5min;
1.3.3 力口 10%的 PEG 0.4ml (终浓度 0.2%), 室温搅拌 5min;
1.3.4 12000〜1500r/min离心 60〜40min, 小心吸离心上清, 沉淀溶于 0.5ml保 存液中, 金标抗体的光密度 (O.D)约为 100 O.D, 其中 Abl抗体的浓度为 lmg/ml, 置 4°C保存备用;
2. biotin标记 Ab2
2.1 Ab2预处理
Figure imgf000016_0001
2.2 取上述预处理的 Ab2 10 μ L, 加入 25 μ L的 lmg/ml NHSS-Biotin DMSO溶 液, 混匀, 4°C冰箱避光反应 2小时, 透析过夜备用。
3. SA点膜与上载 Gold-Abl、 biotin-Ab2
取 SA lmg/ml的磷酸盐缓冲液 (pH7.2) 0.5 μ 1点在附图 1检测线位置, 避光室温 干燥;
取 Gold-Abl、 biotin- Ab2 0.5 μ 1滴加在附图 1的结合垫片上。
4. 标准曲线制备
4.1 用工作液配制 AFP系列标准溶液 (浓度见表 2);
4.2 取 5只测试片,水平放置,分别在各样品垫上加 5种浓度的 50 μ 1标准溶液;
4.3 lOmin后, 测定各测试片上检测线处 605nm的荧光强度 F1及检测线与质控 线中间处 605nm的荧光强度 F2, 计算 F2/F1的值数据见表 2, 标准曲线见图 3。 AFP标准系列浓度与相应荧光强度
Figure imgf000017_0001
5、 样本检测
用血清样本替代标准系列溶液, 重复 4.2、 4.3步骤, 将 F2/F1代入标准曲线, 测得 6个样本的 AFP值见表 3。
表 3 本发明方法检测结果与罗氏电化学发光法检测结果
Figure imgf000017_0002
本发明方法检测结果与罗氏电化学发光法检测结果的相关性良好,
R2=0.9637。
实施例 2: 基于竞争抑制法检测 C-反应蛋白 (CRP)
1. CRP单抗标金 (Gold-CRP)
过程同实施例 1步骤 1, 不同点在于, 用已纯化的 CRP单抗替代 Abl抗体, 标 记后胶体金 O.D值为 75, CRP单抗浓度为 lmg/ml。
2. 用 PBS-TBN配制 lmg/ml的 CRP纯抗原,取 0.2 μ 1点于检测线处;用 PBS-TBN 配制 lmg/ml的 CRP抗体的抗体, 取 0.2 μ 1点于质控线处; 取 0.5 μ 1 Gold-CRP加于结 合垫, 室温干燥备用。
3、 标准曲线制备
3.1 用工作液配制 CRP系列标准溶液 (浓度见表 4);
3.2 取 5只测试片,水平放置,分别在各样品垫上加 5种浓度的 50 μ 1标准溶液; 3.3 lOmin后, 测定各测试片上检测线处 605nm的荧光强度 F1及检测线与质控 线中间处 605nm的荧光强度 F2, 计算 F2/F1的值数据见表 4, 标准曲线见图 4。
CRP标准系列浓度与相应荧光强度
Figure imgf000018_0001
5、 样本检测
用血清样本替代标准系列溶液, 重复 3.2、 3.3步骤, 将 F2/F1代入标准曲线, 测得 6个样本的 CRP值见表 5。
Figure imgf000018_0002
本发明方法检测结果与酶联免疫法法检测结果的相关性良好, R2=0.9586。 实施例 3 血清中甲胎蛋白 (AFP)的检测
1、 金标抗体的制备
同实施例 1。
2、 取 Ab2 1.5mg/ml的磷酸盐缓冲液 (ρΗ7.2) 0.5 μ 1点在附图 1检测线位置, 取 抗 Abl抗体 2mg/ml的磷酸盐缓冲液 (ρΗ7.2) 0.5 μ 1点在附图 1质控线位置; 取 Gold- Abl 0.5 μ 1滴加在附图 1的结合垫片上; 避光室温干燥;
3、 标准曲线制备
3.1 用工作液配制 AFP系列标准溶液 (浓度见表 6);
3.2 取 6只测试片,水平放置,分别在各样品垫上加 6种浓度的 60 μ 1标准溶液; 3.3 lOmin后, 测定各测试片上检测线处 605nm的荧光强度 F1及检测线与质控 线中间处 605nm的荧光强度 F2, 计算 F2/F1的值, 数据见表 6, 以 lgC:、 lg(F2/Fl)为 横、 纵坐标做标准曲线, 见图 5。
AFP标准系列浓度与相应荧光强度
Figure imgf000019_0002
用血清样本替代标准系列溶液, 重复 3.2、 3.3步骤, 将 F2/F1代入标准曲线,
Figure imgf000019_0001
3 188.65 109.4
4 130.31 58.67
5 322.23 208.4
6 295.01 220.5
7 205.65 109
8 23.71 22.17
9 126.7 83.39
10 664.9 757.5
1 1 106.67 73.97
12 223.65 275
13 13.62 14.05
14 28.65 28.24
15 70.08 42.49
16 34.6 27.53
17 242.09 294.4
18 770.91 738.9
本发明方法检测结果与罗氏电化学发光法检测结果的相关性良好, R2=0.94。 结论:
本发明所述方法仅通过测量淬灭物质对测试区自有荧光强度的影响来测定待 测物的数量, 既克服了自有荧光带来的荧光信号的干扰, 而且不需要加入任何荧 光物质标记的试剂, 显著减少了原料的使用, 节约了经济成本, 且实验方法更简 便。
可见, 本发明所述方法不仅具有灵敏度高, 定量准确的优点, 而且快捷、 操 作简便、 成本低廉。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本 领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所 附权利要求书所限定的范围。

Claims

权 利 要 求
1. 一种测试片, 其特征在于, 该测试片包括:
(1) 可加入样品的加样区;
(ii) 位于加样区近端的结合区, 所述结合区包含:
一种或多种可流动的结合剂, 所述结合剂中至少一种被吸光物质标记, 所述 结合剂能与待测物或其等同物结合形成含吸光物质的复合物;
(iii) 位于结合区近端和加样区远端的测试区, 所述测试区包含固定化的捕获 剂, 所述捕获剂用于捕获从结合区移动至测试区的被吸光物质标记的结合剂或含 吸光物质的复合物, 所述测试区具有荧光; 和
(iv) 位于测试区近端和结合区远端的样品吸收区,其中吸收区具有吸收能力, 从而使得加至加样区的样品从加样区扩散至末端样品吸收区;
其中, 当所述捕获剂捕获所述被吸光物质标记的结合剂或所述含吸光物质的 复合物时, 所述吸光物质影响所述测试区的荧光强度。
2. 如权利要求 1所述的测试片, 其特征在于, 所述的待测物包括: 蛋白、 核 酸或小分子化合物。
3. 如权利要求 1所述的测试片, 其特征在于, 所述测试片自有荧光的激发或 发射光谱与所述吸光物质的吸收光谱全部或部分重叠。
4. 如权利要求 1所述的测试片, 其特征在于, 所述的吸光物质选自下组: 胶 体金、 纳米金棒、 纳米银棒或其组合。
5. 如权利要求 1所述的测试片, 其特征在于, 在测试区和样品吸收区之间还 包含至少一个对照区, 所述对照区含有固定化的对照剂, 其中, 所述对照剂用于 特异性结合被吸光物质标记的结合剂。
6. 一种定量检测待测物的荧光分析方法, 其特征在于, 包括步骤:
(1) 将待测物样品加至如权利要求 1所述的测试片的加样区;
(2) 测量所述测试片的测试区的荧光强度, 从而换算为待测物的数量。
7. 一种定量检测待测物的荧光分析方法, 其特征在于, 包括步骤:
(a) 提供一权利要求 1所述的测试片;
(b) 将待测物样品加至所述测试片的加样区;
(c) 样品中的待测物移动至结合区, 与其中的被吸光物质标记的结合剂结合, 从而形成可流动的含有吸光物质的复合物; (d) 步骤 (c)中剩余的被吸光物质标记的结合剂或步骤 (c)得到的可流动的含有 吸光物质的复合物移动至测试区, 与其中的捕获剂结合, 从而形成固定于测试区 的含有吸光物质的复合物;
(e) 测量所述测试区的荧光强度, 从而换算为待测物的数量。
8. 如权利要求 6或 7所述的方法, 其特征在于, 在步骤 (2)或步骤 (e)中, 将测 试区与对照区中间处的荧光强度 F2与测试区的荧光强度 F1的比值, 和标准曲线进 行比较, 从而确定待测物的数量; 或者
将测试区的荧光强度 F1和标准曲线进行比较, 从而确定待测物的数量。
9. 一种检测试剂盒, 其特征在于, 所述试剂盒包括: 一权利要求 1-5任一项 所述的测试片; 和使用说明书。
10. 一种定量检测待测物的荧光测量装置, 其特征在于, 所述的装置包括:
(a) 一权利要求 1-5任一项所述的测试片;
(b) 一用于检测荧光强度的检测器; 和
(c) 描述使用方法的使用说明。
PCT/CN2012/078714 2012-03-01 2012-07-16 一种荧光分析方法和装置 WO2013127144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210051830.8A CN103293303B (zh) 2012-03-01 2012-03-01 一种荧光分析方法和装置
CN201210051830.8 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013127144A1 true WO2013127144A1 (zh) 2013-09-06

Family

ID=49081576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078714 WO2013127144A1 (zh) 2012-03-01 2012-07-16 一种荧光分析方法和装置

Country Status (2)

Country Link
CN (1) CN103293303B (zh)
WO (1) WO2013127144A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106841623A (zh) * 2015-12-03 2017-06-13 上海鑫谱生物科技有限公司 一种荧光分析方法和装置
JP6709745B2 (ja) * 2017-03-14 2020-06-17 デンカ生研株式会社 検体の展開を制御し得る、糖鎖抗原を抽出し測定するためのイムノクロマト試験片
CN110146693B (zh) * 2019-05-09 2022-07-29 润和生物医药科技(汕头)有限公司 一种带有荧光染料的硝酸纤维素膜及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811626A1 (en) * 1996-06-04 1997-12-10 Roche Diagnostics GmbH Use of metallo-porphyrin conjugates for the detection of biological substances
CN1563951A (zh) * 2004-03-19 2005-01-12 中国科学院长春应用化学研究所 胶体金和半导体荧光纳米粒子双标记快速免疫检测试纸
US20050112703A1 (en) * 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
CN1645146A (zh) * 2005-02-03 2005-07-27 厦门大学 用荧光稀土纳米颗粒作为标记物的免疫层析方法及其检测试纸条
CN1773281A (zh) * 2005-10-20 2006-05-17 上海交通大学 免疫胶体金粒子荧光淬灭的测量方法
WO2009152209A2 (en) * 2008-06-10 2009-12-17 Rapid Pathogen Screening, Inc. Combined visual/fluorescence analyte detection test
JP2010014631A (ja) * 2008-07-04 2010-01-21 Furukawa Electric Co Ltd:The 標識粒子として、蛍光粒子と着色粒子とを含有するイムノクロマト法用コンジュゲートパッド、それを用いたイムノクロマト法用テストストリップおよび検査方法
CN102103145A (zh) * 2011-02-24 2011-06-22 南京基蛋生物科技有限公司 一种双放大系统的胶体金试纸条及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040064054A (ko) * 2003-01-09 2004-07-16 바디텍메드 주식회사 전혈 및 혈청용 고감도 씨-반응성단백질 진단스트립 및 면역형광스캐너
US7732153B2 (en) * 2006-05-09 2010-06-08 Beckman Coulter, Inc. Nonseparation assay methods
US20090104635A1 (en) * 2007-10-19 2009-04-23 Tom Cheng Xu Fluorescent Dry Test Strip Biosensor
CN102033124A (zh) * 2009-12-25 2011-04-27 北京博晖创新光电技术股份有限公司 一种免疫荧光检测装置及检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811626A1 (en) * 1996-06-04 1997-12-10 Roche Diagnostics GmbH Use of metallo-porphyrin conjugates for the detection of biological substances
US20050112703A1 (en) * 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
CN1563951A (zh) * 2004-03-19 2005-01-12 中国科学院长春应用化学研究所 胶体金和半导体荧光纳米粒子双标记快速免疫检测试纸
CN1645146A (zh) * 2005-02-03 2005-07-27 厦门大学 用荧光稀土纳米颗粒作为标记物的免疫层析方法及其检测试纸条
CN1773281A (zh) * 2005-10-20 2006-05-17 上海交通大学 免疫胶体金粒子荧光淬灭的测量方法
WO2009152209A2 (en) * 2008-06-10 2009-12-17 Rapid Pathogen Screening, Inc. Combined visual/fluorescence analyte detection test
JP2010014631A (ja) * 2008-07-04 2010-01-21 Furukawa Electric Co Ltd:The 標識粒子として、蛍光粒子と着色粒子とを含有するイムノクロマト法用コンジュゲートパッド、それを用いたイムノクロマト法用テストストリップおよび検査方法
CN102103145A (zh) * 2011-02-24 2011-06-22 南京基蛋生物科技有限公司 一种双放大系统的胶体金试纸条及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, JUNSHUANG: "Study on Gold Labeled Immunochromatographic Assay for Detection of Deoxynivalenol in Foods", CHINESE MASTER'S THESES COLLECTION, no. 3, 15 March 2009 (2009-03-15), pages 34 - 38 *

Also Published As

Publication number Publication date
CN103293303B (zh) 2016-12-14
CN103293303A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
CN106872420B (zh) 一种时间分辨荧光定量检测尿微量白蛋白的试剂盒及方法
FI92110B (fi) Useiden analyyttien vallitsevien konsentraatioiden määrittäminen
Juntunen et al. Performance of fluorescent europium (III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay
CN102879559B (zh) 一种时间分辨荧光免疫层析即时定量检测试剂和方法
JP2003512625A (ja) 磁気クロマトグラフィ測定法を行うためのシステムおよび方法
KR100910982B1 (ko) 당화헤모글로빈의 정량분석을 위한 시스템 및 이를 이용한당화헤모글로빈 측정 방법
CN101661034A (zh) 同时进行多种生物标志物并行检测的方法和芯片试纸
US11371987B2 (en) Method of amplifying detection light using light-reflecting material, in immunochromatography
US20210156856A1 (en) Systems, devices, and methods for amplifying signals of a lateral flow assay
AU2009333937A1 (en) Quantitative analyte assay device and method
JP4274944B2 (ja) ダイナミックレンジが拡張された粒子利用リガンドアッセイ
CN111751525A (zh) 一种基于有序微纳结构的侧向流免疫试纸条
KR101807871B1 (ko) 유로퓸 입자와 형광 염료를 이용한 고감도 체외 진단 키트를 이용한 정량 분석 방법
JP2005510706A5 (zh)
JP7267211B2 (ja) 高濃度の分析物等、分析物を測定するための用量反応曲線の減少信号部分を使用したサンドイッチ型アッセイ
KR20120029549A (ko) 신속한 결과 및 향상된 감도를 갖는 측방 유동 면역 분석 디바이스
WO2022042320A1 (zh) 超灵敏数字层析快速检测分析物的系统及方法
KR20180025295A (ko) 유로퓸 입자와 형광 염료를 이용한 고감도 체외 진단 키트 및 이를 이용한 정량 분석 방법
WO2013127144A1 (zh) 一种荧光分析方法和装置
CN107870238B (zh) 一种定量测量人血清中肌钙蛋白I(cTnI)的方法
Ming-Qing et al. Research progress of C-reactive protein analysis
CN205538994U (zh) 一种高灵敏时间分辨荧光免疫层析检测试剂装置
CN103293134A (zh) 一种荧光分析方法和装置
CN103712963B (zh) 一种荧光分析方法和装置
JP2013145139A (ja) Spfs(表面プラズモン励起増強蛍光分光法)を用いたミオグロビンの免疫学的測定法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869932

Country of ref document: EP

Kind code of ref document: A1