WO2013127141A1 - 一种数字预失真处理方法及装置 - Google Patents

一种数字预失真处理方法及装置 Download PDF

Info

Publication number
WO2013127141A1
WO2013127141A1 PCT/CN2012/077131 CN2012077131W WO2013127141A1 WO 2013127141 A1 WO2013127141 A1 WO 2013127141A1 CN 2012077131 W CN2012077131 W CN 2012077131W WO 2013127141 A1 WO2013127141 A1 WO 2013127141A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
predistortion
processing
combined
Prior art date
Application number
PCT/CN2012/077131
Other languages
English (en)
French (fr)
Inventor
王琳
王鹏
雷红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP12870172.9A priority Critical patent/EP2822242B1/en
Priority to US14/381,286 priority patent/US20150103952A1/en
Publication of WO2013127141A1 publication Critical patent/WO2013127141A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Definitions

  • the present invention relates to the field of digital signal processing, and in particular, to a digital predistortion processing method and apparatus.
  • Figure 1 is a typical structure of a single-channel digital predistortion processing device currently used.
  • the working principle and process are as follows:
  • the digital predistortion training device compares the input baseband IQ signal with the digital signal from the feedback coupled ADC set to obtain
  • the predistortion correction parameter is used by the digital predistorter to perform digital predistortion processing, and the predistortion processed signal output is converted into an analog signal by the DAC, and the analog signal is amplified by the mixing amplifier.
  • the feedback coupled signal, the amplifier output from here, is fed to the digital predistortion training device via the mixer and ADC.
  • the above conventional digital predistortion processing device is composed of a programmable gate array (FPGA), a DAC, a mixer, a DSP, a filter, and an ADC.
  • the device performs up-conversion peak clipping on the baseband IQ signal, and then sends the peaked digital signal to the digital predistorter for predistortion processing.
  • the feedback link is coupled back by the analog signal of the baseband IQ signal through the transform processing and amplification, and the coupled RF signal is analog down-converted and filtered into an intermediate frequency signal, and then converted into a digital signal by the ADC, and input to the digital pre-distortion training.
  • the device compares with the baseband IQ signal to obtain a predistortion correction parameter, which is then applied to the digital predistorter.
  • the above conventional digital predistortion processing device is at cost and Application aspects are acceptable, but with the development of active antenna technology and the increase of RF channels, the use of the above traditional DPD devices requires the addition of a digital predistorter and a feedback link for each transmit channel. The increase in the number of channels, volume, cost, power consumption, and link complexity will increase dramatically.
  • FIG. 2 is a structural diagram of a digital predistortion processing apparatus of a conventional multi-channel system, in which a baseband IQ signal of each channel has a digital predistorter for digital predistortion processing, sharing a feedback channel, and using The RF switch is switched to collect the baseband IQ signal and the feedback signal of the corresponding channel, and each channel is trained to perform DPD training, and the extracted predistortion correction parameters are downloaded to the corresponding digital predistorter for predistortion processing.
  • the technical problem to be solved by the embodiments of the present invention is to provide a digital predistortion processing method and apparatus, which can be applied to a system of single channel multi-amplifier.
  • an embodiment of the present invention provides a digital pre-distortion processing method, including:
  • the predistortion correction parameter is updated based on the combined signal after the conversion processing and the baseband signal before the digital predistortion processing, and the predistortion correction parameter is updated.
  • the step of generating the predistortion correction parameter according to the combined signal after the conversion processing and the baseband signal before the digital predistortion processing comprises:
  • the aligned combined signal and the baseband signal before the digital predistortion processing are compared to generate a predistortion correction parameter.
  • the step of converting the combined signal includes:
  • the step of splitting the radio frequency signal includes:
  • the power divider is used to divide the RF signal into N (N > 1) identical RF signals.
  • the step of converting the baseband signal into the radio frequency signal comprises:
  • the digital pre-distortion processed baseband signal is digital-to-analog converted to obtain an analog signal, and the analog signal is modulated into a radio frequency signal by orthogonal modulation.
  • a digital predistortion processing apparatus includes: a digital predistortion processor, a baseband signal conversion circuit, a power splitter, a power amplifier, a combiner, a combined signal processing circuit, and a digital predistortion training device, wherein:
  • the digital predistortion processor is configured to perform digital predistortion processing on the baseband signal according to the predistortion correction parameter, and transmit the digital predistortion processed baseband signal to the baseband signal conversion circuit;
  • the baseband signal conversion circuit is configured to be The digital pre-distortion processed baseband signal is converted into a radio frequency signal, and the radio frequency signal is transmitted to the power splitter;
  • the power splitter is configured to split the radio frequency signal and output each radio frequency signal to a different power amplifier;
  • the combiner is configured to couple the RF signal outputted by each power amplifier to a feedback link for combining, to obtain a combined signal, and transmit the combined signal to the combined signal processing circuit;
  • the combined signal processing circuit is configured to perform a conversion process on the combined signal, and transmit the combined combined signal to the digital predistortion training device;
  • the digital predistortion training device is configured to generate a predistortion correction parameter according to the converted combined signal and the baseband signal before the digital predistortion processing, and update the predistortion correction parameter to the digital predistortion processor.
  • the digital predistortion training device includes: a data collection module, a data processing module, a predistortion correction parameter extraction module, and a parameter update module, where:
  • the data collection module is configured to set the baseband signal and the baseband signal before the digital predistortion processing
  • the data processing module is configured to process the combined signal and the baseband signal before the digital predistortion processing to eliminate the difference in delay, amplitude phase, energy, and frequency offset of the combined signal and the baseband signal, thereby obtaining alignment
  • the baseband signal before the combined signal and digital predistortion processing is configured to process the combined signal and the baseband signal before the digital predistortion processing to eliminate the difference in delay, amplitude phase, energy, and frequency offset of the combined signal and the baseband signal, thereby obtaining alignment The baseband signal before the combined signal and digital predistortion processing;
  • the predistortion correction parameter extraction module is configured to perform a comparison operation between the aligned combined signal and the baseband signal before the digital predistortion processing to generate a predistortion correction parameter;
  • the parameter update module is configured to update the predistortion correction parameter to the digital predistortion processor.
  • the combined signal processing circuit includes: a mixer, a filter, and an analog to digital converter, where:
  • the mixer is configured to downconvert the combined signal to an intermediate frequency signal, and transmit the intermediate frequency signal to the filter;
  • the filter is configured to filter the intermediate frequency signal, and transmit the filtered combined signal to the analog to digital converter;
  • the analog-to-digital converter is configured to convert the filtered combined signal into a digital signal to obtain the combined signal after the conversion process.
  • the power splitter is configured to divide the radio frequency signal into N (N > 1) channels of the same radio frequency signal.
  • the baseband signal conversion circuit includes: a digital-to-analog converter and a modulator, wherein: the digital-to-analog converter is configured to perform digital-to-analog conversion on the digital pre-distortion processed baseband signal to obtain an analog signal, where An analog signal is transmitted to the modulator;
  • the modulator is configured to modulate the analog signal into a radio frequency signal by orthogonal modulation.
  • the present invention provides a digital pre-distortion processing method and apparatus for a single-channel multi-amplifier system, which reduces link complexity and saves link cost and resources. At the same time, the digital pre-distortion efficiency is improved.
  • FIG. 1 is a structural diagram of a typical single-channel digital pre-distortion processing apparatus
  • FIG. 2 is a structural diagram of a conventional digital pre-distortion processing apparatus for a multi-channel common feedback link
  • FIG. 4 is a structural diagram of a digital predistortion processing apparatus for a single channel multi-amplifier according to the present invention
  • Fig. 5 is a structural diagram showing the composition of a nonlinear system in the present invention.
  • the digital predistortion processing apparatus of the present embodiment is applied to a single channel multi-amplifier system, and includes: a digital predistortion processor, a digital to analog converter, an IQ modulator, a power divider, a combiner, a mixer, and an analog to digital converter. , filters and digital pre-distortion training devices.
  • the digital predistortion processing method of the present embodiment outputs a baseband IQ (orthogonal) signal and a feedback signal of the radio frequency signal obtained by transforming the baseband IQ signal to a digital predistortion training device, and performs processing and comparison operations to generate predistortion correction parameters.
  • the predistortion correction parameter is transmitted to the digital predistortion processor for predistortion processing the baseband IQ signal.
  • the power divider is located at the front end of the power amplifier. After the IQ modulator, it is used to split the RF signal into the same RF signal of N (N > 1), corresponding to each power amplifier, and N is the number of power amplifiers.
  • the combiner is located in the feedback link, and is used for combining and superimposing the RF signals coupled from the plurality of power amplifier output ports, and outputting a combined signal, and the combiner directly receives the coupled RF signal, and inputs The combined signal is output to the mixer.
  • the mixer input is connected to the output of the combiner, and the input combined signal is mixed and down-converted to an intermediate frequency signal output.
  • the filter is a band-pass filter, which filters out unwanted signals, inputs the intermediate frequency signal input to the mixer, and outputs the output to the analog-to-digital converter.
  • the center frequency of the filter is the same as the frequency of the transmitting intermediate frequency (the frequency of the intermediate frequency signal).
  • the bandwidth is the entire bandwidth including the third-order intermodulation and the fifth-order intermodulation.
  • An analog-to-digital converter for converting an analog signal to a digital signal.
  • the digital predistortion processor completes the forward baseband IQ signal (baseband signal before digital predistortion processing) and the combination of the combined signals, and transmits the combined signal and the forward baseband IQ signal to the digital predistortion training device, digital predistortion
  • the training device generates predistortion correction parameters using the combined signal transmitted by the digital predistortion processor and the forward baseband IQ signal.
  • the digital predistortion processor performs digital predistortion processing on the baseband IQ signal according to the predistortion correction parameter generated by the digital predistortion training device, and sends the predistorted signal to the nonlinear system.
  • the digital predistortion training device performs data processing and comparison operation on the combined signal and the baseband signal before the digital predistortion processing to generate predistortion correction parameters, and the digital predistortion training device is connected to the baseband IQ signal end at one end, and the port is up-converted and
  • the baseband IQ signal before digital predistortion processing of CPR has a data rate of 184.32; the other end is connected to the ADC output in the feedback link.
  • the digital predistortion training device comprises: a data checking module, a data processing module, a predistortion parameter extracting module and a parameter downloading module.
  • the data inspection module performs data check on the forward baseband IQ signal and the feedback combined signal to ensure the validity and correctness of the sample data.
  • the data processing module performs data processing on the sample data, and sends the processed data to the predistortion parameter extraction mode to quickly generate predistortion correction parameters, and the data processing includes data alignment, such as delay, amplitude, phase alignment, and the like.
  • the parameter download module downloads the generated predistortion correction parameters to the digital predistortion processor for digital predistortion processing of the link.
  • the digital predistortion processing method of this embodiment includes: In the first step, the RF signal at the front end of the power amplifier is divided into N RF signals by a power splitter, and N is the number of corresponding power amplifiers, and each RF signal is output to the corresponding power amplifier;
  • each RF signal is coupled to a combiner in the feedback link, and the combiner superimposes the analog signals into one signal (combined signal);
  • the combined signal is mixed and down-converted into an intermediate frequency analog signal
  • the fourth step is to perform band pass filtering on the intermediate frequency signal to filter out unwanted signals
  • the frequency-filtered signal is input to an analog-to-digital converter to convert the analog signal into a digital signal
  • the digital predistortion training device generates a predistortion correction parameter according to the baseband IQ signal and the combined combined signal, and downloads the predistortion correction parameter to the digital predistortion processor;
  • the digital predistortion training device generates predistortion correction parameters including the following steps:
  • the above is a process of generating predistortion correction parameters, and the digital predistortion training device updates the trained predistortion correction parameters to the digital predistortion processor, and the baseband IQ signal is subjected to up-conversion peak clipping and then enters the digital pre-distortion processor to the baseband.
  • the IQ signal is digitally predistorted, and the predistorted signal is sent to the nonlinear system. At this time, the output RF signal is corrected to meet the system requirements.
  • the above-mentioned nonlinear system is not used to describe a power amplifier or a nonlinear device.
  • the nonlinear system expresses a unified nonlinear model, which is a superposition of N power amplifiers, which is equivalent to replacing a N with a nonlinear model.
  • a nonlinear model where the characteristics of each nonlinear model are not concerned, nor the digital predistortion effect of each nonlinear model, as a whole, the nonlinear characteristics of the entire nonlinear system are extracted for digital Pre-distortion, so that the output of the entire system meets the performance requirements of the system.
  • the digital predistortion processing device of this paper is suitable for single channel multi-amplifier system, and is practical for existing active antenna systems.
  • the power amplifier in the above system The (PA) output is connected to the analog phase shifter, which can be used for beamforming of the active antenna.
  • the feedback coupling point is at the power amplifier. From the back end of the power amplifier and the front end of the analog phase shifter, the feedback signal is coupled out for digital predistortion training. It can make the digital pre-distortion training not introduce the adjustment of the phase shifter, and does not affect the beamforming effect of the active antenna.
  • the prior art is a digital predistortion device for a multi-channel multi-amplifier or a multi-channel single-amplifier system.
  • a system belonging to a single-channel multi-amplifier does not have multiple paths for the baseband, if the background is used.
  • the multi-channel digital pre-distortion system mentioned in the technology divides the baseband signal into N channels before digital pre-distortion, connects to the power amplifier with N analog links, and uses a common feedback scheme. Waste, not in the actual sense of multiple channels.
  • This embodiment proposes a combined digital predistortion model for a single channel multi-amplifier system, which uses the idea of replacing a nonlinear system with a nonlinear system, simplifying the design of the entire RF link, and only needs
  • One channel is divided into N channels at the front end of the power amplifier and output to N power amplifiers, and the feedback data of each power amplifier is combined to perform combining, and the digital predistortion training device performs predistortion parameter extraction according to the combined signal and the forward baseband IQ signal.
  • the scheme is simple to implement, the digital pre-distortion iteration efficiency is high, and the output meets the system ACLR requirements.
  • the digital pre-distortion processing method for the single-channel multi-amplifier of the embodiment includes:
  • Step 301 the pre-distortion processed baseband IQ signal is digital-analog converted by the DAC module, and the analog signal is modulated into a radio frequency signal by a quadrature modulator and output to the power divider;
  • Step 302 The RF signal at the front end of the power amplifier is split by a power splitter, and each channel is respectively connected to a different power amplifier, and each of the RF signals is output through the power amplifier, and is coupled to a combiner of the feedback link, wherein the power splitter It is divided into N channels to connect different power amplifiers, and N is determined by the number of power amplifiers;
  • Step 303 The RF signal coupled back from the feedback link is uniformly input to a combiner, and each feedback signal is combined and combined into one RF signal (combined signal), which can be obtained. And a feedback signal corresponding to the forward baseband IQ signal;
  • Step 304 input the combined combined signal to the mixer, downconvert the combined signal to an intermediate frequency signal, and the local oscillator signal required by the mixer is provided by an external local oscillator signal of the homologous reference;
  • Step 305 The band pass filter receives the intermediate frequency analog signal on the feedback link, and filters out the useless signal.
  • Step 306 input the combined signal processed by the variable frequency filter to the analog to digital converter, convert the analog signal into a digital signal, and output Give a digital predistortion training module;
  • Step 307 The digital predistortion processor collects the baseband IQ signal and the superimposed combined signal before the digital predistortion processing to the digital predistortion training device, and the digital predistortion training device performs predistortion correction parameter extraction and update downloading;
  • the processing flow of the specific functions included in the digital predistortion training device is as follows:
  • a data collection module that provides a number of turns, and initiates a combined signal of the baseband IQ signal and feedback
  • the data inspection module in order to ensure the validity of the digital predistortion processing, check the validity and correctness of the baseband IQ signal and the feedback combined signal of the set, and ensure that the signal is large enough to correctly and completely reflect Signal characteristics, and also ensure that the data can not be too large to cause signal overflow distortion, at this time can not correctly reflect the signal characteristics;
  • the data processing module has the difference of delay difference, amplitude phase difference, energy difference and frequency offset between the baseband IQ signal and the feedback combined signal under the premise of ignoring the influence of the entire link distortion characteristic.
  • the purpose of this module is to eliminate the difference in delay, amplitude phase, energy and frequency offset.
  • the frequency offset of the system is fixed, and a fixed value is used in feedback demodulation;
  • a predistortion correction parameter extraction module comparing the aligned baseband signal and the feedback combined signal, and extracting the predistortion correction parameter
  • a parameter update module downloading and extracting the extracted predistortion correction parameter to the digital predistortion processor
  • Step 308 The digital predistortion processor performs digital predistortion processing on the peaked baseband IQ signal, and then converts the digital signal to the analog signal. At this time, return to step 301.
  • the digital predistortion training device completes the parameter control and the processing of the set baseband signal, the feedback signal, and the digital predistortion parameter.
  • the digital predistortion processor performs the data set and digital predistortion processing of the baseband signal.
  • the digital predistortion training device does not directly use the combined signal transmitted by the analog to digital converter, but obtains the combined signal and the forward baseband IQ signal from the digital predistortion processor, and performs predistortion correction parameters. extract.
  • the digital predistortion processing apparatus of this embodiment includes: a digital predistortion processor, a baseband signal conversion circuit, a power splitter, a power amplifier (PA), a combiner, a combined signal processing circuit, and a digital pre- Distortion training device, wherein:
  • the digital predistortion processor is configured to perform digital predistortion processing on the baseband signal according to the predistortion correction parameter, and transmit the digital predistortion processed baseband signal to the baseband signal conversion circuit;
  • the baseband signal conversion circuit is configured to convert the digital predistortion processed baseband signal into a radio frequency signal, and transmit the radio frequency signal to the power divider;
  • the power divider is configured to split the RF signal and output each RF signal to a different power amplifier
  • the combiner is configured to couple each of the RF signals to the feedback link for combining, to obtain a combined signal, and transmit the combined signal to the combined signal processing circuit;
  • the combined signal processing circuit is configured to perform a conversion process on the combined signal, and transmit the combined combined signal to the digital predistortion training device;
  • the digital predistortion training device is configured to generate a predistortion correction parameter based on the converted combined signal and the baseband signal before the digital predistortion processing, and update the predistortion correction parameter to the digital predistortion processor.
  • the digital predistortion training device extracts the predistortion correction parameters based on the combined signal obtained from the digital predistortion processor and the forward baseband IQ signal.
  • the digital predistortion training device comprises: a data collection module, a data processing module, a predistortion correction parameter extraction module and a parameter update module, wherein:
  • the data collection module is configured to set the baseband signal and the baseband signal before the digital predistortion processing;
  • the data processing module is configured to process the combined signal and the baseband signal before the digital predistortion processing, and eliminate the combined signal and The difference in delay, amplitude phase, energy and frequency offset of the baseband signal, Obtaining an aligned combined signal and a baseband signal before digital predistortion processing;
  • a predistortion correction parameter extraction module is configured to compare the aligned combined signal and the baseband signal before the digital predistortion processing to generate a predistortion correction parameter
  • a parameter update module is configured to update the predistortion correction parameter to the digital predistortion processor.
  • the combined signal processing circuit includes: a mixer, a filter, and an analog to digital converter, wherein: the mixer is configured to downconvert the combined signal to an intermediate frequency signal, and transmit the intermediate frequency signal to the filter;
  • a filter configured to filter the intermediate frequency signal, and transmit the filtered combined signal to the analog to digital converter
  • the analog-to-digital converter is configured to convert the filtered combined signal into a digital signal to obtain the combined signal after the conversion process.
  • the power divider is configured to divide the RF signal into N (N > 1) channels of the same RF signal.
  • the baseband signal conversion circuit includes: a digital to analog converter and a modulator, wherein:
  • a digital-to-analog converter configured to perform digital-to-analog conversion of the digital pre-distortion processed baseband signal to obtain an analog signal, and transmit the analog signal to the modulator;
  • a modulator configured to modulate the analog signal into a radio frequency signal by orthogonally modulating.
  • the modulator uses an IQ modulator.
  • FIG. 5 is a structural diagram of the nonlinear system in the present embodiment. It can be seen that the idea of combining the roads in the present embodiment combines the nonlinear systems and uniformly treats them as a large nonlinear system to uniformly perform digital pre-processing. Distortion processing, where the correction of each nonlinear system will not meet the requirements, but the correction of the entire nonlinear system can meet the requirements of the system, because the characteristics we extract are the characteristics of the combined circuits of each nonlinear system, and do not satisfy each one.
  • Non-linear systems which save links, save cost and space, improve pre-distortion iteration efficiency and improve overall system correction speed for digital pre-distortion.
  • the method can be appropriately extended.
  • the number of channels is correspondingly increased, corresponding to a multi-amplifier, such as a two-channel active antenna system, the two channels can be separately used.
  • the device uses the method shown in FIG. 2 to utilize the method of the common feedback channel, and switches with the switch after the feedback combination, and each of the channels performs digital predistortion training, which can effectively improve the digital predistortion efficiency.
  • the embodiment of the invention provides a digital pre-distortion processing method and device applied to a single-channel multi-amplifier system, which reduces link complexity, saves link cost and resources, and improves digital pre-processing. Distortion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Amplifiers (AREA)

Abstract

一种数字预失真处理方法和装置,所述方法包括:根据第一预失真校正参数对基带信号进行数字预失真处理,将数字预失真处理后的基带信号转换为射频信号,对所述射频信号进行分路,将每一路射频信号分别输出到不同的功放;并且,将每一路功放输出的射频信号耦合输出到反馈链路进行合路,得到合路信号,对所述合路信号进行转换处理;根据转换处理后的合路信号和数字预失真处理前的基带信号生成预失真校正参数,将所述第一预失真校正参数更新为所述第二预失真校正参数。

Description

一种数字预失真处理方法及装置
技术领域
本发明涉及数字信号处理领域, 尤其涉及一种数字预失真处理方法及装 置。
背景技术
随着移动通讯技术的发展, 移动通讯的用户和业务量都在急剧增加, 频 谱资源越来越稀缺, 为了提高频谱的利用率, 普遍釆用高效率的调制方式, 从而对于基站所用功率放大器的要求越来越高,在功放满足线性度的要求下, 要求提高功率放大器的效率和降低其功耗, 因此不能通过回退功率的方法来 解决功放失真的问题。 在现有的诸多功放线性化技术当中, 数字预失真因其 适应性强、 频带宽、 成本较低以及校正效果好等优势受到业界广泛的关注, 成为非线性系统校正的首要选择。
图 1是目前使用的单通道数字预失真处理装置的典型结构, 工作原理和 过程为: 数字预失真训练装置对输入的基带 IQ信号和来自反馈耦合的 ADC 釆集的数字信号进行比较运算, 得到预失真校正参数用于数字预失真器执行 数字预失真处理,预失真处理后的信号输出给 DAC转换成模拟信号,模拟信 号经过混频放大器放大输出。 反馈耦合信号即来自这里的放大器输出经过混 频器和 ADC送入数字预失真训练装置。
上述传统的数字预失真处理装置由可编程门阵列 (FPGA)、 DAC、混频器、 DSP、 滤波器和 ADC组成。 该装置将基带 IQ信号进行上变频削峰处理, 然 后将削峰后的数字信号送入数字预失真器进行预失真处理。 反馈链路将由基 带 IQ信号经变换处理和放大的模拟信号耦合反馈回来,将耦合回来的射频信 号进行模拟下变频和滤波变成中频信号,再经 ADC转换成数字信号,输入到 数字预失真训练装置与基带 IQ信号进行比较,得到预失真校正参数, 再将该 预失真校正参数用于数字预失真器。
对于单通道单功放系统而言, 上述传统的数字预失真处理装置在成本和 应用方面都是可接受的,但是随着有源天线技术的发展以及射频通道的增加, 釆用上述传统 DPD装置,需要对每一发射通道添加一个数字预失真器和一条 反馈链路, 随着通道数目的增加, 体积、 成本、 功耗以及链路复杂度将急剧 增力口。
对于上述问题, 目前已有一部分文献对其进行了研究分析, 主要研究结 果以及处理方法为: 釆用通道选择信号进行通道切换控制, 对釆集的前向数 字信号以及由输出的功放耦合回来的数字信号进行预失真训练, 通道选择信 号中的同步控制信号控制功放的输出, 将得到的预失真校正参数用于对应的 数字预失真器, 如中国专利说明书 CN200810044447.3中的记载。
图 2为现有的多通道系统的数字预失真处理装置的结构图, 该装置各个 通道的基带 IQ信号,每一路都有一个数字预失真器完成数字预失真处理,共 用一个反馈通道, 釆用射频开关进行切换, 釆集对应通道的基带 IQ信号和反 馈信号, 每个通道轮训做 DPD训练, 将提取的预失真校正参数下载到对应的 数字预失真器进行预失真处理。
但是, 共用一个反馈通道和一个数字预失真训练装置, 釆用轮训切换的 训练方式, 随着通道数的增加, 训练速度将变慢, 循环周期变长, 校正效率 不够高, 不能满足实时校正的要求, 而且每通道一个数字预失真器对于资源 的需求也会越来越多。 发明内容
本发明实施例要解决的技术问题是提出一种数字预失真处理方法及装 置, 能够适用于单通道多功放的系统中。
为解决上述技术问题, 本发明实施例提供了一种数字预失真处理方法, 包括:
根据预失真校正参数对基带信号进行数字预失真处理, 将数字预失真处 理后的基带信号转换为射频信号, 对所述射频信号进行分路, 将每一路射频 信号分别输出到不同的功放;
将每一路功放输出的射频信号耦合输出到反馈链路进行合路, 得到合路 信号, 对所述合路信号进行转换处理; 以及
根据转换处理后的合路信号和数字预失真处理前的基带信号生成预失真 校正参数, 更新所述预失真校正参数。
可选地, 根据转换处理后的合路信号和数字预失真处理前的基带信号生 成预失真校正参数的步骤包括:
对所述合路信号和数字预失真处理前的基带信号进行处理, 消除合路信 号和基带信号的时延、 幅度相位、 能量和频偏的差异, 得到对齐的合路信号 和数字预失真处理前的基带信号;
将所述对齐的合路信号和数字预失真处理前的基带信号进行对比运算, 生成预失真校正参数。
可选地, 对合路信号进行转换处理的步骤包括:
将所述合路信号下变频为中频信号, 对所述中频信号进行滤波, 将滤波 后的合路信号转换为数字信号, 得到所述转换处理后的合路信号。
可选地, 对所述射频信号进行分路的步骤包括:
釆用功分器将所述射频信号分为 N(N > 1)路相同的射频信号。
可选地, 将基带信号转换为射频信号的步骤包括:
将数字预失真处理后的基带信号进行数模转换, 得到模拟信号, 将所述 模拟信号通过正交调制, 调制为射频信号。
可选地, 一种数字预失真处理装置, 包括: 数字预失真处理器、 基带信 号转换电路、 功分器、 功放、 合路器、 合路信号处理电路和数字预失真训练 装置, 其中:
所述数字预失真处理器, 设置为根据预失真校正参数对基带信号进行数 字预失真处理, 将数字预失真处理后的基带信号传输给基带信号转换电路; 所述基带信号转换电路, 设置为将数字预失真处理后的基带信号转换为 射频信号, 将射频信号传送给所述功分器;
所述功分器, 设置为对所述射频信号进行分路, 将每一路射频信号分别 输出到不同的功放; 所述合路器, 设置为将每一路功放输出的射频信号耦合输出到反馈链路 进行合路, 得到合路信号, 将合路信号传送给合路信号处理电路;
所述合路信号处理电路, 设置为对所述合路信号进行转换处理, 将换处 理后的合路信号传送给所述数字预失真训练装置;
所述数字预失真训练装置, 设置为根据转换处理后的合路信号和数字预 失真处理前的基带信号生成预失真校正参数, 将预失真校正参数更新到所述 数字预失真处理器。
可选地, 所述数字预失真训练装置包括: 数据釆集模块、 数据处理模块、 预失真校正参数提取模块和参数更新模块, 其中:
所述数据釆集模块, 设置为釆集合路信号和数字预失真处理前的基带信 号;
所述数据处理模块, 设置为对所述合路信号和数字预失真处理前的基带 信号进行处理, 消除合路信号和基带信号的时延、 幅度相位、 能量和频偏的 差异, 得到对齐的合路信号和数字预失真处理前的基带信号;
所述预失真校正参数提取模块, 设置为将所述对齐的合路信号和数字预 失真处理前的基带信号进行对比运算, 生成预失真校正参数;
所述参数更新模块, 设置为将预失真校正参数更新到所述数字预失真处 理器。
可选地, 所述合路信号处理电路包括: 混频器、 滤波器和模数转换器, 其中:
所述混频器, 设置为将所述合路信号下变频为中频信号, 将中频信号传 送给所述滤波器;
所述滤波器, 设置为对所述中频信号进行滤波, 将滤波后的合路信号传 送给所述模数转换器;
所述模数转换器, 设置为将滤波后的合路信号转换为数字信号, 得到所 述转换处理后的合路信号。
可选地, 所述功分器, 是设置为将所述射频信号分为 N(N > 1)路相同的 射频信号。 可选地, 基带信号转换电路包括: 数模转换器和调制器, 其中: 所述数模转换器,设置为将数字预失真处理后的基带信号进行数模转换, 得到模拟信号, 将所述模拟信号传送给所述调制器;
所述调制器, 设置为将所述模拟信号通过正交调制, 调制为射频信号。 综上所述, 针对单通道多功放系统, 本发明实施例提供了一种应用于单 通道多功放系统的数字预失真处理方法及装置, 降低了链路复杂度, 节省链 路成本和资源, 同时提高了数字预失真效率。 附图概述
图 1是现有的一种典型的单通道数字预失真处理装置的结构图; 图 2是现有的一种多通道共反馈链路的数字预失真处理装置的结构图; 图 3是本发明单通道多功放的数字预失真处理方法的流程图;
图 4是本发明单通道多功放的数字预失真处理装置的结构图;
图 5是本发明中的非线性系统的组成的结构图。
本发明的较佳实施方式
本实施方式的数字预失真处理装置应用于单通道多功放系统, 包括: 数 字预失真处理器、 数模转换器、 IQ调制器、 功分器、 合路器、 混频器、 模数 转换器、 滤波器以及数字预失真训练装置等。 本实施方式的数字预失真处理 方法是将基带 IQ (正交)信号以及由基带 IQ信号经过变换得到的射频信号 的反馈信号输出到数字预失真训练装置, 进行处理和对比运算生成预失真校 正参数, 将预失真校正参数传给数字预失真处理器, 用于对基带 IQ信号进行 预失真处理。
功分器位于功放的前端, IQ调制器之后, 用于将射频信号分路为 N(N > 1)路相同的射频信号, 对应输出给各路功放, N为功放数量。
合路器位于反馈链路中, 用于将从多个功放输出口耦合回来的射频信号 进行合并叠加, 输出一合路信号, 合路器直接接收耦合回来的射频信号, 输 出的合路信号输出给混频器。
混频器输入连接合路器的输出, 将输入的合路信号进行混频, 下变频为 中频信号输出。
滤波器为带通滤波器, 滤除无用信号, 输入为混频器输入的中频信号, 输出传送给模数转换器, 滤波器的中心频点与发射中频频点 (中频信号的频 点)相同, 带宽为包括三阶交调和五阶交调的整个带宽。
模数转换器(ADC ) , 用于将模拟信号转换为数字信号。
数字预失真处理器完成前向基带 IQ信号 (数字预失真处理前的基带信 号) 以及合路信号的釆集, 并向数字预失真训练装置传输合路信号和前向基 带 IQ信号,数字预失真训练装置釆用数字预失真处理器传送的合路信号和前 向基带 IQ信号生成预失真校正参数。数字预失真处理器根据上述数字预失真 训练装置生成的预失真校正参数对基带 IQ信号进行数字预失真处理,将预失 真处理后的信号送入非线性系统。
数字预失真训练装置对合路信号和数字预失真处理前的基带信号进行数 据处理和对比运算生成预失真校正参数, 数字预失真训练装置一端与基带 IQ 信号端相连, 该端口为经过上变频和 CPR (削峰) 的数字预失真处理前的基 带 IQ信号, 数据速率为 184.32; 另一端与反馈链路中的 ADC输出端相连。
数字预失真训练装置包括: 数据检查模块、 数据处理模块、 预失真参数 提取模块和参数下载模块。
数据检查模块对前向基带 IQ信号和反馈的合路信号进行数据检查 ,保证 样本数据的有效性和正确性。 数据处理模块对样本数据进行数据处理, 将处理好的数据送入预失真参 数提取模快生成预失真校正参数, 数据处理包括数据对齐, 如时延、 幅度、 相位对齐等。 参数下载模块将生成的预失真校正参数下载到数字预失真处理器用于链 路的数字预失真处理。
本实施方式的数字预失真处理方法, 包括: 第一步, 通过功分器将功放前端的射频信号分成 N路射频信号, N为对 应的功放个数, 将每路射频信号输出给对应的功放;
第二步, 将每一路射频信号耦合到反馈链路中的合路器, 合路器将各路 模拟信号叠加合并为一路信号 (合路信号) ;
第三步, 将合路信号进行混频, 下变频为中频模拟信号;
第四步, 对中频信号进行带通滤波, 滤除无用信号;
第五步, 将经过变频滤波后的信号输入到模数转换器, 将模拟信号转换 为数字信号;
第六步,数字预失真训练装置根据基带 IQ信号和反馈的合路信号生成预 失真校正参数, 并下载到数字预失真处理器;
数字预失真训练装置生成预失真校正参数的包括以下步骤:
( 1 )数据釆集;
( 2 )数据预处理;
( 3 )预失真校正参数生成;
( 4 )预失真校正参数下载更新。
上述为预失真校正参数生成的过程, 数字预失真训练装置将训练好的预 失真校正参数更新到数字预失真处理器,基带 IQ信号经过上变频削峰后进入 到数字预失真处理器,对基带 IQ信号进行数字预失真处理, 将预失真后的信 号送入非线性系统, 这时输出的射频信号经过校正, 达到系统要求。
上述的非线性系统不是用来表述一个功放或者某一个非线性器件, 该非 线性系统表述了一个统一的非线性模型, 该模型为 N个功放的叠加, 相当于 用一个非线性模型来代替 N个非线性模型, 这里并不关心其中每个非线性模 型的特性, 也不关心每个非线性模型的数字预失真效果, 将其看作一个整体, 提取整个非线性系统的非线性特征进行数字预失真, 使得整个系统的输出达 到系统的指标性能要求。
本文的数字预失真处理装置适用于单通道多功放系统, 对于现有的有源 天线系统较为实用, 为了完成有源天线波束合成的功能, 在上述系统的功放 ( PA )输出连接到模拟移相器, 可用于有源天线的波束合成, 反馈耦合点在 功放处, 从功放后端、 模拟移相器前端, 耦合出反馈信号用于数字预失真训 练, 这样可以使数字预失真训练不引入移相器的调整, 不影响到有源天线的 波束合成效果。
现有技术都是对于多通道多功放或者多通道单功放系统的数字预失真装 置, 对于现有有源天线系统, 属于单通道多功放的系统, 对于基带没有分为 多路, 如果釆用背景技术中提到的多通道数字预失真系统, 将基带信号在数 字预失真前分为 N路,釆用 N路模拟链路连接到功放,再釆用共反馈的方案, 对于射频链路是一种浪费, 也不是实际意义上多通道。
本实施方式针对单通道多功放的系统提出了一种合路数字预失真的模 型, 釆用了用一个非线性系统代替 N个非线性系统的思想, 简化了整个射频 链路的设计, 只需要一个通道, 在功放前端分为 N路并输出给 N个功放, 釆 集各个功放的反馈数据进行合路, 数字预失真训练装置根据合路信号和前向 基带 IQ信号进行预失真参数提取,该方案实现简单,数字预失真迭代效率高, 输出满足系统 ACLR要求。
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明 如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解 并据以实施。
如图 3所示, 本实施方式的针对单通道多功放的数字预失真处理方法, 包括:
步骤 301,将预失真处理后的基带 IQ信号经过 DAC模块进行数模转换, 将该模拟信号通过正交调制器调制成射频信号输出给功分器;
步骤 302, 将功放前端的射频信号用功分器进行分路, 将每一路分别连 接到不同的功放, 每一路射频信号经过功放输出, 并均耦合到反馈链路的合 路器, 其中功分器分为 N路连接不同的功放, N由功放的个数决定;
步骤 303 , 将反馈链路耦合回来的射频信号统一输入给一个合路器, 将 每路反馈信号进行合路处理, 叠加为一个射频信号 (合路信号) , 可以得到 和前向基带 IQ信号统一对应的反馈信号;
步骤 304, 将叠加得到的合路信号输入给混频器, 将合路信号下变频为 中频信号, 混频器所需的本振信号由同源参考的外部本振信号提供;
步骤 305, 带通滤波器接收反馈链路上的中频模拟信号, 滤除无用信号; 步骤 306, 将经过变频滤波处理的合路信号输入到模数转换器, 将模拟 信号转换成数字信号并输出给数字预失真训练模块;
步骤 307, 数字预失真处理器釆集数字预失真处理前的基带 IQ信号和叠 加的合路信号给数字预失真训练装置, 数字预失真训练装置进行预失真校正 参数的提取和更新下载;
数字预失真训练装置包括的具体功能的处理流程如下所述:
( 1 )数据釆集模块, 提供釆数需求, 发起釆集基带 IQ信号和反馈的合 路信号;
( 2 )数据检查模块, 为了保证数字预失真处理的有效性, 对釆集的基带 IQ信号和反馈的合路信号的有效性和正确性进行检查, 既要保证信号足够大 可以正确完整的反映信号特性, 同时也要保证数据不能过大导致信号溢出失 真, 此时同样不能正确反映信号特性;
( 3 )数据处理模块, 在忽略整个链路失真特性影响的前提下, 釆集的基 带 IQ信号和反馈的合路信号之间存在时延差、 幅度相位差、 能量差以及频偏 的差异, 该模块的目的就是消除时延、 幅度相位、 能量和频偏的差异, 这里 系统的频偏是固定的, 在反馈解调时使用一个固定的值;
( 4 )预失真校正参数提取模块, 将对齐的基带信号和反馈的合路信号进 行对比运算, 提取预失真校正参数;
( 5 )参数更新模块, 将提取的预失真校正参数下载更新到数字预失真处 理器;
步骤 308, 数字预失真处理器对削峰后的基带 IQ信号进行数字预失真处 理, 再进行数字信号向模拟信号的转换, 此时, 回到步骤 301。
上述为整个数字预失真处理的流程, 可以看出, 数字预失真训练装置完 成釆数控制和对釆集到基带信号、 反馈信号的处理以及数字预失真参数的提 取和更新功能, 数字预失真处理器完成数据的釆集和对基带信号进行数字预 失真处理。 需要说明的是, 数字预失真训练装置并不直接釆用模数转换器传 送的合路信号, 而是从数字预失真处理器获得合路信号和前向基带 IQ信号, 进行预失真校正参数的提取。
如图 4所示, 本实施方式的数字预失真处理装置, 包括: 数字预失真处 理器、 基带信号转换电路、 功分器、 功放(PA ) 、 合路器、 合路信号处理电 路和数字预失真训练装置, 其中:
数字预失真处理器, 设置为根据预失真校正参数对基带信号进行数字预 失真处理, 将数字预失真处理后的基带信号传输给基带信号转换电路;
基带信号转换电路, 设置为将数字预失真处理后的基带信号转换为射频 信号, 将射频信号传送给功分器;
功分器, 设置为对射频信号进行分路, 将每一路射频信号分别输出到不 同的功放;
合路器, 设置为将每一路射频信号耦合输出到反馈链路进行合路, 得到 合路信号, 将合路信号传送给合路信号处理电路;
合路信号处理电路, 设置为对合路信号进行转换处理, 将换处理后的合 路信号传送给数字预失真训练装置;
数字预失真训练装置, 设置为根据转换处理后的合路信号和数字预失真 处理前的基带信号生成预失真校正参数, 将预失真校正参数更新到所述数字 预失真处理器。
数字预失真训练装置根据从数字预失真处理器获得合路信号和前向基带 IQ信号, 进行预失真校正参数的提取。
数字预失真训练装置包括: 数据釆集模块、 数据处理模块、 预失真校正 参数提取模块和参数更新模块, 其中:
数据釆集模块, 设置为釆集合路信号和数字预失真处理前的基带信号; 数据处理模块, 设置为对所述合路信号和数字预失真处理前的基带信号 进行处理, 消除合路信号和基带信号的时延、 幅度相位、 能量和频偏的差异, 得到对齐的合路信号和数字预失真处理前的基带信号;
预失真校正参数提取模块, 设置为将所述对齐的合路信号和数字预失真 处理前的基带信号进行对比运算, 生成预失真校正参数;
参数更新模块,设置为将预失真校正参数更新到所述数字预失真处理器。 合路信号处理电路包括: 混频器、 滤波器和模数转换器, 其中: 混频器, 设置为将所述合路信号下变频为中频信号, 将中频信号传送给 所述滤波器;
滤波器, 设置为对所述中频信号进行滤波, 将滤波后的合路信号传送给 所述模数转换器;
模数转换器, 设置为将滤波后的合路信号转换为数字信号, 得到所述转 换处理后的合路信号。
功分器, 是设置为将所述射频信号分为 N(N > 1)路相同的射频信号。 基带信号转换电路包括: 数模转换器和调制器, 其中:
数模转换器, 设置为将数字预失真处理后的基带信号进行数模转换, 得 到模拟信号, 将所述模拟信号传送给所述调制器;
调制器, 设置为将所述模拟信号通过正交调制, 调制为射频信号。 本实 施方式中调制器釆用 IQ调制器。
图 5为本实施方式中非线性系统的组成结构图, 可以看出本实施方式釆 用合路的思想, 将各个非线性系统进行合并, 统一看做一个大的非线性系统, 统一进行数字预失真处理, 这里, 每一路非线性系统的校正不会达到要求, 但是整个非线性系统的校正可达到系统的要求, 因为我们提取的特性为各个 非线性系统合路的特性, 并不满足每一个非线性系统, 这样做可节省链路, 节约成本和空间, 对于数字预失真来说, 可以提高预失真迭代效率并且提高 整个系统的校正速度。
在具体的实施应用中, 该方法可进行适当扩展, 当通道数相应增多, 对 应多功放的情况下, 比如两通道的有源天线系统, 可对两个通道分别运用本 装置, 并运用图 2所示方法利用共反馈通道的方法, 在反馈合路后用开关进 行切换, 每一路分别进行数字预失真训练, 这样可有效提高数字预失真效率。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明实施例针对单通道多功放系统, 提供了一种应用于单通道多功放 系统的数字预失真处理方法及装置, 降低了链路复杂度, 节省链路成本和资 源, 同时提高了数字预失真效率。

Claims

权 利 要 求 书
1、 一种数字预失真处理方法, 其包括:
根据第一预失真校正参数对基带信号进行数字预失真处理, 将数字预失 真处理后的基带信号转换为射频信号, 对所述射频信号进行分路, 将每一路 射频信号分别输出到不同的功放;
将每一路功放输出的射频信号耦合输出到反馈链路进行合路, 得到合路 信号, 对所述合路信号进行转换处理; 以及
根据转换处理后的合路信号和数字预失真处理前的基带信号生成第二预 失真校正参数,将所述第一预失真校正参数更新为所述第二预失真校正参数。
2、 如权利要求 1所述的方法, 其中, 根据转换处理后的合路信号和数字 预失真处理前的基带信号生成第二预失真校正参数的步骤包括:
对所述合路信号和数字预失真处理前的基带信号进行处理, 消除合路信 号和基带信号的时延、 幅度相位、 能量和频偏的差异, 得到对齐的合路信号 和数字预失真处理前的基带信号;
将所述对齐的合路信号和数字预失真处理前的基带信号进行对比运算, 生成第二预失真校正参数。
3、 如权利要求 1所述的方法, 其中, 对合路信号进行转换处理的步骤包 括:
将所述合路信号下变频为中频信号, 对所述中频信号进行滤波, 将滤波 后的合路信号转换为数字信号, 得到所述转换处理后的合路信号。
4、 如权利要求 1所述的方法, 其中, 对所述射频信号进行分路的步骤包 括:
釆用功分器将所述射频信号分为 N路相同的射频信号, N为大于 1的整 数。
5、 如权利要求 1所述的方法, 其中, 将基带信号转换为射频信号的步骤 包括: 将数字预失真处理后的基带信号进行数模转换, 得到模拟信号, 将所述 模拟信号通过正交调制, 调制为射频信号。
6、 一种数字预失真处理装置, 其包括: 数字预失真处理器、 基带信号转 换电路、 功分器、 功放、 合路器、 合路信号处理电路和数字预失真训练装置, 其中: 所述数字预失真处理器设置为: 根据第一预失真校正参数对基带信号进 行数字预失真处理, 将数字预失真处理后的基带信号传输给基带信号转换电 路;
所述基带信号转换电路设置为: 将数字预失真处理后的基带信号转换为 射频信号, 将射频信号传送给所述功分器;
所述功分器设置为: 对所述射频信号进行分路, 将每一路射频信号分别 输出到不同的功放;
所述合路器设置为: 将每一路功放输出的射频信号耦合输出到反馈链路 进行合路, 得到合路信号, 将合路信号传送给合路信号处理电路;
所述合路信号处理电路设置为: 对所述合路信号进行转换处理, 将换处 理后的合路信号传送给所述数字预失真训练装置;
所述数字预失真训练装置设置为: 根据转换处理后的合路信号和数字预 失真处理前的基带信号生成第二预失真校正参数, 将所述第二预失真校正参 数更新到所述数字预失真处理器。
7、 如权利要求 6所述的装置, 其中, 所述数字预失真训练装置包括: 数 据釆集模块、 数据处理模块、 预失真校正参数提取模块和参数更新模块, 其 中:
所述数据釆集模块设置为: 釆集合路信号和数字预失真处理前的基带信 号;
所述数据处理模块设置为: 对所述合路信号和数字预失真处理前的基带 信号进行处理, 消除合路信号和基带信号的时延、 幅度相位、 能量和频偏的 差异, 得到对齐的合路信号和数字预失真处理前的基带信号; 所述预失真校正参数提取模块设置为: 将所述对齐的合路信号和数字预 失真处理前的基带信号进行对比运算, 生成第二预失真校正参数;
所述参数更新模块设置为: 将所述第二预失真校正参数更新到所述数字 预失真处理器。
8、 如权利要求 6所述的装置, 其中, 所述合路信号处理电路包括: 混频 器、 滤波器和模数转换器, 其中:
所述混频器设置为: 将所述合路信号下变频为中频信号, 将中频信号传 送给所述滤波器;
所述滤波器设置为: 对所述中频信号进行滤波, 将滤波后的合路信号传 送给所述模数转换器;
所述模数转换器设置为: 将滤波后的合路信号转换为数字信号, 得到所 述转换处理后的合路信号。
9、 如权利要求 6所述的装置, 其中:
所述功分器是设置为将所述射频信号分为 N路相同的射频信号, N为大 于 1的整数。
10、 如权利要求 6所述的装置, 其中, 基带信号转换电路包括: 数模转 换器和调制器, 其中:
所述数模转换器设置为:将数字预失真处理后的基带信号进行数模转换, 得到模拟信号, 将所述模拟信号传送给所述调制器;
所述调制器设置为: 将所述模拟信号通过正交调制, 调制为射频信号。
PCT/CN2012/077131 2012-02-28 2012-06-19 一种数字预失真处理方法及装置 WO2013127141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12870172.9A EP2822242B1 (en) 2012-02-28 2012-06-19 Digital predistortion processing method and device
US14/381,286 US20150103952A1 (en) 2012-02-28 2012-06-19 Digital Predistortion Processing Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210047501.6 2012-02-28
CN2012100475016A CN102594749A (zh) 2012-02-28 2012-02-28 一种数字预失真处理方法及装置

Publications (1)

Publication Number Publication Date
WO2013127141A1 true WO2013127141A1 (zh) 2013-09-06

Family

ID=46482960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077131 WO2013127141A1 (zh) 2012-02-28 2012-06-19 一种数字预失真处理方法及装置

Country Status (4)

Country Link
US (1) US20150103952A1 (zh)
EP (1) EP2822242B1 (zh)
CN (1) CN102594749A (zh)
WO (1) WO2013127141A1 (zh)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082749A (ja) * 2012-09-28 2014-05-08 Fordan Kk 複合電力増幅器を有する複合送信機
GB2517217B (en) * 2013-08-16 2018-03-21 Analog Devices Global Communication unit, integrated circuit and method for generating a plurality of sectored beams
US9209841B2 (en) * 2014-01-28 2015-12-08 Scintera Networks Llc Adaptively controlled digital pre-distortion in an RF power amplifier using an integrated signal analyzer with enhanced analog-to-digital conversion
EP3145144B1 (en) * 2014-08-01 2018-11-21 Huawei Technologies Co. Ltd. Transmitter and interference eliminating method
JP2016167781A (ja) * 2015-03-10 2016-09-15 富士通株式会社 無線通信装置及び無線通信装置の制御方法
TWI554060B (zh) * 2015-03-13 2016-10-11 瑞昱半導體股份有限公司 傳送器以及用來降低輸入訊號失真的方法
EP3745610B1 (en) * 2015-03-20 2022-12-28 Andrew Wireless Systems GmbH Module for combining signals having different frequencies
US9906285B2 (en) * 2015-05-26 2018-02-27 Maxlinear, Inc. Method and system for hybrid radio frequency digital beamforming
US10270478B2 (en) * 2015-07-27 2019-04-23 Northrop Grumman Systems Corporation Non-linear transmitter pre-coding
EP3381129B1 (en) * 2015-11-27 2020-08-05 Telefonaktiebolaget LM Ericsson (publ) Linearization of active antenna array
US9590668B1 (en) 2015-11-30 2017-03-07 NanoSemi Technologies Digital compensator
US9853599B2 (en) * 2015-12-04 2017-12-26 The Boeing Company Simultaneous linearization of multiple power amplifiers with independent power
KR102586418B1 (ko) * 2016-03-23 2023-10-06 삼성전기주식회사 고주파 신호 전치왜곡 장치 및 전력증폭기 비선형 왜곡 보정 장치
EP3267579B1 (en) * 2016-07-04 2020-03-04 Nokia Solutions and Networks Oy Linearizing power amplifiers outputs in multi-antenna system
EP3523856A4 (en) 2016-10-07 2020-06-24 NanoSemi, Inc. DIGITAL BEAM ORIENTATION PREDISTORSION
WO2018098629A1 (zh) 2016-11-29 2018-06-07 华为技术有限公司 一种数字预失真处理方法和装置
US10298276B2 (en) 2016-12-08 2019-05-21 Analog Devices Global Spatial digital pre-distortion
EP3567735A4 (en) * 2017-01-25 2019-11-20 Huawei Technologies Co., Ltd. SIGNAL PROCESSING METHOD AND DEVICE
KR20190121825A (ko) 2017-02-25 2019-10-28 나노세미, 인크. 멀티밴드 디지털 전치왜곡기
WO2018157321A1 (zh) * 2017-02-28 2018-09-07 华为技术有限公司 发射机及数字预失真校准方法
US10141961B1 (en) 2017-05-18 2018-11-27 Nanosemi, Inc. Passive intermodulation cancellation
WO2018219466A1 (en) * 2017-06-01 2018-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Digital predistortion for advanced antenna system
US10581470B2 (en) 2017-06-09 2020-03-03 Nanosemi, Inc. Linearization system
US11115067B2 (en) 2017-06-09 2021-09-07 Nanosemi, Inc. Multi-band linearization system
US10931318B2 (en) * 2017-06-09 2021-02-23 Nanosemi, Inc. Subsampled linearization system
EP3633941B1 (en) 2017-06-26 2023-11-29 Huawei Technologies Co., Ltd. Correction device and correction method
CN109218236B (zh) * 2017-07-06 2022-10-18 中兴通讯股份有限公司 切换时隙数字预失真校正方法、装置及可读存储介质
US11323188B2 (en) 2017-07-12 2022-05-03 Nanosemi, Inc. Monitoring systems and methods for radios implemented with digital predistortion
WO2019070573A1 (en) 2017-10-02 2019-04-11 Nanosemi, Inc. DIGITAL PREDISTORSION ADJUSTMENT BASED ON DETERMINATION OF CHARGE CHARACTERISTICS
US11038474B2 (en) 2017-11-01 2021-06-15 Analog Devices Global Unlimited Company Phased array amplifier linearization
EP3724992A4 (en) * 2017-12-14 2020-12-23 Telefonaktiebolaget LM Ericsson (publ) LINEARIZATION OF NON-LINEAR AMPLIFIERS
EP3780388A4 (en) * 2018-04-28 2021-04-21 Huawei Technologies Co., Ltd. HIGH FREQUENCY RECEIVER, HIGH FREQUENCY TRANSMITTER AND COMMUNICATION DEVICE
WO2019217811A1 (en) 2018-05-11 2019-11-14 Nanosemi, Inc. Digital compensator for a non-linear system
US10644657B1 (en) 2018-05-11 2020-05-05 Nanosemi, Inc. Multi-band digital compensator for a non-linear system
CN112640299A (zh) 2018-05-25 2021-04-09 纳诺塞米有限公司 变化操作条件下的数字预失真
US11863210B2 (en) 2018-05-25 2024-01-02 Nanosemi, Inc. Linearization with level tracking
US10931238B2 (en) 2018-05-25 2021-02-23 Nanosemi, Inc. Linearization with envelope tracking or average power tracking
WO2019227452A1 (zh) * 2018-05-31 2019-12-05 华为技术有限公司 射频发射机和信号处理方法
CN108881083B (zh) * 2018-06-27 2021-12-14 云南大学 宽带rof系统包络辅助rf/if数字预失真技术
US10581471B1 (en) * 2018-10-29 2020-03-03 Bae Systems Information And Electronic Systems Integration Inc. Distortion-based techniques for communications localization denial
CA3119673A1 (en) 2018-11-13 2020-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Active antenna array linearization
CN111200568B (zh) * 2018-11-16 2021-05-18 华为技术有限公司 发送端设备和信号处理方法
US10911161B2 (en) * 2018-11-30 2021-02-02 Texas Instruments Incorporated RF transmitter and auxiliary receiver to capture transmit signal data to compensate for transmit signal impairments
CN109818585B (zh) * 2018-12-25 2023-06-16 深圳三星通信技术研究有限公司 一种数字预失真装置及方法
CN109889740A (zh) * 2019-03-26 2019-06-14 深圳市海拓达电子技术有限公司 一种新型的智能射频切换器
CN111865228A (zh) * 2019-04-30 2020-10-30 中兴通讯股份有限公司 一种信号失真预校正方法及装置、系统及复合系统
US11137445B1 (en) 2019-06-28 2021-10-05 Keysight Technologies, Inc. Method and apparatus for reducing non-linear distortion
CN112737645A (zh) * 2019-10-14 2021-04-30 财团法人工业技术研究院 使用混合波束成形并对数字预失真执行码分反馈的发射机
CN113132279A (zh) * 2019-12-30 2021-07-16 中兴通讯股份有限公司 一种预失真处理方法、装置、设备和存储介质
CN113364473B (zh) * 2020-03-04 2022-12-16 海能达通信股份有限公司 一种数字预失真装置及发射机
US10992326B1 (en) 2020-05-19 2021-04-27 Nanosemi, Inc. Buffer management for adaptive digital predistortion
CN111988250B (zh) * 2020-07-14 2023-03-10 清华大学 一种模拟全连接混合波束成形系统及发射机
CN111988002B (zh) * 2020-08-05 2023-09-05 东南大学 用于mimo功放的数字预失真方法、装置、设备及存储介质
CN112290970A (zh) * 2020-09-28 2021-01-29 浙江三维利普维网络有限公司 预失真系统、射频功放系统、tdd系统及fdd系统
EP3993262A1 (en) * 2020-11-02 2022-05-04 Nokia Solutions and Networks Oy A radio apparatus
CN112953409B (zh) * 2021-01-25 2022-03-15 南京濠暻通讯科技有限公司 一种适用于5g宽带mimo系统的dpd装置及方法
CN113055323B (zh) * 2021-03-03 2022-08-02 青岛矽昌通信技术有限公司 一种通信系统的数字预失真处理的方法及系统
US12003261B2 (en) * 2021-05-12 2024-06-04 Analog Devices, Inc. Model architecture search and optimization for hardware
US12028188B2 (en) 2021-05-12 2024-07-02 Analog Devices, Inc. Digital predistortion with hybrid basis-function-based actuator and neural network
US11770217B2 (en) * 2021-06-18 2023-09-26 Qualcomm Incorporated Techniques for using a non-linear model to indicate data in wireless communications
CN113541711B (zh) * 2021-07-18 2022-09-06 苏州全波通信技术股份有限公司 用于预失真处理的多路组合反馈信号采集系统及方法
CN113676217B (zh) * 2021-08-26 2022-11-08 电子科技大学 一种针对跳频通信的数字预失真校正方法与装置
CN118369893A (zh) * 2022-03-17 2024-07-19 华为技术有限公司 自适应功率控制方法、自适应功率处理系统及相关装置
CN114745239B (zh) * 2022-03-31 2023-08-08 宁波大学 一种基于单路反馈的数字预失真方法
CN114900403B (zh) * 2022-05-13 2023-05-12 中国电子科技集团公司第三十研究所 一种基于闭环数字预失真的信号失真控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056128A (zh) * 2007-05-21 2007-10-17 华为技术有限公司 稳定发射功率的方法和发射机
CN102014090A (zh) * 2010-12-13 2011-04-13 中兴通讯股份有限公司 数字预失真方法及装置
WO2011097844A1 (zh) * 2010-02-09 2011-08-18 中兴通讯股份有限公司 一种降低数字预失真系统链路失真过补偿的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700151A (en) * 1985-03-20 1987-10-13 Nec Corporation Modulation system capable of improving a transmission system
US6587514B1 (en) * 1999-07-13 2003-07-01 Pmc-Sierra, Inc. Digital predistortion methods for wideband amplifiers
US6798843B1 (en) * 1999-07-13 2004-09-28 Pmc-Sierra, Inc. Wideband digital predistortion linearizer for nonlinear amplifiers
US6563975B2 (en) * 2001-06-18 2003-05-13 Raytheon Company Method and apparatus for integrating optical fibers with collimating lenses
SE0102885D0 (en) * 2001-08-28 2001-08-28 Ericsson Telefon Ab L M Calibration of an adaptive signal conditioning systern
US6983026B2 (en) * 2002-03-19 2006-01-03 Motorola, Inc. Method and apparatus using base band transformation to improve transmitter performance
CN101594327B (zh) * 2008-05-26 2012-06-13 芯通科技(成都)有限公司 多通道数字预失真处理装置及预失真处理方法
US9397396B2 (en) * 2009-04-01 2016-07-19 Kathrein-Werke Kg Radio system and a method for relaying packetized radio signals
US8837620B2 (en) * 2011-05-03 2014-09-16 Optis Cellular Technology, Llc Adaptive multi-channel transmitter linearization system using a shared feedback receiver
CN102361476B (zh) * 2011-07-29 2013-01-30 上海交通大学 宽带多频段功放数字预失真装置及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056128A (zh) * 2007-05-21 2007-10-17 华为技术有限公司 稳定发射功率的方法和发射机
WO2011097844A1 (zh) * 2010-02-09 2011-08-18 中兴通讯股份有限公司 一种降低数字预失真系统链路失真过补偿的方法和装置
CN102014090A (zh) * 2010-12-13 2011-04-13 中兴通讯股份有限公司 数字预失真方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822242A4

Also Published As

Publication number Publication date
CN102594749A (zh) 2012-07-18
US20150103952A1 (en) 2015-04-16
EP2822242B1 (en) 2016-04-27
EP2822242A1 (en) 2015-01-07
EP2822242A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2013127141A1 (zh) 一种数字预失真处理方法及装置
US9948332B2 (en) High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
CN101594327B (zh) 多通道数字预失真处理装置及预失真处理方法
CN107317592B (zh) 一种发射机及其实现信号处理的方法
CN100511976C (zh) 数字预失真功率放大器及其实现方法
Quindroit et al. FPGA implementation of orthogonal 2D digital predistortion system for concurrent dual-band power amplifiers based on time-division multiplexing
US8355682B2 (en) Radio transmitter and method for transmission of combined signal
US20080111622A1 (en) Hybrid Doherty Amplifier System and Method
CN103475315B (zh) 改善射频功率放大器线性度的装置
CN102255835B (zh) 多频段宽带dpd查找表生成方法、dpd处理方法和系统
CN102870494B (zh) 用于无线通信的高效率、远程可重构的远程射频头单元系统及方法
Quindroit et al. Concurrent dual-band digital predistortion for power amplifier based on orthogonal polynomials
TW201328171A (zh) 預失真裝置、無線通訊單元及校正電路中的諧波失真的方法
CN101540618A (zh) 高线性linc发射机
Guan et al. High-performance digital predistortion test platform development for wideband RF power amplifiers
CN105227507B (zh) 非线性系统失真校正装置及方法
US8072283B2 (en) Signal modulation for switched mode power amplifiers
CN102271106B (zh) 一种预失真处理方法和装置
JP5731325B2 (ja) 変調器およびそれを用いる増幅器
CN101286962B (zh) 一种载波抵消射频预失真功放实现装置和方法
WO2018137185A1 (zh) 一种功率放大装置、射频拉远单元及基站
JP2012175708A (ja) プリディストーション装置
JP2004088303A (ja) 送信機
US11108403B2 (en) Device and method for efficient digital-analog conversion
Coelho et al. Implementation and simulation of the impact of mixer phase mismatch in Cartesian feedback linearization systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14381286

Country of ref document: US

Ref document number: 2012870172

Country of ref document: EP