WO2011097844A1 - 一种降低数字预失真系统链路失真过补偿的方法和装置 - Google Patents

一种降低数字预失真系统链路失真过补偿的方法和装置 Download PDF

Info

Publication number
WO2011097844A1
WO2011097844A1 PCT/CN2010/072572 CN2010072572W WO2011097844A1 WO 2011097844 A1 WO2011097844 A1 WO 2011097844A1 CN 2010072572 W CN2010072572 W CN 2010072572W WO 2011097844 A1 WO2011097844 A1 WO 2011097844A1
Authority
WO
WIPO (PCT)
Prior art keywords
input signal
link
distortion
power amplifier
dac
Prior art date
Application number
PCT/CN2010/072572
Other languages
English (en)
French (fr)
Inventor
任继军
茹洪涛
张作锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011097844A1 publication Critical patent/WO2011097844A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1038Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Definitions

  • the present invention relates to adaptive digital predistortion techniques, and more particularly to a method and apparatus for improving link distortion overcompensation of a digital predistortion system. Background technique
  • predistortion technology The most important step in the development of linearization technology is the emergence of predistortion technology, which was originally applied to the RF part of analog communication systems. With the development of digital signal processing (DSP) technology, it can also be implemented in the digital domain. , forming digital pre-distortion technology. Digital predistortion technology can be applied to both the baseband portion of the digital communication system and the RF portion, and the predistortion technique can also use the adaptive principle to track the error caused by the environmental factors such as temperature and humidity. In short, the pre-distortion technology not only can improve the efficiency of the transmitter, reduce the cost and reduce the volume, but also effectively increase the linearity of the transmitter to improve the system performance and communication quality.
  • DSP digital signal processing
  • the predistortion structure adopts a look-up table (LUT) method.
  • the predistortion system structure includes two channels: a data training loop channel and Predistortion channel.
  • the data training channel is a loop structure
  • the core part is a predistortion algorithm module.
  • the module processes the feedback output after the power amplifier and the original input signal to obtain the distortion characteristic of the power amplifier, and then obtains the LUT parameter of the power amplifier distortion inverse characteristic.
  • the predistortion inverse characteristic LUT parameters can be updated by an adaptive predistortion algorithm.
  • nonlinear components such as transistors and inductors and capacitors.
  • ADC analog-to-digital converter
  • the gain error in the amplifier, etc. causes the feedback link to introduce large nonlinear distortion.
  • an undesired feedback link overcompensation characteristic is obtained when the LUT parameter of the power amplifier distortion inverse characteristic is extracted, and the predistortion effect is reduced.
  • Figure 3 shows the principle of distortion compensation for the forward link, feedback link, and amplifier.
  • the ideal LUT compensation characteristic is ⁇ 7 ⁇ ) - 1 , where is the inverse characteristic of the feedback link distortion, which is the inverse characteristic of the power amplifier distortion, and ⁇ 0 - 1 is the inverse of the forward link distortion.
  • Characteristics, and the power amplifier output characteristics at this time are:
  • the main object of the present invention is to provide a method and apparatus for improving link distortion overcompensation in a digital predistortion system, which can solve the problem of link distortion overcompensation in a digital predistortion system.
  • the invention provides a method for improving link distortion overcompensation in a digital predistortion system, the method comprising:
  • Pre_LUT feedback distortion compensation table
  • PA_LUT digital predistortion table
  • the method further includes: performing the connection of the digital pre-distortion system without passing through the power amplifier to obtain a small closed-loop link;
  • the distortion compensation characteristic parameter of the forward link in the digital predistortion system is: taking a predetermined sequence as an input signal, and after passing through the DAC, sampling the signal after passing through the DAC through the ADC, Then establish the DAC error model, apply the DAC error model according to the sampled signal and the input signal to obtain the error equations, and solve the equations to obtain the distortion compensation characteristic parameters of the forward link.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the ideal compensation characteristic parameter of the small closed-loop link that obtains the input signal without passing through the power amplifier is specifically: establishing an error model for the ADC in the small closed-loop link, and obtaining the input signal and the output signal according to the small closed-loop link.
  • the error equation group obtains the ideal compensation characteristic parameter of the small closed-loop link by solving the error equation group.
  • the ideal compensation characteristic parameter of the large closed-loop link that obtains the input signal through the power amplifier is specifically: the input signal is outputted through the large closed-loop link of the power amplifier, and the error model of the power amplifier is established, and the application is applied according to the output signal and the input signal.
  • the error model of the power amplifier obtains an error equation group, and solves the parameters satisfying the output signal of the error equation group and the minimum differential mode of the input signal.
  • the forming the PA_LUT table to compensate for the forward link further includes: continuously modifying the ideal compensation characteristic parameter of the large closed-loop link by using an iterative method, and updating the PA_LUT table.
  • the predetermined sequence refers to a training sequence in which a value is known in advance, and is a single sequence ⁇ 1, a two-tone sequence or a multi-tone sequence;
  • the sampling frequency of the ADC is an even number of DAC of the DAC; when the input signal is obtained without the ideal compensation characteristic parameter of the small closed-loop link of the power amplifier, the capture 1;
  • the method further includes: connecting a low pass filter between the DAC of the forward link and the ADC to avoid frequency domain aliasing during ADC sampling.
  • the invention provides a device for improving link distortion overcompensation of a digital predistortion system, the device comprising: a forward distortion compensation module, a feedback distortion compensation module, and a power amplifier distortion compensation module;
  • the forward distortion compensation module is configured to obtain a distortion compensation characteristic parameter of the input signal in the forward link of the digital predistortion system, form a LUT_e table, and compensate the input signal before entering the DAC; and a feedback distortion compensation module for acquiring the input signal
  • the ideal compensation characteristic parameter of the small closed-loop link without the power amplifier is formed, and the Pre_LUT table is formed to compensate on the feedback link;
  • the power amplifier distortion compensation module is configured to obtain an ideal compensation characteristic parameter of the large closed-loop link of the input signal through the power amplifier, and form a PA_LUT table to compensate in the forward link.
  • the forward distortion compensation module obtains the distortion compensation characteristic parameter of the input signal in the forward link of the digital predistortion system, specifically: using the predetermined sequence as the input signal, after passing through the DAC, after passing through the DAC through the ADC pair
  • the signal is sampled, and then the DAC error model is established.
  • the DAC error model is applied according to the sampled signal and the input signal to obtain an error equation group, and the equation group is solved to obtain the distortion compensation characteristic parameter of the forward link.
  • the DFT or FFT method is used to extract the difference between the signal after the DAC and the input signal as an error, convert the error into a time domain error waveform, and then establish a DAC error model, and apply the DAC error model to obtain an error equation group.
  • the equations obtain the distortion compensation characteristic parameters of the forward link.
  • the power amplifier distortion compensation module is further configured to, by an iterative method, continuously correct the ideal compensation characteristic parameter of the large closed loop link, and update the PA_LUT table.
  • the LUT_e table compensates the input signal before entering the DAC; obtains the ideal compensation characteristic parameter of the input signal on the small closed-loop link that does not pass through the power amplifier, forms the Pre_LUT table to compensate on the feedback link; and obtains the large closed-loop link of the input signal through the power amplifier
  • the ideal compensation characteristic parameter forms the PA_LUT table to compensate in the forward link; thus, based on the compensation of the forward link distortion, the overcompensation characteristic of the feedback link can be further effectively cancelled, and the link distortion of the digital predistortion system is improved. Over-compensation, the method is single and reliable.
  • FIG. 1 is a schematic structural view of a predistortion system in the prior art
  • FIG. 2 is a schematic structural diagram of a basic extraction predistortion table
  • FIG. 3 is a schematic diagram showing the principle of distortion compensation of a forward link, a feedback link, and a power amplifier in the prior art
  • FIG. 4 is a schematic flowchart of a method for improving link distortion overcompensation in a digital predistortion system according to the present invention
  • FIG. 5 is a schematic diagram showing the internal structure of a forward distortion compensation module according to the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for improving link distortion overcompensation in a digital predistortion system according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic idea of the present invention is to: obtain a distortion compensation characteristic parameter of an input signal in a forward link of a digital predistortion system, form a LUT_e table, and compensate an input signal before entering the DAC; and obtain an input signal that does not pass through the power amplifier.
  • the ideal compensation characteristic parameters of the closed-loop link form the Pre_LUT table to compensate on the feedback link; obtain the ideal compensation characteristic parameters of the large closed-loop link of the input signal through the power amplifier, and form the PA_LUT table to compensate in the forward link.
  • the present invention implements a method for improving link distortion overcompensation in a digital predistortion system. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Acquire a distortion compensation characteristic parameter of the input signal in the forward link of the digital predistortion system, form a LUT_e table, and perform compensation before the input signal enters the DAC;
  • the pre-determined sequence is used as an input signal.
  • the signal after passing through the DAC is sampled by the ADC, and then the DAC error model is established, and the DAC error is applied according to the sampled signal and the input signal.
  • the model obtains the error equations, solves the equations to obtain the distortion compensation characteristic parameters of the forward link, and forms the LUT_e table according to the distortion compensation characteristic parameters.
  • the LUT_e table is used to compensate by the LUT method, and the input signal is compensated. It can be considered as a distortion-free signal before entering the power amplifier;
  • the method for obtaining the distortion compensation characteristic parameter of the forward link may be: applying DFT, FFT, etc. to extract the difference between the signal after the DAC and the input signal as an error, and converting the error into a time domain Error waveform, then establish the DAC error model, apply the DAC error model to obtain the error equations, and solve the equations to obtain the distortion compensation characteristic parameters of the forward link.
  • the predetermined sequence refers to a training sequence that knows the value in advance, and may be a monophonic sequence, a two-tone sequence or a multi-tone sequence
  • the sampling frequency of the ADC is DAC ⁇ , ⁇ can be selected according to the actual situation, can be even, generally choose 4 or 8.
  • the following is an example of obtaining the distortion compensation characteristic parameter of the forward link in this step by taking the DAC error model of the formula (1) as an example.
  • the coefficients a , P, 5 , and are the distortion compensation characteristic parameters of the forward link.
  • Step 402 Connect the digital pre-distortion system to a small closed-loop link that does not pass through the power amplifier, obtain an ideal compensation characteristic parameter of the input signal in the small closed-loop link, and form a Pre_LUT table to compensate on the feedback link;
  • the forward link and the feedback link of the digital predistortion system are connected without a power amplifier to obtain a small closed loop link, and an error model is established for the ADC in the small closed loop link, according to an input signal of the small closed loop link.
  • the output signal obtains the error equation group, and the ideal compensation characteristic parameter of the small closed-loop link is obtained by solving the equation group, and the ideal compensation characteristic parameter is formed into the Pre_LUT table.
  • the Pre_LUT table is queried by the LUT method.
  • Step 403 Acquire an ideal compensation characteristic parameter of the large closed-loop link of the input signal through the power amplifier, and form a PA_LUT table to compensate in the forward link;
  • connection in step 402 is not performed through the power amplifier, and the input signal can pass through the large closed-loop link of the power amplifier, and the input signal passes through the large closed-loop link of the power amplifier to obtain an output signal, and the forward chain at this time
  • Both the path and the feedback link distortion have been compensated by steps 401 and 402, so there is only the distortion of the power amplifier; the error model of the power amplifier is established, and the error equations of the power amplifier are obtained according to the output signal and the input signal, and the error equations are obtained to solve the equations.
  • the minimum differential mode parameter of the output signal and the input signal is used as the distortion characteristic parameter of the power amplifier, that is, the ideal compensation characteristic parameter of the large closed-loop link, and the ideal compensation characteristic parameter is formed into the PA_LUT table, and the LUT is passed when the input signal passes the forward link.
  • the method queries the PA_LUT table for compensation, and through the iterative method, continuously corrects the ideal compensation characteristic parameters of the large closed-loop link, and also updates the PA_LUT table;
  • ⁇ —X output signal Y is calculated by the error model of the power amplifier to obtain Y, and it is satisfied that ⁇ — Parameters. which is
  • is composed of polynomial coefficients ⁇ , ⁇ ,..., ⁇ , the highest order of polynomial is ⁇ P is a matrix composed of signal modulus values; matrix expansion is:
  • the present invention further provides an apparatus for improving link distortion overcompensation of a digital predistortion system.
  • the apparatus includes: a forward distortion compensation module 61, a feedback distortion compensation module 62, and a power amplifier distortion compensation module. 63; Among them,
  • the forward distortion compensation module 61 is configured to obtain a distortion compensation characteristic parameter of the input signal in the forward link of the digital predistortion system, form a LUT_e table, and perform compensation before the input signal enters the DAC; specifically, the switches in FIG. 6 are all turned on.
  • the forward distortion compensation module 61 uses the ADC to sample the signal after passing through the DAC, and then establishes a DAC error model, and uses the DAC error model to obtain an error equation group according to the sampled signal and the input signal, and solves the equations.
  • the forward distortion compensation module 61 acquires a distortion compensation characteristic parameter of the input signal in the forward link of the digital predistortion system, and may also be: extracting the signal and the input signal after passing through the DAC by using DFT, FFT, or the like. The difference is used as the error, the error is converted into the time domain error waveform, and then the DAC error model is established. The DAC error model is used to obtain the error equation group, and the equations are solved to obtain the distortion compensation characteristic parameters of the forward link.
  • a low-pass filter is required between the DAC and the ADC.
  • the sampling frequency of the ADC is K.
  • the value of K can be even, generally 4 or 8.
  • the feedback distortion compensation module 62 is configured to obtain an ideal compensation characteristic parameter of the small closed-loop link of the input signal without passing through the power amplifier, and form a Pre_LUT table to compensate on the feedback link;
  • the feedback distortion compensation module 62 establishes an ADC error model, and obtains an error according to the input signal and the output signal of the small closed-loop link.
  • the ideal compensation characteristic parameters of the small closed-loop link are obtained by solving the equations, and the ideal compensation characteristic parameters are formed into the Pre_LUT table.
  • the power amplifier distortion compensation module 63 is configured to obtain an ideal compensation characteristic parameter of the large closed-loop link of the input signal through the power amplifier, and form a PA_LUT table to compensate in the forward link;
  • the power amplifier distortion compensation module 63 obtains the error by solving the minimum value of the absolute value of the output signal and the input signal difference value.
  • the error model of the power amplifier is established, the error equation of the power amplifier is used to obtain the error equation group, and the distortion characteristic parameter of the power amplifier is obtained by solving the equation group, that is, the ideal compensation characteristic of the large closed-loop link, and the ideal compensation characteristic is formed into the PA_LUT table, before the input signal passes.
  • the PA_LUT table is queried by the LUT method for compensation;
  • the power amplifier distortion compensation module 63 is further used to continuously correct the ideal compensation characteristic parameters of the large closed loop link by an iterative method, and update the PA_LUT table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)

Description

一种降低数字预失真系统链路失真过补偿的方法和装置
技术领域
本发明涉及自适应数字预失真技术, 尤其涉及一种改善数字预失真系 统链路失真过补偿的方法和装置。 背景技术
在频谱资源日益紧张的今天, 现代通信系统更趋向于采用比恒定包络 调制方式具有更高频谱效率的非恒定包络的线性调制方式, 而这种调制方 式对高功放的线性度要求较高, 所以采用这种调制方式需要采用线性化技 术来改善功放的线性度。
另一方面, 随着数字移动通信技术的发展, 对基站功放的性能提出了 越来越高的要求, 即在满足较高的线性要求前提下, 使得功放有较高的效 率。 为了达到这一要求, 就要让放大器既线性又高效, 即对射频放大器或 射频系统提出了线性化处理的需求, 发展射频放大器线性化技术, 采用各 种手段来实现放大器高效率且高线性度。 这一点对于未来无线移动通信技 术的发展和实现有着十分重大的实际意义。
线性化技术发展中最重要的一步就是预失真技术的出现, 它最初应用 于模拟通信系统中的射频部分, 随着数字信号处理 (DSP, Digital Signal Processing )技术的发展, 亦可在数字域内实现, 形成数字预失真技术。 数 字预失真技术既可以应用在数字通信系统的基带部分, 也可以应用在射频 部分, 而且预失真技术还可以利用自适应原理来跟踪补偿功放由于温度、 湿度等环境因素改变而造成的误差。 总之, 预失真技术不但可以提升发射 机的效率, 降低成本与缩小体积, 亦能有效增加发射机的线性度以提升系 统效能与通信质量, 是一种适应现代数字通信发展的线性化技术。 为了便于实现,现有技术中,预失真结构采用的是查表(LUT, Look-Up Table ) 的方法, 如图 1所示, 预失真系统结构包含两个通道: 数据训练的 环路通道和预失真通道。 数据训练通道是一个环路结构, 其核心部分为预 失真算法模块, 该模块对经功放后的反馈输出和原输入信号进行处理, 得 到功放的失真特性, 然后得到功放失真反特性的 LUT参数。 当功放特性随 着时间或外界环境变化发生改变时, 可以通过自适应的预失真算法来更新 预失真反特性 LUT参数。 图 2给出了一种基本的提取预失真表格结构, 其 中, X为输入信号, Y为输出 (反馈)信号。 首先根据需求确定输出功率, 第一次运行时, 系统直通, LUT参数全 "1" , X = Χ , 信号通过功放之后, 得到第一组输出数据,反馈进行预失真处理,通过求解 111111 得到 LUT 参数,然后在迭代过程中不断修正 LUT参数,提取此时 LUT参数作为这一 输出功率下的预失真 LUT, 供系统使用。
在实际的数字预失真系统中, 有许多非线性的可能源, 包括诸如晶体 管和电感、 电容等非线性元件。 当模拟信号转换成数字信号时, 更会频繁 地引入非线性特性, 再加上模数转换器(ADC )本身的附加非线性源, 包 括采样电容器的时间常量、 比较器电平中的不精确和放大器中的增益误差 等, 使得反馈链路引入很大的非线性失真。 对于一般的数字预失真系统而 会在提取功放失真反特性的 LUT 参数时得到不需要的反馈链路过补偿特 性, 降低预失真效果。
图 3 所示为前向链路、 反馈链路及功放的失真补偿的原理。 以瞬时特 性为例, 理想的 LUT补偿特性为 ^7^·)—1 , 其中, 为反馈 链路失真的逆特性, 为功放失真的逆特性, ^01为前向链路失真的 逆特性, 而此时的功放输出特性为:
Y = X * Fb(-yl * H(-yl *Τχ(-γι *Γ ·) * H (-) = X * Fb(')—1 其中, (')为功放失真, 为前向链路失真, 显见, LUT包含多余 的过补偿特性^(')— 1 , 这会明显地降低预失真效果。
关于这一领域的专利文献很多, 主要集中在奥普蒂科伦公司, 如 CN1985442A, CN1998140A, US2004228488等等, 其主要思想是单独针对 反馈链路失真引入线性电路进行失真估算, 进而补偿输出, 但这些方法均 存在实现复杂、 增加硬件电路开销等不足。 发明内容
有鉴于此, 本发明的主要目的在于提供一种改善数字预失真系统链路 失真过补偿的方法和装置, 能够筒单、 可靠的解决数字预失真系统链路失 真过补偿的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供的一种改善数字预失真系统链路失真过补偿的方法, 该方 法包括:
获取输入信号在数字预失真系统前向链路的失真补偿特性参数, 形成 前向失真补偿表(LUT_e ), 在输入信号进入数模转换器(DAC )前进行补 偿;
获取输入信号不经过功放的小闭环链路的理想补偿特性参数, 形成反 馈失真补偿表(Pre_LUT )在反馈链路进行补偿;
获取输入信号经过功放的大闭环链路的理想补偿特性参数, 形成对应 功放非线性失真的数字预失真表(PA_LUT )在前向链路进行补偿。
上述方案中, 所述获取输入信号在不经过功放的小闭环链路的理想补 偿特性参数之前, 进一步包括: 将数字预失真系统进行不经过功放的连接, 得到小闭环链路;
所述获取输入信号经过功放的大闭环链路的理想补偿特性参数之前, 进一步包括: 断开用于不经过功放的连接, 得到输入信号经过功放的大闭 环链路。
上述方案中, 所述获取输入信号在数字预失真系统前向链路的失真补 偿特性参数具体为: 以先定序列作为输入信号, 在经过 DAC之后, 通过 ADC对经过 DAC后的信号进行采样, 再建立 DAC误差模型, 根据采样得 到的信号和输入信号应用 DAC误差模型得到误差方程组, 求解方程组得到 前向链路的失真补偿特性参数;
或者, 应用离散傅里叶变换(DFT )、 或快速傅里叶变换(FFT ) 方法 提取经过 DAC后的信号和输入信号的差值作为误差,将该误差转换成时域 的误差波形,再建立 DAC误差模型, 应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性参数。
上述方案中, 所述获取输入信号在不经过功放的小闭环链路的理想补 偿特性参数具体为: 对小闭环链路中的 ADC建立误差模型, 根据小闭环链 路的输入信号和输出信号得到误差方程组, 通过求解所述误差方程组得到 小闭环链路的理想补偿特性参数。
上述方案中, 所述获取输入信号经过功放的大闭环链路的理想补偿特 性参数具体为: 输入信号经过功放的大闭环链路得到输出信号, 建立功放 的误差模型, 根据输出信号和输入信号应用功放的误差模型得到误差方程 组, 求解满足所述误差方程组的输出信号和输入信号最小差模的参数。
上述方案中, 所述形成 PA_LUT表在前向链路进行补偿进一步包括: 通过迭代的方法,不断修正大闭环链路的理想补偿特性参数,更新 PA_LUT 表。
上述方案中, 所述先定序列是指预先知道数值的训练序列, 为单音序 歹l、 双音序列或者多音序列;
在获取输入信号在数字预失真系统前向链路的失真补偿特性参数时, 所述 ADC的采样频率为 DAC的 Κ的取值为偶数; 在获取输入信号 在不经过功放的小闭环链路的理想补偿特性参数时, 所述 Κ取 1;
该方法进一步包括: 在前向链路的 DAC与 ADC间连接低通滤波器, 用于避免在 ADC采样时出现频域混叠的现象。
本发明提供的一种改善数字预失真系统链路失真过补偿的装置, 该装 置包括: 前向失真补偿模块、 反馈失真补偿模块、 功放失真补偿模块; 其 中,
前向失真补偿模块, 用于获取输入信号在数字预失真系统前向链路的 失真补偿特性参数, 形成 LUT_e表, 在输入信号进入 DAC前进行补偿; 反馈失真补偿模块, 用于获取输入信号在不经过功放的小闭环链路的 理想补偿特性参数, 形成 Pre_LUT表在反馈链路进行补偿;
功放失真补偿模块, 用于获取输入信号经过功放的大闭环链路的理想 补偿特性参数, 形成 PA_LUT表在前向链路进行补偿。
上述方案中, 所述前向失真补偿模块获取输入信号在数字预失真系统 前向链路的失真补偿特性参数具体为: 以先定序列作为输入信号, 在经过 DAC之后, 通过 ADC对经过 DAC后的信号进行采样, 再建立 DAC误差 模型,根据采样得到的信号和输入信号应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性参数;
或者, 应用 DFT、 或者 FFT方法提取经过 DAC后的信号和输入信号 的差值作为误差,将该误差转换成时域的误差波形,再建立 DAC误差模型, 应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿 特性参数。
上述方案中, 所述功放失真补偿模块进一步用于通过迭代的方法, 不 断修正大闭环链路的理想补偿特性参数, 更新 PA_LUT表。
本发明提供的一种改善数字预失真系统链路失真过补偿的方法和装 置, 获取输入信号在数字预失真系统前向链路的失真补偿特性参数, 形成
LUT_e表, 对输入信号进入 DAC前进行补偿; 获取输入信号在不经过功放 的小闭环链路的理想补偿特性参数,形成 Pre_LUT表在反馈链路进行补偿; 获取输入信号经过功放的大闭环链路的理想补偿特性参数, 形成 PA_LUT 表在前向链路进行补偿; 如此, 可以在补偿前向链路失真的基础上, 进一 步有效抵消反馈链路的过补偿特性, 改善数字预失真系统链路失真的过补 偿, 方法筒单、 可靠。 附图说明
图 1为现有技术中预失真系统结构示意图;
图 2为一种基本的提取预失真表格的结构示意图;
图 3 为现有技术中前向链路、 反馈链路及功放的失真补偿的原理示意 图;
图 4为本发明实现一种改善数字预失真系统链路失真过补偿的方法流 程示意图;
图 5为本发明前向失真补偿模块的内部结构示意图;
图 6 为本发明实现一种改善数字预失真系统链路失真过补偿的装置的 结构示意图。 具体实施方式 本发明的基本思想是: 获取输入信号在数字预失真系统前向链路的失 真补偿特性参数, 形成 LUT_e表, 对输入信号进入 DAC前进行补偿; 获 取输入信号在不经过功放的小闭环链路的理想补偿特性参数, 形成 Pre_LUT表在反馈链路进行补偿; 获取输入信号经过功放的大闭环链路的 理想补偿特性参数, 形成 PA_LUT表在前向链路进行补偿。
下面通过附图及具体实施例对本发明做进一步的详细说明。 本发明实现一种改善数字预失真系统链路失真过补偿的方法, 如图 4 所示, 该方法包括以下几个步骤:
步骤 401 :获取输入信号在数字预失真系统前向链路的失真补偿特性参 数, 形成 LUT_e表, 在输入信号进入 DAC前进行补偿;
具体的, 如图 5所示, 以先定序列作为输入信号, 在经过 DAC之后, 通过 ADC对经过 DAC后的信号进行采样,再建立 DAC误差模型,根据采 样得到的信号和输入信号应用 DAC误差模型得到误差方程组, 求解方程组 得到前向链路的失真补偿特性参数,根据失真补偿特性参数形成 LUT_e表; 在输入信号进入 DAC前通过 LUT的方法查询 LUT_e表进行补偿, 在补偿 后输入信号在进入功放前可以认为为无失真信号;
进一步的, 本步骤获取前向链路的失真补偿特性参数的方法还可以是: 应用 DFT、 FFT等方法提取经过 DAC后的信号和输入信号的差值作为误差, 将该误差转换成时域的误差波形, 再建立 DAC误差模型, 应用 DAC误差 模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性参数; 本步骤中,为避免在 ADC采样时出现频域混叠的现象,还需要在 DAC 与 ADC间连接低通滤波器; 所述先定序列是指预先知道数值的训练序列, 可以是单音序列、 双音序列或者多音序列; 所述 ADC的采样频率为 DAC 的 υκ , Κ的取值可以根据实际情况选取, 可以是偶数, 一般选取 4或 8。
下面对本步骤获取前向链路的失真补偿特性参数以公式(1 ) 的 DAC 误差模型为例进行具体说明,
e xk ) = a + xk + α + βχ^1 + λ2( + ^xk )3
+ + _ )2 + + ^)) … ( 1 )
+ r + Α - ¾-Μ ))2 + r2(« + Α - ¾-Μ ))3
其中, 当前时刻的输入信号的误差; 为当前时刻的输入信号; xk-m 前 m 时刻 的输入信号 , m=l,2,...,M , M 为 正整数; a、 P、 、 5 、 、 等系数为前向链路的失真补偿特性参数; 取反馈 ADC的采样率为前向 DAC采样率的 1/4, 即 = 4 , 设此时输 入信号为 x = ( ι ¾ L χη) , 输出信号为 = y2 L yn) , 根据公式(丄)则 有:
e xk) = a + xk + {a + xk)2 + δλ{α + {xk - xk_ )2
+^(« + ¾-¾-2))2
其中 ) = - , = 3,4,5···", 根据上式建立如下误差方程组:
_y3 -x3 =α + βχ3 + (a + βχ)2 + δλ(α + β(χ - χ2))2 + γλ(α + β(χ - x )2 y44 = a + βχ4+ (α + βχ4)2 + δλ(α + β(χ4- χ))2 + γλ(α + β(χ4- χ2))2
Μ
ynη = a + βχη + {α + βχη)2 + δ{α + β{χη - χη_))2 + γ{α + β{χη- χη_2))2 通过求解上述方程组, 则可获取前向链路的失真补偿特性参数 α、 β、 , 、 , 形成 LUT_e表。
步骤 402: 将数字预失真系统进行不经过功放的小闭环链路连接, 获取 输入信号在小闭环链路的理想补偿特性参数, 形成 Pre_LUT表在反馈链路 进行补偿;
具体的, 将数字预失真系统的前向链路和反馈链路进行不经过功放的 连接, 得到小闭环链路, 对小闭环链路中的 ADC建立误差模型, 根据小闭 环链路的输入信号和输出信号得到误差方程组, 通过求解方程组得到小闭 环链路的理想补偿特性参数, 将理想补偿特性参数形成 Pre_LUT表, 在反 馈信号进入反馈链路的 ADC后, 通过 LUT的方法查询 Pre_LUT表进行补 偿, 设查询 Pre_LUT表补偿数据为 ^('), 在前向链路输入信号为 X, 小闭 环链路的输出信号为 Y, 贝' J: Y = X* Txi-y1 * Τχ(·) * Fb(-) * Fbi-Y1 = X 可以看出抵消了反馈链路的过补偿特性 本步骤获取输入信号在 小闭环链路的理想补偿特性参数时, 可以设置 ADC的采样率与 DAC的相 同, 即 K=l
步骤 403: 获取输入信号经过功放的大闭环链路的理想补偿特性参数, 形成 PA_LUT表在前向链路进行补偿;
具体的, 断开步骤 402 中用于不经过功放的连接, 得到输入信号可以 经过功放的大闭环链路, 该输入信号经过功放的大闭环链路后得到输出信 号, 而此时的前向链路和反馈链路失真均已通过步骤 401和步骤 402补偿, 因此只存在功放的失真; 建立功放的误差模型, 根据输出信号和输入信号 应用功放的误差模型得到误差方程组, 求解满足方程组的输出信号和输入 信号最小差模的参数, 作为功放的失真特性参数, 即大闭环链路的理想补 偿特性参数, 将理想补偿特性参数形成 PA_LUT表, 在输入信号经过前向 链路时, 通过 LUT的方法查询 PA_LUT表进行补偿, 通过迭代的方法, 不 断修正大闭环链路的理想补偿特性参数, 同时也更新 PA_LUT表;
下面对本步骤获取大闭环链路的理想补偿特性参数以公式(2)的功放 的误差模型为例进行具体说明,
(¾) = Vn + "η2χη2 +an3Xl+ + + «0 ( 2 ) 其中, 为阶数, " = 123··· „表示信号;
设输入信号为 Χ =( ι¾ L j, 输出信号为 i^ L y ^ 则根据 公式(2)得到:
Figure imgf000011_0001
其中, X )为输入信号 X通过功放的误差模型计算得到的, 为 输入信号的模值, 即^
Figure imgf000011_0002
; /m()(w = 123)为公式(2) 的 多项式拟合的表格;
Υ—X 输出信号 Y通过功放的误差模型计算得到 Y,, 求取满足 叩 — 的 参数。 即
ε(η) = ^(Ρη)* Υ(η) + f2η_λ )*Y(n-l) + f3 (Pn2 )*Y(n-2)-X(n) ( 6 ) 的值最小的参数, 其中, ")^1'- χι。 写成矩阵形式有:
s = {P*Y)*W -X
其中^由/ 的多项式系数^^^^,^^,…,^^组成, 其多项式最高 阶数为^ P为信号模值组成的矩阵; 矩阵展开即有:
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0004
Wl— \_cw,cn,...,clq\ W2— [oc20,oc2l,...,oc22q]- W3—[oc30,oc3l,...,oc3 ]
X =\ L x
则使得 ^最小的系数向量 W的解为:
W = {P*YYl *X , 即为大闭环链路的理想补偿特性参数。 基于上述方法, 本发明还提供一种改善数字预失真系统链路失真过补 偿的装置, 如图 6所示, 该装置包括: 前向失真补偿模块 61、 反馈失真补 偿模块 62、 功放失真补偿模块 63; 其中,
前向失真补偿模块 61 , 用于获取输入信号在数字预失真系统前向链路 的失真补偿特性参数, 形成 LUT_e表, 在输入信号进入 DAC前进行补偿; 具体为, 图 6中的开关全部打开, 前向失真补偿模块 61如图 5所示, 利用 ADC对经过 DAC后的信号进行采样,再建立 DAC误差模型,根据采 样得到的信号和输入信号应用 DAC误差模型得到误差方程组, 求解方程组 得到前向链路的失真补偿特性参数,根据失真补偿特性参数形成 LUT_e表; 在输入信号进入 DAC前通过 LUT的方法查询 LUT_e表进行补偿;
进一步的, 所述前向失真补偿模块 61获取输入信号在数字预失真系统 前向链路的失真补偿特性参数的方法, 还可以是: 应用 DFT、 FFT等方法 提取经过 DAC后的信号和输入信号的差值作为误差,将该误差转换成时域 的误差波形,再建立 DAC误差模型, 应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性参数;
为避免在 ADC采样时出现频域混叠的现象,还需要在 DAC与 ADC间 连接低通滤波器; 所述 ADC的采样频率为 DAC的 K的取值可以是 偶数, 一般选取 4或 8。
反馈失真补偿模块 62, 用于获取输入信号在不经过功放的小闭环链路 的理想补偿特性参数, 形成 Pre_LUT表在反馈链路进行补偿;
具体的, 将开关 S3、 S4、 S5 闭合, Sl、 S2打开, 得到不经过功放的 小闭环链路, 反馈失真补偿模块 62建立 ADC误差模型, 根据小闭环链路 的输入信号和输出信号得到误差方程组, 通过求解方程组得到小闭环链路 的理想补偿特性参数, 将理想补偿特性参数形成 Pre_LUT表, 在反馈信号 进入反馈链路的 ADC后, 通过 LUT的方法查询 Pre_LUT表进行补偿; 其 中, 可以设置 ADC的采样率与 DAC的相同, 即 K=l。
功放失真补偿模块 63, 用于获取输入信号经过功放的大闭环链路的理 想补偿特性参数, 形成 PA_LUT表在前向链路进行补偿;
具体的, 将开关 S3、 S4、 S5打开, Sl、 S2闭合, 得到输入信号可以 经过功放的大闭环链路, 功放失真补偿模块 63通过求解输出信号和输入信 号差值绝对值的最小值得到误差, 建立功放的误差模型, 应用功放的误差 模型得到误差方程组, 求解方程组得到功放的失真特性参数, 即大闭环链 路的理想补偿特性, 将理想补偿特性形成 PA_LUT表, 在输入信号经过前 向链路时, 通过 LUT的方法查询 PA_LUT表进行补偿;
功放失真补偿模块 63进一步用于通过迭代的方法, 不断修正大闭环链 路的理想补偿特性参数, 更新 PA_LUT表。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种改善数字预失真系统链路失真过补偿的方法, 其特征在于, 该 方法包括:
获取输入信号在数字预失真系统前向链路的失真补偿特性参数, 形成 前向失真补偿表(LUT_e ), 在输入信号进入数模转换器(DAC )前进行补 偿;
获取输入信号不经过功放的小闭环链路的理想补偿特性参数, 形成反 馈失真补偿表(Pre_LUT )在反馈链路进行补偿;
获取输入信号经过功放的大闭环链路的理想补偿特性参数, 形成对应 功放非线性失真的数字预失真表(PA_LUT )在前向链路进行补偿。
2、 根据权利要求 1所述的方法, 其特征在于,
所述获取输入信号在不经过功放的小闭环链路的理想补偿特性参数之 前, 进一步包括: 将数字预失真系统进行不经过功放的连接, 得到小闭环 链路;
所述获取输入信号经过功放的大闭环链路的理想补偿特性参数之前, 进一步包括: 断开用于不经过功放的连接, 得到输入信号经过功放的大闭 环链路。
3、 根据权利要求 1所述的方法, 其特征在于, 所述获取输入信号在数 字预失真系统前向链路的失真补偿特性参数具体为: 以先定序列作为输入 信号, 在经过 DAC之后, 通过模数转换器( ADC )对经过 DAC后的信号 进行采样, 再建立 DAC误差模型, 根据采样得到的信号和输入信号应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性 参数;
或者, 应用离散傅里叶变换(DFT )、 或快速傅里叶变换(FFT ) 方法 提取经过 DAC后的信号和输入信号的差值作为误差,将该误差转换成时域 的误差波形,再建立 DAC误差模型, 应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性参数。
4、 根据权利要求 1所述的方法, 其特征在于, 所述获取输入信号在不 经过功放的小闭环链路的理想补偿特性参数具体为: 对小闭环链路中的 ADC建立误差模型, 根据小闭环链路的输入信号和输出信号得到误差方程 组, 通过求解所述误差方程组得到小闭环链路的理想补偿特性参数。
5、 根据权利要求 1所述的方法, 其特征在于, 所述获取输入信号经过 功放的大闭环链路的理想补偿特性参数具体为: 输入信号经过功放的大闭 环链路得到输出信号, 建立功放的误差模型, 根据输出信号和输入信号应 用功放的误差模型得到误差方程组, 求解满足所述误差方程组的输出信号 和输入信号最小差模的参数。
6、 根据权利要求 1所述的方法, 其特征在于, 所述形成 PA_LUT表在 前向链路进行补偿进一步包括: 通过迭代的方法, 不断修正大闭环链路的 理想补偿特性参数, 更新 PA_LUT表。
7、 根据权利要求 3所述的方法, 其特征在于, 所述先定序列为单音序 列、 双音序列或者多音序列;
在获取输入信号在数字预失真系统前向链路的失真补偿特性参数时, 所述 ADC的采样频率为 DAC的 K的取值为偶数; 在获取输入信号 在不经过功放的小闭环链路的理想补偿特性参数时, 所述 K取 1;
该方法进一步包括: 在前向链路的 DAC与 ADC间连接低通滤波器, 用于避免在 ADC采样时出现频域混叠的现象。
8、 一种改善数字预失真系统链路失真过补偿的装置, 其特征在于, 该 装置包括: 前向失真补偿模块、 反馈失真补偿模块、 功放失真补偿模块; 其中,
前向失真补偿模块, 用于获取输入信号在数字预失真系统前向链路的 失真补偿特性参数, 形成 LUT_e表, 在输入信号进入 DAC前进行补偿; 反馈失真补偿模块, 用于获取输入信号在不经过功放的小闭环链路的 理想补偿特性参数, 形成 Pre_LUT表, 在反馈链路进行补偿;
功放失真补偿模块, 用于获取输入信号经过功放的大闭环链路的理想 补偿特性参数, 形成 PA_LUT表在前向链路进行补偿。
9、 根据权利要求 8所述的装置, 其特征在于, 所述前向失真补偿模块 获取输入信号在数字预失真系统前向链路的失真补偿特性参数具体为: 以 先定序列作为输入信号,在经过 DAC之后,通过 ADC对经过 DAC后的信 号进行采样, 再建立 DAC误差模型, 根据采样得到的信号和输入信号应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿特性 参数;
或者, 应用 DFT、 或者 FFT方法提取经过 DAC后的信号和输入信号 的差值作为误差,将该误差转换成时域的误差波形,再建立 DAC误差模型, 应用 DAC误差模型得到误差方程组, 求解方程组得到前向链路的失真补偿 特性参数。
10、 根据权利要求 8所述的装置, 其特征在于, 所述功放失真补偿模 块进一步用于通过迭代的方法, 不断修正大闭环链路的理想补偿特性参数, 更新 PA—LUT表。
PCT/CN2010/072572 2010-02-09 2010-05-10 一种降低数字预失真系统链路失真过补偿的方法和装置 WO2011097844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010113726.8A CN101800546B (zh) 2010-02-09 2010-02-09 一种改善数字预失真系统链路失真过补偿的方法和装置
CN201010113726.8 2010-02-09

Publications (1)

Publication Number Publication Date
WO2011097844A1 true WO2011097844A1 (zh) 2011-08-18

Family

ID=42596070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072572 WO2011097844A1 (zh) 2010-02-09 2010-05-10 一种降低数字预失真系统链路失真过补偿的方法和装置

Country Status (2)

Country Link
CN (1) CN101800546B (zh)
WO (1) WO2011097844A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127141A1 (zh) * 2012-02-28 2013-09-06 中兴通讯股份有限公司 一种数字预失真处理方法及装置
CN109218236A (zh) * 2017-07-06 2019-01-15 中兴通讯股份有限公司 切换时隙数字预失真校正方法、装置及可读存储介质
TWI727240B (zh) * 2017-12-18 2021-05-11 美商高通公司 用於藉由參考信號之非線性估計的系統及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143108A (zh) * 2011-03-17 2011-08-03 电子科技大学 一种改进的自适应预失真技术
CN103765766B (zh) * 2011-08-30 2017-01-18 Dsp集团有限公司 使用预失真的放大器线性化
CN109861754B (zh) * 2017-11-30 2021-01-29 华为技术有限公司 非线性补偿的方法和光载无线通信系统
CN109150213B (zh) * 2018-09-26 2020-11-10 西安烽火电子科技有限责任公司 一种数字预失真系统
CN112235686B (zh) * 2019-07-15 2022-07-05 瑞昱半导体股份有限公司 音效编码解码电路及音频资料的处理方法
CN110995176B (zh) * 2019-12-31 2023-09-05 西安烽火电子科技有限责任公司 一种改善数字预失真系统性能的数据筛选方法
CN114900403B (zh) * 2022-05-13 2023-05-12 中国电子科技集团公司第三十研究所 一种基于闭环数字预失真的信号失真控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102943A1 (en) * 2007-02-23 2008-08-28 Airpoint Repeating system and method for cancellation of feedback interference signal with pre-distortion function
CN101459636A (zh) * 2007-12-12 2009-06-17 中兴通讯股份有限公司 自适应预失真方法
CN101479956A (zh) * 2006-04-28 2009-07-08 大力系统有限公司 用于无线通信的高效率线性化功率放大器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479956A (zh) * 2006-04-28 2009-07-08 大力系统有限公司 用于无线通信的高效率线性化功率放大器
WO2008102943A1 (en) * 2007-02-23 2008-08-28 Airpoint Repeating system and method for cancellation of feedback interference signal with pre-distortion function
CN101459636A (zh) * 2007-12-12 2009-06-17 中兴通讯股份有限公司 自适应预失真方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127141A1 (zh) * 2012-02-28 2013-09-06 中兴通讯股份有限公司 一种数字预失真处理方法及装置
CN109218236A (zh) * 2017-07-06 2019-01-15 中兴通讯股份有限公司 切换时隙数字预失真校正方法、装置及可读存储介质
CN109218236B (zh) * 2017-07-06 2022-10-18 中兴通讯股份有限公司 切换时隙数字预失真校正方法、装置及可读存储介质
TWI727240B (zh) * 2017-12-18 2021-05-11 美商高通公司 用於藉由參考信號之非線性估計的系統及方法
US11108419B2 (en) 2017-12-18 2021-08-31 Qualcomm Incorporated System and method for nonlinearity estimation with reference signals

Also Published As

Publication number Publication date
CN101800546B (zh) 2014-07-02
CN101800546A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2011097844A1 (zh) 一种降低数字预失真系统链路失真过补偿的方法和装置
US11159129B2 (en) Power amplifier time-delay invariant predistortion methods and apparatus
US8040182B2 (en) Predistorter
US8836426B2 (en) Adaptive linearizer with narrowband feedback path
EP1402625B1 (en) Composite amplifier with optimized linearity and efficiency
CN104811149A (zh) 使用具有增强模数转换的集成信号分析器的rf功率放大器中的自适应控制的数字预失真
US20120135695A1 (en) High efficiency linearization power amplifier for wireless communication
CN101040502A (zh) 宽带增强型数字注射预失真系统和方法
EP2517353A2 (en) Modulation agnostic digital hybrid mode power amplifier system and method
EP2130296A1 (en) Linearization of rf power amplifiers using an adaptive subband predistorter
EP1723725A1 (en) Digital predistortion system and method for linearizing an rf power amplifier with nonlinear gain characteristics and memory effects
CN111064439B (zh) 一种改善短波数字预失真性能的系统及方法
Abi Hussein et al. Digital predistortion for RF power amplifiers: State of the art and advanced approaches
CN101478523A (zh) 一种ofdm系统中的自适应预失真器及预失真方法
CN106170918A (zh) 用以改进数字预失真调适性能的线性损伤建模系统及方法
CN201947295U (zh) 基于多通道反馈的数字电视发射机基带线性化装置
WO2008105775A1 (en) High efficiency linearization power amplifier for wireless communication
EP2752995B1 (en) Modeling transmitter and/or transmit observation receiver frequency response and utilization thereof
Chung et al. Open-loop digital predistortion using Cartesian feedback for adaptive RF power amplifier linearization
CN110729972B (zh) 校准装置及校准方法
JP2011507444A (ja) 線形電力増幅器
EP2118999A2 (en) Power amplifier time-delay invariant predistortion methods and apparatus
Braithwaite Low cost, low delay umts power amplifier using digital-controlled adaptive analog predistortion
US10944369B2 (en) Amplifier circuit and method for compensating an output signal provided at an output of the amplifier circuit
Hong et al. Robust digital predistortion in saturation region of power amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845518

Country of ref document: EP

Kind code of ref document: A1