WO2013127113A1 - 三维热电能量收集器及其制作方法 - Google Patents

三维热电能量收集器及其制作方法 Download PDF

Info

Publication number
WO2013127113A1
WO2013127113A1 PCT/CN2012/073533 CN2012073533W WO2013127113A1 WO 2013127113 A1 WO2013127113 A1 WO 2013127113A1 CN 2012073533 W CN2012073533 W CN 2012073533W WO 2013127113 A1 WO2013127113 A1 WO 2013127113A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
silicon
column
energy harvester
dimensional
Prior art date
Application number
PCT/CN2012/073533
Other languages
English (en)
French (fr)
Inventor
徐德辉
熊斌
王跃林
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to US14/110,144 priority Critical patent/US9190596B2/en
Publication of WO2013127113A1 publication Critical patent/WO2013127113A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • thermoelectric energy harvester Three-dimensional thermoelectric energy harvester and manufacturing method thereof
  • the invention belongs to the field of semiconductors, and in particular relates to a three-dimensional thermoelectric energy harvester and a manufacturing method thereof. Background technique
  • thermoelectric energy collection efficiency is high, and the vertical micro-thermoelectric energy harvester is a commonly used result, and its schematic diagram is shown in FIG.
  • the upper and lower substrates exchange heat with the external environment, and the external temperature difference is introduced into the thermopile.
  • the thermopile converts the temperature difference of the external environment into a voltage signal output through the Seebeck effect, thereby realizing the collection of external energy.
  • thermocouple arrangement is perpendicular to the substrate direction, it cannot be fabricated by a planar semiconductor process.
  • Thermocouples are generally fabricated by electroplating or thin film sputtering deposition processes.
  • thermoelectric energy harvesting chips generally use BiTe materials or metal materials such as Cu and Ni as thermoelectric materials. Since the metal materials such as Cu and Ni have a conductor structure and the Seebeck coefficient is small, it is generally inefficient to use a thermoelectric energy harvesting chip made of a metal material such as Cu or Ni as a thermoelectric material. Since the BiTe-based material is a semiconductor structure and has a large Seebeck coefficient, a thermoelectric energy harvesting chip fabricated using a BiTe material generally has high efficiency. However, the cost of BiTe materials is high, and the BiTe materials contain toxic substances, which limit the use of BiTe thermoelectric energy harvesting chips.
  • thermocouple pair requires two thermoelectric materials
  • the vertical thermoelectric energy harvester generally requires two electroplating or thin film sputter deposition processes to produce the thermocouple material, which further increases the cost of the thermoelectric energy harvesting chip.
  • the vertical type thermoelectric energy harvester generally thermally and mechanically connects the thermoelectric energy harvester and the upper and lower substrates by chip-level bonding, and the manufacturing efficiency thereof is also low.
  • thermoelectric energy harvester In view of the above, it is necessary to provide a low-cost, high-efficiency thermoelectric energy harvester. Summary of the invention
  • an object of the present invention is to provide a three-dimensional thermoelectric energy harvester and a manufacturing method thereof, which are used for solving the high cost, low production efficiency, and energy collection efficiency of the thermoelectric energy harvester in the prior art. low Question.
  • the present invention provides a method for fabricating a three-dimensional thermoelectric energy harvester, comprising at least the following steps: 1) providing a silicon substrate, etching an upper surface of the silicon substrate to form a plurality of a groove arranged at intervals, a thermopile region is formed by a region between the groove and the groove for preparing a silicon pillar; 2) an insulating layer is formed on a surface of the groove, and then filled in each groove
  • the thermoelectric material forms a plurality of thermoelectric columns such that the thermoelectric column and the silicon in the region where the adjacent silicon pillar is to be fabricated constitute a quasi-thermocouple pair; 3) fabricating the upper metal wiring to connect the thermoelectric column in the same quasi-thermocouple pair And preparing a silicon in a region of the silicon pillar, and then forming an upper protective layer on the upper surface of the silicon substrate; 4) providing an upper supporting substrate, and bonding the upper supporting substrate to the upper protective layer; 5) thinning the silicon substrate until the
  • thermoelectric column and the silicon column are a rectangular columnar structure or a cylindrical structure.
  • the step 7) further includes the step of filling the annular trench with an insulating thermal insulation material.
  • the bonding process of the step 4) is a wafer-level gas-tight bonding
  • the bonding process of the step 8) is a wafer-level vacuum sealing. Bond.
  • the upper support substrate and the lower support substrate each include a CMOS circuit structure, and the connection holes are etched in the upper and lower protective layers. And connecting the CMOS circuit and the upper and lower metal wirings through the wiring holes.
  • the material of the thermoelectric column is a BiTe-based material, a polycrystalline silicon material, and a metal Cu, Ni, Au, and the silicon substrate is a low-resistance silicon wafer.
  • thermoelectric energy harvester comprising at least:
  • the thermopile includes: a plurality of thermocouple pairs, each of the thermocouple pairs being composed of a first thermoelectric column and a second thermoelectric column; an insulating layer coupled between the first thermoelectric column and the second thermoelectric column, and each of the Between the pair of thermocouples; the upper metal wiring is connected to the upper surface of the first thermoelectric column and the second thermoelectric column of the same thermocouple pair; the lower metal wiring is connected to the first thermoelectric column of the adjacent two thermocouple pairs and a lower surface of the second thermoelectric column;
  • a protective layer comprising: an upper protective layer bonded to an upper surface of the thermopile; a lower protective layer coupled to the thermopile Lower surface
  • the supporting substrate comprises: an upper supporting substrate bonded to the thermal upper protective layer; and a lower supporting substrate bonded to the lower protective layer.
  • thermoelectric energy harvester In the three-dimensional thermoelectric energy harvester of the present invention, the first thermoelectric column and the second thermoelectric column are closely arranged by the insulating layer.
  • thermoelectric energy harvester In the three-dimensional thermoelectric energy harvester of the present invention, the first thermoelectric column and the second thermoelectric column are a rectangular columnar structure or a cylindrical columnar structure.
  • the three-dimensional thermoelectric energy harvester further includes an insulating heat insulating layer bonded to the side of the thermopile.
  • the upper support substrate and the lower support substrate each comprise a CMOS circuit structure and the upper and lower protective layers each have a wiring hole, and the COMS circuit structure Connected to the thermopile by the wiring holes.
  • the material of the first thermoelectric column is a BiTe-based material, a polysilicon material, and a metal Cu, Ni, Au, and the material of the second thermoelectric column is a low-resistance silicon material.
  • the three-dimensional thermoelectric energy harvester of the present invention and the method of fabricating the same have the following beneficial effects: by etching a plurality of grooves and a silicon pillar between the grooves on the low-resistance silicon, and then forming on the surface of the groove An insulating layer, and a thermoelectric column is fabricated by a thin film deposition technique, and a thermocouple pair is formed by the thermoelectric column and an adjacent silicon column, and then a metal wiring is formed by etching deposition, the substrate is thinned, and the supporting substrate is bonded. The process completes the fabrication of the three-dimensional thermoelectric energy harvester.
  • the present invention has the following advantages over existing miniature thermoelectric energy harvesters:
  • thermocouple pair structure is completed in a single film deposition process, which simplifies the fabrication process;
  • thermocouple pair Silicon is selected as a component of the thermocouple pair to ensure that the thermocouple has a high Seebeck coefficient
  • thermocouple structure and the upper and lower support substrates are bonded by wafer level bonding, which improves the production efficiency.
  • thermoelectric energy harvester 1 is a schematic view showing the structure of a thermoelectric energy harvester in the prior art.
  • 2 to 3b are schematic diagrams showing the plane and cross-sectional structure of the method 1) of the three-dimensional thermoelectric energy harvester of the present invention.
  • FIG. 4 and FIG. 5b respectively show a plan view and a cross-sectional structure of the step 2) of the manufacturing method of the three-dimensional thermoelectric energy harvester of the present invention.
  • 6 and FIG. 6c respectively show a plan view and a cross-sectional structure of the step 3) of the method for fabricating the three-dimensional thermoelectric energy harvester of the present invention.
  • Fig. 7 is a schematic cross-sectional view showing the step 4) of the method for fabricating the three-dimensional thermoelectric energy harvester of the present invention.
  • Figure 8 is a schematic cross-sectional view showing the steps 5) of the method for fabricating a three-dimensional thermoelectric energy harvester of the present invention.
  • FIG. 3B to FIG. 9c are schematic diagrams showing the plane and cross-sectional structure of the step 6) of the manufacturing method of the three-dimensional thermoelectric energy harvester of the present invention.
  • 10a to 10b are schematic diagrams showing the planar and cross-sectional structures of the step 7) of the method for fabricating the three-dimensional thermoelectric energy harvester of the present invention.
  • Figure 11 is a schematic cross-sectional view showing the steps 3) of the method for fabricating the three-dimensional thermoelectric energy harvester of the present invention.
  • Figure 12 is a cross-sectional view showing the structure of the three-dimensional thermoelectric energy harvester of the present invention in which the annular groove is filled with an insulating heat insulating material.
  • Figure 13 is a cross-sectional view showing the structure of the three-dimensional thermoelectric energy harvester of the present invention when the upper and lower supporting substrates have a CMOS circuit structure.
  • Fig. 14 is a cross-sectional view showing the structure in which the annular groove of the three-dimensional thermoelectric energy harvester of the present invention is filled with an insulating heat insulating material and the upper and lower support substrates have a CMOS circuit structure.
  • thermoelectric column 105 thermoelectric column, second thermoelectric column
  • the present invention provides a method for fabricating a three-dimensional thermoelectric energy harvester, which includes at least the following steps:
  • step 1) is first performed to provide a silicon substrate 101, and the upper surface of the silicon substrate 101 is etched to form a plurality of spaced-apart grooves 102, wherein each of the grooves
  • the area between the 102 and the recess 102 where the silicon pillars 103 are to be formed constitutes a thermopile region.
  • the silicon substrate 101 is made of a low-resistance silicon substrate 101. Since the low-resistance silicon liner has a high bottom-beetbeck coefficient and a low resistance value, it can be ensured when it is made into a thermoelectric column. High thermoelectric efficiency.
  • the low resistance silicon substrate 101 is selected for polishing in this step. Then, a lithographic pattern is formed on the surface of the low-resistance silicon substrate 101 and etched to form a plurality of grooves 102 arranged at a certain pitch on the low-resistance silicon substrate 101, in consideration of process consistency and For the flatness, the groove 102 is a rectangular columnar structure. Of course, in other embodiments, the groove may also be a columnar structure or a columnar structure of other shapes.
  • the regions sandwiched by the opposite sides of the adjacent two recesses 102 in the low-resistance silicon substrate 101 are the regions where the silicon pillars 103 are to be prepared. Therefore, the silicon pillars 103 also have a rectangular columnar structure by The region between the recess 102 and the recess 102 where the silicon pillar 103 is to be formed constitutes a thermopile region.
  • step 2) is followed, an insulating layer 104 is formed on the surface of the recess 102, and then a thermoelectric material is filled in each of the recesses 102 to form a plurality of thermoelectric posts 105, so that the thermoelectric The column 105 and the silicon in the region adjacent to the silicon pillar 103 to be fabricated constitute a quasi-thermocouple pair.
  • a SiO 2 film is deposited in the recess 102 to insulate the surface of the recess 102.
  • the thin film insulating layer 104 may also be formed using a material such as Si 3 N 4 .
  • thermoelectric material is deposited in the groove 102 by a thin film deposition technique such as chemical vapor deposition or physical vapor deposition.
  • the thermoelectric material is made of a BiTe material to ensure high thermoelectricity. Conversion performance, of course, in other embodiments, the thermoelectric material may be a polysilicon material and a metal Cu, Ni, Au or other thermoelectric material.
  • the thermoelectric column 105 and the silicon in the region where the adjacent silicon pillars 103 are to be formed constitute a quasi-thermocouple pair.
  • step 3 is followed to fabricate the upper metal wiring 106 to connect the thermoelectric column 105 in the same quasi-thermocouple pair and the silicon in the region where the silicon pillar 103 is to be prepared, and then on the silicon substrate.
  • a protective layer 121 is formed on the upper surface.
  • a metal wiring 106 is formed on the upper surface of each quasi-thermocouple pair by photolithography and deposition techniques to connect the thermoelectric column 105 in the same quasi-thermocouple pair and the region in which the silicon pillar 103 is to be prepared. silicon.
  • an upper protective layer 121 is formed on the upper surface of the silicon substrate 101 by chemical vapor deposition, and the upper protective layer is SiO 2 or Si 3 N 4 or the like.
  • step 4) is followed to provide an upper supporting substrate 111, and the upper supporting substrate 111 is bonded to the upper protective layer 121.
  • the upper supporting substrate 111 has good heat conduction characteristics.
  • the silicon substrate 101 is thinned until the lower surface of the quasi-thermocouple pair is exposed.
  • the lower surface of the silicon substrate 101 is etched by chemical etching using HF or a mixture of HF and HNO 3 as an etching solution, which further includes etching the bottom of the groove 102.
  • the insulating layer 104 is structured until the lower surface of the quasi-thermocouple pair is exposed, and the etched surface can be polished by mechanical chemical polishing for subsequent processes.
  • the silicon substrate 101 can also be thinned directly by mechanochemical polishing.
  • a lower metal wiring 107 is formed to connect the thermoelectric column 105 in the adjacent two quasi-thermocouple pairs and the silicon in the region where the silicon pillar 103 is to be prepared, and then in the A lower protective layer 122 is formed on the lower surface of the silicon substrate 101.
  • the lower metal wiring 107 is formed by photolithography and deposition techniques to connect the thermoelectric column 105 in the adjacent two quasi-thermocouple pairs and the silicon in the region where the silicon pillar 103 is to be prepared, that is, connected by the lower metal wiring 107.
  • step 7) is performed to etch the silicon substrate 101 to form an annular trench 108 on the periphery of the thermopile region to isolate the region in which the silicon pillar 103 is to be prepared.
  • the silicon and silicon substrate 101 are formed to form a plurality of silicon pillars 103, and the thermoelectric column 105 and its adjacent silicon pillars 103 constitute a thermocouple pair.
  • the periphery of the thermopile region of the surface of the silicon substrate 101 is etched by a chemical etching method using a photolithographic pattern as a mask to isolate the silicon pillar 103 to be prepared.
  • the silicon and silicon substrate 101 in the region is formed to form a plurality of silicon pillars 103, and the thermoelectric column 105 and its adjacent silicon pillars 103 constitute a thermocouple pair. That is, the area surrounded by the annular groove 108 includes thermoelectricity A pillar 105 and a silicon pillar 103, and an insulating layer 104 on the side of the thermoelectric column 105.
  • step 8 a lower supporting substrate 112 is provided, and the lower supporting substrate 112 is bonded to the lower protective layer 122 to complete the fabrication of the three-dimensional thermoelectric energy harvester, wherein The support substrate 112 is also described as having good thermal conductivity.
  • Example 2
  • the basic steps of the method for fabricating the three-dimensional thermoelectric energy harvester of the present embodiment are as shown in Embodiment 1, wherein, in order to further increase the mechanical stability and thermoelectric efficiency of the thermopile.
  • the step of filling the annular trench 108 with the insulating insulating material 109 is added in the step 7).
  • the basic steps of the method for fabricating the three-dimensional thermoelectric energy harvester of the present embodiment are as shown in Embodiment 1 or Embodiment 2, wherein The monolithic integration of the thermoelectric energy harvester and the circuit to directly supply power to the circuit in the chip, in the method of fabricating the three-dimensional thermoelectric energy harvester of the present invention, further comprising the upper support substrate 111 and the lower support substrate 112 a step of fabricating the CMOS circuit structures 113 and 114, and etching the wiring holes 115 at the upper and lower protective layers 121 and 122, and then fabricating metal wirings at the wiring holes 115 to connect the CMOS circuits and the Upper and lower metal wiring.
  • the filled thermoelectric material may be replaced with a polysilicon material different in doping type from the silicon substrate 101.
  • the basic steps of the method for fabricating the three-dimensional thermoelectric energy harvester of the present embodiment are as in Embodiment 1, wherein in order to increase the sensitivity and efficiency of the device, the three-dimensional thermoelectric device of the present invention is used.
  • the bonding process of the step 4) is a wafer-level gas-tight bonding
  • the bonding process of the step 8) is a wafer-level vacuum sealing bonding.
  • thermoelectric energy harvester comprising: at least: a thermopile, comprising: a plurality of thermocouple pairs, each of the thermocouple pairs being first thermoelectric column 103 and second
  • the thermoelectric column 105 is composed.
  • the first thermoelectric column and the second thermoelectric column are closely arranged by the insulating layer.
  • the first thermoelectric column 103 and the second thermoelectric column 105 It is a rectangular columnar structure.
  • the first thermoelectric column 103 and the second thermoelectric column 105 may also be a columnar structure or a columnar structure of other shapes.
  • the material of the first thermoelectric column 103 is a BiTe-based material to ensure the thermoelectric conversion efficiency of the thermocouple. Of course, in other embodiments, it may also be a polysilicon material and a metal Cu, Ni, Au or other thermoelectric. material.
  • the material of the second thermoelectric column 105 is a low-resistance silicon material. Since the low-resistance silicon material has a high Seebeck coefficient and a low resistance value, using the material as a thermoelectric column can ensure high thermoelectric efficiency.
  • the thermopile further includes an insulating layer 104 coupled between the first thermoelectric column 103 and the second thermoelectric column 105 and between the pair of thermocouples to insulate the first thermoelectric column of the same thermocouple pair. 103 and the second thermoelectric column 105 are insulated and isolated from the adjacent two thermocouple pairs.
  • thermopile further includes an upper metal wiring 106 and a lower metal wiring 107 connected to an upper surface of the first thermoelectric column 103 and the second thermoelectric column 105 in the same thermocouple pair; and a lower metal wiring 107 And connected to the lower surface of the first thermoelectric column 103 and the second thermoelectric column 105 in the adjacent two thermocouple pairs.
  • the three-dimensional thermoelectric energy harvester further includes a protective layer, including: an upper protective layer 121 coupled to an upper surface of the thermopile and a lower protective layer 122 coupled to a lower surface of the thermopile, the upper and lower protections
  • a protective layer including: an upper protective layer 121 coupled to an upper surface of the thermopile and a lower protective layer 122 coupled to a lower surface of the thermopile, the upper and lower protections
  • the thickness of the layer is larger than the thickness of the upper and lower metal wirings 106 and 107, and the material thereof is SiO 2 or Si 3 N 4 or the like.
  • the three-dimensional thermoelectric energy harvester further includes a support substrate, including: an upper support substrate 111 bonded to the upper protective layer 121 and a lower support substrate 112 bonded to the lower protective layer 122. Wherein, both the upper and lower support substrates 112 have good thermal conductivity.
  • a support substrate including: an upper support substrate 111 bonded to the upper protective layer 121 and a lower support substrate 112 bonded to the lower protective layer 122. Wherein, both the upper and lower support substrates 112 have good thermal conductivity.
  • the basic structure of the three-dimensional thermoelectric energy harvester of this embodiment is as in Embodiment 5, wherein the three-dimensional thermoelectric energy harvester is further configured to further increase the mechanical stability and thermoelectric efficiency of the thermopile.
  • An insulating heat insulating layer 109 coupled to the side of the thermopile is included.
  • the basic structure of the three-dimensional thermoelectric energy harvester of this embodiment is as in Embodiment 5 or Embodiment 6, wherein a single piece of the three-dimensional thermoelectric energy harvester and circuit of the present invention is implemented.
  • the upper support substrate 111 and the lower support substrate 112 of the three-dimensional thermoelectric energy harvester in this embodiment each include CMOS circuit structures 113 and 114, and the upper and lower sides are
  • the protective layers 121 and 122 each have a wiring hole 115 through which the COMS circuit structures 113 and 114 are connected to the thermopile.
  • Example 8 Referring to FIG.
  • the basic structure of the three-dimensional thermoelectric energy harvester of this embodiment is as in Embodiment 5, wherein in order to increase the sensitivity and efficiency of the device, in the three-dimensional thermoelectric energy harvester of the present invention,
  • the inside of the annular groove 108 is a vacuum or has a relatively low gas pressure.
  • thermoelectric energy harvester of the present invention and the manufacturing method thereof, by etching a plurality of grooves and a silicon pillar between the grooves on the low-resistance silicon, and then forming an insulating layer on the surface of the groove, and A thermoelectric column is fabricated by a thin film deposition technique, and a thermocouple pair is formed by the thermoelectric column and an adjacent silicon column, and then a metal wiring is formed by a process such as etching deposition, and the substrate is thinned and bonded to support the substrate.
  • the present invention has the following advantages over existing miniature thermoelectric energy collectors:
  • thermocouple pair structure is completed in a single film deposition process, which simplifies the fabrication process;
  • thermocouple pair Silicon is selected as a component of the thermocouple pair to ensure that the thermocouple has a high Seebeck coefficient
  • thermocouple structure and the upper and lower support substrates are bonded by wafer level bonding, which improves the production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种三维热电能量收集器及其制作方法,通过在低阻硅上刻蚀出多个凹槽及凹槽之间的硅柱,然后在凹槽表面形成绝缘层,并通过薄膜沉积技术制作热电柱,藉由所述热电柱与相邻的硅柱组成热电偶对,接着通过刻蚀沉积等工艺制作金属布线,衬底减薄、键合支撑衬底等工艺完成所述三维热电能量收集器的制作。只需一次薄膜沉积工艺就完成了热电偶对结构的制作,简化了制作工艺。选择硅作为热电偶对的一种组分,保证了热电偶具有较高的塞贝克系数。采用垂直的柱形结构热电偶对,提高了热电能量收集器的机械稳定性。通过圆片级键合将热电偶结构和上下支撑衬底进行键合,提高了制作效率。

Description

三维热电能量收集器及其制作方法
技术领域
本发明属于半导体领域, 特别是涉及一种三维热电能量收集器及其制作方法。 背景技术
随着物联网技术的发展, 其在工业、 商业、 医学、 消费和军事等领域的应用逐步深入, 而电源问题一直成为物联网应用寿命和降低成本的关键。 在环境恶劣或其他人类无法到达的 场合或网络节点移动变化时, 电池的更换变得非常困难甚至不可能, 因而有效的为物联网节 点提供能量显得至关重要。 一个有效的解决方法是采用能量收集的方法对环境能源采集, 对 能量进行储存以提供给物联网的节点。 温度差广泛存在于外界环境中, 因此利用环境的温度 差进行能量收集得到广泛研究。
由于其热流方向与基板垂直, 热电能量收集效率较高, 垂直型微型热电能量收集器是目 前常用的一种结果, 其示意图如图 1所示。 上下基板和外界环境进行热交换, 将外界的温度 差导入到热电堆上, 热电堆通过塞贝克效应将外界环境的温度差转换成电压信号输出, 从而 实现对外界能量的收集。 由于其热电偶排布垂直于基板方向, 因此无法采用平面半导体工艺 进行制作, 热电偶一般采用电镀或者薄膜溅射沉积工艺制作。 目前垂直型热电能量收集芯片 一般都是采用 BiTe系材料或者 Cu、 Ni等金属材料作为热电材料。 由于 Cu、 Ni等金属材料 为导体结构, 其塞贝克系数较小, 因此只采用 Cu、 Ni等金属材料作为热电材料制作的热电 能量收集芯片一般效率较低。 由于 BiTe 系材料为半导体结构, 具有较大的的塞贝克系数, 采用 BiTe材料制作的热电能量收集芯片一般具有较高的效率。 然而, BiTe系材料的成本较 高, 并且 BiTe 系材料中含有有毒物质, 这些都限制了 BiTe 热电能量收集芯片的使用。 此 外, 由于热电偶对需要两种热电材料组成, 垂直型热电能量收集器一般需要进行两次电镀或 薄膜溅射沉积工艺才能制作出热电偶材料, 这就进一步增加了热电能量收集芯片的成本。 而 且垂直型热电能量收集器一般是通过芯片级键合将热电能量收集器和上下基板进行热和机械 连接, 其制作效率也较低。
鉴于以上原因, 提供一种低成本, 高效率的热电能量收集器实属必要。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种三维热电能量收集器及其制 作方法, 用于解决现有技术中热电能量收集器制作成本高、 制作效率低、 能量收集效率低的 问题。
为实现上述目的及其他相关目的, 本发明提供一种三维热电能量收集器的制作方法, 至 少包括以下步骤: 1 ) 提供一硅衬底, 刻蚀所述硅衬底的上表面以形成多个间隔排列的凹 槽, 藉由各该凹槽及凹槽之间的欲制备硅柱的区域组成热电堆区域; 2) 在所述凹槽的表面 形成绝缘层, 然后在各该凹槽内填充热电材料形成多个热电柱, 以使所述热电柱及相邻的欲 制备硅柱的区域中的硅组成准热电偶对; 3 ) 制作上金属布线以连接同一准热电偶对中的热 电柱及欲制备硅柱的区域中的硅, 然后在所述硅衬底上表面制作上保护层; 4) 提供上支撑 衬底, 并将该上支撑衬底与所述上保护层进行键合; 5 ) 减薄所述硅衬底直至露出所述准热 电偶对的下表面; 6) 制作下金属布线以连接相邻两准热电偶对中的热电柱及欲制备硅柱的 区域中的硅, 然后在所述硅衬底下表面制作下保护层; 7 ) 刻蚀所述硅衬底以在所述热电堆 区域的外围形成环形沟槽, 以隔离所述欲制备硅柱的区域中的硅及硅衬底, 以形成多个硅 柱, 藉由所述热电柱及其相邻的硅柱组成热电偶对; 8 ) 提供下支撑衬底, 并将该下支撑衬 底与所述下保护层进行键合以完成三维热电能量收集器的制作。
在本发明的三维热电能量收集器的制作方法中, 所述热电柱及硅柱的为长方柱状结构或 圆柱状结构。
作为本发明的三维热电能量收集器的制作方法的一个可选方案, 所述步骤 7) 还包括在 所述环形沟槽内填充绝缘绝热材料的步骤。
作为在本发明的三维热电能量收集器的制作方法的一个可选方案, 所述步骤 4) 的键合 工艺为圆片级气密键合, 步骤 8) 的键合工艺为圆片级真空密封键合。
作为本发明的三维热电能量收集器的制作方法的一个可选方案, 所述上支撑衬底及下支 撑衬底均包含有 CMOS 电路结构, 且在所述上、 下保护层刻蚀出接线孔, 藉由所述接线孔 连接所述 CMOS电路及所述上、 下金属布线。
在本发明的三维热电能量收集器的制作方法中, 所述热电柱的材料为 BiTe 系材料、 多 晶硅材料及金属 Cu、 Ni、 Au, 所述硅衬底为低阻硅片。
本发明还提供一种三维热电能量收集器, 至少包括:
热电堆, 包括: 多个热电偶对, 各该热电偶对由第一热电柱及第二热电柱组成; 绝缘 层, 结合于所述第一热电柱及第二热电柱之间、 及各该热电偶对之间; 上金属布线, 连接于 同一热电偶对中的第一热电柱及第二热电柱的上表面; 下金属布线, 连接于相邻两热电偶对 中的第一热电柱及第二热电柱的下表面;
保护层, 包括: 上保护层, 结合于所述热电堆的上表面; 下保护层, 结合于所述热电堆 的下表面;
支撑衬底, 包括: 上支撑衬底, 结合于所述热上保护层; 下支撑衬底, 结合于所述下保 护层。
在本发明的三维热电能量收集器中, 所述第一热电柱及第二热电柱藉由所述绝缘层紧密 排列。
在本发明的三维热电能量收集器中, 所述第一热电柱及第二热电柱为长方柱状结构或圆 柱状结构。
作为本发明的三维热电能量收集器的一个优选方案, 所述三维热电能量收集器还包括结 合于所述热电堆四周侧的绝缘绝热层。
作为本发明的三维热电能量收集器的一个优选方案, 所述上支撑衬底及下支撑衬底均包 含有 CMOS 电路结构且所述上、 下保护层均具有接线孔, 所述 COMS 电路结构藉由所述接 线孔与所述热电堆连接。
作为本发明的三维热电能量收集器的一个优选方案, 所述第一热电柱的材料为 BiTe 系 材料、 多晶硅材料及金属 Cu、 Ni、 Au, 所述第二热电柱的材料为低阻硅材料。
如上所述, 本发明的三维热电能量收集器及其制作方法, 具有以下有益效果: 通过在低 阻硅上刻蚀出多个凹槽及凹槽之间的硅柱, 然后在凹槽表面形成绝缘层, 并通过薄膜沉积技 术制作热电柱, 藉由所述热电柱与相邻的硅柱组成热电偶对, 接着通过刻蚀沉积等工艺制作 金属布线, 衬底减薄、 键合支撑衬底等工艺完成所述三维热电能量收集器的制作。 本发明与 已有的微型热电能量收集器相比具有以下优点:
1 ) 只需一次薄膜沉积工艺就完成了热电偶对结构的制作, 简化了制作工艺;
2) 选择了硅作为热电偶对的一种组分, 保证了热电偶具有较高的塞贝克系数;
3) 采用垂直的柱形结构热电偶对, 提高了热电能量收集器的机械稳定性;
4) 通过圆片级键合将热电偶结构和上下支撑衬底进行键合, 提高了制作效率。
附图说明
图 1显示为现有技术中的热电能量收集器的结构示意图。
图 2〜图 3b分别显示为本发明三维热电能量收集器的制作方法步骤 1 ) 所呈现的平面及 截面结构示意图。
图 4&~图 5b分别显示为本发明三维热电能量收集器的制作方法步骤 2) 所呈现的平面及 截面结构示意图。 图 6&~图 6c分别显示为本发明三维热电能量收集器的制作方法步骤 3) 所呈现的平面及 截面结构示意图。
图 7显示为本发明三维热电能量收集器的制作方法步骤 4) 所呈现的截面结构示意图。 图 8显示为本发明三维热电能量收集器的制作方法步骤 5) 所呈现的截面结构示意图。 图 ¾~图 9c显示为本发明三维热电能量收集器的制作方法步骤 6) 所呈现的平面及截面 结构示意图。
图 10a〜图 10b显示为本发明三维热电能量收集器的制作方法步骤 7) 所呈现的平面及截 面结构示意图。
图 11 显示为本发明三维热电能量收集器的制作方法步骤 8 ) 所呈现的截面结构示意 图。
图 12 显示为本发明三维热电能量收集器的环形沟槽填充有绝缘绝热材料时所呈现的截 面结构示意图。
图 13显示为本发明三维热电能量收集器的上下支撑衬底具有 CMOS电路结构时所呈现 的截面结构示意图。
图 14 显示为本发明三维热电能量收集器的环形沟槽填充有绝缘绝热材料且上下支撑衬 底具有 CMOS电路结构时所呈现的截面结构示意图。 元件标号说明
101 硅衬底
102 凹槽
103 硅柱、 第一热电柱
104 绝缘层
105 热电柱、 第二热电柱
106 上金属布线
107 下金属布线
108 环形沟槽
109 绝缘绝热材料
111 上支撑衬底
112 下支撑衬底
113及 114 CMOS电路结构 接线孔
上保护层
下保护层 具体实施方式
以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外不同的具体实施方式加 以实施或应用, 本说明书中的各项细节也可以基于不同观点与应用, 在没有背离本发明的精 神下进行各种修饰或改变。
请参阅图 2a至图 14。 需要说明的是, 本实施例中所提供的图示仅以示意方式说明本发 明的基本构想, 遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、 形 状及尺寸绘制, 其实际实施时各组件的型态、 数量及比例可为一种随意的改变, 且其组件布 局型态也可能更为复杂。 实施例 1
如图 2&~图 11 所示, 本发明提供一种三维热电能量收集器的制作方法, 至少包括以下 步骤:
如图 2~图 3b所示, 首先进行步骤 1 ), 提供一硅衬底 101, 刻蚀所述硅衬底 101的上表 面以形成多个间隔排列的凹槽 102, 藉由各该凹槽 102及凹槽 102之间的欲制备硅柱 103的 区域组成热电堆区域。 在本实施例中, 所述硅衬底 101选用低阻硅衬底 101, 由于低阻硅衬 具有较高的底塞贝克系数及较低的阻值, 将其制作成热电柱时能保证较高的热电效率。 为了 保证较精确的工艺过程, 在此步骤中选择先对所述低阻硅衬底 101进行抛光。 然后在所述低 阻硅衬底 101表面制作光刻图形并进行刻蚀, 以在所述低阻硅衬底 101上形成多个以一定间 距排列的凹槽 102, 考虑到工艺的一致性及平整性, 所述凹槽 102 选用长方柱状结构, 当 然, 在其它的实施例中, 所述凹槽也可以为圆柱状结构或其它形状的柱状结构。 所述相邻两 凹槽 102的相对两面在所示低阻硅衬底 101中所夹的区域为欲制备硅柱 103的区域, 因而, 所述硅柱 103同样具有长方柱状结构, 藉由各该凹槽 102及凹槽 102之间的欲制备硅柱 103 的区域组成热电堆区域。
如图 4a~5b所示, 然后进行步骤 2), 在所述凹槽 102的表面形成绝缘层 104, 然后在各 该凹槽 102 内填充热电材料形成多个热电柱 105, 以使所述热电柱 105 及相邻欲制备硅柱 103 的区域中的硅组成准热电偶对。 在本实施例中, 通过化学气相沉积法或物理气相沉积法 在所述凹槽 102 内沉积一层 Si02薄膜以绝缘所述凹槽 102 的表面, 当然, 也可以采用如 Si3N4等材料制作薄膜绝缘层 104。 然后采用如化学气相沉积法或物理气相沉积法等薄膜沉积 技术在所述凹槽 102 内沉积热电材料, 在本实施例中, 所述热电材料采用 BiTe系材料, 以 保证其有较高的热电转换性能, 当然, 在其它的实施例中, 所述热电材料可为多晶硅材料及 金属 Cu、 Ni、 Au或其它的热电材料。 所述热电柱 105及相邻的欲制备硅柱 103的区域中的 硅组成准热电偶对。
如图 6a~6c所示, 接着进行步骤 3), 制作上金属布线 106 以连接同一准热电偶对中的 热电柱 105及欲制备硅柱 103的区域中的硅, 然后在所述硅衬底上表面制作上保护层 121。 在本实施例中, 采用光刻及沉积技术在各该准热电偶对的上表面制作上金属布线 106, 以连 接同一准热电偶对中的热电柱 105及欲制备硅柱 103的区域中的硅。 然后通过化学气相沉积 法在所述硅衬底 101上表面制作上保护层 121, 所述上保护层为 Si02或 Si3N4等。
如图 7所示, 接着进行步骤 4), 提供上支撑衬底 111, 并将该上支撑衬底 111与所述上 保护层 121进行键合。 在本实施例中, 所述上支撑衬底 111具有良好的导热特性。
请参阅图 8, 接着进行步骤 5), 减薄所述硅衬底 101 直至露出所述准热电偶对的下表 面。 在本实施例中, 以 HF或 HF及 HN03的混合液作为腐蚀液, 采用化学腐蚀法对所述硅 衬底 101的下表面进行刻蚀, 其中还包括刻蚀所述凹槽 102底部的绝缘层 104结构, 直至露 出所述准热电偶对的下表面, 刻蚀的后的表面可以采用机械化学抛光法进行抛光以备后续工 艺。 当然, 也可以直接采用机械化学抛光法对所述硅衬底 101进行减薄。
如图 ¾~图 9c所示, 接着进行步骤 6), 制作下金属布线 107 以连接相邻两准热电偶对 中的热电柱 105及欲制备硅柱 103的区域中的硅, 然后在所述硅衬底 101下表面制作下保护 层 122。 在本实施例中, 采用光刻及沉积技术制作下金属布线 107 以连接相邻两准热电偶对 中的热电柱 105及欲制备硅柱 103的区域中的硅, 即通过下金属布线 107连接相邻的两准热 电偶对中相邻的热电柱 105及欲制备硅柱 103的区域中的硅。 然后通过化学气相沉积法等方 法在所述硅衬底 101下表面制作下保护层 122, 所述下保护层为 &02或 Si3N4等。
如图 10&~图 10b所示, 进行步骤 7), 刻蚀所述硅衬底 101 以在所述热电堆区域的外围 形成环形沟槽 108, 以隔离所述欲制备硅柱 103 的区域中的硅及硅衬底 101, 以形成多个硅 柱 103, 藉由所述热电柱 105及其相邻的硅柱 103组成热电偶对。 在本实施例中, 以光刻图 形作为掩膜版, 采用化学腐蚀法对所述硅衬底 101 的表面的所述热电堆区域的外围进行刻 蚀, 以隔离所述欲制备硅柱 103 的区域中的硅及硅衬底 101, 以形成多个硅柱 103, 藉由所 述热电柱 105及其相邻的硅柱 103组成热电偶对。 即所述环形沟槽 108所围的区域包括热电 柱 105和硅柱 103, 以及位于所述热电柱 105四周侧的绝缘层 104。
如图 11所示, 最后进行步骤 8), 提供下支撑衬底 112, 并将该下支撑衬底 112与所述 下保护层 122进行键合以完成三维热电能量收集器的制作, 其中, 所述下支撑衬底 112同样 具有良好的导热特性。 实施例 2
请参阅图 2〜图 10b及图 12, 如图所示, 本实施例的三维热电能量收集器的制作方法的 基本步骤如实施例 1, 其中, 为了进一步增加热电堆的机械稳定性及热电效率, 在所述步骤 7) 中增加在所述环形沟槽 108内填充绝缘绝热材料 109的步骤。 实施例 3
请参阅图 2〜图 10b及图 13〜图 14, 如图所示, 本实施例的三维热电能量收集器的制作方 法的基本步骤如实施例 1或实施例 2, 其中, 为了实现本发明三维热电能量收集器和电路的 单片集成, 以直接在片内对电路进行供电, 在本发明的三维热电能量收集器制作方法中, 还 包括在所述上支撑衬底 111及下支撑衬底 112制作含有 CMOS电路结构 113及 114的步骤, 且在所述上、 下保护层 121及 122刻蚀出接线孔 115, 然后在所述接线孔 115制作金属连线 以连接所述 CMOS 电路及所述上、 下金属布线。 然后再对所述上、 下保护层 121及 122及 上下支撑衬底 112进行键合。 在本实施例中, 为了完全采用 CMOS 工艺制作以降低制作成 本, 可以将填充的热电材料替换为与所述硅衬底 101掺杂类型不同的多晶硅材料。 实施例 4
请参阅图 2~图 11, 如图所示, 本实施例的三维热电能量收集器的制作方法的基本步骤 如实施例 1, 其中, 为了增加器件的灵敏性及效率, 在本发明的三维热电能量收集器的制作 方法中, 所述步骤 4) 的键合工艺为圆片级气密键合, 步骤 8) 的键合工艺为圆片级真空密 封键合。 实施例 5
请参阅图 11, 如图所示, 本发明还提供一种三维热电能量收集器, 至少包括: 热电堆, 包括: 多个热电偶对, 各该热电偶对由第一热电柱 103 及第二热电柱 105 组 成, 为了保证器件的平整性与工艺的一致性, 在本实施例中, 为了增加器件的集成度, 所述 第一热电柱及第二热电柱藉由所述绝缘层紧密排列。 所述第一热电柱 103及第二热电柱 105 均为长方柱状结构, 当然, 在其它的实施例中, 所述第一热电柱 103及第二热电柱 105也可 以为圆柱状结构或其它形状的柱状结构。 所述第一热电柱 103 的材料为 BiTe系材料, 以保 证所述热电偶的热电转换效率, 当然, 在其它的实施例中, 也可为多晶硅材料及金属 Cu、 Ni、 Au或其它的热电材料。 所述第二热电柱 105 的材料为低阻硅材料, 由于低阻硅材料具 有较高的塞贝克系数及较低的阻值, 以其为材料作为热电柱能保证较高的热电效率。 所述热 电堆还包括绝缘层 104, 结合于所述第一热电柱 103及第二热电柱 105之间、 及各该热电偶 对之间, 以绝缘隔离同一热电偶对中的第一热电柱 103及第二热电柱 105并绝缘隔离相邻的 两热电偶对。
所述热电堆还包括上金属布线 106及下金属布线 107, 所述上金属布线 106连接于同一 热电偶对中的第一热电柱 103及第二热电柱 105的上表面; 以及下金属布线 107, 连接于相 邻两热电偶对中的第一热电柱 103及第二热电柱 105的下表面。
所述三维热电能量收集器还包括保护层, 包括: 结合于所述热电堆的上表面的上保护 层 121 以及结合于所述热电堆的下表面的下保护层 122, 所述上、 下保护层的厚度大于所述 上、 下金属布线 106及 107的厚度, 其材料为 Si02或 Si3N4等。
所述三维热电能量收集器还包括支撑衬底, 包括: 结合于所述上保护层 121的上支撑衬 底 111以及结合于下保护层 122的下支撑衬底 112。 其中, 所述上、 下支撑衬底 112均具有 良好的导热特性。 实施例 6
请参阅图 12, 如图所示, 本实施例的三维热电能量收集器的基本结构如实施例 5, 其 中, 为了进一步增加热电堆的机械稳定性及热电效率, 所述三维热电能量收集器还包括结合 于所述热电堆四周侧的绝缘绝热层 109。 实施例 7
请参阅图 13~图 14, 如图所示, 本实施例的三维热电能量收集器的基本结构如实施例 5 或实施例 6, 其中, 为了实现本发明三维热电能量收集器和电路的单片集成, 以直接在片内 对电路进行供电, 本实施例中的三维热电能量收集器的上支撑衬底 111及下支撑衬底 112均 包含有 CMOS电路结构 113及 114, 且所述上、 下保护层 121及 122均具有接线孔 115, 所 述 COMS电路结构 113及 114藉由所述接线孔 115与所述热电堆连接。 实施例 8 请参阅图 11, 如图所示, 本实施例的三维热电能量收集器的基本结构如实施例 5, 其 中, 为了增加器件的灵敏性及效率, 在本发明的三维热电能量收集器中, 所述环形沟槽 108 内的为真空或具有相对较低的气压。
综上所述, 本发明的三维热电能量收集器及其制作方法, 通过在低阻硅上刻蚀出多个 凹槽及凹槽之间的硅柱, 然后在凹槽表面形成绝缘层, 并通过薄膜沉积技术制作热电柱, 藉 由所述热电柱与相邻的硅柱组成热电偶对, 接着通过刻蚀沉积等工艺制作金属布线, 衬底减 薄、 键合支撑衬底等工艺完成所述三维热电能量收集器的制作。 本发明与已有的微型热电能 量收集器相比具有以下优点:
1 ) 只需一次薄膜沉积工艺就完成了热电偶对结构的制作, 简化了制作工艺;
2) 选择了硅作为热电偶对的一种组分, 保证了热电偶具有较高的塞贝克系数;
3) 采用垂直的柱形结构热电偶对, 提高了热电能量收集器的机械稳定性;
4) 通过圆片级键合将热电偶结构和上下支撑衬底进行键合, 提高了制作效率。
所以, 本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。 上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。 因此, 举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权利要求书 、 一种三维热电能量收集器的制作方法, 其特征在于, 至少包括以下步骤:
1 ) 提供一硅衬底, 刻蚀所述硅衬底的上表面以形成多个间隔排列的凹槽, 藉由各该凹槽 及凹槽之间的欲制备硅柱的区域组成热电堆区域;
2) 在所述凹槽的表面形成绝缘层, 然后在各该凹槽内填充热电材料形成多个热电柱, 以 使所述热电柱及相邻的欲制备硅柱的区域中的硅组成准热电偶对;
3) 制作上金属布线以连接同一准热电偶对中的热电柱及欲制备硅柱的区域中的硅, 然后 在所述硅衬底上表面制作上保护层;
4) 提供上支撑衬底, 并将该上支撑衬底与所述上保护层进行键合;
5) 减薄所述硅衬底直至露出所述准热电偶对的下表面;
6) 制作下金属布线以连接相邻两准热电偶对中的热电柱及欲制备硅柱的区域中的硅, 然 后在所述硅衬底下表面制作下保护层;
7) 刻蚀所述硅衬底以在所述热电堆区域的外围形成环形沟槽, 以隔离所述欲制备硅柱的 区域中的硅及硅衬底, 以形成多个硅柱, 藉由所述热电柱及其相邻的硅柱组成热电偶 对;
8) 提供下支撑衬底, 并将该下支撑衬底与所述下保护层进行键合以完成三维热电能量收 集器的制作。 、 根据权利要求 1 所述的三维热电能量收集器的制作方法, 其特征在于: 所述热电柱及硅 柱为长方柱状结构或圆柱状结构。 、 根据权利要求 1 所述的三维热电能量收集器的制作方法, 其特征在于: 所述步骤 7) 还 包括在所述环形沟槽内填充绝缘绝热材料的步骤。 、 根据权利要求 1 所述的三维热电能量收集器的制作方法, 其特征在于: 所述步骤 4) 的 键合工艺为圆片级气密键合, 步骤 8) 的键合工艺为圆片级真空密封键合。 、 根据权利要求 1 所述的三维热电能量收集器的制作方法, 其特征在于: 所述上支撑衬底 及下支撑衬底均包含有 CMOS 电路结构, 且在所述上、 下保护层刻蚀出接线孔, 藉由所 述接线孔连接所述 CMOS电路及所述上、 下金属布线。 、 根据权利要求 1 所述的三维热电能量收集器的制作方法, 其特征在于: 所述热电柱的材 料为 BiTe系材料、 多晶硅材料及金属 Cu、 Ni、 Au, 所述硅衬底为低阻硅片。 、 一种三维热电能量收集器, 其特征在于, 至少包括:
热电堆, 包括:
多个热电偶对, 各该热电偶对由第一热电柱及第二热电柱组成;
绝缘层, 结合于所述第一热电柱及第二热电柱之间、 及各该热电偶对之间; 上金属布线, 连接于同一热电偶对中的第一热电柱及第二热电柱的上表面; 下金属布线, 连接于相邻两热电偶对中的第一热电柱及第二热电柱的下表面; 保护层, 包括:
上保护层, 结合于所述热电堆的上表面;
下保护层, 结合于所述热电堆的下表面;
支撑衬底, 包括:
上支撑衬底, 结合于所述热上保护层;
下支撑衬底, 结合于所述下保护层。 、 根据权利要求 7 所述的三维热电能量收集器, 其特征在于: 所述第一热电柱及第二热电 柱藉由所述绝缘层紧密排列。 、 根据权利要求 7 所述的三维热电能量收集器, 其特征在于: 所述第一热电柱及第二热电 柱为长方柱状结构或圆柱状结构。 0、 根据权利要求 Ί 所述的三维热电能量收集器, 其特征在于: 所述三维热电能量收集器 还包括结合于所述热电堆四周侧的绝缘绝热层。 1、 根据权利要求 7 所述的三维热电能量收集器, 其特征在于: 所述上支撑衬底及下支撑 衬底均包含有 CMOS 电路结构, 且所述上、 下保护层均具有接线孔, 所述 COMS 电路 结构藉由所述接线孔与所述热电堆连接。 、 根据权利要求 Ί 所述的三维热电能量收集器, 其特征在于: 所述第一热电柱的材料为 BiTe系材料、 多晶硅材料及金属 Cu、 Ni、 Au, 所述第二热电柱的材料为低阻硅材料。
PCT/CN2012/073533 2012-02-28 2012-04-05 三维热电能量收集器及其制作方法 WO2013127113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/110,144 US9190596B2 (en) 2012-02-28 2012-04-05 Three-dimensional thermoelectric energy harvester and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210048653.8 2012-02-28
CN201210048653.8A CN103296190B (zh) 2012-02-28 2012-02-28 三维热电能量收集器及其制作方法

Publications (1)

Publication Number Publication Date
WO2013127113A1 true WO2013127113A1 (zh) 2013-09-06

Family

ID=49081563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073533 WO2013127113A1 (zh) 2012-02-28 2012-04-05 三维热电能量收集器及其制作方法

Country Status (3)

Country Link
US (1) US9190596B2 (zh)
CN (1) CN103296190B (zh)
WO (1) WO2013127113A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296191B (zh) * 2012-02-28 2015-12-02 中国科学院上海微系统与信息技术研究所 微型热电能量收集器及其制作方法
DE102013219541B4 (de) * 2013-09-27 2019-05-09 Evonik Degussa Gmbh Verbessertes Verfahren zur pulvermetallurgischen Herstellung thermoelektrischer Bauelemente
CN106486593B (zh) * 2015-08-26 2018-09-28 中国科学院上海微系统与信息技术研究所 双通孔结构的微型热电能量采集器及其制备方法
CN105206737B (zh) * 2015-10-20 2017-07-14 中国科学院上海微系统与信息技术研究所 一种基于体硅加工工艺的微型热电能量采集器的制备方法
CN105355773B (zh) * 2015-11-11 2018-02-13 中国科学院上海微系统与信息技术研究所 一种热电能量采集器及其制作方法
CN105390603B (zh) * 2015-11-17 2018-04-03 中国科学院上海微系统与信息技术研究所 一种双凸台结构的热电能量采集器及其制作方法
PL3196951T3 (pl) 2016-01-21 2019-07-31 Evonik Degussa Gmbh Racjonalny sposób wytwarzania elementów termoelektrycznych za pomocą metalurgii proszkowej
US20170256696A1 (en) * 2016-03-01 2017-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Thermoelectric generator
CN107356341A (zh) * 2017-03-10 2017-11-17 杭州立昂微电子股份有限公司 半导体热电堆红外探测器及制造方法
CN107403863A (zh) * 2017-03-15 2017-11-28 杭州立昂微电子股份有限公司 热电堆红外探测器及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818470B1 (en) * 1998-09-30 2004-11-16 Infineon Technologies Ag Process for producing a thermoelectric converter
CN1744339A (zh) * 2004-08-31 2006-03-08 株式会社东芝 热电变换装置以及热电变换装置的制造方法
CN1969398A (zh) * 2004-06-17 2007-05-23 阿鲁策株式会社 热电转换模块
CN101043064A (zh) * 2006-03-24 2007-09-26 株式会社东芝 热电转换模块及其制造方法
CN101385153A (zh) * 2006-02-22 2009-03-11 株式会社村田制作所 热电变换组件及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837929A (en) * 1994-07-05 1998-11-17 Mantron, Inc. Microelectronic thermoelectric device and systems incorporating such device
JP3600486B2 (ja) * 1999-08-24 2004-12-15 セイコーインスツル株式会社 熱電変換素子の製造方法
US6614109B2 (en) * 2000-02-04 2003-09-02 International Business Machines Corporation Method and apparatus for thermal management of integrated circuits
US6759586B2 (en) * 2001-03-26 2004-07-06 Kabushiki Kaisha Toshiba Thermoelectric module and heat exchanger
US6779347B2 (en) * 2001-05-21 2004-08-24 C.P. Baker Securities, Inc. Solid-state thermionic refrigeration
US6793389B2 (en) * 2002-02-04 2004-09-21 Delphi Technologies, Inc. Monolithically-integrated infrared sensor
US6981380B2 (en) * 2002-12-20 2006-01-03 Intel Corporation Thermoelectric cooling for microelectronic packages and dice
CN100379045C (zh) * 2004-01-18 2008-04-02 财团法人工业技术研究院 微型热电冷却装置的结构及制造方法
US20070095381A1 (en) * 2005-10-28 2007-05-03 Taiwan Semiconductor Manufacturing Co., Ltd. Stacked thermoelectric device for power generation
US7893529B2 (en) * 2009-01-12 2011-02-22 International Business Machines Corporation Thermoelectric 3D cooling
FR2946460A1 (fr) * 2009-06-04 2010-12-10 St Microelectronics Rousset Procede de generation d'energie electrique dans un circuit integre lors du fonctionnement de celui-ci, circuit integre correspondant et procede de fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818470B1 (en) * 1998-09-30 2004-11-16 Infineon Technologies Ag Process for producing a thermoelectric converter
CN1969398A (zh) * 2004-06-17 2007-05-23 阿鲁策株式会社 热电转换模块
CN1744339A (zh) * 2004-08-31 2006-03-08 株式会社东芝 热电变换装置以及热电变换装置的制造方法
CN101385153A (zh) * 2006-02-22 2009-03-11 株式会社村田制作所 热电变换组件及其制造方法
CN101043064A (zh) * 2006-03-24 2007-09-26 株式会社东芝 热电转换模块及其制造方法

Also Published As

Publication number Publication date
US9190596B2 (en) 2015-11-17
CN103296190B (zh) 2016-01-13
CN103296190A (zh) 2013-09-11
US20140026934A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2013127113A1 (zh) 三维热电能量收集器及其制作方法
WO2013127114A1 (zh) 微型热电能量收集器及其制作方法
TWI303238B (en) Micro-fabricated device with thermoelectric device and method of making
JP2008070353A (ja) 温度センサおよびその製造方法
EP3204967B1 (en) 3d integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction paths conditioning vias
EP3198648B1 (en) Silicon integrated, out-of-plane heat flux thermoelectric generator
US8802476B2 (en) Semiconductor thermocouple and sensor
JP2018013473A (ja) 材料移動方法を用いる非解放型サーモパイル赤外線センサ
CN102263197A (zh) 新型微型热电发生器及其制造方法
Yang et al. Development of thermoelectric energy generator with high area density stacked polysilicon thermocouples
EP3533085B1 (en) Integrated thermoelectric generator and related method of fabrication
US10003002B2 (en) Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
KR20120045878A (ko) 실리콘 나노선 열전소자 및 그 제조방법
JP2002050801A (ja) 熱電変換デバイス及びその製造方法
US20230087516A1 (en) Integrated thermal sensor and manufacturing process thereof
TWI342606B (zh)
CN202145467U (zh) 新型微型热电发生器
Iulianella et al. Integrated Thermoelectric Generator and related Method of Fabrication
CN114242882A (zh) 一种红外探测器芯片的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14110144

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12869754

Country of ref document: EP

Kind code of ref document: A1