WO2013125792A1 - System for separating and reusing perfluorocarbon compound - Google Patents

System for separating and reusing perfluorocarbon compound Download PDF

Info

Publication number
WO2013125792A1
WO2013125792A1 PCT/KR2013/000479 KR2013000479W WO2013125792A1 WO 2013125792 A1 WO2013125792 A1 WO 2013125792A1 KR 2013000479 W KR2013000479 W KR 2013000479W WO 2013125792 A1 WO2013125792 A1 WO 2013125792A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
sulfur hexafluoride
exhaust gas
flow rate
flow sensor
Prior art date
Application number
PCT/KR2013/000479
Other languages
French (fr)
Korean (ko)
Inventor
노영석
Original Assignee
(주) 파인텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 파인텍 filed Critical (주) 파인텍
Publication of WO2013125792A1 publication Critical patent/WO2013125792A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a separation and recycling system of perfluorinated compounds, and more specifically, to develop a method for effectively separating and removing or recycling perfluorinated compounds including sulfur hexafluoride mainly generated in a semiconductor production process.
  • the present invention relates to a separation and recycling system for purified perfluorinated compounds.
  • sulfur hexafluoride is formed by using a plasma apparatus to produce F- ions, and the etching process reacts with an insulator and etches it.
  • CVD cleaning process chamber cleaning
  • insulator plasma etching method
  • the current gas scrubber technology has a method of removing at a high temperature by electricity and fuel, a chemical treatment method, and a plasma treatment method, but each has problems such as high operating cost, large-capacity treatment, or low processing efficiency. It was a situation to have.
  • the present invention was developed to solve the above problems, the object of the perfluorinated compound separation and recycling system that can easily separate and remove various gases and dust including perfluorinated compounds generated in the electronics industry It's about developing.
  • the present invention is to develop a perfluorinated compound separation and recycling system capable of increasing the separation efficiency of flue gas.
  • the present invention uses a perfluorinated compound, such as a dry etching process and a CVD cleaning chamber, or separates and recycles a perfluorinated compound for treating a gas including dust generated in a flue gas generating facility.
  • a perfluorinated compound such as a dry etching process and a CVD cleaning chamber
  • the first chamber the water filled in the lower portion of the first chamber, the exhaust gas inlet through which the exhaust gas sucked from the first dry pump flows directly above the water surface, and the exhaust gas introduced into the exhaust gas inlet rises to pass therethrough.
  • An alkaline adsorbent layer a plurality of water spray nozzles into which a portion of the water filled in the lower part flows, and spraying water to the upper portion of the alkaline adsorbent layer, a water adsorption filter formed on the water spray nozzles, and the water adsorption filter
  • a pretreatment filter composed of an exhaust gas discharge part formed at an upper portion of the exhaust gas;
  • a plurality of separation holes having a diameter of 3 to 4 angstroms is formed in the second chamber and at least one inside of the second chamber, and the exhaust gas passing through the pretreatment filter is introduced so that nitrogen is separated into the separation holes.
  • a membrane separation filter which passes through and is discharged to the nitrogen discharge unit and does not pass through the sulfur hexafluoride to discharge to the sulfur hexafluoride discharge unit for combustion;
  • a second dry pump for sucking nitrogen discharged to the nitrogen discharge unit, a nitrogen discharge pipe for discharging nitrogen into the atmosphere, a nitrogen tank filled with nitrogen, and a resupply supplying nitrogen to the tank from the second dry pump
  • a nitrogen recycling supply unit comprising a pipe and a nitrogen supply pipe for supplying nitrogen from the nitrogen tank to the first dry pump;
  • a sulfur hexafluoride recycling supply unit including a sulfur hexafluoride tank filled with sulfur hexafluoride discharged to the sulfur hexafluoride discharge unit, and a sulfur hexafluoride supply pipe for supplying sulfur hexafluoride to at least one flue gas generating facility;
  • a first flow rate sensor for detecting a flow rate of sulfur hexafluoride gas supplied to the flue gas generating facility, a second flow rate sensor for detecting a flow rate of flue gas before reaching the first dry pump, and a flow rate of the nitrogen supply pipe
  • a third flow rate sensor for sensing, a fourth flow rate sensor for sensing the flow rate discharged to the exhaust gas discharge part, a fifth flow rate sensor for detecting the flow rate of the nitrogen discharge part, and a sixth level for detecting the flow rate of the sulfur hexafluoride discharge part
  • a first branch pipe connected to the exhaust gas inlet of the pretreatment filter by a first branch valve after passing the flow rate sensor, the fourth flow sensor, and branched by the second branch valve after passing the fifth flow sensor.
  • a second branch line for reflowing into the membrane separation filter, and a third branch line for branching by the third branch valve after the sixth flow sensor and reentering the membrane separation filter. It characterized by consisting of a control unit for.
  • control unit has a flow rate of the fourth flow sensor is the second flow sensor, the fifth flow sensor is the third flow sensor, the sixth flow sensor compared to the first flow sensor when the latter is 90% or more of the former, respectively.
  • the first to third branch valves are configured to open the first to third branch pipes, respectively.
  • the present invention makes it possible to easily remove various dusts and other gases as well as greenhouse gases, which are the main culprit of greenhouse gases, in stages by a pretreatment filter and a membrane separation filter, thereby drastically reducing the amount of air pollution and greenhouse gas emissions. It can be effective.
  • the sulfur hexafluoride is separated by nitrogen and the membrane separation filter and then reused in the exhaust gas generating facility to reduce the operating cost and to recycle the raw materials.
  • the filtering may be filtered again to maximize processing efficiency.
  • FIG. 2 is a conceptual diagram illustrating a configuration of a controller according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating a membrane separation filter according to an embodiment of the present invention.
  • FIG. 4 is a conceptual view illustrating the opening of a first branch valve according to an embodiment of the present invention.
  • FIG. 5 is a conceptual view showing the opening of the second branch valve according to an embodiment of the present invention.
  • FIG. 6 is a conceptual view illustrating the opening of a third branch valve according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram showing the configuration of a control unit according to an embodiment of the present invention
  • Figure 3 is a conceptual diagram showing a membrane separation filter according to an embodiment of the present invention
  • the present application includes a first dry pump 2 for sucking exhaust gas generated in one or more flue gas generating facilities 1.
  • the exhaust gas refers to the discharged gas, and particularly in the dry etching process, sulfur hexafluoride ( ), Promethium (PM) and silicon tetrafluoride ( ) And oxygen ( )and, And various dusts are discharged.
  • nitrogen is mixed by the nitrogen recycling supply unit 5 described below to prevent damage to the apparatus. Configuration is essential.
  • the nitrogen-mixed exhaust gas is filled in the first chamber 31, the water 32 filled in the lower portion of the first chamber 31, and the first dry pump 2 directly above the water surface of the water 32.
  • the exhaust gas inlet 33 through which the sucked exhaust gas is introduced, the alkaline adsorbent layer 34 allowing the exhaust gas introduced into the exhaust gas inlet 33 to rise, and a portion of the water filled in the lower portion are introduced into the alkaline property.
  • the pretreatment filter 3 is a wet filter as nitrogen ( ) And sulfur hexafluoride ( Promethium (PM) and silicon tetrafluoride ( ) And oxygen ( )and, And the first flue gas is acidic by adsorbing various dusts, and after purifying them, the final moisture adsorption filter 36 finally adsorbs the fine dust together with the moisture, and finally nitrogen ( ) And sulfur hexafluoride ( ) Will remain.
  • Such nitrogen ( ) And sulfur hexafluoride ( ) Is formed in the second chamber 41 and at least one inside the second chamber 41 to form a plurality of separation holes 42 having a diameter of 3 to 4 angstroms. 3) After passing through the exhaust gas, the nitrogen passes through the separation hole 42 and is discharged to the nitrogen discharge part 43, and the sulfur hexafluoride does not pass and discharges to the sulfur hexafluoride discharge part 44 to burn. Pass through the separation filter (4).
  • the membrane separation filter (4) is a filter using the size of the particles in the case of nitrogen particle size 3 ohms ( ⁇ ) and in the case of sulfur hexafluoride (5 ohms) to exit the separation hole 42 only nitrogen It is a structure to make it possible.
  • Omstrom ( ⁇ ) refers to the length of 0.1 nanometers.
  • Nitrogen recycling supply unit 5 consisting of a nitrogen supply pipe (55) to recycle and circulate, and nitrogen can be selectively discharged or recycled because it is a gas that does not matter at all in the atmosphere.
  • the sulfur hexafluoride supply pipe (62) for supplying sulfur hexafluoride to the sulfur hexafluoride tank 61 is filled with the sulfur hexafluoride discharged to the sulfur hexafluoride discharge unit 44 and the one or more flue gas generating facilities (62)
  • the structure of the sulfur hexafluoride recycling supply unit (6) consisting of) is connected to a system for separating perfluoro compounds from sulfur hexafluoride gas mainly used in the nicking process to store and recycle high-purity sulfur hexafluoride gas. The solution is presented.
  • the sulfur hexafluoride tank (61) is shown in the form of being directly connected to the sulfur hexafluoride supply pipe (62), but this may be supplied by direct piping and supplied to each industrial site in a separate storage facility using a vehicle or the like. It is presented a flow.
  • the present application detects the flow rate of the exhaust gas before reaching the first dry pump 2 and the first flow sensor 71 for detecting the flow rate of sulfur hexafluoride gas supplied to the exhaust gas generating facility (1)
  • the first branch pipe 77 After passing through the flow sensor 74, the first branch pipe 77 is branched to the exhaust gas inlet 33 of the pretreatment filter 3 by the first branch valve (77a) and the fifth flow sensor ( After passing through the second branch valve (78a) and the second branch pipe 78 and the sixth flow sensor 76 through the sixth flow sensor 76 after passing through the membrane separation filter (4) minute
  • a control unit 7 including a third branch conduit 79 for branching by the valve 79a to be re-introduced into the membrane separation filter 4 is configured to control components separated at each step to maximize efficiency. It was made.
  • control unit 7 A detailed description of the operation of the control unit 7 will be described later in detail.
  • FIG. 4 is a conceptual diagram illustrating the opening of a first branch valve according to an embodiment of the present invention, wherein the controller 7 has a flow rate of the fourth flow rate sensor 74 compared to the second flow rate sensor 72.
  • An embodiment in which the first branch valve 77a is opened to the first branch pipe 77 when each of the electrons is 90% or more is presented.
  • 90% means promethium (PM) and silicon tetrafluoride (PM) in the pretreatment filter (3). ) And oxygen ( )and, And at the same time that various dusts have been removed below 10%, the exhaust gas flowing into the membrane separation filter 4 is nitrogen ( ) And sulfur hexafluoride ( ), But also means that it contains many other substances.
  • FIG. 5 is a conceptual view illustrating the opening of a first branch valve according to an exemplary embodiment of the present invention, wherein the controller 7 is the fifth flow rate sensor 75 compared with the third flow rate sensor 73.
  • the second branch valve 77a is configured to open the second branch pipe 77 when it is 90% or more is shown.
  • the second branch valve 78a may be a four-phase valve if a three-phase valve or a pipeline for discharging the air is formed.
  • FIG. 6 is a conceptual diagram illustrating the opening of a first branch valve according to an embodiment of the present invention, wherein the controller 7 includes the sixth flow sensor 76 compared with the first flow sensor 71.
  • the third branch valve 79a may be a four-phase valve if a three-phase valve or a pipe for incineration sulfur hexafluoride is formed in an incinerator.
  • exhaust gas inlet 34 alkaline adsorbent layer
  • first branch valve 77 first branch pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a system for separating and reusing a perfluorocarbon compound, developed so as to effectively separate, discard or reuse a perfluorocarbon compound comprising sulfur hexafluoride, the perfluorocarbon compound being generated primarily during manufacturing of semiconductors. The system, for separating and reusing a perfluorocarbon compound, which handles gas comprising dust generated by discharge gas-emitting installations using or generating perfluorocarbons, such as a dry-etching process and a CVD cleansing chamber, comprises a first dry pump, a pre-processing filter, a membrane separation filter, a nitrogen reuse supply unit, a sulfur hexafluoride reuse supply unit, and a control unit, and thus facilitates separation and removal of a variety of gases and dust comprising perfluorocarbons generated by the electronics industry, and allows reuse of sulfur hexafluoride by separating same from the discharge gas and reprocessing same, thereby raising the effectiveness of discharge gas separation.

Description

과불화화합물의 분리 및 재활용시스템Perfluorinated Compound Separation and Recycling System
본 발명은 과불화화합물의 분리 및 재활용시스템에 관한 것으로서, 좀더 상세하게 설명하면 주로 반도체 생산공정에서 발생하는 육불화황을 포함하는 과불화화합물을 효과적으로 분리하고 이를 제거 또는 재활용할 수 있도록 하기 위하여 개발된 과불화화합물의 분리 및 재활용시스템에 관한 것이다.The present invention relates to a separation and recycling system of perfluorinated compounds, and more specifically, to develop a method for effectively separating and removing or recycling perfluorinated compounds including sulfur hexafluoride mainly generated in a semiconductor production process. The present invention relates to a separation and recycling system for purified perfluorinated compounds.
최근 지구온난화에 의한 기후 및 생태계의 변화가 갈수록 두드러지게 나타남에 의하여 이에 대한 관심은 날로 증가되고 그 주요원인이라고 할 수 있는 온실가스의 배출 규제에 대한 관심도 전 세계적으로 높아지고 있다.Recent changes in climate and ecosystem due to global warming have become more prominent, and interest in this has increased day by day, and interest in the regulation of greenhouse gas emission, which is the main cause, has also increased worldwide.
하지만 대부분의 사람들은 온실가스는 화석연료에 의한 이산화탄소(
Figure PCTKR2013000479-appb-I000001
)만을 떠올리게 되고 있지만 메탄(
Figure PCTKR2013000479-appb-I000002
), 아산화질소(
Figure PCTKR2013000479-appb-I000003
) 및 과불화화합물(perfluoro compounds)인 수소불화탄소(
Figure PCTKR2013000479-appb-I000004
)와, 과불화탄소(
Figure PCTKR2013000479-appb-I000005
) 및 육불화황(
Figure PCTKR2013000479-appb-I000006
) 등도 지구 온난화의 주요원인이 되고 있다.
But for most people, greenhouse gases are carbon dioxide from fossil fuels.
Figure PCTKR2013000479-appb-I000001
) But only methane (
Figure PCTKR2013000479-appb-I000002
), Nitrous oxide (
Figure PCTKR2013000479-appb-I000003
) And hydrofluorocarbons (perfluoro compounds)
Figure PCTKR2013000479-appb-I000004
) And perfluorocarbon (
Figure PCTKR2013000479-appb-I000005
) And sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000006
) Is also a major cause of global warming.
이는 급격하게 늘어나는 이산화탄소의 사용량에 비교하여 그 비중이 12.2%에 이를 정도라는 것은 상당히 많은 배출이 이루어짐을 뜻하는 것이며 반도체, 디스플레이, LED, 태양광 등을 포함하는 우리나라의 주력 산업이라고 할 수 있는 전자관련 분야에서 많이 배출하는 과불화화합물이 차지하는 비율은 4.4%로 이 역시 상당히 많은 비율을 차지하고 있다고 말할 수 있는 것이다.This means that the ratio of 12.2% of carbon dioxide is rapidly increasing, which means that a lot of emissions are generated. The proportion of perfluorinated compounds emitted in related fields is 4.4%, which can be said to be quite large.
특히 기판에 일정한 패턴을 형성하기 위하여 육불화황을 플라즈마 설비를 이용하여 F- 이온을 생성하고 이를 이용하여 절연체와 반응하여 식각하는 에칭 공정에서는 많은 분진과 육불화황(
Figure PCTKR2013000479-appb-I000007
)과 육불화실리콘(
Figure PCTKR2013000479-appb-I000008
) 등을 배출하게 된다.
In particular, in order to form a pattern on a substrate, sulfur hexafluoride is formed by using a plasma apparatus to produce F- ions, and the etching process reacts with an insulator and etches it.
Figure PCTKR2013000479-appb-I000007
) And silicon hexafluoride (
Figure PCTKR2013000479-appb-I000008
) And the like.
또한 CVD 세정 챔버(chamber cleaning) 공정은 플라즈마 에칭의 방법을 이용하여 절연체(
Figure PCTKR2013000479-appb-I000009
)로 코팅된 코팅층을 제거하기 위한 것으로 주로
Figure PCTKR2013000479-appb-I000010
가스를 사용하는데 이때 분진,
Figure PCTKR2013000479-appb-I000011
,
Figure PCTKR2013000479-appb-I000012
,
Figure PCTKR2013000479-appb-I000013
등을 배출하게 된다.
In addition, the CVD cleaning process (chamber cleaning) process using an insulator (plasma etching method)
Figure PCTKR2013000479-appb-I000009
To remove the coating layer coated with)
Figure PCTKR2013000479-appb-I000010
Gas, where dust,
Figure PCTKR2013000479-appb-I000011
,
Figure PCTKR2013000479-appb-I000012
,
Figure PCTKR2013000479-appb-I000013
And back.
이러한 분진을 포함하는 각종 가스는 펌프 및 장비의 보호를 위하여 다량의 질소와 혼합된 후 드라이 펌프에 흡입되어 현재 대부분 가스 스크러버(gas scrubber)만 설치되어 있는 후처리 시설로 보내지게 된다.Various gases including such dust are mixed with a large amount of nitrogen for protection of the pump and equipment, and then sucked into the dry pump and are sent to a post-treatment facility where most gas scrubbers are currently installed.
하지만 현재의 가스 스크러버에 의한 기술은 전기 및 연료에 의하여 고온에서 제거하는 방식, 화학적 처리방식, 플라즈마를 이용한 처리방식이 있으나 운전비용의 많거나 대용량의 처리가 불가능하거나 처리 효율이 낮은 등의 각기 문제점을 가지고 있는 상황이었다.However, the current gas scrubber technology has a method of removing at a high temperature by electricity and fuel, a chemical treatment method, and a plasma treatment method, but each has problems such as high operating cost, large-capacity treatment, or low processing efficiency. It was a situation to have.
하지만 Non-이산화탄소(
Figure PCTKR2013000479-appb-I000014
) 계열의 온실가스에 대한 규제가 증가하면서 국가에서 특정 가스를 배출하는 시설에 대한 규제가 점차 강화되는 상황에서 보다 효율적으로 이를 제거하고 또 재활용할 수 있는 기술의 개발이 필요한 상황이다.
But non-carbon dioxide (
Figure PCTKR2013000479-appb-I000014
As the regulation of greenhouse gases in the series increases, regulations on facilities that emit specific gases are gradually strengthened in the country, and it is necessary to develop technologies to remove and recycle them more efficiently.
본 발명은 상기와 같은 문제점을 해결하기 위하여 개발된 것으로서, 그 목적은 전자산업에서 생성되는 과불화화합물을 포함하는 각종 가스 및 분진을 용이하게 분리하고 제거할 수 있는 과불화화합물 분리 및 재활용시스템을 개발하는 것에 있다.The present invention was developed to solve the above problems, the object of the perfluorinated compound separation and recycling system that can easily separate and remove various gases and dust including perfluorinated compounds generated in the electronics industry It's about developing.
또한, 배가스에서 육불화황과 질소를 분리하고 재처리하여 사용할 수 있도록 하는 과불화화합물 분리 및 재활용시스템을 개발하는 것에 있다.In addition, it is to develop a perfluorinated compound separation and recycling system for separating and reprocessing sulfur hexafluoride and nitrogen in flue gas.
또, 배가스의 분리 효율을 높일 수 있는 과불화화합물 분리 및 재활용시스템을 개발하는 것에 있다.In addition, the present invention is to develop a perfluorinated compound separation and recycling system capable of increasing the separation efficiency of flue gas.
상기와 같은 목적을 달성하기 위하여 본 발명은 드라이 에칭공정과 CVD 세정 챔버 등의 과불화화합물을 이용하거나 생성되는 배가스 발생시설에서 발생하는 분진을 포함하는 가스를 처리하는 과불화화합물의 분리 및 재활용시스템에 있어서;In order to achieve the above object, the present invention uses a perfluorinated compound, such as a dry etching process and a CVD cleaning chamber, or separates and recycles a perfluorinated compound for treating a gas including dust generated in a flue gas generating facility. To;
하나 이상의 배가스 발생시설에서 발생하는 배가스를 흡입하는 제1 드라이 펌프와;A first dry pump for sucking exhaust gas generated in at least one flue gas generating facility;
제1 챔버와, 상기 제1 챔버의 하부에 충진되는 물과, 물의 수면 바로 위로 상기 제1 드라이 펌프에서 흡입된 배가스가 유입되는 배가스 유입부와, 상기 배가스 유입부로 유입된 배가스가 상승하여 통과하도록 하는 알카리성 흡착제층과, 하부에 충진된 물의 일부가 유입되어 상기 알카리성 흡착제층의 상부로 물을 분사하는 다수의 물분사노즐과, 상기 물분사노즐의 상부에 형성되는 수분 흡착필터 및 상기 수분 흡착필터의 상부로 형성되는 배가스 배출부으로 구성되는 전처리 필터와;The first chamber, the water filled in the lower portion of the first chamber, the exhaust gas inlet through which the exhaust gas sucked from the first dry pump flows directly above the water surface, and the exhaust gas introduced into the exhaust gas inlet rises to pass therethrough. An alkaline adsorbent layer, a plurality of water spray nozzles into which a portion of the water filled in the lower part flows, and spraying water to the upper portion of the alkaline adsorbent layer, a water adsorption filter formed on the water spray nozzles, and the water adsorption filter A pretreatment filter composed of an exhaust gas discharge part formed at an upper portion of the exhaust gas;
제2 챔버와, 상기 제2 챔버 내부에 적어도 하나 이상 형성되어 3~4 옴스트롬(Å)의 직경을 가진 다수의 분리홀이 형성되고 상기 전처리 필터를 거친 배가스가 유입되어 질소는 상기 분리홀을 통과하여 질소 배출부로 배출되고 육불화황은 통과하지 못하여 육불화황 배출부로 배출하여 연소시키도록하는 막분리 필터와;A plurality of separation holes having a diameter of 3 to 4 angstroms is formed in the second chamber and at least one inside of the second chamber, and the exhaust gas passing through the pretreatment filter is introduced so that nitrogen is separated into the separation holes. A membrane separation filter which passes through and is discharged to the nitrogen discharge unit and does not pass through the sulfur hexafluoride to discharge to the sulfur hexafluoride discharge unit for combustion;
상기 질소 배출부로 배출된 질소를 흡입하는 제2 드라이 펌프와, 질소를 대기중에 배출하는 질소 배출배관과, 질소가 충진되는 질소 탱크와, 상기 제2 드라이 펌프로부터 상기 탱크로 질소를 공급하는 재공급배관과, 상기 질소 탱크에서 상기 제1 드라이 펌프로 질소를 공급하는 질소 공급배관으로 구성되는 질소 재활용 공급부와A second dry pump for sucking nitrogen discharged to the nitrogen discharge unit, a nitrogen discharge pipe for discharging nitrogen into the atmosphere, a nitrogen tank filled with nitrogen, and a resupply supplying nitrogen to the tank from the second dry pump A nitrogen recycling supply unit comprising a pipe and a nitrogen supply pipe for supplying nitrogen from the nitrogen tank to the first dry pump;
상기 육불화황 배출부로 배출되는 육불화황이 충진되는 육불화황 탱크와, 하나 이상의 배가스 발생시설에 육불화황을 공급하는 육불화황 공급배관으로 구성되는 육불화황 재활용 공급부와;A sulfur hexafluoride recycling supply unit including a sulfur hexafluoride tank filled with sulfur hexafluoride discharged to the sulfur hexafluoride discharge unit, and a sulfur hexafluoride supply pipe for supplying sulfur hexafluoride to at least one flue gas generating facility;
상기 배가스 발생시설에 공급되는 육불화황 가스의 유량을 감지하는 제1 유량센서와, 상기 제1 드라이 펌프에 도달하기 전 배가스의 유량을 감지하는 제2 유량센서와, 상기 질소 공급배관의 유량을 감지하는 제3 유량센서와, 상기 배가스 배출부로 배출되는 유량을 감지하는 제4 유량센서와, 상기 질소 배출부의 유량을 감지하는 제5 유량센서와, 상기 육불화황 배출부의 유량을 감지하는 제6 유량센서와, 상기 제4 유량센서를 지난 후 제1 분기밸브에 의하여 상기 전처리필터의 배가스 유입부로 분기 연결되는 제1 분기관로와, 상기 제5 유량센서를 지난 후 제2 분기밸브에 의하여 분기되어 막분리 필터로 재유입되도록 하는 제2 분기관로와, 상기 제6 유량센서를 지난 후 제3 분기밸브에 의하여 분기되어 막분리 필터로 재유입되도록 하는 제3 분기관로를 포함하는 제어부로 구성됨을 특징으로 한다.A first flow rate sensor for detecting a flow rate of sulfur hexafluoride gas supplied to the flue gas generating facility, a second flow rate sensor for detecting a flow rate of flue gas before reaching the first dry pump, and a flow rate of the nitrogen supply pipe A third flow rate sensor for sensing, a fourth flow rate sensor for sensing the flow rate discharged to the exhaust gas discharge part, a fifth flow rate sensor for detecting the flow rate of the nitrogen discharge part, and a sixth level for detecting the flow rate of the sulfur hexafluoride discharge part A first branch pipe connected to the exhaust gas inlet of the pretreatment filter by a first branch valve after passing the flow rate sensor, the fourth flow sensor, and branched by the second branch valve after passing the fifth flow sensor. And a second branch line for reflowing into the membrane separation filter, and a third branch line for branching by the third branch valve after the sixth flow sensor and reentering the membrane separation filter. It characterized by consisting of a control unit for.
아울러, 상기 제어부는 제4 유량센서의 유량은 제2 유량센서와, 제5 유량센서는 제3 유량센서와, 제6 유량센서는 제1 유량센서와 비교하여 후자가 전자의 90% 이상일 때 각각 제1 내지 제3 분기밸브가 각각 제1 내지 제3 분기배관을 개방하도록 구성됨을 특징으로 한다.In addition, the control unit has a flow rate of the fourth flow sensor is the second flow sensor, the fifth flow sensor is the third flow sensor, the sixth flow sensor compared to the first flow sensor when the latter is 90% or more of the former, respectively The first to third branch valves are configured to open the first to third branch pipes, respectively.
상술한 바와 같이 본 발명은 온실가스의 주범이 되는 온실 가스뿐만 아니라 각종 분진과 기타 가스를 전처리 필터와 막분리 필터에 의하여 단계적으로 용이하게 제거할 수 있도록 하여 대기 오염 및 온실가스 방출량을 획기적으로 줄일 수 있는 효과가 있다.As described above, the present invention makes it possible to easily remove various dusts and other gases as well as greenhouse gases, which are the main culprit of greenhouse gases, in stages by a pretreatment filter and a membrane separation filter, thereby drastically reducing the amount of air pollution and greenhouse gas emissions. It can be effective.
또한, 육불화황을 질소와 막분리 필터에 의하여 분리한 후 이를 다시 배가스 발생시설에서 재활용하여 사용할 수 있도록 하여 운전비용을 절감하고 및 원료의 재활용할 수 있는 효과가 있다.In addition, the sulfur hexafluoride is separated by nitrogen and the membrane separation filter and then reused in the exhaust gas generating facility to reduce the operating cost and to recycle the raw materials.
또, 제어부에 의하여 분리율이 낮을 경우 이를 다시 필터링을 거치도록 하여 처리 효율을 극대화할 수 있는 효과가 있다.In addition, when the separation rate is low by the controller, the filtering may be filtered again to maximize processing efficiency.
도 1은 본 발명의 일 실시 예에 따른 개념도1 is a conceptual diagram according to an embodiment of the present invention
도 2는 본 발명의 일 실시 예에 따른 제어부의 구성을 나타낸 개념도2 is a conceptual diagram illustrating a configuration of a controller according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 막분리 필터를 나타낸 개념도3 is a conceptual diagram illustrating a membrane separation filter according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 제1 분기 밸브의 개방을 나타낸 개념도4 is a conceptual view illustrating the opening of a first branch valve according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 제2 분기 밸브의 개방을 나타낸 개념도5 is a conceptual view showing the opening of the second branch valve according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 제3 분기 밸브의 개방을 나타낸 개념도6 is a conceptual view illustrating the opening of a third branch valve according to an embodiment of the present invention.
이에 본 발명의 구성을 첨부된 도면에 의하여 당업자가 용이하게 이해하고 재현할 수 있도록 상세하게 설명하면 다음과 같다.Accordingly, the configuration of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily understand and reproduce.
도 1은 본 발명의 일 실시 예에 따른 개념도이고, 도 2는 본 발명의 일 실시 예에 따른 제어부의 구성을 나타낸 개념도이고, 도 3은 본 발명의 일 실시 예에 따른 막분리 필터를 나타낸 개념도로서, 드라이 에칭공정과 CVD 세정 챔버 등의 과불화화합물을 이용하거나 생성되는 배가스 발생시설(1)에서 발생하는 분진을 포함하는 가스를 처리하는 과불화화합물의 분리 및 재활용시스템에 있어서;1 is a conceptual diagram according to an embodiment of the present invention, Figure 2 is a conceptual diagram showing the configuration of a control unit according to an embodiment of the present invention, Figure 3 is a conceptual diagram showing a membrane separation filter according to an embodiment of the present invention A system for separating and recycling a perfluorinated compound for treating a gas containing dust generated in an off-gas generating facility (1) generated or using a perfluorinated compound such as a dry etching process and a CVD cleaning chamber;
본원은 하나 이상의 배가스 발생시설(1)에서 발생하는 배가스를 흡입하는 제1 드라이 펌프(2)를 구비한다.The present application includes a first dry pump 2 for sucking exhaust gas generated in one or more flue gas generating facilities 1.
이때 배가스는 배출되는 가스를 칭하는 것으로 특히 드라이 에칭공정에서는 육불화황(
Figure PCTKR2013000479-appb-I000015
), 프로메튬(PM)과, 사불화실리콘(
Figure PCTKR2013000479-appb-I000016
)과, 산소(
Figure PCTKR2013000479-appb-I000017
)과,
Figure PCTKR2013000479-appb-I000018
및 각종 분진 등이 배출된다.
At this time, the exhaust gas refers to the discharged gas, and particularly in the dry etching process, sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000015
), Promethium (PM) and silicon tetrafluoride (
Figure PCTKR2013000479-appb-I000016
) And oxygen (
Figure PCTKR2013000479-appb-I000017
)and,
Figure PCTKR2013000479-appb-I000018
And various dusts are discharged.
이러한 과불화화합물을 포함하는 각종 가스 및 분진은 제1 드라이 펌프(2)의 각 부품을 급속 부식시키는 성질이 있으므로 후술한 질소 재활용 공급부(5)에 의하여 질소를 혼합하여 장치의 손상을 방지하도록 하는 구성은 필수적이라고 하겠다.Since various gases and dusts containing such perfluorinated compounds have a property of rapidly corroding each part of the first dry pump 2, nitrogen is mixed by the nitrogen recycling supply unit 5 described below to prevent damage to the apparatus. Configuration is essential.
이렇게 질소가 혼합된 배가스는 제1 챔버(31)와, 상기 제1 챔버(31)의 하부에 충진되는 물(32)과, 물(32)의 수면 바로 위로 상기 제1 드라이 펌프(2)에서 흡입된 배가스가 유입되는 배가스 유입부(33)와, 상기 배가스 유입부(33)로 유입된 배가스가 상승하여 통과하도록 하는 알카리성 흡착제층(34)과, 하부에 충진된 물의 일부가 유입되어 상기 알카리성 흡착제층(34)의 상부로 물(32)을 분사하는 다수의 물분사노즐(35)과, 상기 물분사노즐(35)의 상부에 형성되는 수분 흡착필터(36) 및 상기 수분 흡착필터(36)의 상부로 형성되는 배가스 배출부(37)으로 구성되는 전처리 필터(3)를 거치게 된다.The nitrogen-mixed exhaust gas is filled in the first chamber 31, the water 32 filled in the lower portion of the first chamber 31, and the first dry pump 2 directly above the water surface of the water 32. The exhaust gas inlet 33 through which the sucked exhaust gas is introduced, the alkaline adsorbent layer 34 allowing the exhaust gas introduced into the exhaust gas inlet 33 to rise, and a portion of the water filled in the lower portion are introduced into the alkaline property. A plurality of water spray nozzles 35 for spraying water 32 onto the adsorbent layer 34, a water adsorption filter 36 and the water adsorption filter 36 formed on the water spray nozzles 35. Pass through the pre-treatment filter (3) consisting of the exhaust gas discharge portion 37 formed in the upper portion of the).
상기 전처리 필터(3)는 습식필터로서 질소(
Figure PCTKR2013000479-appb-I000019
)와 육불화황(
Figure PCTKR2013000479-appb-I000020
)을 제외한 프로메튬(PM)과, 사불화실리콘(
Figure PCTKR2013000479-appb-I000021
)과, 산소(
Figure PCTKR2013000479-appb-I000022
)과,
Figure PCTKR2013000479-appb-I000023
및 각종 분진을 흡착시키는 것으로 최초 배가스가 산성을 띄고 있으므로 이를 정화하고 마지막 수분 흡착필터(36)에서 최종적으로 수분와 함께 미세 분진이 흡착을 하게 되면 최종적으로 질소(
Figure PCTKR2013000479-appb-I000024
)와 육불화황(
Figure PCTKR2013000479-appb-I000025
)만 남게 된다.
The pretreatment filter 3 is a wet filter as nitrogen (
Figure PCTKR2013000479-appb-I000019
) And sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000020
Promethium (PM) and silicon tetrafluoride (
Figure PCTKR2013000479-appb-I000021
) And oxygen (
Figure PCTKR2013000479-appb-I000022
)and,
Figure PCTKR2013000479-appb-I000023
And the first flue gas is acidic by adsorbing various dusts, and after purifying them, the final moisture adsorption filter 36 finally adsorbs the fine dust together with the moisture, and finally nitrogen (
Figure PCTKR2013000479-appb-I000024
) And sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000025
) Will remain.
이러한 질소(
Figure PCTKR2013000479-appb-I000026
)와 육불화황(
Figure PCTKR2013000479-appb-I000027
)은 제2 챔버(41)와, 상기 제2 챔버(41) 내부에 적어도 하나 이상 형성되어 3~4 옴스트롬(Å)의 직경을 가진 다수의 분리홀(42)이 형성되고 상기 전처리 필터(3)를 거친 배가스가 유입되어 질소는 상기 분리홀(42)을 통과하여 질소 배출부(43)로 배출되고 육불화황은 통과하지 못하여 육불화황 배출부(44)로 배출하여 연소시키도록하는 막분리 필터(4)를 거치게 된다.
Such nitrogen (
Figure PCTKR2013000479-appb-I000026
) And sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000027
) Is formed in the second chamber 41 and at least one inside the second chamber 41 to form a plurality of separation holes 42 having a diameter of 3 to 4 angstroms. 3) After passing through the exhaust gas, the nitrogen passes through the separation hole 42 and is discharged to the nitrogen discharge part 43, and the sulfur hexafluoride does not pass and discharges to the sulfur hexafluoride discharge part 44 to burn. Pass through the separation filter (4).
상기 막분리 필터(4)는 입자의 크기를 이용한 필터로서 질소의 경우 입자크기가 3옴스트롬(Å)이며 육불화황의 경우 5옴스트롬(Å)으로 질소만 상기 분리홀(42)을 빠져나갈 수 있도록 하는 구조이다.The membrane separation filter (4) is a filter using the size of the particles in the case of nitrogen particle size 3 ohms (Å) and in the case of sulfur hexafluoride (5 ohms) to exit the separation hole 42 only nitrogen It is a structure to make it possible.
이때 옴스트롬(Å)은 0.1 나노미터의 길이를 말한다.Omstrom (Å) refers to the length of 0.1 nanometers.
배출된 육불화황의 경우 연소되는 성질을 이용한 고효율의 Burn-WET 스크러버 또는 Burn 스크러버에 의하여 연소하도록 하면 유입되는 육불화황의 농도가 높음에 따라 그 제거효율도 비약적으로 향상되는 것이다.When the discharged sulfur hexafluoride is burned by a high-efficiency Burn-WET scrubber or burn scrubber using the combustion property, the removal efficiency is greatly improved as the concentration of the sulfur hexafluoride introduced is high.
또한 분리된 질소의 경우 상기 질소 배출부(43)로 배출된 질소를 흡입하는 제2 드라이 펌프(51)와, 질소를 대기중에 배출하는 질소 배출배관(52)과, 질소가 충진되는 질소 탱크(53)와, 상기 제2 드라이 펌프(51)로부터 상기 탱크(53)로 질소를 공급하는 재공급배관(54)과, 상기 질소 탱크(53)에서 상기 제1 드라이 펌프(2)로 질소를 공급하는 질소 공급배관(55)으로 구성되는 질소 재활용 공급부(5)를 구성하여 재활용 순환하도록 하였으며, 질소는 대기중에 배출하여도 전혀 상관없는 기체이므로 선택적으로 배출 또는 재활용을 할 수 있게 된다.In addition, in the case of separated nitrogen, a second dry pump 51 for sucking nitrogen discharged to the nitrogen discharge part 43, a nitrogen discharge pipe 52 for discharging nitrogen into the atmosphere, and a nitrogen tank filled with nitrogen ( 53, a resupply pipe 54 for supplying nitrogen from the second dry pump 51 to the tank 53, and nitrogen from the nitrogen tank 53 to the first dry pump 2 Nitrogen recycling supply unit 5 consisting of a nitrogen supply pipe (55) to recycle and circulate, and nitrogen can be selectively discharged or recycled because it is a gas that does not matter at all in the atmosphere.
또한, 상기 육불화황 배출부(44)로 배출되는 육불화황이 충진되는 육불화황 탱크(61)와, 하나 이상의 배가스 발생시설(1)에 육불화황을 공급하는 육불화황 공급배관(62)으로 구성되는 육불화황 재활용 공급부(6)의 구성은 주로 애칭공정에 사용되는 육불화황 가스를 과불화화합물을 분리하는 시스템과 연결하여 고순도의 육불화황 가스를 저장하고 재활용할 수 있도록 하는 방안을 제시한 것이다.In addition, the sulfur hexafluoride supply pipe (62) for supplying sulfur hexafluoride to the sulfur hexafluoride tank 61 is filled with the sulfur hexafluoride discharged to the sulfur hexafluoride discharge unit 44 and the one or more flue gas generating facilities (62) The structure of the sulfur hexafluoride recycling supply unit (6) consisting of) is connected to a system for separating perfluoro compounds from sulfur hexafluoride gas mainly used in the nicking process to store and recycle high-purity sulfur hexafluoride gas. The solution is presented.
이때 상기 도면에서는 육불화황 탱크(61)에서 직접 육불화황 공급배관(62)으로 연결되는 형태로 도시되었으나 이는 직접적인 배관으로 공급할 수도 있으며 별도의 저장시설에서 각 산업현장에 차량 등을 이용하여 공급하는 흐름을 제시한 것이다.At this time, the sulfur hexafluoride tank (61) is shown in the form of being directly connected to the sulfur hexafluoride supply pipe (62), but this may be supplied by direct piping and supplied to each industrial site in a separate storage facility using a vehicle or the like. It is presented a flow.
여기에 본원은 상기 배가스 발생시설(1)에 공급되는 육불화황 가스의 유량을 감지하는 제1 유량센서(71)와, 상기 제1 드라이 펌프(2)에 도달하기 전 배가스의 유량을 감지하는 제2 유량센서(72)와, 상기 질소 공급배관(55)의 유량을 감지하는 제3 유량센서(73)와, 상기 배가스 배출부(37)로 배출되는 유량을 감지하는 제4 유량센서(74)와, 상기 질소 배출부(43)의 유량을 감지하는 제5 유량센서(75)와, 상기 육불화황 배출부(44)의 유량을 감지하는 제6 유량센서(76)와, 상기 제4 유량센서(74)를 지난 후 제1 분기밸브(77a)에 의하여 상기 전처리필터(3)의 배가스 유입부(33)로 분기 연결되는 제1 분기관로(77)와, 상기 제5 유량센서(75)를 지난 후 제2 분기밸브(78a)에 의하여 분기되어 막분리 필터(4)로 재유입되도록 하는 제2 분기관로(78)와, 상기 제6 유량센서(76)를 지난 후 제3 분기밸브(79a)에 의하여 분기되어 막분리 필터(4)로 재유입되도록 하는 제3 분기관로(79)를 포함하는 제어부(7)를 구성하여 각 단계에서 분리되는 성분을 제어하여 보다 효율을 극대화하도록 하였다.Here, the present application detects the flow rate of the exhaust gas before reaching the first dry pump 2 and the first flow sensor 71 for detecting the flow rate of sulfur hexafluoride gas supplied to the exhaust gas generating facility (1) The second flow rate sensor 72, the third flow rate sensor 73 for detecting the flow rate of the nitrogen supply pipe 55, and the fourth flow rate sensor 74 for detecting the flow rate discharged to the exhaust gas discharge portion 37 ), A fifth flow rate sensor 75 that detects the flow rate of the nitrogen discharge part 43, a sixth flow rate sensor 76 that detects the flow rate of the sulfur hexafluoride discharge part 44, and the fourth flow rate sensor 76. After passing through the flow sensor 74, the first branch pipe 77 is branched to the exhaust gas inlet 33 of the pretreatment filter 3 by the first branch valve (77a) and the fifth flow sensor ( After passing through the second branch valve (78a) and the second branch pipe 78 and the sixth flow sensor 76 through the sixth flow sensor 76 after passing through the membrane separation filter (4) minute A control unit 7 including a third branch conduit 79 for branching by the valve 79a to be re-introduced into the membrane separation filter 4 is configured to control components separated at each step to maximize efficiency. It was made.
이러한 제어부(7)의 상세한 작동과정에 대한 설명은 이하 도면에서 상세하게 설명하기로 하겠다.A detailed description of the operation of the control unit 7 will be described later in detail.
도 4는 본 발명의 일 실시 예에 따른 제1 분기 밸브의 개방을 나타낸 개념도로서, 상기 제어부(7)는 제4 유량센서(74)의 유량이 제2 유량센서(72)와 비교하여 후자가 전자의 90% 이상일 때 각각 제1 분기밸브(77a)를 제1 분기관로(77)로 개방하도록 구성하는 실시 예를 제시하였다.4 is a conceptual diagram illustrating the opening of a first branch valve according to an embodiment of the present invention, wherein the controller 7 has a flow rate of the fourth flow rate sensor 74 compared to the second flow rate sensor 72. An embodiment in which the first branch valve 77a is opened to the first branch pipe 77 when each of the electrons is 90% or more is presented.
상기 실시 예에서 90%의 의미는 전처리 필터(3)에서 프로메튬(PM)과, 사불화실리콘(
Figure PCTKR2013000479-appb-I000028
)과, 산소(
Figure PCTKR2013000479-appb-I000029
)과,
Figure PCTKR2013000479-appb-I000030
및 각종 분진이 10% 이하로 제거되었다는 의미와 동시에 막분리 필터(4)로 유입되는 배가스가 질소(
Figure PCTKR2013000479-appb-I000031
)와 육불화황(
Figure PCTKR2013000479-appb-I000032
) 만이 아니라 다른 물질도 많이 포함되었음을 의미하는 것이라고 할 수 있다.
In the above embodiment, 90% means promethium (PM) and silicon tetrafluoride (PM) in the pretreatment filter (3).
Figure PCTKR2013000479-appb-I000028
) And oxygen (
Figure PCTKR2013000479-appb-I000029
)and,
Figure PCTKR2013000479-appb-I000030
And at the same time that various dusts have been removed below 10%, the exhaust gas flowing into the membrane separation filter 4 is nitrogen (
Figure PCTKR2013000479-appb-I000031
) And sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000032
), But also means that it contains many other substances.
따라서 순도 높은 질소(
Figure PCTKR2013000479-appb-I000033
)와 육불화황(
Figure PCTKR2013000479-appb-I000034
)만으로 이루어진 배가스가 상기 막분리 필터(4)로 유입되어 처리 효율을 높일 수 있도록 하기 위한 실시 예이며, 상기 제1 분기밸브(77a)는 3상밸브이다.
Therefore, high purity nitrogen (
Figure PCTKR2013000479-appb-I000033
) And sulfur hexafluoride (
Figure PCTKR2013000479-appb-I000034
Exhaust gas consisting of) is introduced into the membrane separation filter 4 to increase the treatment efficiency, and the first branch valve 77a is a three-phase valve.
도 5는 본 발명의 일 실시 예에 따른 제1 분기 밸브의 개방을 나타낸 개념도로서, 상기 제어부(7)는 제5 유량센서(75)는 제3 유량센서(73)와 비교하여 후자가 전자의 90% 이상일 때 제2 분기밸브(77a)가 제2 분기관로(77)를 개방하도록 구성되는 실시 예를 나타내었다.5 is a conceptual view illustrating the opening of a first branch valve according to an exemplary embodiment of the present invention, wherein the controller 7 is the fifth flow rate sensor 75 compared with the third flow rate sensor 73. An embodiment in which the second branch valve 77a is configured to open the second branch pipe 77 when it is 90% or more is shown.
상기 제3 유량센서(73)에서 공급되는 질소의 양으로 고려하여 90% 이상이 제5 유량센서(75)에서 감지되면 육불화황이 포함되어 있다고 판단하여 다시 막분리 필터(4)를 거치도록 하는 실시 예로서 상기 제2 분기밸브(78a)는 3상밸브 혹은 대기중에 배출하는 관로가 형성되어 있으면 4상 밸브가 된다.In consideration of the amount of nitrogen supplied from the third flow sensor 73, when 90% or more is detected by the fifth flow sensor 75, it is determined that sulfur hexafluoride is included, and then passes through the membrane separation filter 4 again. In an exemplary embodiment, the second branch valve 78a may be a four-phase valve if a three-phase valve or a pipeline for discharging the air is formed.
도 6은 본 발명의 일 실시 예에 따른 제1 분기 밸브의 개방을 나타낸 개념도로서, 상기 제어부(7)는 제6 유량센서(76)가 제1 유량센서(71)와 비교하여 후자가 전자의 90% 이상일 때 제3 분기밸브(79a)에서 제3 분기관로(79)를 개방하도록 구성되는 실시 예를 나타내었다.6 is a conceptual diagram illustrating the opening of a first branch valve according to an embodiment of the present invention, wherein the controller 7 includes the sixth flow sensor 76 compared with the first flow sensor 71. An embodiment configured to open the third branch conduit 79 from the third branch valve 79a when 90% or more is shown.
상기 제4 유량센서(74)에서 공급되는 육불화황의 양으로 고려하여 90% 이상이 제6 유량센서(76)에서 감지되면 질소가 포함되어 있다고 판단하여 다시 막분리 필터(4)를 거치도록 하는 실시 예로서 상기 제3 분기밸브(79a)는 3상밸브 혹은 소각로에서 육불화황을 소각하는 관로가 형성되어 있으면 4상 밸브가 된다.In consideration of the amount of sulfur hexafluoride supplied from the fourth flow sensor 74, when 90% or more is detected by the sixth flow sensor 76, it is determined that nitrogen is included, and then passes through the membrane separation filter 4 again. According to an embodiment, the third branch valve 79a may be a four-phase valve if a three-phase valve or a pipe for incineration sulfur hexafluoride is formed in an incinerator.
[부호의 설명][Description of the code]
1 : 배가스 발생시설1: flue gas generator
2 : 제1 드라이 펌프2: first dry pump
3 : 전처리 필터3: pretreatment filter
31 : 제1 챔버 32 : 물     31: first chamber 32: water
33 : 배가스 유입부 34 : 알카리성 흡착제층     33: exhaust gas inlet 34: alkaline adsorbent layer
35 : 물분사노즐 36 : 수분 흡착필터     35 water spray nozzle 36 water adsorption filter
37 : 배가스 배출부     37: exhaust gas discharge unit
4 : 막분리 필터4: membrane separation filter
41 : 제2 챔버 42 : 분리홀     41: second chamber 42: separation hole
43 : 질소 배출부 44 : 육불화황 배출부     43: nitrogen outlet 44: sulfur hexafluoride outlet
5 : 질소 재활용 공급부5: nitrogen recycling supply unit
51 : 제2 드라이 펌프 52 : 질소 배출배관     51: second dry pump 52: nitrogen discharge pipe
53 : 질소 탱크 54 : 재공급 배관     53: nitrogen tank 54: resupply piping
55 : 질소 공급배관     55: nitrogen supply piping
6 : 육불화황 재활용 공급부6: sulfur hexafluoride recycling supply unit
61 : 육불화황 탱크 62 : 육불화황 공급배관     61: sulfur hexafluoride tank 62: sulfur hexafluoride supply piping
7 : 제어부7: control unit
71 : 제1 유량밸브 72 : 제2 유량밸브     71: first flow valve 72: second flow valve
73 : 제3 유량밸브 74 : 제4 유량밸브     73: third flow valve 74: fourth flow valve
75 : 제5 유량밸브 76 : 제6 유량밸브     75: fifth flow valve 76: sixth flow valve
77a : 제1 분기밸브 77 : 제1 분기관로     77a: first branch valve 77: first branch pipe
78a : 제2 분기밸브 78 : 제2 분기관로     78a: second branch valve 78: second branch pipe
79a : 제3 분기밸브 79 : 제3 분기관로     79a: third branch valve 79: third branch pipe

Claims (2)

  1. 드라이 에칭공정과 CVD 세정 챔버 등의 과불화화합물을 이용하거나 생성되는 배가스 발생시설(1)에서 발생하는 분진을 포함하는 가스를 처리하는 과불화화합물의 분리 및 재활용시스템에 있어서;A system for separating and recycling a perfluorinated compound for treating a gas containing dust generated by a flue gas generating facility (1) using or using a perfluorinated compound such as a dry etching process and a CVD cleaning chamber;
    하나 이상의 배가스 발생시설(1)에서 발생하는 배가스를 흡입하는 제1 드라이 펌프(2)와;A first dry pump 2 for sucking exhaust gas generated in at least one exhaust gas generating facility 1;
    제1 챔버(31)와, 상기 제1 챔버(31)의 하부에 충진되는 물(32)과, 물(32)의 수면 바로 위로 상기 제1 드라이 펌프(2)에서 흡입된 배가스가 유입되는 배가스 유입부(33)와, 상기 배가스 유입부(33)로 유입된 배가스가 상승하여 통과하도록 하는 알카리성 흡착제층(34)과, 하부에 충진된 물의 일부가 유입되어 상기 알카리성 흡착제층(34)의 상부로 물(32)을 분사하는 다수의 물분사노즐(35)과, 상기 물분사노즐(35)의 상부에 형성되는 수분 흡착필터(36) 및 상기 수분 흡착필터(36)의 상부로 형성되는 배가스 배출부(37)으로 구성되는 전처리 필터(3)와;Exhaust gas into which the first chamber 31, the water 32 filled in the lower portion of the first chamber 31, and the exhaust gas sucked by the first dry pump 2 directly above the water surface of the water 32 are introduced. An inlet part 33, an alkaline adsorbent layer 34 for allowing the exhaust gas introduced to the exhaust gas inlet part 33 to rise and pass, and a portion of the water filled in the lower part are introduced to the upper portion of the alkaline adsorbent layer 34. A plurality of water spray nozzles 35 for injecting water 32 into the furnace, a water adsorption filter 36 formed on the water spray nozzle 35, and an exhaust gas formed on the water adsorption filter 36. A pretreatment filter 3 composed of a discharge part 37;
    제2 챔버(41)와, 상기 제2 챔버(41) 내부에 적어도 하나 이상 형성되어 3~4 옴스트롬(Å)의 직경을 가진 다수의 분리홀(42)이 형성되고 상기 전처리 필터(3)를 거친 배가스가 유입되어 질소는 상기 분리홀(42)을 통과하여 질소 배출부(43)로 배출되고 육불화황은 통과하지 못하여 육불화황 배출부(44)로 배출하여 연소시키도록하는 막분리 필터(4)와;A plurality of separation holes 42 having a diameter of 3 to 4 angstroms are formed in the second chamber 41 and at least one inside the second chamber 41, and the pretreatment filter 3 is formed. The exhaust gas is passed through the nitrogen is passed through the separation hole 42 is discharged to the nitrogen discharge portion 43, the sulfur hexafluoride does not pass through the membrane separation filter to discharge to burn the sulfur hexafluoride discharge portion 44 (4);
    상기 질소 배출부(43)로 배출된 질소를 흡입하는 제2 드라이 펌프(51)와, 질소를 대기중에 배출하는 질소 배출배관(52)과, 질소가 충진되는 질소 탱크(53)와, 상기 제2 드라이 펌프(51)로부터 상기 탱크(53)로 질소를 공급하는 재공급배관(54)과, 상기 질소 탱크(53)에서 상기 제1 드라이 펌프(2)로 질소를 공급하는 질소 공급배관(55)으로 구성되는 질소 재활용 공급부(5)와;A second dry pump 51 for sucking nitrogen discharged to the nitrogen discharge part 43, a nitrogen discharge pipe 52 for discharging nitrogen into the atmosphere, a nitrogen tank 53 filled with nitrogen, and the 2 a resupply pipe 54 for supplying nitrogen from the dry pump 51 to the tank 53, and a nitrogen supply pipe 55 for supplying nitrogen from the nitrogen tank 53 to the first dry pump 2; A nitrogen recycling supply unit (5) consisting of;
    상기 육불화황 배출부(44)로 배출되는 육불화황이 충진되는 육불화황 탱크(61)와, 하나 이상의 배가스 발생시설(1)에 육불화황을 공급하는 육불화황 공급배관(62)으로 구성되는 육불화황 재활용 공급부(6)와;The sulfur hexafluoride tank 61 filled with sulfur hexafluoride discharged to the sulfur hexafluoride discharge unit 44 and the sulfur hexafluoride supply pipe 62 for supplying sulfur hexafluoride to one or more flue gas generating facilities 1. Sulfur hexafluoride recycling supply unit 6 is configured;
    상기 배가스 발생시설(1)에 공급되는 육불화황 가스의 유량을 감지하는 제1 유량센서(71)와, 상기 제1 드라이 펌프(2)에 도달하기 전 배가스의 유량을 감지하는 제2 유량센서(72)와, 상기 질소 공급배관(55)의 유량을 감지하는 제3 유량센서(73)와, 상기 배가스 배출부(37)로 배출되는 유량을 감지하는 제4 유량센서(74)와, 상기 질소 배출부(43)의 유량을 감지하는 제5 유량센서(75)와, 상기 육불화황 배출부(44)의 유량을 감지하는 제6 유량센서(76)와, 상기 제4 유량센서(74)를 지난 후 제1 분기밸브(77a)에 의하여 상기 전처리필터(3)의 배가스 유입부(33)로 분기 연결되는 제1 분기관로(77)와, 상기 제5 유량센서(75)를 지난 후 제2 분기밸브(78a)에 의하여 분기되어 막분리 필터(4)로 재유입되도록 하는 제2 분기관로(78)와, 상기 제6 유량센서(76)를 지난 후 제3 분기밸브(79a)에 의하여 분기되어 막분리 필터(4)로 재유입되도록 하는 제3 분기관로(79)를 포함하는 제어부(7)로 구성됨을 특징으로 하는 과불화화합물의 분리 및 재활용 시스템.First flow sensor 71 for sensing the flow rate of sulfur hexafluoride gas supplied to the exhaust gas generating facility (1), and second flow sensor for sensing the flow rate of the exhaust gas before reaching the first dry pump (2) (72), a third flow rate sensor (73) for detecting the flow rate of the nitrogen supply pipe (55), a fourth flow rate sensor (74) for detecting the flow rate discharged to the exhaust gas discharge portion (37), and A fifth flow rate sensor 75 for detecting the flow rate of the nitrogen discharge portion 43, the sixth flow sensor 76 for detecting the flow rate of the sulfur hexafluoride discharge portion 44, and the fourth flow sensor 74 After passing through the first branch pipe 77 and the fifth flow sensor 75 is branched to the exhaust gas inlet 33 of the pretreatment filter 3 by the first branch valve (77a). After the second branch pipe (78a) branched by the second branch valve (78a) to be re-introduced into the membrane separation filter (4), and the sixth flow sensor 76, the third branch valve (79a) Of) And a control unit (7) comprising a third branch line (79) for branching and reflowing into the membrane separation filter (4).
  2. 제 1항에 있어서, The method of claim 1,
    상기 제어부(7)는 제4 유량센서(74)의 유량은 제2 유량센서(72)와, 제5 유량센서(75)는 제3 유량센서(73)와, 제6 유량센서(76)는 제1 유량센서(71)와 비교하여 후자가 전자의 90% 이상일 때 각각 제1 내지 제3 분기밸브(77a, 78a, 79a)가 각각 제1 내지 제3 분기배관(77, 78, 79)을 개방하도록 구성됨을 특징으로 하는 과불화화합물의 분리 및 재활용시스템.The control unit 7 has a flow rate of the fourth flow sensor 74 is the second flow sensor 72, the fifth flow sensor 75 is the third flow sensor 73, the sixth flow sensor 76 Compared to the first flow sensor 71, when the latter is 90% or more of the former, the first to third branch valves 77a, 78a and 79a respectively open the first to third branch pipes 77, 78 and 79, respectively. Separation and recycling system for perfluorinated compound, characterized in that it is configured to open.
PCT/KR2013/000479 2012-02-23 2013-01-21 System for separating and reusing perfluorocarbon compound WO2013125792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0018422 2012-02-23
KR1020120018422A KR101410914B1 (en) 2012-02-23 2012-02-23 The separation and recycling system for a perfluoro compounds

Publications (1)

Publication Number Publication Date
WO2013125792A1 true WO2013125792A1 (en) 2013-08-29

Family

ID=49005939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000479 WO2013125792A1 (en) 2012-02-23 2013-01-21 System for separating and reusing perfluorocarbon compound

Country Status (2)

Country Link
KR (1) KR101410914B1 (en)
WO (1) WO2013125792A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255288A (en) * 2017-07-27 2017-10-17 江苏久朗高科技股份有限公司 A kind of high concentration salty organic waste liquid incineration tail gas embrane method processing system and technique
CN114307498A (en) * 2021-12-31 2022-04-12 江苏国升明华生态技术有限公司 Waste gas treatment device and treatment system thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105251310B (en) * 2014-07-17 2018-08-21 杨文广 The geological storage method and corollary apparatus of industrial tail gas
KR101638325B1 (en) * 2014-09-03 2016-07-12 노영석 The perfluoro compounds separation system
KR20170079234A (en) 2015-12-30 2017-07-10 상명대학교산학협력단 Polymer electrolyte membrane containing nitrate for SF6 separation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285719A (en) * 1996-04-23 1997-11-04 Mitsubishi Electric Corp Gaseous sulfur hexafluoride recovering and regenerating device and mobile recovering and regenerating device
KR19990007129A (en) * 1997-06-20 1999-01-25 나카노 기요구라 SF 6 gas recovery. Tablet processing apparatus and method
JP2000005561A (en) * 1998-06-18 2000-01-11 Nippon Sanso Kk Treatment of fluoride
KR100266460B1 (en) * 1995-07-17 2000-09-15 쉬에르 피에르 Process and system for separation and recovery of perfluorocompound gas
JP2001103626A (en) * 1999-09-30 2001-04-13 Toshiba Corp Gas recovering apparatus
KR20020010488A (en) * 2000-07-26 2002-02-04 마에다 히로카쓰 Gas seperation apparatus
JP2004123419A (en) * 2002-09-30 2004-04-22 Mitsubishi Electric Corp Regenerating apparatus of sulfur hexafluoride gas
JP2005185897A (en) * 2003-12-24 2005-07-14 Central Glass Co Ltd Method for treating sulfur hexafluoride gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858065A (en) * 1995-07-17 1999-01-12 American Air Liquide Process and system for separation and recovery of perfluorocompound gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266460B1 (en) * 1995-07-17 2000-09-15 쉬에르 피에르 Process and system for separation and recovery of perfluorocompound gas
JPH09285719A (en) * 1996-04-23 1997-11-04 Mitsubishi Electric Corp Gaseous sulfur hexafluoride recovering and regenerating device and mobile recovering and regenerating device
KR19990007129A (en) * 1997-06-20 1999-01-25 나카노 기요구라 SF 6 gas recovery. Tablet processing apparatus and method
JP2000005561A (en) * 1998-06-18 2000-01-11 Nippon Sanso Kk Treatment of fluoride
JP2001103626A (en) * 1999-09-30 2001-04-13 Toshiba Corp Gas recovering apparatus
KR20020010488A (en) * 2000-07-26 2002-02-04 마에다 히로카쓰 Gas seperation apparatus
JP2004123419A (en) * 2002-09-30 2004-04-22 Mitsubishi Electric Corp Regenerating apparatus of sulfur hexafluoride gas
JP2005185897A (en) * 2003-12-24 2005-07-14 Central Glass Co Ltd Method for treating sulfur hexafluoride gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255288A (en) * 2017-07-27 2017-10-17 江苏久朗高科技股份有限公司 A kind of high concentration salty organic waste liquid incineration tail gas embrane method processing system and technique
WO2019019759A1 (en) * 2017-07-27 2019-01-31 江苏久朗高科技股份有限公司 Membrane method processing system and process for high-concentration salt-containing organic waste liquid incineration exhaust gas
CN107255288B (en) * 2017-07-27 2019-05-21 江苏久朗高科技股份有限公司 A kind of high concentration salty organic waste liquid incineration tail gas embrane method processing system and technique
CN114307498A (en) * 2021-12-31 2022-04-12 江苏国升明华生态技术有限公司 Waste gas treatment device and treatment system thereof

Also Published As

Publication number Publication date
KR101410914B1 (en) 2014-06-24
KR20130096877A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
WO2013125792A1 (en) System for separating and reusing perfluorocarbon compound
US7972582B2 (en) Method and apparatus for treating exhaust gas
KR100847916B1 (en) Effluent gas stream treatment device and mehod having utility for oxidation treatment of semiconductor manufacturing effluent gases
US20090246094A1 (en) Waste gas purification apparatus
US20090017206A1 (en) Methods and apparatus for reducing the consumption of reagents in electronic device manufacturing processes
KR102023950B1 (en) Apparatus for treating waste gas
CN101472666A (en) Method and apparatus for the removal of fluorine from a gas stream
WO2020091392A1 (en) Integrated apparatus for treating exhaust gas using metal filter
WO2013125791A1 (en) System for separating and reusing perfluorocarbon compound
WO2010013903A2 (en) Multipurpose ozone treatment method and apparatus for a ship
KR20190127244A (en) Apparatus for treating waste gas
WO2004089515A1 (en) Method and apparatus for treating exhaust gas
WO2016089013A1 (en) Wet gas cleaning apparatus using ultrasonic waves
CN105879566B (en) NO in the medium barrier discharging induced reduction removing flue gas of one kindxMethod and apparatus
WO2014208808A1 (en) System for separating and recycling perfluoro compounds
KR101488300B1 (en) The separation and recycling system for a perfluoro compounds that have a separation fillter heating equipment
KR101617691B1 (en) Device for purifying exhuasted gas from chemical vapor deposition
KR19980073226A (en) Semi-dry / bag filter device and processing process
KR100545696B1 (en) Waste gas scrubber integral with vaccum pump
KR100449781B1 (en) Method and apparatus for reducing PFC emission during semiconductor manufacture
KR101552538B1 (en) The separation and recycling system for a perfluoro compounds
WO2023003191A1 (en) Flue gas treatment apparatus utilizing flooding in scrubber provided with packing
KR200267601Y1 (en) Waste-gas cleaning device with Plazma
WO2023121016A1 (en) Eco-friendly treatment system and treatment method for industrial discharge process gas using swirling method
WO2016093654A1 (en) Gas scrubber that generates no plumes and method of scrubbing gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751431

Country of ref document: EP

Kind code of ref document: A1