WO2013123817A1 - 一种两相浸没散热装置、通信设备及其制造方法 - Google Patents

一种两相浸没散热装置、通信设备及其制造方法 Download PDF

Info

Publication number
WO2013123817A1
WO2013123817A1 PCT/CN2012/087873 CN2012087873W WO2013123817A1 WO 2013123817 A1 WO2013123817 A1 WO 2013123817A1 CN 2012087873 W CN2012087873 W CN 2012087873W WO 2013123817 A1 WO2013123817 A1 WO 2013123817A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
sealing
pipe
cavity
casing
Prior art date
Application number
PCT/CN2012/087873
Other languages
English (en)
French (fr)
Inventor
罗朝霞
黄书亮
翟立谦
柯有和
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013123817A1 publication Critical patent/WO2013123817A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/203Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to the field of heat dissipation technology, and in particular, to a two-phase immersion heat sink, a communication device, and a method of fabricating the same.
  • Embodiments of the present invention provide a two-phase immersion heat sink, a communication device, and a method of fabricating the same, which are used to solve the problem of how to effectively dissipate heat by immersion cooling technology.
  • the embodiment of the present invention provides a two-phase immersion heat dissipation device, including:
  • a sealing case (101) is connected to the condenser (103) through the line (102), the sealing case (101) has a cavity, and a cavity of the sealing case (101) is used to accommodate an insulating working substance And heat source
  • the condenser (103) has a cavity; the pipeline (102) connects the pipeline (102) and the condenser (103) to make a cavity and a chamber of the sealing casing (101)
  • the cavity of the condenser (103) forms a closed loop;
  • a condenser (103) is located above the sealing case (101); a wall of the sealing case (101) is further provided with a connector in the sealing case (101) electrically connected to the outside of the sealing case (101);
  • the insulating working medium is an insulating working medium having a gas-liquid two-phase phase change characteristic; part or all of the heat source device is immersed in a liquid insulating working medium in the sealed casing (101), the sealed casing (101)
  • the liquid insulating working medium absorbs the heat of the heat source device to become gaseous and then rises, and enters the condenser (103) through the pipeline (102), and the gaseous insulating working medium is released into the condenser (103).
  • the liquid insulating working medium then enters the sealing case (101) through the pipeline (102) under the action of gravity.
  • An embodiment of the present invention further provides a communication device, including a heat source device, and the foregoing two-phase immersion heat sink;
  • the heat source device is electrically connected to a device external to the two-phase immersion heat sink by a connector of the two-phase immersion heat sink.
  • the embodiment of the invention further provides a method for manufacturing a two-phase immersion heat dissipating device, comprising: manufacturing a sealing shell (101), a pipeline (102) and a condenser (103); the sealing shell (101) has a cavity, a cavity of the sealing case (101) for accommodating an insulating working medium and a heat source device; the condenser (103) has a cavity; a wall surface of the sealing case (101) is provided with a sealing case (101) and a sealing case ( 101) an externally connected connector;
  • the insulating working medium is an insulating working medium having a gas-liquid two-phase phase change characteristic; part or all of the heat source device is immersed in a liquid insulating working medium in the sealed casing (101), the sealed casing (101)
  • the liquid insulating working medium absorbs the heat of the heat source device to become gaseous and then rises, and enters the condenser (103) through the pipeline (102), and the gaseous insulating working medium is released into the condenser (103).
  • the liquid insulating working medium enters the sealed casing (101) through the pipeline (102) under the action of gravity.
  • the insulating working medium undergoes a phase change after absorbing heat generated by the heat source device, and the liquid changes into a gas, and the gas working medium rises into the condenser under the action of density difference and gravity.
  • Heat exchange with the cold source in the condenser discharges the heat to the cold source, where the gaseous medium condenses and becomes liquid again.
  • the liquid working medium returns to the sealed casing under the action of gravity, and the heat source device is again dissipated.
  • the solution can not only solve the problem of high-density heat dissipation, but since the shape of the sealing shell does not affect the realization of the solution, the sealing shell can be manufactured into any shape required to meet the needs of different application scenarios. For example, there is no impact on the form of the existing equipment room and ICT equipment, which is a smooth evolution solution.
  • FIG. 1 is a schematic diagram of a heat dissipation device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a sealing case and a pipeline according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a sealing case and a pipeline according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a sealing case and a pipeline according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a heat dissipation device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a water cooling system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of an air cooling system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a condenser according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a condenser according to an embodiment of the present invention.
  • the embodiment of the invention provides a two-phase immersion heat dissipation device, as shown in FIG. 1 Read Figures 2 ⁇ 4, including:
  • the sealing case 101 is connected to the condenser 103 through the above-mentioned pipeline 102.
  • the sealing case 101 has a cavity, the cavity of the sealing case 101 is for accommodating an insulating working medium and a heat source device;
  • the condenser 103 has a cavity;
  • the circuit 102 connects the pipeline 102 and the condenser 103 to form a closed circuit between the cavity of the sealing casing 101 and the cavity of the condenser 103;
  • the condenser 103 is located above the sealing case 101; the wall surface of the sealing case 101 is further provided with a connector in the sealing case 101 electrically connected to the outside of the sealing case 101;
  • the insulating working medium is an insulating working medium having a gas-liquid two-phase phase change characteristic; part or all of the heat source device is immersed in a liquid insulating working medium in the sealed casing 101, and the liquid insulating working medium in the sealed casing 101 The heat absorbing the heat source device is changed to a gaseous state and then rises, and enters the condenser 103 through the pipeline 102. The gaseous insulating working medium is released into the liquid insulating working medium in the condenser 103, and then passes through the pipeline 102 under the action of gravity. Enter the sealed casing 101.
  • the above device further includes: a connecting member 104;
  • the line 102 is connected to the line 102 and the condenser 103. Specifically, the line 102 is connected to the sealing case 101 and the condenser 103 via a connecting member 104.
  • the above connector may be: a connector having a signal connection function or an electrical connection function, a connector, a cable, and the like; the specific structure thereof is not limited in the embodiment of the present invention.
  • connection portion of the pipe 102 to the seal casing 101 may be generally disposed above the bottom of the seal casing 101; if there is more than one pipe 102, only one pipe 102 may be above the bottom of the seal casing 101.
  • the casing of the sealed casing 101 may be any shape adapted to the machine rejection, for example, a rectangular parallelepiped.
  • the number of the pipelines 102 is one or more; of course, the number of the pipelines 102 may be other, which is not limited in the embodiment of the present invention; in order to smoothly make the insulating working fluid in the sealed casing 101 A loop is formed between the condenser and the condenser 103, preferably two; if the number of the pipelines 102 is two, respectively a first conduit and a second conduit; then the connection between the first conduit and the seal housing 101 is close The bottom of the sealing case 101; the connection point of the second line to the sealing case 101 is close to the top of the sealing case 101.
  • the embodiment of the present invention provides the following solution: the hot-high-density area of the heat source device or the high-power chip has more requirements for heat dissipation.
  • the first pipe has a terminal end connected to the sealing case 101.
  • the branches of the pipe, and the branches extend toward the inside of the sealed casing 101 and are directed to the heat source device.
  • the condenser 103 described above is a condenser 103 which employs a liquid-cooled structure or a condenser 103 which adopts an air-cooling structure.
  • the subsequent embodiments will be exemplified in this respect. It should be noted that it is also possible to use other chillers 103, for example, using natural cooling, which is not limited in the embodiment of the present invention.
  • the tubing 102 of the embodiment of the present invention is a soft tubing 102 for ease of placement and disassembly.
  • the connecting member 104 provided by the embodiment of the present invention is a connecting head having an automatic closing function when the pipe 102 is pulled out, or the connecting member 104 is a valve and a connecting pipe 102 and a sealing shell 101 or a condenser 103. Adapter.
  • a condenser 103 may serve one sealed casing 101 or a plurality of sealed casings 103, if serving a plurality of sealed casings: as shown in Figures 9 and 10, the condenser 103 passes through the conduit 102 and at least two The sealing shell 101 is connected; the condenser 103 has a partition plate 105 therein, and the partition plate 105 divides the sealed cavity cavity of the condenser 103 into at least two sealed cavities; the above-mentioned pipeline 102 is connected to the sealing shell through the connecting member 104.
  • the condenser 101 and the condenser 103 forming a connecting pipe between the sealed casing 101 and the sub-sealing cavity of the condenser 103; specifically: the pipe 102 is connected to the sealing casing 101 and the condenser 103 through the connecting member 104 to form a sealed casing 101 corresponding thereto
  • the sub-sealing chamber connects the pipes between the cavities.
  • the condenser is divided into a plurality of sections by the partitioning plate 105, so that the heat-dissipating resources can be distributed to the heat source devices in the plurality of sealed casings.
  • the embodiment of the present invention further provides a communication device, including: a heat source device, and a two-phase immersion heat dissipation device according to any one of the embodiments of the present invention;
  • the heat source device is electrically connected to a device external to the two-phase immersion heat sink through a connector of the two-phase immersion heat sink.
  • the embodiment of the present invention further provides a method for manufacturing a two-phase immersion heat dissipation device. As shown in FIG. 5, the method includes:
  • the sealing case 101 has a cavity, the cavity of the sealing case 101 is for accommodating the insulating working medium and the heat source device; the condenser 103 has a cavity; the wall surface of the sealing case 101 is provided with the inside of the sealing case 101 and the outer part of the sealing case 101 Connected connector 502: connecting the sealing shell 101 to the condenser 103 through the pipeline 102; forming a closed loop between the cavity of the sealing shell 101 and the cavity of the condenser 103; placing the condenser 103 in the sealing shell 101 Upper position
  • the insulating working medium is an insulating working medium having a gas-liquid two-phase phase change characteristic; part or all of the heat source device is immersed in a liquid insulating working medium in the sealed casing 101, and the liquid insulating working medium in the sealed casing 101 The heat absorbing the heat source device is changed to a gaseous state and then rises, and enters the condenser 103 through the pipeline 102. The gaseous insulating working medium is released into the liquid insulating working medium in the condenser 103, and then passes through the pipeline 102 under the action of gravity. Enter the sealed casing 101.
  • the above method further includes: manufacturing a connector 104;
  • the sealing case 101 is connected to the condenser 103 through the above-mentioned line 102; specifically, both ends of the line 102 are connected to the sealing case 101 and the condenser 103 through the connecting member 104, respectively.
  • the number of the pipelines 102 is one or more; if the number of the pipelines 102 is two, respectively, the first pipeline and the second pipeline; then the first pipeline and the sealing shell 101 are The connected portion is disposed near the bottom of the sealed casing 101; the portion where the second conduit is connected to the sealed casing 101 is disposed near the top of the sealed casing 101.
  • the end of the first pipe manufactured by the above-mentioned pipe and the sealing shell 101 has a branch of the pipeline; the method further includes: extending each branch toward the inside of the sealing shell 101, and directing each branch to the heat of the heat source device. Density area or high power chip.
  • the condenser 103 is connected to at least two sealed cases 101 through a pipe 102; and the condenser 103 manufactured above is disposed inside the condenser 103.
  • the partition plate 105 divides the sealed cavity cavity of the condenser 103 into at least two sealed cavities by the partition plate 105; the above-mentioned pipe 102 and the connecting member 104 connect the sealing case 101 and the condenser 103 to form a seal.
  • a connecting pipe between the casing 101 and the sealed cavity of the condenser 103 specifically: connecting the sealing casing 101 and the condenser 103 through the above-mentioned pipe 102 and the connecting member 104 to form a sealed casing 101 and its corresponding sub-sealing cavity Connection pipe.
  • the method further includes: installing the two-phase immersion heat sink on the machine.
  • part or all of the heat source of the single board or other heat source device may be immersed in the insulating working medium, and the insulating working medium is a medium for transferring heat;
  • the edge working medium undergoes a phase change after absorbing the heat generated by the heat source device, and the liquid changes to a gas.
  • the gas working medium rises into the condenser, and heat exchange with the cold source in the condenser causes heat.
  • Discharged into the cold source the gas working fluid condenses and becomes liquid again.
  • the liquid working medium returns to the sealed casing under the action of gravity, and heats the heat source device again.
  • the cold source When used in indoor equipment, the cold source can use cold water in the equipment room; for scenes without cold water, such as when used in outdoor equipment, the cold source can choose air. In some special situations, for reasons of safety or convenience, the cold source may also choose other liquids or gases, such as refrigerants in conventional air conditioning systems.
  • the phase change immersion heat dissipation solution provided by the embodiment of the invention not only solves the problem of high-density heat dissipation, but since the shape of the sealing shell does not affect the realization of the solution, the sealing shell can be manufactured into any shape required to meet the needs of different application scenarios. For example, there is no impact on the form of the existing equipment room (data center or core equipment room) and ICT equipment, which is a smooth evolution. In addition, the solution proposed in this paper can easily plug and unplug the device during maintenance without affecting the heat dissipation of other devices.
  • the heat source is based on a single printed circuit board (PCB) board.
  • phase change immersion heat dissipation scheme As shown in Figure 6, an example of a phase change immersion heat dissipation scheme is as follows:
  • the PCB board 601 is entirely or partially disposed in the sealed housing 602, and the sealed housing 602 is filled with an insulating liquid working medium.
  • the sealed housing is connected to the condenser 604 via line 603.
  • a joint can also be provided on the line 603 for ease of disassembly and maintenance.
  • the gas working medium rises, enters the condenser 604 through the line 603, and condenses after the heat is discharged in the condenser 604, and the gas working medium is changed from the gas to the liquid.
  • the liquid is again returned to the liquid and re-entered into the sealed housing 602 along line 601, which again cools the PCB 601 and the devices thereon.
  • the condenser 601 usually has the function of a manifold multi-manifold.
  • the condenser 601 and the manifold (Manifold) are fixed above the PCB veneer 601 and the sealing casing 602 to facilitate the return of the insulating working fluid in a liquid form and the rise in a gaseous form. Cold in this case
  • the condenser 604 will be exemplified in this embodiment in the following embodiments.
  • Fig. 7 is a schematic diagram of a scheme using a water cooling system, which can be used in an environment with cold water conditions such as an indoor equipment room, and requires a chilled water system of a cold source system room.
  • the chilled water in the equipment room is heat-exchanged with the cold water required by the water-cooled condenser 701 through a cooling distribution unit 704 (CDU), and the heat generated by the ICT equipment is taken away.
  • the CDU can be installed in a variety of ways, either at the bottom of the machine 702 or as a separate unit, or without a CDU, and the cold water enters the water-cooled condenser 701 directly through the pipe system.
  • Part or all of the PCB sheets using the phase change immersion cooling described herein are placed in a sealed casing and then inserted into the basket 703.
  • a plurality of PCB boards that are wholly or partially sealed in the sealed casing may be mounted in a basket 703.
  • the water-cooled condenser 701 and Manifold can be placed inside the basket 703 and as part of the basket 703, or can be attached directly to the interior of the machine 702 and above the basket 703 as separate components.
  • the machine rejection 702 can be similar to the machine rejection mode in the current equipment room, such as the 600mm wide IEC standard machine.
  • Fig. 8 is a schematic diagram of a scheme using an air-cooling system, which can be applied to an application scene with a fresh air source such as outdoors, and the cold source of the condenser 801 is a fresh air.
  • the fan 802 fresh cold air is blown through the air-cooled condenser 801 to exchange heat with the insulating working fluid in the air-cooled condenser 801 to absorb the heat carried by the insulating working medium.
  • the insulating working fluid is condensed into a liquid in the air-cooled condenser 801, and the liquid enters the sealed casing along the pipeline, and the PCB of the sealed casing and the device thereon are cooled again. After the insulating liquid working medium absorbs the heat generated by the PCB and the device above it, the phase changes into a gas, and the gas working medium rises along the pipeline and re-enters the air-cooled condenser 801.
  • a plurality of PCB boards can share an air-cooled condenser 801, so that the collection and flow distribution of the insulating medium can also be considered, that is, the condenser 801 usually has a Manifold function.
  • the condenser 801 and the manifold (Manifold) are fixed above the PCB veneer and the sealed casing to facilitate the return of the insulating working fluid in a liquid form and the rise in the form of a gas.
  • Some machines have a separate insertion basket 804 in the 803, and the insertion basket 804 and the machine are refused to be integrated, as long as the condenser and Manifold are secured. It is fixed above the PCB board and its sealed housing, and ensures the smooth flow of the cold source.
  • the condenser 801 and Manifold are placed in the basket 804 as part of the machine 803, even if the Manifold is located in the basket 804 and the condenser 801 is part of the machine 803, etc., without affecting the implementation of the embodiments of the present invention.
  • the line 102 can be a flexible hose, and the line 102 can be provided with a valve and a common adapter or a quick connector.
  • the valve can be closed and the pipe can be disconnected from the joint; then the PCB board and its sealed casing are pulled out from the machine or into the basket.
  • a quick connector is applied, the pipe 102 is automatically closed when it is pulled out, and the insulating medium does not escape from the body of the sealed casing 101.
  • the position of the joint on the line 102 can be selected in the middle of the line 102, or at one end of the body of the sealed casing 101, or at one end of the condenser.
  • the embodiment of the invention is not limited in this regard.
  • the liquid and the gas share a line 102, and a joint is also provided on the line.
  • This implementation case is applicable to scenarios with relatively low heat density. Can save costs.
  • a line 102 is used for each of the gas and liquid.
  • the connection between the gas line and the sealing case 101 is located at the upper portion of the sealing case 101 body, and the connection between the liquid line and the sealing case 101 body is located at a lower portion of the sealing case 101 body.
  • the purpose of this is to make the reflux of the liquid not affect the rise of the gas, and make the rising passage of the gas smoother, so as to enhance the heat dissipation.
  • a branch circuit 1021 can also be used on the line 102 to enhance heat dissipation in a high density area or a high power chip.
  • two branching paths 1021 are separated, and the two branching paths 1021 respectively direct the liquid working medium to two high-power chips. In this way, the temperature of the liquid that dissipates heat to the high-power chip is low, which is beneficial to the heat dissipation of the high-power chip.
  • the pipe thickness of the branching path 1021 can be determined according to the flow rate required for the local area.
  • the main function of the condenser 103 and the manifold is to realize the heat exchange between the cold source and the insulating working medium, and at the same time to control the flow distribution of the non-conductive working medium.
  • One purpose of controlling the flow distribution is to weaken the interaction between the different PCBs and their sealed housings so that the heat dissipation of the units is not much affected when the single board device is plugged or unplugged or when the equipment is not fully equipped.
  • the condenser 103 and the manifold are implemented in a variety of ways. As shown in Figures 9 and 10, two examples of condensers are: Fig.
  • FIG. 9 shows an example of the condenser 103 and the manifold, which is water-cooled; the cold water flows in the water pipe 901, and the outside of the water pipe 901 is an insulating working medium, and the cold water and the insulating working medium exchange heat through the wall surface of the water pipe 901.
  • some fins may be disposed on the water pipe 901.
  • the ribs are as shown in the rib 902 of FIG. 10; the condenser 103 and the manifold are internally provided with a plurality of partition plates 105, and the partition plate 105 divides the sealed cavity of the condenser 103 into a plurality of units, and each unit may correspond to one PCB board and its sealed housing.
  • the line 102 of the insulating working gas is disposed at a position above the condenser 103 and the manifold, and the liquid line 102 of the insulating medium is disposed at a lower position of the condenser and the manifold.
  • the purpose of the pipeline 102 is as follows: 1. The insulated working fluid is exchanged with the cold water in a countercurrent manner, 2. The liquid flowing into the liquid pipeline 102 is completely liquid, and the gas which is not condensed is not mixed. .
  • Figure 10 shows another example of a condenser 103 and a manifold, which may be used for air cooling, as well as natural cooling; an air-cooled condenser 103 and a manifold.
  • the outer casing of the condenser 103 is sealed and forms a sealed cavity.
  • the sealing cavity inside the casing of the condenser 103 is provided with a plurality of partitioning plates 105.
  • the partitioning plate 105 divides the sealing cavity into a plurality of units, and each unit corresponds to a different PCB single board and a corresponding sealed casing.
  • a plurality of fins 902 may be disposed inside the casing of the condenser 103 to enhance the heat exchange of the insulating medium.
  • a plurality of uniform temperature structures 1001 may be disposed between the air-cooling fins 902, and may be realized by a material or a device having a good thermal conductivity such as a common metal strip or a heat pipe, in order to reduce the temperature difference between the different fins 902, thereby The difference in temperature of the insulating liquid leaving the condenser 103 and the manifold is made small.
  • the insulating working gas line 102 can be installed at the upper position of the condenser 103 and the manifold, and the insulating working liquid line 102 can be installed at the lower position of the condenser 103 and the manifold, so that the line 102 is disposed.
  • the main purpose is to make all of the liquid flowing into the liquid line 102 liquid without mixing the uncondensed gas.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明公开了一种两相浸没散热装置、通信设备及其制造方法。其中装置包括:密封壳101、管路102、冷凝器103;密封壳101通过管路102与冷凝器103相连,密封壳101的腔体用于容纳绝缘工质和热源器件;管路102连接密封壳101和冷凝器103,使密封壳101的腔体与冷凝器103的腔体形成封闭回路;冷凝器103位于密封壳101的上方位置;密封壳101的壁面还设置有密封壳101内与密封壳101外电气连接的连接器。该方案不仅可以解决高密散热问题,还可以满足不同应用场景的需求,是一种平滑演进的方案。

Description

一种两相浸没散热装置、 通信设备及其制造方法 本申请要求于 2012 年 2 月 23 日提交中国专利局、 申请号为 201210042094.X, 发明名称为 "一种两相浸没散热装置、 通信设备及其制造方 法" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及散热技术领域,特別涉及一种两相浸没散热装置、通信设备及 其制造方法。
背景技术
随着信息通信技术 ( Information Communication Technology, ICT )产业高 速发展, 设备的集成度和热密度越来越高, 摩尔定律告诉我们约每 18个月芯 片的性能和集成度就增长一倍。从设备的集成度来说, 虽然目前大多数数据中 心或者核心机房的散热能力仍然停留在 3kW/机拒的水平, 但目前已经出现单 机拒 20kW的设备已经算不上希奇。面对芯片功耗的日益上升和设备集成度的 日益增长,传统的以空气为介质为电子产品进行散热的技术越来越不能满足需 求, 业界开始寻求更高密度的散热解决方案, 利用液体进行冷却的技术开始重 新进入人们的视野。 液冷的种类繁多, 其中水冷也就是以水作为介质进行散热 是常见的一种类型。 但是因为水能够导电, 一旦发生泄漏, 有可能造成灾难性 的后果, 因而水冷的可靠性一直是业界的一个关注点, 这也是为什么水冷具有 良好的散热能力却一直倍受质疑的一个原因。 除了水冷外, 浸没式冷却 ( Immersion )技术作为一种高密散热方案也重新受到了关注, 如何通过浸没 式冷却技术更加有效地进行散热一直是业界需要解决的问题。
发明内容
本发明实施例提供了一种两相浸没散热装置、通信设备及其制造方法, 用 于解决如何通过浸没式冷却技术进行有效散热的问题。
具体的, 本发明实施例提供了一种两相浸没散热装置, 包括:
密封壳 ( 101 )、 管路( 102 )、 冷凝器( 103 );
密封壳 ( 101 )通过所述管路( 102 )与所述冷凝器( 103 )相连, 所述密 封壳( 101 )具有腔体, 所述密封壳( 101 )的腔体用于容纳绝缘工质和热源器 件; 所述冷凝器(103)具有腔体; 所述管路(102)连接所述管路(102)和 所述冷凝器( 103 ), 使所述密封壳( 101 )的腔体与所述冷凝器( 103 )的腔体 形成封闭回路;
冷凝器( 103 )位于所述密封壳 ( 101 ) 的上方位置; 密封壳 ( 101 ) 的壁 面还设置有密封壳 ( 101 ) 内与密封壳 ( 101 )外电气连接的连接器;
所述绝缘工质为具有气液两相相变特性的绝缘工质;所述热源器件的部分 或者全部浸没在密封壳(101) 内的液态的绝缘工质中, 所述密封壳(101) 内 的液态的绝缘工质吸收所述热源器件的热量变为气态后上升, 并经过管路 ( 102 )进入冷凝器( 103 ), 气态的绝缘工质在冷凝器( 103 ) 内放热变为液态 的绝缘工质后在重力作用下经过管路( 102 )进入密封壳 ( 101 )。
本发明实施例还提供了一种通信设备, 包括热源器件, 以及前述两相浸没 散热装置;
所述热源器件通过所述两相浸没散热装置的连接器与所述两相浸没散热 装置外部的器件采用电气连接。
本发明实施例还提供了一种两相浸没散热装置的制造方法, 包括: 制作密封壳 (101)、 管路(102) 以及冷凝器(103); 所述密封壳 (101) 具有腔体, 所述密封壳 ( 101 ) 的腔体用于容纳绝缘工质和热源器件; 所述冷 凝器(103)具有腔体; 密封壳 (101) 的壁面设置有密封壳 (101) 内与密封 壳 (101)外电气连接的连接器;
通过所述管路( 102 )将所述密封壳 ( 101 ) 与所述冷凝器( 103 )相连; 使所述密封壳 (101) 的腔体与所述冷凝器(103) 的腔体形成封闭回路;
将所述冷凝器(103) 置于所述密封壳 (101) 的上方位置;
所述绝缘工质为具有气液两相相变特性的绝缘工质;所述热源器件的部分 或者全部浸没在密封壳(101) 内的液态的绝缘工质中, 所述密封壳(101) 内 的液态的绝缘工质吸收所述热源器件的热量变为气态后上升, 并经过管路 ( 102 )进入冷凝器( 103 ), 气态的绝缘工质在冷凝器( 103 ) 内放热变为液态 的绝缘工质后在重力作用下经过管路(102)进入密封壳 (101)。
上述方案具有以下优点:绝缘工质在吸收了热源器件产生的热量后发生相 变, 由液体变为气体, 在密度差和重力的作用下气体工质上升进入冷凝器, 在 冷凝器内与冷源发生热交换将热量排到冷源中,这时气体工质发生冷凝并重新 变为液体。 液体工质在重力的作用下返回到密封壳中,再次对热源器件进行散 热。该方案不仅可以解决高密散热问题,由于密封壳的形状不影响方案的实现, 因此密封壳可以制造成需要的任意形状满足不同应用场景的需求。例如对现有 的机房和 ICT设备的形态不会产生沖击, 是一种平滑演进的方案。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作筒要介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提 下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例散热装置示意图;
图 2为本发明实施例密封壳和管路结构示意图;
图 3为本发明实施例密封壳和管路结构示意图;
图 4为本发明实施例密封壳和管路结构示意图;
图 5为本发明实施例方法流程示意图;
图 6为本发明实施例散热装置示意图;
图 7为本发明实施例水冷系统结构示意图;
图 8为本发明实施例风冷系统结构示意图;
图 9为本发明实施例冷凝器结构示意图;
图 10为本发明实施例冷凝器结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发 明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。 在本发明实施例的示意图中, 矩形的密封壳内的黑色 形示意为热 源器件及单板, 后续示意图的说明中不再——说明。
本发明实施例提供了一种两相浸没散热装置,如图 1所示, 另外请一并参 阅图 2~4, 包括:
密封壳 101、 管路 102、 冷凝器 103;
密封壳 101通过上述管路 102与上述冷凝器 103相连, 上述密封壳 101 具有腔体, 上述密封壳 101的腔体用于容纳绝缘工质和热源器件; 上述冷凝器 103具有腔体; 上述管路 102连接上述管路 102和上述冷凝器 103, 使上述密 封壳 101的腔体与上述冷凝器 103的腔体形成封闭回路;
冷凝器 103位于上述密封壳 101的上方位置;密封壳 101的壁面还设置有 密封壳 101内与密封壳 101外电气连接的连接器;
上述绝缘工质为具有气液两相相变特性的绝缘工质;上述热源器件的部分 或者全部浸没在密封壳 101内的液态的绝缘工质中,上述密封壳 101内的液态 的绝缘工质吸收上述热源器件的热量变为气态后上升,并经过管路 102进入冷 凝器 103, 气态的绝缘工质在冷凝器 103内放热变为液态的绝缘工质后在重力 作用下经过管路 102进入密封壳 101。
进一步地, 上述装置, 还包括: 连接件 104;
上述管路 102连接上述管路 102和上述冷凝器 103具体为: 上述管路 102 通过连接件 104与上述密封壳 101以及冷凝器 103连接。需要说明的是上述连 接器可以是: 具有信号连接功能或者电连接功能的连接器、 连接件、 线缆等; 其具体的结构本发明实施例不予限定。
另外,管路 102与密封壳 101的连接部位一般可以设置在密封壳 101的底 部上方; 如果有一个以上的管路 102, 那么只要一个管路 102在密封壳 101底 部上方就可以了。 密封壳 101的壳体可以是适应于机拒的任意形状, 例如: 长 方体。
可选地, 管路 102的个数为一个或者一个以上; 当然管路 102的个数还可 以是其他, 对此本发明实施例不予限定; 为了更顺畅地使绝缘工质在密封壳 101和冷凝器 103之间形成回路, 优选为两个; 若管路 102的个数为两个, 分 別为第一管路和第二管路;那么第一管路与密封壳 101的连接部位靠近密封壳 101的底部; 第二管路与密封壳 101的连接部位靠近密封壳 101的顶部。
优选地, 由于热源器件的热高密度区域或者高功耗芯片对散热的需求更 多, 本发明实施例还提供了如下方案: 第一管路与密封壳 101连接的末端具有 管路的分支, 并且各分支向密封壳 101内部方向延伸并指向热源器件。采用该 方案, 更利于绝缘工质优先冷却热高密度区域或者高功耗芯片。
可选地,上述冷凝器 103是采用为采用液冷结构的冷凝器 103或者采用风 冷结构的冷凝器 103。 后续实施例将就此分別进行举例说明, 需要说明的是, 如果采用其他的冷却器 103也是可以的, 例如使用自然冷却, 本发明实施例对 此不予限定。
为了方便布置机拒以及拆卸,本发明实施例的管路 102为软质的管路 102。 本发明实施例提供的所上述连接件 104为在管路 102拔出时具有自动闭合 功能的连接头,或者上述连接件 104为包含阀门和用于连接管路 102与密封壳 101或冷凝器 103的转接头。
一个冷凝器 103可以为一个密封壳 101服务也可以为多个密封壳 103服 务, 如果为多个密封壳服务那么: 如图 9、 图 10所示, 冷凝器 103通过管路 102与至少两个密封壳 101连接; 上述冷凝器 103内部具有分隔板 105, 分隔 板 105将冷凝器 103 的密封腔体空腔分为至少两个密封空腔; 上述管路 102 通过连接件 104连接密封壳 101和冷凝器 103,形成密封壳 101以及冷凝器 103 的子密封腔体之间的连接管道; 具体为: 管路 102通过连接件 104连接密封壳 101和冷凝器 103, 形成密封壳 101与其对应的子密封腔体之间的连接管道。 本实施例通过分隔板 105将冷凝器分割成多个部分,这样可以公平的分配散热 资源给多个密封壳内的热源器件。
本发明实施例还提供了一种通信设备, 包括: 热源器件, 以及本发明实施 例提供的任意一项的两相浸没散热装置;
上述热源器件通过上述两相浸没散热装置的连接器与上述两相浸没散热 装置外部的器件采用电气连接。
对应于本发明实施例提供的两相浸没散热装置,本发明实施例还提供了一 种两相浸没散热装置的制造方法, 如图 5所示, 包括:
501: 制作密封壳 101、 管路 102以及冷凝器 103;
上述密封壳 101具有腔体,上述密封壳 101的腔体用于容纳绝缘工质和热 源器件; 上述冷凝器 103具有腔体; 密封壳 101的壁面设置有密封壳 101内与 密封壳 101外电气连接的连接器; 502: 通过上述管路 102将上述密封壳 101与上述冷凝器 103相连; 使上 述密封壳 101 的腔体与上述冷凝器 103的腔体形成封闭回路; 将上述冷凝器 103置于上述密封壳 101的上方位置;
上述绝缘工质为具有气液两相相变特性的绝缘工质;上述热源器件的部分 或者全部浸没在密封壳 101内的液态的绝缘工质中,上述密封壳 101内的液态 的绝缘工质吸收上述热源器件的热量变为气态后上升,并经过管路 102进入冷 凝器 103 , 气态的绝缘工质在冷凝器 103内放热变为液态的绝缘工质后在重力 作用下经过管路 102进入密封壳 101。
进一步地, 上述方法, 还包括: 制造连接件 104;
通过上述管路 102将上述密封壳 101与上述冷凝器 103相连; 具体为: 通 过连接件 104将管路 102的两端分別与上述密封壳 101以及冷凝器 103连接。
可选地, 上述管路 102的个数为一个或者一个以上; 若管路 102的个数为 两个, 分別为第一管路和第二管路; 那么将第一管路与密封壳 101连接的部位 设置于靠近密封壳 101的底部;第二管路与密封壳 101连接的部位设置于靠近 密封壳 101的顶部。
可选地, 上述制造的第一管路与密封壳 101连接的末端具有管路的分支; 上述方法还包括: 将各分支向密封壳 101内部方向延伸, 并且使各分支指向热 源器件的热高密度区域或者高功耗芯片。
可选地, 若上述制造的密封壳 101至少有两个; 则将上述冷凝器 103通过 管路 102与至少两个密封壳 101连接; 上述制造的凝器 103中,在上述冷凝器 103内部设置分隔板 105, 由分隔板 105将冷凝器 103的密封腔体空腔分为至 少两个密封空腔;上述通过上述管路 102以及连接件 104连接密封壳 101和冷 凝器 103 , 形成密封壳 101以及冷凝器 103的密封腔体之间的连接管道; 具体 为: 通过上述管路 102以及连接件 104连接密封壳 101和冷凝器 103, 形成密 封壳 101与其对应的子密封腔体之间的连接管道。
如果上述两相浸没散热装置需要应用在机拒上, 那么还包括: 将两相浸没 散热装置安装在机拒上。
本发明实施例提出的相变浸没散热方案中,可以将单板或者其它热源器件 的热源部分或者全部浸没于绝缘工质中, 绝缘工质是热量传递的媒介物质; 绝 缘工质在吸收了热源器件产生的热量后发生相变, 由液体变为气体,在密度差 和重力的作用下气体工质上升进入冷凝器,在冷凝器内与冷源发生热交换将热 量排到冷源中, 这时气体工质发生冷凝并重新变为液体。 液体工质在重力的作 用下返回到密封壳中, 再次对热源器件进行散热。 当用于室内设备时, 冷源可 以选用机房的冷水; 对于没有冷水的场景如用于室外设备时, 冷源可以选择空 气。 在某些特殊场景下, 出于安全或方便性的考虑, 冷源也可以选择其它液体 或者气体, 比如常规空调系统中的制冷剂。
本发明实施例提供的相变浸没散热方案不仅可以解决高密散热问题,由于 密封壳的形状不影响方案的实现,因此密封壳可以制造成需要的任意形状满足 不同应用场景的需求。 例如对现有的机房(数据中心或者核心机房)和 ICT 设备的形态不会产生沖击, 是一种平滑演进的方案。 另外, 本文所提出的这种 方案在进行维护时, 可以方便地对设备进行插拔, 同时不会对其它设备的散热 造成影响。
如下实施例将对上述实施例的结构及其工作原理进行举例说明。在以下举 例中, 热源均以印制电路板 ( Printed Circuit Board , PCB ) 的单板为例。
如图 6所示, 为相变浸没散热方案的一个举例, 具体说明如下:
PCB单板 601全部或者部分置于密封壳体 602内, 密封壳体 602内填充 有绝缘的液体工质。 密封壳体通过管路 603与冷凝器 604相连。 为了方便拆卸 和维护, 管路 603上还可以设置接头。 当 PCB单板 601工作时会产生热量, 绝缘的液体工质吸收热量从而使 PCB单板 601及其上面的器件得到冷却。 吸 收热量到一定程度后, 液体工质会发生相变由液体变为气体。在密度差和重力 的作用下, 气体工质上升, 通过管路 603进入冷凝器 604, 在冷凝器 604内将 热量排出后发生冷凝, 气体工质由气体重新变为液体。 重新变回液体的工质, 并沿着管路 601重新进入密封壳体 602内, 这样可以再次对 PCB单板 601及 其上面的器件进行冷却。
通常可以有多个 PCB单板 601共用一个冷凝器 604, 因此还可以考虑绝 缘工质的集合与流量分配, 即: 冷凝器 601通常具有流形多歧管 (Manifold ) 的功能。 冷凝器 601和多歧管 (Manifold ) 固定于 PCB单板 601和密封壳体 602的上方, 便于绝缘工质以液体形态的回流和以气体形态的上升。 本例中冷 凝器 604在后续实施例将就这一结构进行举例说明。
如图 7、 8所示, 分別为采用水冷和风冷的冷凝器的方案举例, 需要说明 的是水冷作为液冷的一种常用方式不应理解为对本发明实施例的限定,液冷的 介质还可以是其他。 具体说明如下:
图 7为采用水冷系统的方案示意图,该方案可以用于室内机房等具有冷水 条件的环境下, 需要有冷源系机房的冷冻水系统。机房的冷冻水通过冷却配电 单元 704 ( Cooling Distribution Unit, CDU )与水冷的冷凝器 701所需要的冷 水进行热交换, 并将 ICT设备产生的热量带走。 CDU的安装方式灵活多样, 可以安装在机拒 702的底部,也可以作为单独的设备安装在其它地方,也可以 不需要 CDU,冷水通过管辂系统直接进入水冷的冷凝器 701。采用本文前述的 相变浸没式冷却的 PCB单板部分或者全部置于密封壳体内,然后插入插筐 703 内。
一个插筐 703内可以安装多个全部或者部分密封在密封壳体内的 PCB单 板。 水冷的冷凝器 701和 Manifold可以置于插筐 703 内部并且作为插筐 703 的一部分,也可以作为单独的部件直接固定于机拒 702内部和插筐 703的上方。 机拒 702的形态可以与目前机房中的机拒形态类似, 比如为 600mm宽的 IEC 标准机拒。
图 8为采用风冷系统的方案示意图,该方案可以应用于户外等具有新风风 源的应用场景, 冷凝器 801的冷源为新风。 在风扇 802的作用下, 新鲜的冷空 气吹过风冷的冷凝器 801 , 与风冷的冷凝器 801内的绝缘工质进行热交换吸收 绝缘工质所携带的热量。 绝缘工质在风冷的冷凝器 801内被冷凝为液体, 液体 沿着管路进入密封壳体内, 再次对密封壳体内 PCB单板及其上面的器件进行 冷却。 绝缘的液体工质在吸收 PCB单板及其上面的器件所产生的热量后, 发 生相变成为气体, 气体工质沿着管路上升重新进入风冷冷凝器 801。
通常可以有多个 PCB单板共用一个风冷的冷凝器 801 , 因此还可以考虑 绝缘工质的集合与流量分配, 即: 冷凝器 801通常具有流形多歧管( Manifold ) 的功能。冷凝器 801和多歧管(Manifold )固定于 PCB单板和密封壳体的上方, 便于绝缘工质以液体形态的回流和以气体形态的上升。有的机拒 803内设置有 单独的插筐 804,插筐 804和机拒做成一体的, 只要保证冷凝器和 Manifold固 定于 PCB单板及其密封壳体的上方,并保证冷源气流的通畅即可。冷凝器 801 和 Manifold置于插筐 804内、 作为机拒 803的一部分, 甚至 Manifold位于插 筐 804内而冷凝器 801作为机拒 803的一部分等,都不会影响本发明实施例的 实现。
如图 2~4所示, 为管路与密封壳的连接方案的举例。
由于密封壳 101体与冷凝器之间通过管路 102相连接,为了方便拆卸和维 护, 管路 102可以采用柔性的软管, 管路 102上可以设置阀门和普通转接头或 者设置快速连接头。 当需要维护时或者需要将 PCB单板拔出时, 可以将阀门 关闭, 然后将管路从接头处断开; 然后将 PCB单板及其密封壳体一起从机拒 或者插筐内拔出来。如果应用的是快速连接头,管路 102被拔出时会自动封闭, 绝缘工质不会从密封壳 101体内逸出。管路 102上的接头的的位置可选在管路 102的中间, 也可以位于密封壳 101体的一端, 或者冷凝器的一端。 对此本发 明实施例不予限定。
如图 2所示, 液体和气体公用一条管路 102, 管路上同样设置了接头。 本 实施案例适用于热密度相对较低的场景。 可以节省成本。
如图 3所示, 气体和和液体各使用一条管路 102。 气体管路与密封壳 101 体的连接处位于密封壳 101体的靠上的部位,液体管路与密封壳 101体的连接 处位于密封壳 101体的靠下的部位。这样做的目的是使液体的回流不影响气体 的上升, 使气体的上升通道更加顺畅, 从而达到强化散热的目的。
如图 4所示, 相对于图 3, 管路 102上也可以采用分支岐路 1021 , 用以强 化高密度区域或者高功耗芯片的散热。 液体管路进入密闭壳 101体后, 分出了 两个分支歧路 1021 , 两个分支歧路 1021分別将液体工质导向了两个高功耗的 芯片。这样对高功耗芯片进行散热的液体温度较低,有利于高功耗芯片的散热。 同时, 分支歧路 1021的管路粗细可以根据局部区域所需要的流量来确定。
冷凝器 103和 manifold的主要功能是实现冷源与绝缘工质的热交换,同时 能够控制不导电工质的流量分配。 控制流量分配的一个目的是使不同的 PCB 及其密封壳体之间的相互影响减弱,从而在插拔单板设备或者在设备没有满配 时, 各单元的散热不会受到太多影响。 基于以上目的, 冷凝器 103和 manifold 的实现方式多种多样。 如图 9、 10所示, 为冷凝器的两个举例: 图 9所示为冷凝器 103和 manifold的举例, 采用水冷; 冷水在水管 901 里流动, 水管 901外面是绝缘工质, 冷水与绝缘工质通过水管 901壁面进行换 热。 当然, 为了增大换热面积和强化换热, 水管 901上可以设置一些肋片。 肋 片如图 10所示的肋片 902; 冷凝器 103和 manifold内部设置多个分隔板 105 , 分隔板 105将冷凝器 103的密封空腔分为多个单元, 每个单元可以对应一个 PCB单板及其所在的密封壳体。绝缘的工质气体的管路 102设置在冷凝器 103 和 manifold的靠上的位置,绝缘工质的液体管路 102设置在冷凝器和 manifold 的靠下的位置。 这样设置管路 102的目的在于: 1、 使绝缘的工质与冷水以逆 流的形式进行热交换, 2、 使流入液体管路 102内的全部为液体, 而不会混有 没有被冷凝的气体。
图 10所示的是冷凝器 103和 manifold的另一个举例, 采用风冷, 也可以 用于自然冷却;风冷的冷凝器 103和 manifold的结构形式。为了防止绝缘工质 的逃逸, 冷凝器 103的外壳须密闭并形成密封空腔。冷凝器 103壳体内部的密 封空腔设置多个分隔板 105 , 分隔板 105将密封腔分割为多个单元, 各单元以 对应不同的 PCB单板及相应的密封壳体。 冷凝器 103壳体内部可以设置一些 肋片 902, 以强化绝缘工质的换热。 风冷肋片 902之间可以设置一些均温结构 1001 , 可以采用普通的金属条或者热管等导热性能较好的材料或者装置来实 现, 目的在于减小不同肋片 902之间的温度差异, 从而使离开冷凝器 103和 manifold的绝缘液体温度差异较小。绝缘工质的气体管路 102可以安装在冷凝 器 103和 manifold的靠上的位置,绝缘工质的液体管路 102可以安装在冷凝器 103和 manifold的靠下的位置,这样设置管路 102的主要目的是使流入液体管 路 102内的全部为液体, 而不会混有未被冷凝的气体。
另外,本领域普通技术人员可以理解实现上述各方法实施例中的全部或部 分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计 算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内, 可轻 易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种两相浸没散热装置, 其特征在于, 包括:
密封壳 ( 101 )、 管路 ( 102 )、 冷凝器 ( 103 );
密封壳 ( 101 )通过所述管路( 102 )与所述冷凝器( 103 )相连, 所述密 封壳( 101 )具有腔体, 所述密封壳( 101 )的腔体用于容纳绝缘工质和热源器 件; 所述冷凝器(103 )具有腔体; 所述管路(102 )连接所述管路(102 )和 所述冷凝器( 103 ) , 使所述密封壳( 101 )的腔体与所述冷凝器( 103 )的腔体 形成封闭回路;
冷凝器( 103 )位于所述密封壳 ( 101 ) 的上方位置; 密封壳 ( 101 ) 的壁 面还设置有密封壳 ( 101 ) 内与密封壳 ( 101 )外电气连接的连接器;
所述绝缘工质为具有气液两相相变特性的绝缘工质;所述热源器件的部分 或者全部浸没在密封壳(101 ) 内的液态的绝缘工质中, 所述密封壳(101 ) 内 的液态的绝缘工质吸收所述热源器件的热量变为气态后上升, 并经过管路
( 102 )进入冷凝器( 103 ) , 气态的绝缘工质在冷凝器( 103 ) 内放热变为液态 的绝缘工质后在重力作用下经过管路( 102 )进入密封壳 ( 101 )。
2、 根据权利要求 1所述装置, 其特征在于, 还包括: 连接件(104 ); 所述管路( 102 )连接所述管路( 102 )和所述冷凝器( 103 )具体为: 所 述管路( 102 )通过连接件 ( 104 )与所述密封壳( 101 ) 以及冷凝器( 103 )连 接。
3、 根据权利要求 1所述两相浸没散热装置, 其特征在于, 管路( 102 )的 个数为一个或者一个以上;
若管路(102 ) 的个数为两个, 分別为第一管路和第二管路;
第一管路与密封壳( 101 )的连接部位靠近密封壳( 101 )的底部; 第二管 路与密封壳 (101 ) 的连接部位靠近密封壳 (101 ) 的顶部。
4、 根据权利要求 3所述两相浸没散热装置, 其特征在于, 第一管路与密 封壳( 101 )连接的末端具有管路的分支, 并且各分支向密封壳( 101 ) 内部方 向延伸并指向热源器件。
5、 根据权利要求 1所述两相浸没散热装置, 其特征在于,
所述冷凝器( 103 )为采用液冷结构的冷凝器( 103 )或者采用风冷结构的 冷凝器 ( 103 )。
6、 根据权利要求 1所述两相浸没散热装置, 其特征在于,
所述管路( 102 ) 为软质的管路( 102 )。
7、根据权利要求 1所述两相浸没散热装置,其特征在于,所述连接件( 104 ) 为在管路(102)拔出时具有自动闭合功能的连接头, 或者所述连接件 (104) 为包含阀门和用于连接管路(102)与密封壳 (101)或冷凝器(103) 的转接 头。
8、 根据权利要求 1至 7任意一项所述两相浸没散热装置, 其特征在于, 冷凝器(103)通过管路(102)与至少两个密封壳 (101)连接;
所述冷凝器( 103 )内部具有分隔板( 105 ), 分隔板( 105 )将冷凝器( 103 ) 的密封腔体空腔分为至少两个密封空腔;
所述管路( 102 )通过连接件 ( 104 )连接密封壳( 101 )和冷凝器( 103 ), 形成密封壳( 101 )以及冷凝器( 103 )的子密封腔体之间的连接管道; 具体为: 管路( 102 )通过连接件( 104 )连接密封壳 ( 101 )和冷凝器( 103 ), 形 成密封壳 ( 101 )与其对应的子密封腔体之间的连接管道。
9、 一种通信设备, 其特征在于, 包括: 热源器件, 以及权利要求 1至 7 任意一项所述的两相浸没散热装置;
所述热源器件通过所述两相浸没散热装置的连接器与所述两相浸没散热 装置外部的器件采用电气连接。
10、 一种两相浸没散热装置的制造方法, 其特征在于, 包括:
制作密封壳 (101)、 管路(102) 以及冷凝器(103); 所述密封壳 (101) 具有腔体, 所述密封壳 (101) 的腔体用于容纳绝缘工质和热源器件; 所述冷 凝器(103)具有腔体; 密封壳 (101) 的壁面设置有密封壳 (101) 内与密封 壳 (101)外电气连接的连接器;
通过所述管路( 102 )将所述密封壳 ( 101 ) 与所述冷凝器( 103 )相连; 使所述密封壳 (101) 的腔体与所述冷凝器(103) 的腔体形成封闭回路;
将所述冷凝器(103) 置于所述密封壳 (101) 的上方位置;
所述绝缘工质为具有气液两相相变特性的绝缘工质;所述热源器件的部分 或者全部浸没在密封壳(101) 内的液态的绝缘工质中, 所述密封壳(101) 内 的液态的绝缘工质吸收所述热源器件的热量变为气态后上升, 并经过管路 ( 102 )进入冷凝器( 103 ) , 气态的绝缘工质在冷凝器( 103 ) 内放热变为液态 的绝缘工质后在重力作用下经过管路(102 )进入密封壳 (101 )。
11、 根据权利要求 10所述方法, 其特征在于, 还包括:
制造连接件( 104 ); 通过所述管路( 102 )将所述密封壳( 101 )与所述冷 凝器(103 )相连; 具体为: 通过连接件(104 )将管路(102 ) 的两端分別与 所述密封壳 ( 101 ) 以及冷凝器( 103 )连接。
12、 根据权利要求 10所述方法, 其特征在于, 所述管路(102 )的个数为 一个或者一个以上;
若管路(102 ) 的个数为两个, 分別为第一管路和第二管路;
那么将第一管路与密封壳( 101 )连接的部位设置于靠近密封壳( 101 )的 底部; 将第二管路与密封壳( 101 )连接的部位设置于靠近密封壳( 101 )的顶 部。
13、 根据权利要求 10所述方法, 其特征在于, 所述制造的第一管路与密 封壳 (101 )连接的末端具有管路的分支; 所述方法还包括:
将各分支向密封壳 (101 ) 内部方向延伸, 并使各分支指向热源器件的热 高密度区域或者高功耗芯片。
14、根据权利要求 10所述方法,其特征在于,若所述制造的密封壳( 101 ) 至少有两个; 则将所述冷凝器( 103 )通过管路( 102 )与至少两个密封壳( 101 ) 连接;
所述制造的凝器( 103 )中, 在所述冷凝器( 103 )内部设置分隔板( 105 ), 由分隔板(105 )将冷凝器(103 ) 的密封腔体空腔分为至少两个密封空腔; 所述通过所述管路( 102 ) 以及连接件( 104 )连接密封壳 ( 101 )和冷凝 器( 103 ) , 形成密封壳( 101 )以及冷凝器( 103 )的密封腔体之间的连接管道; 具体为:
通过所述管路( 102 )以及连接件( 104 )连接密封壳( 101 )和冷凝器( 103 ), 形成密封壳 (101 ) 与其对应的子密封腔体之间的连接管道。
15、 根据权利要求 10至 13任意一项所述方法, 其特征在于, 还包括: 将两相浸没散热装置安装在机拒上。
PCT/CN2012/087873 2012-02-23 2012-12-28 一种两相浸没散热装置、通信设备及其制造方法 WO2013123817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210042094.X 2012-02-23
CN201210042094.XA CN103298312B (zh) 2012-02-23 2012-02-23 一种两相浸没散热装置、通信设备及其制造方法

Publications (1)

Publication Number Publication Date
WO2013123817A1 true WO2013123817A1 (zh) 2013-08-29

Family

ID=49004983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087873 WO2013123817A1 (zh) 2012-02-23 2012-12-28 一种两相浸没散热装置、通信设备及其制造方法

Country Status (2)

Country Link
CN (1) CN103298312B (zh)
WO (1) WO2013123817A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468117A (zh) * 2015-12-24 2016-04-06 曙光信息产业(北京)有限公司 服务器的液冷系统
CN105607715A (zh) * 2015-12-15 2016-05-25 曙光信息产业(北京)有限公司 一种服务器的液冷系统
CN112859492A (zh) * 2020-12-31 2021-05-28 安徽东冶地质勘查技术有限公司 一种光学传感器组件

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713290B2 (en) * 2014-06-30 2017-07-18 Microsoft Technology Licensing, Llc Datacenter immersed in cooling liquid
CN105491849A (zh) * 2014-09-17 2016-04-13 联想(北京)有限公司 冷却装置和具有冷却装置的电子产品
CN104519722B (zh) * 2014-12-11 2017-08-29 吕梁市军民融合协同创新研究院 液体冷却装置及具有该装置的服务器
CN106033749B (zh) * 2015-03-13 2019-02-05 上海交通大学 并联式平行微通道多芯片散热器
CN104915321A (zh) * 2015-06-04 2015-09-16 浪潮电子信息产业股份有限公司 一种浸入式相变冷却高密度计算系统
JP6523469B6 (ja) * 2016-05-16 2019-06-26 株式会社ExaScaler 液浸冷却用電子機器
CN106028744B (zh) 2016-06-14 2018-06-01 北京百度网讯科技有限公司 机柜
CN106255387B (zh) * 2016-08-31 2019-05-03 深圳绿色云图科技有限公司 散热系统及数据中心
CN107045380A (zh) * 2016-12-20 2017-08-15 曙光信息产业(北京)有限公司 用于服务器的冷却系统以及液冷式服务器
CN107979955B (zh) * 2017-11-24 2020-06-30 北京百度网讯科技有限公司 一种模块化液冷服务器机箱
CN107911999B (zh) * 2017-11-24 2020-03-03 北京百度网讯科技有限公司 一种模块化液冷服务器机箱
US10353084B1 (en) * 2018-04-02 2019-07-16 General Electric Company Systems and methods for cooling an imaging system
CN108471699A (zh) * 2018-04-16 2018-08-31 大连泰思曼科技有限公司 一种深海电源散热系统
CN108882654B (zh) * 2018-08-29 2021-05-18 乌鲁木齐金风天翼风电有限公司 相变冷却系统、冷却系统及变流器柜冷却系统
CN108966612A (zh) * 2018-09-11 2018-12-07 广东合新材料研究院有限公司 一种便于维护的液体浸没冷却式交换机
CN109841363A (zh) * 2019-01-31 2019-06-04 中国人民解放军海军工程大学 一种大功率蒸发冷却电阻器及冷却方法
CN111526702A (zh) * 2020-05-08 2020-08-11 山东省科学院能源研究所 一种浸没耦合液气相变的数据中心冷源一体化供应装置及工艺
CN113365478A (zh) * 2021-06-22 2021-09-07 中国联合网络通信集团有限公司 一种冷却装置及集群路由器
TWI829120B (zh) * 2022-03-22 2024-01-11 緯穎科技服務股份有限公司 分離式浸潤冷卻裝置及分離式浸潤冷卻系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101947A (zh) * 1986-03-12 1987-10-14 特克卡特有限公司 感应设备的改进
CN1251494A (zh) * 1999-10-14 2000-04-26 薛勇 一种电子电气产品的散热方法及其装置
US20100103614A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow
CN102160171A (zh) * 2008-08-11 2011-08-17 绿色革命冷却股份有限公司 液体浸没的、水平计算机服务器机架及冷却此种服务器机架的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101947A (zh) * 1986-03-12 1987-10-14 特克卡特有限公司 感应设备的改进
CN1251494A (zh) * 1999-10-14 2000-04-26 薛勇 一种电子电气产品的散热方法及其装置
CN102160171A (zh) * 2008-08-11 2011-08-17 绿色革命冷却股份有限公司 液体浸没的、水平计算机服务器机架及冷却此种服务器机架的系统和方法
US20100103614A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607715A (zh) * 2015-12-15 2016-05-25 曙光信息产业(北京)有限公司 一种服务器的液冷系统
CN105607715B (zh) * 2015-12-15 2019-07-09 曙光节能技术(北京)股份有限公司 一种服务器的液冷系统
CN105468117A (zh) * 2015-12-24 2016-04-06 曙光信息产业(北京)有限公司 服务器的液冷系统
CN105468117B (zh) * 2015-12-24 2019-05-31 曙光节能技术(北京)股份有限公司 服务器的液冷系统
CN112859492A (zh) * 2020-12-31 2021-05-28 安徽东冶地质勘查技术有限公司 一种光学传感器组件

Also Published As

Publication number Publication date
CN103298312B (zh) 2016-09-07
CN103298312A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2013123817A1 (zh) 一种两相浸没散热装置、通信设备及其制造方法
US10674637B2 (en) Cooling device, cooling system, and cooling method for electronic circuitry
TWI693013B (zh) 一種噴淋式液冷伺服器
US10070560B2 (en) Drawer-level immersion-cooling with hinged, liquid-cooled heat sink
US9210830B2 (en) Immersion-cooled and conduction-cooled method for electronic system
CA2731994C (en) Liquid submerged, horizontal computer server rack and systems and methods of cooling such a server rack
US7113404B2 (en) Liquid cooling system
US20130105122A1 (en) Wicking vapor-condenser facilitating immersion-cooling of electronic component(s)
US20070034355A1 (en) Heat-dissipation structure and method thereof
CN102791107A (zh) 一种用于冷却电子设备的密封水冷方法和设备
JP2004246649A (ja) ラックマウントサーバシステム、ラックキャビネット、サーバモジュール、ならびにラックマウントサーバシステムの冷却方法
CN103021877B (zh) 一种采用双路径传热的高密度芯片散热方法
WO2020211416A1 (zh) 空调室外机和空调器
WO2022100106A1 (zh) 可插拔设备、信息通信设备、散热系统和制造方法
EP4188045A1 (en) Heat dissipation cabinet and communication apparatus
JP2004319628A (ja) システムモジュール
CN202050634U (zh) 一种用于冷却电子设备的密封水冷设备
EP3457829A1 (en) Cooling system of working medium contact type for heat dissipation of computer and data centre
JP2010238706A (ja) 屋外設置装置の冷却構造
TWI803099B (zh) 浸沒式冷卻系統
CN219961221U (zh) 散热装置及电子设备
KR100477947B1 (ko) 전자장비 함체용 냉각장치
US11937407B2 (en) Photo-etched chassis cooling walls
CN210377353U (zh) 一种船用计算机散热装置
CN217406880U (zh) 一种消防无人机传输转接设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869228

Country of ref document: EP

Kind code of ref document: A1