WO2013123802A1 - 一种实现本地ip业务的方法及系统 - Google Patents

一种实现本地ip业务的方法及系统 Download PDF

Info

Publication number
WO2013123802A1
WO2013123802A1 PCT/CN2012/086775 CN2012086775W WO2013123802A1 WO 2013123802 A1 WO2013123802 A1 WO 2013123802A1 CN 2012086775 W CN2012086775 W CN 2012086775W WO 2013123802 A1 WO2013123802 A1 WO 2013123802A1
Authority
WO
WIPO (PCT)
Prior art keywords
local
relay node
gateway
relay
service
Prior art date
Application number
PCT/CN2012/086775
Other languages
English (en)
French (fr)
Inventor
谢峰
梁枫
黄莹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP12869312.4A priority Critical patent/EP2819443A4/en
Priority to US14/380,429 priority patent/US9882803B2/en
Publication of WO2013123802A1 publication Critical patent/WO2013123802A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and system for implementing local IP services. Background technique
  • a base station is a device that provides wireless access for a user equipment (User Equipment, UE, also referred to as a terminal terminal), and the base station and the user equipment perform wireless communication by electromagnetic waves.
  • a base station may include one or more serving cells, and the wireless communication system may provide wireless coverage for terminals within a certain geographical range through the serving cell.
  • wireless communication systems need to deploy base stations with large coverage.
  • Such base stations are usually called macro base stations (Macro eNB or Macro BS, Macro Base Station), and their serving cells are usually called macro cells. (Macro Cell).
  • macro base stations Macro eNB or Macro BS, Macro Base Station
  • macro cells Macro Cell
  • wireless communication systems need to provide users with higher quality wireless communication services in certain environments or scenarios. Therefore, some small base stations with small coverage and low transmission power are adopted. .
  • These small base stations include a micro base station (Pico eNB or Pico BS) and a home base station (Home Node B or Home eNodeB, abbreviated as HNB or HeNB, also known as Femto eNB or Femto BS femto base station, Aberdeen base station).
  • HNB Home Node B
  • HeNB also known as Femto eNB or Femto BS femto base station, Aberdeen base station
  • the home base station can also support local IP services ( That is, the IP service supported by the local local area network such as the home network or the enterprise network is supported by the local gateway (L-GW).
  • L-GW local gateway
  • the home base station needs a wired backhaul (for example, connected to the operator's network through optical fibers, cables, etc.), so the home base station cannot move flexibly, and the home base station may cause serious interference to the adjacent macro cell, which further enables its deployment.
  • the scene is more limited and therefore limited An application scenario in which a home base station provides a local IP service.
  • the main object of the present invention is to provide a method and system for implementing a local IP service for implementing a local IP service through a relay node.
  • a method for implementing local IP services through a relay node including:
  • the local gateway is embedded in the relay node, or the local gateway is co-located with the relay node, or the local gateway and the relay node are connected by wire.
  • the local gateway includes a local cache and/or a local server; or the local gateway is connected to at least one of the following network elements and networks: a local server, a local area network, and an Internet.
  • the method further includes:
  • the method for the local gateway to perform local caching while the relay node provides a relay service for the local UE is:
  • the relay node After the data arrives at the relay node from the DeNB, the relay node sends a copy of the data to the local gateway for local caching, in addition to sending a piece of data to the UE through the Uu port with the UE; or data from the core network.
  • the packet data gateway PDN-GW first goes to the local gateway and then from the local gateway to the UE served by the relay node.
  • the relay node includes at least one of the following: a type 1 relay, a type 1A relay, a type 1 B relay, and a type 1 relay.
  • the S5 interface is supported between the local gateway and the serving gateway S-GW of the core network.
  • the S5 interface data between the local gateway and the serving gateway S-GW of the core network is transmitted by the relay node and the DeNB.
  • the method further includes:
  • the establishment of a PDN connection between the UE and the local gateway is controlled by a mobility management entity MME of the core network.
  • the two or more local UEs establish an end-to-end IP service flow through the local gateway.
  • the method further includes:
  • the method further includes:
  • the PDN connection mode between the UE and the local gateway is controlled by the MME and the base station of the core network, and the PDN connection mode between the UE and the packet data gateway of the core network is mutually converted.
  • the method further includes:
  • the UE simultaneously connects to an IP data connection between a plurality of gateways, including a connection with a local PDN between the local gateways and a PDN connection with a packet data gateway of the core network.
  • the method further includes:
  • the mutual conversion between the local IP service mode of the local gateway and the direct communication mode between the UEs is controlled by the MME and the base station of the core network.
  • a system for supporting local IP service functions including a relay node, a base station, and a mobility management entity, where
  • the relay node includes: a relay function module, configured to provide a data relay service for the UE;
  • a local IP function module configured to provide a local IP access function for the UE
  • the mobility management entity and the base station are configured to manage and control the relay node.
  • the relay function module provides a data relay service for the specific UE, or only the local IP function module provides a local IP access function for the specific UE, or a relay function module and a local IP function module.
  • the specific UE is served.
  • the relay function module provides a relay mode of the relay service, and a mutual conversion between the local IP access mode in which the local IP function module provides the local IP access function.
  • the local IP function module is further configured to perform mutual conversion based on the local IP service mode of the local gateway and a direct communication mode between the UEs under the control of the mobility management entity and the base station.
  • the invention embeds the local gateway in the relay node, or the local gateway is co-located with the relay node, or the local gateway and the relay node connect through the wired connection, and establish the packet data between the local UE and the local gateway through the relay node.
  • Network PDN connection The invention can not only support the local service or the proximity service between the relay node and the user equipment, but also support the local service or the proximity service of the two or more user equipments through the relay node, thereby supporting the local IP data stream based. Widely used to reduce the load on the core network. In addition, by utilizing a close-range wireless channel, it is possible to improve spectral efficiency and increase throughput.
  • Figure 1 is an architectural diagram of a Type 2 relay system supporting local IP services while supporting local IP services;
  • FIG. 2 is an architectural diagram of a Type 2 relay system supporting local IP services in a non-local IP service
  • FIG. 3 is an architectural diagram of a Type 2 relay system supporting local IP services while supporting both local and non-local IP services;
  • 4 is an architecture diagram of a first type of relay system supporting local IP services in a mobile relay scenario
  • 5 is another architectural diagram of a first broad class of relay systems supporting local IP services for a mobile relay scenario
  • FIG. 6 is an architectural diagram of a first type of relay system for supporting local IP services of a UMTS user equipment for a mobile relay scenario
  • FIG. 7 is an architectural diagram of a first type of trunking system supporting a local IP service for supporting a relaying scenario in supporting a local IP service;
  • FIG. 8 is an architecture diagram of a first-class trunking system supporting a local IP service for a non-local IP service in a fixed relay scenario
  • FIG. 9 is an architectural diagram of a first-class trunking system supporting local IP services for supporting a relay scenario while supporting both local and non-local IP services;
  • FIG. 10 is a schematic structural diagram of a system for supporting a local IP service function according to an embodiment of the present disclosure
  • Figure 11 is a flow chart showing the establishment of a local IP service PDN connection in the first-class trunking system architecture supporting local IP services. detailed description
  • a relay node can provide a transmission relay service between the base station and the user equipment, where the link between the base station and the relay node is called a backhaul link (the corresponding air interface is called Un port).
  • the link between the relay node and the user equipment is called an access link.
  • the relay node can be used to expand the coverage of the base station, and provides a series of applications for the mobile car and the hot air service inside the cabin.
  • a relay node is classified into two types of relay nodes according to its physical layer characteristics, that is, a first type of relay node having an independent cell identifier (a first type of relay node, that is, a relay node having an independent cell identifier), and A type 2 relay node that does not have an independent cell identifier, wherein the first type of relay node having an independent cell identifier is further subdivided into three types, namely, type 1, class Type 1A and type IB relay nodes, the backhaul link of the Type 1 relay node and the carrier frequency of the access link are the same (this relay is also called in-band inband relay) and the two links are time-divided Alternate operation, the backhaul link of the type 1A relay node and the carrier frequency of the access link are different (this kind of relay is also called outband outband relay), the backhaul link and access link of the type 1B relay node
  • the carrier frequency is the same (also an in-band relay) and there is enough antenna isolation between the two links
  • the relay node itself is a data transmission relay service between the base station and the user equipment, and cannot directly support the direct IP data service between the user equipment and the relay node.
  • a user may need to localize a service (eg, a local social network, a game, an advertisement, etc.), or communicate between devices within a geographical proximity, typically referred to as a proximity-based service.
  • a proximity-based service typically referred to as a proximity-based service.
  • D2D device-to-device communication
  • relay nodes are also used in vehicles, such as trains (high-speed rail), airplanes, and automobiles.
  • the relay node is no longer just a relay, but acts like a home base station that supports local IP services, but It has obvious advantages over the home base station, and does not require a wired backhaul like a home base station.
  • the relay node acts as a node that cooperates with the macro cell) and avoids that the home base station may cause serious interference to the macro cell.
  • the problem, and the cooperation between the macro base station and the relay node can obtain higher spectral efficiency (the resource ratio between the macro base station and the relay node can be flexibly adjusted), which makes the deployment more flexible and efficient.
  • the present invention proposes a system architecture that uses a relay node to support local IP services.
  • a relay node to support local IP services.
  • Local IP services can support a variety of applications in local areas, such as social networks, games, advertising, multimedia (music, film, video, e-book) applications, and can also offload the core network load pressure.
  • the architecture of the present invention does not affect the support of the remote IP service. The following describes the architecture of the present invention when supporting the remote IP service when supporting the local IP service, and FIG. 1, FIG. 2 and FIG. The specific system architecture when supporting two IP services at the same time.
  • Figure 1 is an architectural diagram of a Type 2 trunk system supporting local IP services while supporting local IP services.
  • a Type 2 relay node is deployed in a geographical area (such as indoors) that provides local services or proximity services.
  • the relay node supports the Un interface, the DeNB, and the common base station (Donor eNodeB, DeNB).
  • the Uu interface is supported between UEs and between the relay node and the normal UE.
  • the local gateway (Local Gateway, L-GW) is embedded in the relay node, or the relay node is co-located with the local gateway, or the relay node is connected to the local gateway through a wired connection.
  • L-GW Local Gateway
  • the system using this architecture supports the local PDN connection between the UE and the local gateway through the relay node.
  • the DeNB Since the type 1 relay node does not create a separate cell, the DeNB needs to manage the establishment, configuration, and deletion of a data radio bearer (DRB) between the relay node and the normal UE, and is a relay node and Allocate resources between ordinary UEs.
  • the signaling between the DeNB and the UE may be transmitted through the relay node (the backhaul of the relay node supports the control plane and the user plane data), or may not be transmitted through the relay node, that is, directly transmitted between the DeNB and the UE (the relay node The backhaul only supports user plane data).
  • the local gateway includes a local cache and/or a local server; or the local The gateway is connected to at least one of the following network elements and networks: a local server, a local area network, the Internet, to provide content/application services.
  • the local cache (and the local database, the local content providing device) can effectively reduce the overhead of the backhaul resource. For example, when a file is used by multiple UEs, the backhaul resource can be used only once by the local cache instead of each. The UE must use a backhaul resource when downloading the file.
  • the DeNB may indicate a network load status to the relay node and/or the local gateway, and the local gateway may perform local buffering during the network low load period to avoid the peak period of the system load and improve system efficiency.
  • the local gateway and/or the relay node can trigger or stop the local cache according to the network load condition, and the content server of the core network can also push the content to the relay node and/or the local gateway, and the push can also be triggered according to the network load condition. Or stop.
  • the local gateway may also perform local buffering while the relay node provides the relay service for the local UE. Specifically, after the data arrives at the relay node from the DeNB, the relay node sends the UE to the UE through the Uu interface.
  • the UE (the implementation method is that the UE's remote IP connection is from the PDN-GW of the core network to the local gateway to the UE, and another implementation method is to reach the UE via the local IP service connection between the local gateway and the UE), to reduce Small consumption of backhaul resources and improved system efficiency.
  • the local IP traffic passes through the user equipment, the relay node, and the local gateway to the local cache, or to the local server or LAN or the Internet, or vice versa.
  • the relay node is responsible for the mapping between the data radio bearer DRB and the local PDN connection.
  • the DeNB supports an S1-MME interface between the Mobility Management Entity (MME) and the core network, and the interface function includes controlling the PDN connection between the UE and the local gateway through the relay node (including authorization, connection establishment, and modification). , release, etc.) and support
  • the paging of the UE, the MME and the Serving Gateway (S-GW) support the SI 1 interface, and the interface function includes managing the session between the UE and the local gateway through the relay node (including creation, modification, and Release) and support caching of UE data.
  • the S5 interface is supported between the serving gateway and the local gateway.
  • the interface function includes managing the session between the UE and the local gateway through the relay node (including the creation, modification, and release of the session).
  • the S5 interface signaling and data between the serving gateway and the local gateway are transmitted through the DeNB.
  • Local IP services can have multiple business models:
  • the local server broadcasts or pushes catalogues, advertisement information, offer information, map/game information, weather information, traffic information, live programs, and/or location information to the UE(s) through the local gateway/relay node.
  • UEs eg, laptops, tablets
  • At least two UEs establish a connection with the local server through the relay node/local gateway, and support social network applications between at least two UEs such as file sharing, chat and/or games through the local server;
  • At least two UEs establish a direct connection with the local gateway through the relay node (the local gateway performs local routing local routing, also called local switching local switch or local forwarding local forwarding).
  • This mode can also be called local forwarding mode.
  • the mode is applicable not only to the architecture of the relay node plus the local gateway, but also to the architecture of various base stations including the home base station, the micro base station and the local gateway. Supporting social network applications or intra-group communication applications between at least two UEs such as file sharing, chat, games, etc. (two UE interactions are peer-to-peer modes, and multiple UE interactions generally adopt a multicast/multicast mode;);
  • Proximity service or inter-device communication service is a service for IP service transmission between two or more close-range devices, however, if it is directly between two or more user devices Transmission (which can be called direct communication mode, generally the user plane data is transmitted directly between user equipments, and the control plane still passes through the base station and the MME), and the system may have difficulty monitoring and managing the services between the two user equipments, and Direct communication between two user equipments may result in a small communication range due to factors such as their small transmit power, small antenna gain, and low antenna height (easy to be obstructed by obstacles).
  • direct communication mode generally the user plane data is transmitted directly between user equipments, and the control plane still passes through the base station and the MME
  • Direct communication between two user equipments may result in a small communication range due to factors such as their small transmit power, small antenna gain, and low antenna height (easy to be obstructed by obstacles).
  • a better mode is to use the local IP service mode for operators to monitor and manage (relay nodes, local gateways and even local servers are monitored and managed by the operator), and the communication through the relay nodes due to
  • the relay node has higher transmit power, larger antenna gain, and higher antenna height to support a larger communication range (so more users can use proximity services).
  • the local service or the proximity service between the relay node and the user equipment but also the local service or the proximity service performed by the two or more user equipments through the relay node can be supported.
  • the direct communication mode and the local IP service mode can be switched, and the operator can also according to the service type, the UE identity, the service area, the network load, and the monitoring requirement (for example, lawful interception). Other factors determine whether to use direct communication mode or local IP business mode.
  • FIG. 2 is a diagram of the architecture of a Type 2 trunk system supporting local IP services when supporting non-local IP services.
  • the architecture is different from the architecture shown in FIG. 1 in that a data radio bearer (DRB) between a DeNB and a normal UE may be selected to pass through a relay node or not through a relay node (depending on channel conditions and the like). ). If the transmission of data passes through the relay node, it is equivalent to the data transmission consisting of the transmission between the DeNB and the relay node and the transmission between the relay node and the UE.
  • the PDN connection between the UE and the packet data gateway of the core network passes through the DeNB and the S-GW, which may be referred to as a remote PDN connection (relative to the local PDN connection).
  • the service gateway and the packet data gateway (PDN-GW of the core network, that is, the P-GW in the figure) support the S5 or S8 interface.
  • the interface function includes managing the session of the UE (including the creation, modification, and release of the session).
  • Figure 3 shows a Type 1 relay system supporting local IP services supporting both local and non-local IP.
  • Architecture diagram for business the system can support local IP service connections and remote IP service connections of different UEs, and can also support IP data connection between user equipment and multiple gateways at the same time, including local IP connection and remote IP service connection. Supports the conversion of two IP service connections of the same UE, and can also support the same UE to simultaneously perform two IP service connections.
  • Figure 4 is an architectural diagram of the first major class of trunking systems that support local IP services.
  • a first type of relay node is deployed in a geographical area (such as a train) that provides local services or proximity services.
  • the relay node is deployed on a vehicle, and the relay node is The Doner eNB (abbreviated as DeNB) supports the Un interface, and the Uu interface is supported between the relay node and the normal UE.
  • the first type of relay node has an independent cell identity, which manages the DRB between it and the serving UE, and allocates resources for transmission between the relay node and the ordinary UE.
  • a local gateway is embedded in the relay node, or the relay node is co-located with the local gateway, or the relay node is connected to the local gateway through a wire.
  • the system supports the local PDN connection between the UE and the local gateway through the relay node.
  • the local gateway includes a local cache and/or a local server; or the local gateway is connected to at least one of the following network elements and networks: a local server, a local area network, the Internet, to provide content/application services .
  • the local cache (and the local database, the local content providing device) can effectively reduce the overhead of the backhaul resource. For example, when a file is used by multiple UEs, the local cache can make the backhaul resources only be used once instead of downloading each UE. A return resource is used for this file.
  • the local gateway can use the network low load period for local caching to avoid the peak period of the system load and improve system efficiency.
  • the local gateway and/or the relay node can trigger or stop the local cache according to the network load condition, the core network
  • the content server can also push content to the relay node and/or the local gateway, which can also be triggered or stopped depending on the network load.
  • the local gateway may also perform local buffering while the relay node provides the relay service for the local UE. Specifically, when the data arrives at the relay node from the DeNB, the relay node sends the relay node to the UE through the Uu port.
  • An implementation method is that the UE's remote IP connection is from the PDN-GW of the core network to the local gateway to the UE, and another implementation method is to reach the UE via a local IP service connection between the local gateway and the UE to reduce the backhaul. Resource consumption and system efficiency.
  • the local IP data stream passes through the user equipment, the relay node and the local gateway arrive at the local cache, or the local server or local area network, or vice versa.
  • the relay node is responsible for mapping between the data radio bearer DRB and the local PDN connection.
  • the relay node is like a UE, so there are also core network elements serving the relay node, including the mobility management entity (RN-MME) and the serving gateway (RN-S-GW).
  • Packet Data Gateway (RN-P-GW), in the figure, the service gateway and the packet data gateway are drawn together.
  • An S1-MME interface exists between the DeNB and the mobility management entity serving the RN
  • an S1-U interface exists between the DeNB and the serving gateway RN-S-GW serving the RN
  • the RN-S-GW and the packet data gateway RN serving the RN
  • the outgoing interface from the RN-P-GW is an SGi interface, through which the mobile management entity UE-MME serving the UE can be connected to serve the UE.
  • the SGi interface is an IP interface, which can carry S1-MME signaling data from the relay to the UE-MME, and the S1-U user data relayed to the UE-S-GW, and the local gateway (LGW) of the relay to the UE- S5 interface data of the S-GW.
  • the data is transmitted through the EPS bearer of the relay (from the relay through the DeNB, the RN-S-GW, to the RN-P-GW).
  • the packet data gateway of the UE served by the relay is local (ie, the local gateway LGW and supports the S5/S8 interface between the LGW and the UE-S-GW), instead of being located in the core network.
  • the UE served by the relay is connected to the local gateway through the relay node, and can be further connected to the local server and the local area network.
  • Local IP services can have multiple business models:
  • the local server broadcasts or pushes the catalogue, advertisement information, preferential information, map/ ⁇ tour information, weather information, traffic information, location information, live program, etc. to the UE(s) through the local gateway/relay node, Or the UE(s) (eg, laptop, tablet) access multimedia resources on the local server through the relay node/local gateway, such as movie files, music files, etc., or UE with relay node/local gateway and local server Interactive applications: such as navigation guides, mobile payments, etc.;
  • At least two UEs establish a connection with the local server through the relay node/local gateway, and support social network applications between at least two UEs such as file sharing, chat, games, etc. through the local server;
  • At least two UEs establish a direct connection with the local gateway through the relay node (the local gateway performs local routing local routing, also called local switching local switch or local forwarding local forwarding), and supports social network applications between at least two UEs. Or intra-group communication application port file sharing, chat, game, etc. (two UE interactions are peer-to-peer mode, and multiple UE interactions may adopt multicast/multicast mode;);
  • Proximity service or inter-device communication service is a service for IP service transmission between two or more close-range devices, however, if it is directly between two or more user devices Transmission (which can be called direct communication mode, generally the user plane data is transmitted directly between user equipments, and the control plane still passes through the base station and the MME), and the system may have difficulty monitoring and managing the services between the two user equipments, and Direct communication between two user equipments may result in a small communication range due to factors such as their small transmit power, small antenna gain, and low antenna height (easy to be obstructed by obstacles).
  • direct communication mode generally the user plane data is transmitted directly between user equipments, and the control plane still passes through the base station and the MME
  • Direct communication between two user equipments may result in a small communication range due to factors such as their small transmit power, small antenna gain, and low antenna height (easy to be obstructed by obstacles).
  • a better mode is to use the local IP service mode for the operator to monitor and manage (the relay node, the local gateway and even the local server are monitored and managed by the operator), and the communication through the relay node is due to
  • the relay node has higher transmit power, larger antenna gain, and higher antenna height to support a larger communication range (so more users can use proximity services). In this way, not only the local service or the proximity service between the relay node and the user equipment but also the local service or the proximity service performed by the two or more user equipments through the relay node can be supported.
  • the direct communication mode and the local IP service mode (that is, the mode in which the data of two or more UEs are forwarded by the relay node or the base station) can be converted, and the operator can also
  • the direct communication mode or the local IP service mode is determined according to factors such as service type, UE identity, service area, network load, and monitoring needs (for example, lawful interception).
  • the packet data gateway serving the UE is located in the core network (ie UE-P-GW).
  • the UE data passes through the RN, the DeNB, the RN-S-GW, the RN-P-GW, and the UE-S-GW to the UE-P-GW.
  • the system can support local IP service connection and remote IP service connection of different UEs, and can also support IP data connection between user equipment and multiple gateways at the same time, including local IP connection and remote IP service connection, and can also support two types of the same UE.
  • the conversion of the IP service connection can also support the same UE to simultaneously perform two IP service connections.
  • FIG. 11 is a PDN connection establishment process of a local IP service in a first-class trunking system architecture supporting local IP services.
  • a local gateway is embedded in the relay node, or the relay node is co-located with the local gateway, or the relay node is connected to the local gateway in a wired manner.
  • the S-GW and P-GW ie, RN-S-GW, RN-P-GW
  • the DeNB integrates the RN-S-GW and the RN-P-GW and the S1/X2 proxy function serving the UE.
  • the process shown in Figure 11 includes the following steps:
  • Step 1101 The UE sends an uplink information transmission message to the RN to initiate a LIPA PDN connection establishment process, where the uplink information transmission message carries the NAS information: a PDN connection request, where the PDN connection request includes an APN of the LIPA service requested by the UE.
  • Step 1102 After receiving the uplink information transmission message, the RN encapsulates the NAS information (PDN connection request) into the uplink NAS transmission message of the S1 interface, and includes or is co-located or embedded in the uplink NAS transmission message.
  • the IP address of the LGW connected to it is transmitted to the DeNB via the data of the RN, and is transmitted by the DeNB to the SGW and PGW of the serving RN through the user plane GTP tunnel of the RN, and then routed to the MME serving the UE.
  • Step 1103 The MME of the serving UE parses the PDN connection request from the received S1 message, and determines, according to the APN carried in the UE, that the UE requests to establish a LIPA connection, and therefore needs to perform LIPA access control. If the APN requested by the UE is authorized to allow LIPA access (the value of the LIPA grant (ermission) is "LIPA-only” or "LIPA-conditional"). If the LIPA access control succeeds in the process, the MME sends a Create Session Request message of the S11 interface to the SGW of the serving UE to create an EPS bearer.
  • the MME needs to select an appropriate LGW for the LIPA PDN connection according to the address of the LGW included in the NAS message received from the RN, and the address of the LGW is included in the Create Session Request message of the S11 interface to indicate to the SGW.
  • Step 1104 The SGW of the serving UE sends a create session request message of the S5 interface to the corresponding LGW according to the LGW address included in the created session request message of the received S11 interface.
  • the message of the SI1 interface is sent to the RN PGW and the RN SGW, and then sent to the DeNB via the EPS bearer of the RN.
  • the DeNB sends the message of the S11 interface to the RN through the air interface RN data radio bearer, and then arrives at the LGW.
  • Step 1105 The LGW allocates a GTP TEID (in the case of using the GTP protocol on the S5 user plane) or a GRE key (in the case of using the PMIP protocol on the S5 user plane) for the S5 data plane of the LIPA PDN connection, and sends the S5 interface.
  • Create a session response message to the SGW which contains the assigned S5 GTP TEID or GRE key.
  • the Create Session Response message of the S5 interface also arrives at the UE SGW via the RN, the DeNB, the RN SGW, and the RN PGW.
  • Step 1106 The UE SGW sends a session establishment response message to the UE MME, where the message carries the S5 GTP TEID or GRE key allocated by the LGW.
  • Step 1107 The UE MME sends an E-RAB setup request message of the SI interface to the RN, where the message carries the S5 GTP TEID or GRE key allocated by the LGW with the E-RAB as the granularity.
  • the message also contains a PDN connection accept message.
  • the E-RAB setup request message of the S1 interface is also sent to the RN via the RN PGW, the RN SGW, and the DeNB.
  • Step 1108 The RN parses the PDN connection accept message from the received E-RAB setup request message of the S1 interface, and encapsulates the message into the RRC connection reconfiguration message, and sends the message to the UE, and configures the air interface data wirelessly connected to the LIPAPDN for the UE. Loaded.
  • Step 1109 After configuring the radio bearer data radio bearer according to the RRC message, the UE sends an RRC connection reconfiguration complete message to the RN.
  • Step 1110 The RN sends an E-RAB setup response message of the S1 interface to the UE MME, where the message is sent to the UE MME via the DeNB, the RN SGW, and the RN PGW.
  • Step 1111 The UE sends an uplink information transmission message to the RN, where the message includes a PDN connection completion message.
  • Step 1112 The RN sends an uplink NAS transmission message of the S1 interface to the UE MME, and the message is sent to the UE MME via the DeNB, the RN SGW, and the RN PGW, where the message carries the PDN connection completion message.
  • the LIPAPDN connection of the LIPA service is established, and there are two data channels in the connection.
  • a direct tunnel between the RN and the LGW can be used for LIPA data transmission;
  • the direct tunnel between the RN and the LGW is released, and the core network tunnel is enabled for paging.
  • the RN can identify which E-RABs are transmitted through the direct tunnel (without passing through the core network side tunnel) through the association identifier (the S5 GTP TEID or GRE key assigned by the LGW), and establish the E in the RN of the direct tunnel.
  • the association identifier the S5 GTP TEID or GRE key assigned by the LGW
  • FIG. 5 is another relay architecture supporting local IP services, which is another variation of the above architecture.
  • the relay includes the HeNB (when communicating with the UE serving the relay) and the UE.
  • the function (when communicating with the DeNB), and the SGi interface from the RN-P-GW is connected to the UE-HeNB-GW, and the SI interface function between the HeNB function of the relay and the UE-HeNB-GW is transmitted through the EPS bearer of the relay.
  • the UE-HeNB-GW functions as an S1 proxy, that is, an agent between the HeNB function of the relay and the S1-MME interface between the UE-HeNB-GW and the S1-MME interface between the UE-HeNB-GW and the UE-MME, It is also possible to support an agent between the HeNB function of the relay and the S1-U interface between the UE-HeNB-GW and the S1-U interface between the UE-HeNB-GW and the UE-S-GW.
  • a similar architecture can also be used to support UEs of different standards (this support is called multi-radio-access-technology abbreviated as multi-RAT support), and Figure 6 is a support for UMTS UE (3G UE).
  • the relay architecture of the local IP service is different from the architecture of FIG. 5 in that the relay includes the UMTS home base station HNB function (when communicating with the UMTS UE of the relay service) and the LTE UE function (when communicating with the LTE DeNB) ;), and the SGi interface from the RN-P-GW is connected to the UE-HNB-GW, and the Iuh interface data between the HNB function of the relay and the UE-HNB-GW is transmitted through the EPS bearer of the relay.
  • the relay includes the UMTS home base station HNB function (when communicating with the UMTS UE of the relay service) and the LTE UE function (when communicating with the LTE DeNB) ;
  • the SGi interface from the RN-P-GW is connected to
  • the UE-HNB-GW is connected to the MSC/VLR of the 3G core network by the IuCS interface (to support voice services), and the ISGS interface between the SGSN/GGSN of the 3G core network (to support packet data services).
  • the relay's home base station HNB function also supports LIPA function (HNB is embedded in LGW or co-located with LGW or connected to LGW), and Gn connection is supported between LGW and SGSN in 3G core network. Port, the data transmission of this interface needs to be carried over the EPS of the relay.
  • the GGSN serving the UEs in the car is located in the core network (in this case, the remote IP service;).
  • the system can support local IP service connections and remote IP service connections of different UEs, and can also support IP data connection between user equipment and multiple gateways at the same time, including local IP connection and remote IP service connection, and can also support two types of the same UE.
  • the conversion of the IP service connection can also support the same UE to simultaneously perform two IP service connections.
  • the architecture similar to that of Figures 5 and 6 can also be used to support CDMA-2000 terminals.
  • the relay integrated H(e)NB function is adopted by the Femto access point (FAP) in the CDMA-2000 system.
  • FAP Femto access point
  • H(e)NB-GW is replaced by Femto-GW.
  • the corresponding core network element and corresponding interface also use network elements and interfaces of CDMA-2000 system (such as mobile switching center MSC, media gateway MGW, The packet data serving node PDSN) 0 will not be described here.
  • the operator may choose to deploy a fixed relay.
  • the users of the relay also have the need for local services.
  • local access to the LAN to access multimedia materials (music, movies, videos, e-books), games, social networks (chat, shared files) and other applications
  • using local services can provide a good user experience, while saving backhaul network (special It is the bandwidth of the Un port), which provides higher access speed (avoiding the Un port that may become a bottleneck;).
  • the architecture of the present invention does not affect the support of the remote IP service. The following describes the architecture of the present invention when supporting the remote IP service when supporting the local IP service, and FIG. 7, FIG. 8 and FIG. The system architecture when supporting two IP services at the same time.
  • Figure 7 is a block diagram of the first major class of trunking systems supporting local IP services when supporting local IP services.
  • a first type of relay node is deployed in a geographical area (for example, indoor) providing a local service or a proximity service, and the relay node and the Doner eNB (abbreviated as DeNB)
  • the Un interface is supported, and the Uu interface is supported between the relay node and the normal UE.
  • the first type of relay node has an independent cell identity, which manages the DRB between the UE and the serving UE, and allocates resources for transmission between the relay node and the ordinary UE.
  • a local gateway is embedded in the relay node, or the relay node is co-located with the local gateway, or the relay node is wired to the local gateway.
  • the system supports the local PDN connection between the UE and the local gateway through the relay node.
  • the local gateway includes a local cache and/or a local server; or the local gateway is connected to at least one of the following network elements and networks: a local server, a local area network, the Internet, to provide content/application services .
  • the local cache (and the local database, the local content providing device) can effectively reduce the overhead of the backhaul resource. For example, when a file is used by multiple UEs, the local cache can make the backhaul resources only be used once instead of downloading each UE. A return resource is used for this file.
  • the local gateway can use the network low load period for local caching to avoid the peak period of the system load and improve system efficiency. For this reason, the local gateway and/or the relay node can trigger or stop the local cache according to the network load condition, the core network
  • the content server can also push content to the relay node and/or the local gateway, which can also be triggered or stopped depending on the network load.
  • the local gateway may also perform local buffering while the relay node provides the relay service for the local UE.
  • the relay node when the data arrives at the relay node from the DeNB, the relay node sends the relay node to the UE through the Uu port. , copying a copy to the local gateway as a local cache; or data from the PDN-GW of the core network to the local gateway (via the tunnel between the PDN-GW and the LGW), and then from the local gateway to the UE served by the relay node (
  • An implementation method is that the UE's remote IP connection is from the PDN-GW of the core network to the local gateway to the UE, and another implementation method is to reach the UE via a local IP service connection between the local gateway and the UE to reduce the backhaul. Resource consumption and system efficiency.
  • the local IP data stream passes through the user equipment, the relay node and the local gateway arrive at the local cache, or the local server or local area network, or vice versa.
  • the relay node is responsible for data radio bearer DRB and this Mapping between local PDN connections.
  • the architecture in this embodiment is significantly different from the architecture in the second embodiment.
  • the S-GW is a relay service
  • the P-GW ie, RN-S-GW, RN-P-GW
  • the DeNB integrates the RN-S-GW and the RN-P-GW and the S1/X2 proxy function serving the UE, so the DeNB and the RN-MME support not only the S1-MME interface but also the S11. Interface (actually the interface between the DeNB-integrated RN-S-GW and the RN-MME;).
  • the relay node and the core network mobility management entity support an S1-MME interface
  • the DeNB performs a proxy function for the interface
  • the interface function includes controlling the PDN connection between the UE and the local gateway through the relay node (including authorization , connection establishment, modification, release, etc.) and support for paging to the UE.
  • the S1-U between the relay node and the serving gateway (UE-S-GW) is represented by the DeNB.
  • the S11 interface is supported between the MME and the serving gateway S-GW.
  • the interface function includes managing the session between the UE and the local gateway through the relay node (including the creation, modification, and release of the session) and supporting the buffering of the UE data.
  • the S5 interface is supported between the serving gateway and the local gateway.
  • the interface function includes managing the session between the UE and the local gateway through the relay node (including the creation, modification, and release of the session).
  • the S5 interface signaling and data are transmitted through the DeNB (actually, the SGi interface of the RN-P-GW integrated by the DeNB is connected to the UE-S-GW).
  • Local IP services can have multiple business models:
  • the local server broadcasts or pushes the catalogue, advertisement information, preferential information, map/ ⁇ tour information, weather information, traffic information, location information, live program, etc. to the UE(s) through the local gateway/relay node, Or the UE(s) (eg, laptop, tablet) access multimedia resources on the local server through the relay node/local gateway, such as movie files, music files, etc., or UE with relay node/local gateway and local server Interactive applications: such as navigation guides, mobile payments, etc.;
  • At least two UEs establish a connection with the local server through the relay node/local gateway, and support social network applications between at least two UEs, such as file sharing, chat, and tour through the local server. Play, etc.
  • At least two UEs establish a direct connection with the local gateway through the relay node (the local gateway performs local routing local routing, also called local switching local switch or local forwarding local forwarding), and supports social network applications between at least two UEs. Or intra-group communication application port file sharing, chat, game, etc. (two UE interactions are peer-to-peer mode, and multiple UE interactions may adopt multicast/multicast mode;);
  • a proximity service or inter-device communication service is a service for transmitting IP traffic between two or more close-range devices, however, if it is directly transmitted between two or more user devices (may be called In the direct communication mode, generally, user plane data is directly transmitted between user equipments, and the control plane still passes through the base station and the MME.
  • the system may be difficult to monitor and manage the services between the two user equipments, and between the two user equipments.
  • Direct communication may have a small communication range due to factors such as their small transmit power, small antenna gain, and low antenna height (easy to be obstructed by obstacles).
  • a better mode is to use the local IP service mode for operators to monitor and manage (relay nodes, local gateways and even local servers are monitored and managed by the operator), and the communication through the relay nodes due to
  • the relay node has higher transmit power, larger antenna gain, and higher antenna height to support a larger communication range (so more users can use proximity services).
  • the local service or the proximity service between the relay node and the user equipment but also the local service or the proximity service performed by the two or more user equipments through the relay node can be supported.
  • the direct communication mode and the local IP service mode can be switched, and the operator can also according to the service type, the UE identity, the service area, the network load, and the monitoring requirement (for example, lawful interception). Other factors determine whether to use direct communication mode or local IP business mode.
  • Figure 8 is a block diagram of the first major class of trunking systems supporting local IP services when supporting non-local IP services.
  • a first type of relay node is deployed.
  • the relay node supports the Un interface with the Doner eNB (abbreviated as DeNB).
  • the Uu interface is supported between the relay node and the normal UE.
  • the first type of relay node has an independent cell identity, which manages the DRB between the UE and the serving UE, and allocates resources for transmission between the relay node and the ordinary UE.
  • the PDN connection between the UE and the packet data gateway UE-P-GW located in the core network passes through the relay node, DeNB, UE-S-GW, which may also be referred to as a remote PDN connection.
  • the architecture in this embodiment is significantly different from the architecture in the second embodiment.
  • the S-GW is a relay service
  • the P-GW ie, RN-S-GW, RN-P-GW
  • the DeNB integrates the RN-S-GW and the RN-P-GW and the S1/X2 proxy function serving the UE, so the DeNB and the RN-MME support not only the S1-MME interface but also the S11. Interface (actually the interface between the DeNB-integrated RN-S-GW and the RN-MME;).
  • the S1-MME interface is supported between the relay node and the core network MME, and the DeNB performs a proxy function for the interface, and the interface function includes controlling the PDN connection between the UE and the local gateway through the relay node (including authorization, connection establishment, Modify, release, etc.) and support paging to the UE.
  • the S 1 -U interface between the relay node and the serving gateway (UE-S-GW) is proxied by the DeNB.
  • the S-interface is supported between the UE-MME and the Serving Gateway (UE-S-GW).
  • the interface function includes managing the session between the UE and the local gateway through the relay node (including the creation, modification, and release of the session) and supporting the pair. Cache of UE data.
  • the service gateway (UE-S-GW) and the core network packet data gateway (UE-P-GW) support an S5 or S8 interface, and the interface function includes managing the session between the UE and the core network packet data gateway (including the session) Create, modify,
  • Figure 9 is an architectural diagram of a Type 2 relay system supporting local IP services while supporting both local and non-local IP services.
  • the system can support local IP service connections and remote IP service connections of different UEs, and can also support IP data connection between user equipment and multiple gateways at the same time, including local IP connection and remote IP service connection. Supports the conversion of two IP service connections of the same UE, and can also support the same UE to simultaneously perform two IP service connections.
  • the architecture of the second embodiment is mainly described by using a mobile relay scenario as an example.
  • the architecture of the third embodiment is mainly based on a fixed relay scenario. In fact, both architectures can be used in fixed and In mobile scenarios, and can support communications in case of emergency (such as disasters, accidents) or temporary communications (such as large shows).
  • the RN-MME and the UE-MME are MMEs that logically serve the RN and serve the UE. In fact, the two may be the same physical entity.
  • the relay node in the present invention may have different names in the actual system, and different implementation manners (for example, CPE+home base station mode), but as long as it has the following characteristics, it is a relay node: presence data from The base station departs through the node to reach the UE or from the UE to reach the base station through the node.
  • FIG. 10 is a system 1000 for supporting a local IP service function, where the system includes a core network and a relay node, where the mobility management entity 1001 and the base station 1002 of the core network are configured to perform the relay node 1010.
  • the relay node 1010 includes: a relay function module 1011, configured to provide a data relay service for the UE;
  • the local IP function module 1012 is configured to provide a local IP access function for the UE.
  • the relay function module provides a data relay service for the specific UE, or only the local IP function module provides a local IP access function for the specific UE, or a relay function module and a local IP
  • the functional module simultaneously provides services for the particular UE.
  • the functions of the relay function module and/or the local IP function module in the relay node are controlled by a mobility management entity and a base station of the core network.
  • the system supports mutual conversion between a relay mode in which the relay function module provides a relay service and a local IP access mode in which the local IP function module provides a local IP access function.
  • the local IP function module is further configured to perform a direct communication mode between the local IP service mode and the user equipment based on the local gateway under the control of the mobility management entity and the base station. Mutual conversion.
  • the system provided in this embodiment is implemented based on the method steps of the foregoing embodiment. Therefore, the functions of the network element and the function module included in the network element can be directly derived or obtained directly from the foregoing embodiment. Save space, no more details here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于通过中继节点实现本地 IP业务的方法和系统,通过所述中继节点,建立本地 UE与本地网关之间的 PDN连接,所述 UE 与所述本地网关间通过所述中继节点传输本地 IP业务数据。本发明将本地网关嵌入到中继节点中,或本地网关与中继节点共址,或者本地网关与中继节点通过有线连接,通过中继节点建立本地 UE与所述本地网关之间的 PDN连接。通过本发明不仅能支持中继节点与用户设备间的本地服务或邻近服务,也能支持两个或多个用户设备通过中继节点进行的本地服务或邻近服务,从而支持基于本地 IP数据流的广泛应用,减轻对核心网的负荷。此外,通过利用近距离的无线信道,还能够提高频谱效率,提高吞吐量。

Description

一种实现本地 IP业务的方法及系统 技术领域
本发明涉及无线通信技术领域, 更具体地, 涉及一种实现本地 IP业务 的方法及系统。 背景技术
在无线蜂窝通信系统中, 基站是为用户设备(User Equipment, UE, 也 可称为终端 terminal )提供无线接入的设备, 基站与用户设备之间通过电磁 波进行无线通信。 一个基站可能包括一个或多个服务小区, 无线通信系统 通过服务小区可以为一定地理范围内的终端提供无线覆盖。
无线通信系统为了能够大范围的为用户提供无线通信, 需要部署覆盖 范围大的基站, 这种基站通常称为宏基站( Macro eNB或 Macro BS, Macro Base Station ), 其服务小区通常称为宏小区 ( Macro Cell )。 另外, 考虑到用 户的不同需求和不同使用环境, 无线通信系统需要在某些环境或者场景下 为用户提供更高质量的无线通信服务, 因此一些覆盖范围小、 发射功率较 低的小型基站被采用。 这些小型基站包括微基站( Pico eNB或 Pico BS )和 家庭基站( Home Node B或 Home eNodeB, 缩写为 HNB或 HeNB, 也称为 Femto eNB或 Femto BS毫微微基站、 仔基站)。 家庭基站除了支持和宏基 站一样的远程 IP业务(由运营商核心网所支持的业务, 由位于运营商核心 网的分组数据网关 (PDN-GW ) 支持)之外, 还可以支持本地 IP业务(即 由本地的局域网例如家庭网或企业网所支持的 IP业务,由本地网关( L-GW ) 支持)。 然而, 家庭基站需要有线的回程(例如通过光纤、 电缆等连接到运 营商的网络), 因而家庭基站不能灵活移动, 并且家庭基站可能会对相邻宏 小区产生严重干扰, 这进一步地使得其部署场景更加受限, 因而也限制了 使用家庭基站提供本地 IP业务的应用场景。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现本地 IP业务的方法及 系统, 用于通过中继节点实现本地 IP业务。
为达到上述目的, 本发明的技术方案是这样实现的:
一种基于通过中继节点实现本地 IP业务的方法, 包括:
通过所述中继节点,建立本地用户设备 UE与本地网关之间的分组数据 网络 PDN连接, 所述 UE与所述本地网关间通过所述中继节点传输本地 IP 业务数据。
其中, 将所述本地网关嵌入到中继节点中, 或本地网关与中继节点共 址, 或者本地网关与中继节点通过有线连接。
其中, 所述本地网关包括本地緩存和 /或本地服务器; 或所述本地网关 至少与下述网元和网络中的其中之一连接: 本地服务器、 局域网、 互联网。
其中, 所述方法还包括:
由宿主基站 DeNB向所述中继节点和 /或本地网关指示网络负荷状况, 所述本地网关在网络低负荷时段对所述本地 IP业务进行本地緩存,和 /或所 述本地网关在中继节点为本地 UE提供中继服务的同时进行本地緩存。
其中,所述本地网关在中继节点为本地 UE提供中继服务的同时进行本 地緩存的方法为:
当数据从 DeNB到达中继节点后, 中继节点除了通过与 UE之间的 Uu 口发送一份数据给 UE之外,还复制一份数据给本地网关用于本地緩存; 或 者数据从核心网的分组数据网关 PDN-GW先到本地网关, 然后再从本地网 关到中继节点服务的 UE。
其中, 所述中继节点包括以下至少之一: 类型 1中继, 类型 1A中继, 类型 1B中继, 类型 1中继。 其中, 所述本地网关与核心网的服务网关 S-GW间支持 S5接口。 其中,所述本地网关与核心网的服务网关 S-GW间的 S5接口数据通过 中继节点和 DeNB传输。
其中, 所述方法还包括:
由核心网的移动管理实体 MME对所述 UE与所述本地网关间的 PDN 连接的建立进行控制。
其中,通过所述中继节点,建立两个或多个本地 UE与所述本地网关之 间的分组数据网络 PDN连接;
所述两个或多个本地 UE通过本地网关建立端到端的 IP业务流。
其中, 所述方法还包括:
通过所述中继节点, 建立 UE与核心网的分组数据网关之间的 PDN连 接, 所述 UE 与所述核心网的分组数据网关间通过所述中继节点传输远程 IP业务数据。
其中, 所述方法还包括:
由核心网的 MME和基站 , 控制执行 UE和本地网关间的 PDN连接模 式, 与 UE和核心网的分组数据网关间的 PDN连接模式间的相互转换。
其中, 所述方法还包括:
所述 UE同时与多个网关间的 IP数据连接, 其中包括与所述本地网关 间的本地 PDN的连接以及与核心网的分组数据网关间的 PDN连接。
其中, 所述方法还包括:
由核心网的 MME和基站控制执行基于所述本地网关的本地 IP业务模 式与 UE间直接通信模式的相互转换。
一种支持本地 IP业务功能的系统, 包括中继节点、 基站、 移动管理实 体, 其中,
所述中继节点包括: 中继功能模块, 用于为 UE提供数据中继服务;
本地 IP功能模块, 用于为 UE提供本地 IP接入功能;
所述移动管理实体和基站用于对所述中继节点进行管理和控制。
其中,对特定 UE,仅中继功能模块为所述特定 UE提供数据中继服务, 或仅本地 IP功能模块为所述特定 UE提供本地 IP接入功能,或中继功能模 块和本地 IP功能模块同时为所述特定 UE提供服务。
其中, 所述中继功能模块提供中继服务的中继模式, 与所述本地 IP功 能模块提供本地 IP接入功能的本地 IP接入模式间的相互转换。
其中, 所述本地 IP功能模块还用于在所述移动管理实体和基站的控制 下执行基于所述本地网关的本地 IP业务模式与 UE间直接通信模式的相互 转换。
本发明将本地网关嵌入到中继节点中, 或本地网关与中继节点共址, 或者本地网关与中继节点通过有线连接,通过中继节点建立本地 UE与所述 本地网关之间的分组数据网络 PDN连接。 通过本发明不仅能支持中继节点 与用户设备间的本地服务或邻近服务, 也能支持两个或多个用户设备通过 中继节点进行的本地服务或邻近服务, 从而支持基于本地 IP数据流的广泛 应用, 减轻对核心网的负荷。 此外, 通过利用近距离的无线信道, 还能够 提高频谱效率, 提高吞吐量。 附图说明
图 1是支持本地 IP业务的类型 2中继系统在支持本地 IP业务时的架构 图;
图 2是支持本地 IP业务的类型 2中继系统在非本地 IP业务时的架构图; 图 3是支持本地 IP业务的类型 2中继系统在同时支持本地和非本地 IP 业务时的架构图;
图 4是移动中继场景下支持本地 IP业务的第一大类中继系统的架构图; 图 5是用于移动中继场景的支持本地 IP业务的第一大类中继系统的另 一种架构图;
图 6是用于移动中继场景的支持 UMTS用户设备的本地 IP业务的第一 大类中继系统的架构图;
图 7是用于固定中继场景的支持本地 IP业务的第一大类中继系统在支 持本地 IP业务时的架构图;
图 8是用于固定中继场景的支持本地 IP业务的第一大类中继系统在非 本地 IP业务时的架构图;
图 9是用于固定中继场景的支持本地 IP业务的第一大类中继系统在同 时支持本地和非本地 IP业务时的架构图;
图 10为本发明实施例提供的一种支持本地 IP业务功能的系统结构示意 图;
图 11为采用支持本地 IP业务的第一大类中继系统架构下的本地 IP业 务 PDN连接建立流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
中继节点 (Relay Node, RN ) 可以在基站与用户设备之间提供传输中 继服务, 其中, 基站与中继节点间的链路称为回程链路(backhaul link, 相 应的空口称为 Un口), 中继节点与用户设备间的链路称为接入链路(access link )。 中继节点可以用于扩大基站覆盖范围, 为移动的车厢、 机舱内部提 供热点服务等一系列的应用中。 中继节点按其物理层特征分为 2类中继节 点, 即具有独立的小区标识的第一大类中继节点 (第一大类中继节点即具 有独立小区标识的中继节点),和不具有独立的小区标识的类型 2中继节点, 其中具有独立的小区标识的第一大类中继节点又细分为三种, 即类型 1、类 型 1A和类型 IB中继节点, 类型 1中继节点的回程链路和接入链路的载频 相同 (这种中继也称为带内 inband中继)且两条链路以时分的方式交替工 作, 类型 1A中继节点的回程链路和接入链路的载频不同(这种中继也称为 带外 outband中继),类型 1B中继节点的回程链路和接入链路的载频相同(也 是一种带内中继)且两条链路间有足够的天线隔离因而也可以同时工作。
中继节点本身是为基站与用户设备间进行数据传输中转服务的, 不能 支持用户设备与中继节点间直接的 IP数据业务。 在特定的场景下, 用户可 能需要本地化业务(例如本地社交网络、 游戏、 广告等), 或者邻近的地理 范围内的设备间进行通信, 这种服务一般称为邻近服务( proximity-based service )或者设备间通信 ( device-to-device communication, 缩写为 D2D ) 服务, 这种服务需要建立本地设备间或邻近设备间的 IP业务流。 另外, 中 继节点也被用到交通工具上, 例如火车 (高铁), 飞机, 汽车上, 这时它们 也被称为移动中继节点, 在这些交通工具上的人们常常希望能够利用旅途 中的时间看看电影、 视频等节目, 而这些节目的文件如果放置在交通工具 上并可以让用户通过中继节点访问,则可以节省回程网络(特别是 Un空口 ) 的带宽, 提高频谱效率, 同时可以利用接入链路上的带宽为用户提供足够 快的访问多媒体资源的速度(避免了通过可能成为瓶颈的 Un口;), 最终为 用户提供良好的服务体验。 这些服务也需要用户设备能够跟中继节点建立 IP 业务流, 换句话说, 中继节点不再仅仅是起到中继作用, 而是起到了类 似于支持本地 IP业务的家庭基站的作用, 但它比起家庭基站又有明显的优 势, 既不像家庭基站一样需要有线的回程, (中继节点作为一种与宏小区协 作的节点) 又避免了家庭基站可能会对宏小区产生严重干扰的问题, 并且 宏基站与中继节点间的协作能够获得更高的频谱效率 (宏基站与中继节点 间的资源配比可以灵活调整), 这使得其部署更加灵活和有效率。
基于此, 本发明提出一种使用中继节点支持本地 IP业务的系统架构, 以支持基于本地 IP数据流的广泛应用, 并减轻对核心网的负荷, 此外, 通 过利用近距离的无线信道, 也能够提高频谱效率, 提高吞吐量。
实施例一
本地 IP业务可以支持局部地区的各类应用, 例如社交网络、 游戏、 广 告、 多媒体(音乐、 电影、 视频、 电子书)应用等, 也可以对核心网负荷 压力进行分流。 在支持本地 IP业务之外, 本发明的架构也不影响对远程 IP 业务的支持, 以下分别通过图 1、 图 2和图 3阐述本发明架构在支持本地 IP 业务时, 支持远程 IP业务时和同时支持两种 IP业务时的具体系统架构。
图 1是支持本地 IP业务的类型 2中继系统在支持本地 IP业务时的架构 图。
如图 1 所示, 在提供本地服务或邻近服务的地理区域(例如室内)部 署了一个类型 2中继节点,该中继节点与宿主基站(Donor eNodeB, DeNB ) 间支持 Un接口, DeNB和普通 UE之间以及中继节点和普通 UE之间支持 Uu接口。
该实施例中, 为支持本地 IP业务, 中继节点内 嵌入本地网关 ( Local Gateway, L-GW ), 或者中继节点与本地网关共址( collocate ), 或者中继节 点通过有线连接到本地网关。采用该架构的系统支持 UE和本地网关经过中 继节点的本地 PDN连接。
由于类型 1中继节点不创建单独的小区, 因此需要 DeNB对中继节点 与普通 UE之间的数据无线承载( Data Radio Bearer, DRB ) 的建立、 配置 和删除进行管理, 并为中继节点与普通 UE 间的传输分配资源。 DeNB 与 UE间的信令可以通过中继节点传输(中继节点的回程支持控制面和用户面 数据 ), 也可以不通过中继节点传输, 即直接在 DeNB和 UE间传输(中继 节点的回程仅支持用户面数据)。
所述本地网关包括本地緩存 ( local cache )和 /或本地服务器; 或所述本 地网关至少与下述网元和网络中的其中之一连接: 本地服务器、 局域网、 互联网, 以提供内容 /应用服务。
所述本地緩存(以及本地数据库, 本地内容提供设备)可以有效的减 少回程资源的开销,例如当一个文件被多个 UE使用时,通过本地緩存可以 使得回程资源只被使用一次,而不是每个 UE下载该文件时都要使用一次回 程资源。
优选地,所述 DeNB可以向中继节点和 /或本地网关指示网络负荷状况, 所述本地网关可以在网络低负荷时段进行本地緩存, 以避开系统负荷的高 峰期, 提高系统效率。 为此, 本地网关和 /或中继节点可以根据网络负荷状 况触发或停止本地緩存, 核心网的内容服务器也可以向中继节点和 /或本地 网关推送内容, 该推送同样可以根据网络负荷情况触发或停止。
优选地,本地网关也可以在中继节点为本地 UE提供中继服务的同时进 行本地緩存, 具体来说, 当数据从 DeNB到达中继节点后, 中继节点除了 通过 Uu口发送给 UE的一份之外, 还复制一份给本地网关作为本地緩存; 或者数据从核心网的 PDN-GW先到本地网关(经由 PDN-GW与 LGW间的 隧道), 然后再从本地网关到中继节点服务的 UE (—种实现方法是 UE的 远程 IP连接从核心网的 PDN-GW到本地网关再到 UE, 另一种实现方法是 经由本地网关与 UE间的本地 IP业务连接到达 UE ), 以减小对回程资源的 消耗和提高系统效率。
本地 IP数据流经过用户设备、 中继节点和本地网关到达本地緩存、 或 本地服务器或局域网或互联网, 或者反过来。 中继节点负责数据无线承载 DRB与本地 PDN连接间的映射。
DeNB与核心网移动管理实体(Mobility Management Entity, MME )间 支持 S 1 -MME接口 , 该接口功能包括对 UE和通过中继节点的本地网关间 的 PDN连接进行控制 (包括授权, 连接建立、 修改、 释放等) 以及支持对 UE的寻呼 , MME与服务网关( Serving Gateway, S-GW )间支持 SI 1接口, 该接口功能包括对 UE和通过中继节点的本地网关间的会话进行管理(包括 会话的创建、 修改、 释放)以及支持对 UE数据的緩存。 服务网关与本地网 关间支持 S5接口, 该接口功能包括对 UE和通过中继节点的本地网关间的 会话进行管理(包括会话的创建、 修改、 释放)。 服务网关与本地网关间的 S5接口信令和数据通过 DeNB传输。
本地 IP业务可以有多种业务模式:
1 )本地服务器通过本地网关 /中继节点向 (一个或多个) UE广播或者 推送商品目录、 广告信息、 优惠信息、 地图 /^游信息、 天气信息、 交通信 息、 直播节目和 /或位置信息等, 或者(一个或多个) UE (例如笔记本、 平 板电脑)通过中继节点 /本地网关访问本地服务器上的多媒体资源, 例如电 影文件, 音乐文件等, 或者 UE与中继节点 /本地网关与本地服务器的交互 式应用: 例如导航导游, 移动支付等;
2 )至少两个 UE通过中继节点 /本地网关和本地服务器建立连接, 并通 过本地服务器支持至少两个 UE间的社交网络应用例如文件共享、 聊天和 / 或游戏等;
3 ) 至少两个 UE通过中继节点和本地网关建立直接连接(本地网关执 行本地路由 local routing, 也称为本地交换 local switch或者本地转发 local forwarding, 这种模式也可以称为本地转发模式, 这种模式不止适用于中继 节点加本地网关的架构, 还适用于各种基站包括家庭基站、 微基站加本地 网关的架构)。 支持至少两个 UE间的社交网络应用或组内通信应用例如文 件共享、 聊天、 游戏等(两个 UE交互即点对点模式, 而多个 UE交互一般 采用多播 /组播模式;);
邻近服务或者设备间通信服务是在两个或多个近距离设备之间进行 IP 业务传输的一种服务, 然而, 如果是在两个或多个用户设备之间直接进行 传输的话(可称为直接通信模式, 一般是用户面数据在用户设备间直接传 输, 而控制面仍然经过基站和 MME ), 系统可能难以对这两个用户设备间 的业务进行监控和管理, 而且两个用户设备间的直接通信由于它们的发射 功率较小, 天线增益也小, 天线高度也较低(容易被障碍物遮挡)等因素 可能使得其通信范围很小。 因此, 更好的一种模式是使用本地 IP业务模式 以便运营商进行监控和管理(中继节点、 本地网关甚至本地服务器都是受 运营商监控和管理的), 并且通过中继节点的通信由于中继节点发射功率更 大, 天线增益也更大, 天线高度也更高而支持更大的通信范围 (这样更多 的用户能够使用邻近服务)。 这样, 不仅能支持中继节点与用户设备间的本 地服务或邻近服务, 也能支持两个或多个用户设备通过中继节点进行的本 地服务或邻近服务。优选的, 在核心网 MME和基站的控制下, 直接通信模 式与本地 IP业务模式之间可以转换, 运营商还可以根据业务类型、 UE身 份、 服务地区、 网络负荷、 监控需要(例如合法监听)等因素决定是采用 直接通信模式还是本地 IP业务模式。
图 2为支持本地 IP业务的类型 2中继系统在支持非本地 IP业务时的架 构图。 如图 2所示, 该架构与图 1所示是架构区别在于, DeNB与普通 UE 之间的数据无线承载(DRB )可以选择经过中继节点或者不经过中继节点 (取决于信道条件等因素)。 如果数据的传输经过中继节点, 相当于数据传 输由 DeNB与中继节点间的传输和中继节点与 UE间的传输这两段组成。在 非本地 IP业务中, UE与核心网的分组数据网关间的 PDN连接通过 DeNB 和 S-GW, 这可以称为远程 PDN连接(相对于本地 PDN连接)。
服务网关与核心网的分组数据网关( PDN-GW, 即图中的 P-GW )间支 持 S5或 S8接口, 该接口功能包括对 UE的会话进行管理(包括会话的创 建、 修改、 释放)。
图 3是支持本地 IP业务的类型 1中继系统在同时支持本地和非本地 IP 业务时的架构图。 在这一架构下, 系统可以支持不同 UE的本地 IP业务连 接和远程 IP业务连接,也可以支持用户设备同时与多个网关间的 IP数据连 接, 包括本地 IP连接和远程 IP业务连接, 还可以支持同一 UE的两种 IP 业务连接的转换, 还可以支持同一 UE同时进行两种 IP业务连接。
实施例二
在高速列车 (火车)、 飞机或者汽车上, 乘客希望在旅途过程中看看电 影、 视频等节目或者看看电子书, 听听音乐, 而这些多媒体文件如果放置 在交通工具上并可以让用户通过中继节点访问, 则可以节省回程网络(特 别是 Un口 )的带宽, 同时可以利用接入链路上的带宽(避免了通过可能成 为瓶颈的 Un口 )为用户提供足够快的访问多媒体资源的速度, 最终为用户 提供良好的服务体验。 不仅如此, 同一车上或者飞机上的乘客也有社交或 者互动需求, 通过本地网络(例如交通工具中的局域网) 为用户提供社交 网络应用或者互动游戏应用, 将会产生 ^艮好的用户体验。
图 4是支持本地 IP业务的第一大类中继系统的架构图。
如图 4所示, 在提供本地服务或邻近服务的地理区域(例如列车上) 部署了一个第一大类中继节点, 优选的, 该中继节点部署在交通工具上, 该中继节点与 Doner eNB (缩写为 DeNB ) 间支持 Un接口, 中继节点和普 通 UE之间支持 Uu接口。 第一大类中继节点有独立的小区标识, 它自行管 理其和服务 UE间的 DRB, 并为中继节点与普通 UE间的传输分配资源。
为支持本地 IP业务, 该实施例中, 中继节点内嵌入了本地网关, 或者 中继节点与本地网关共址(collocate ), 或者中继节点通过有线连接到本地 网关。 系统支持 UE和本地网关经过中继节点的本地 PDN连接。
所述本地网关包括本地緩存 ( local cache )和 /或本地服务器; 或所述本 地网关至少与下述网元和网络中的其中之一连接: 本地服务器、 局域网、 互联网, 以提供内容 /应用服务。 本地緩存(以及本地数据库, 本地内容提供设备)可以有效的减少回 程资源的开销,例如当一个文件被多个 UE使用时,通过本地緩存可以使得 回程资源只被使用一次,而不是每个 UE下载该文件时都要使用一次回程资 源。 本地网关可以使用网络低负荷时段进行本地緩存, 以避开系统负荷的 高峰期, 提高系统效率, 为此, 本地网关和 /或中继节点可以根据网络负荷 状况触发或停止本地緩存, 核心网的内容服务器也可以向中继节点和 /或本 地网关推送内容, 该推送同样可以根据网络负荷情况触发或停止。 本地网 关也可以在中继节点为本地 UE提供中继服务的同时进行本地緩存,具体来 说, 当数据从 DeNB到达中继节点后, 中继节点除了通过 Uu口发送给 UE 的一份之外, 还复制一份给本地网关作为本地緩存; 或者数据从核心网的 PDN-GW先到本地网关(经由 PDN-GW与 LGW间的隧道), 然后再从本 地网关到中继节点服务的 UE(—种实现方法是 UE的远程 IP连接从核心网 的 PDN-GW到本地网关再到 UE, 另一种实现方法是经由本地网关与 UE 间的本地 IP业务连接到达 UE ),以减小对回程资源的消耗和提高系统效率。 本地 IP数据流经过用户设备, 中继节点和本地网关到达本地緩存、 或者本 地服务器或者局域网, 或者反过来。 中继节点负责数据无线承载 DRB与本 地 PDN连接间的映射。
在 DeNB看来, 中继节点 (RN )就像是一个 UE, 因此也有为中继节 点服务的核心网网元, 包括移动管理实体 ( RN-MME ) , 服务网关 ( RN-S-GW ), 分组数据网关(RN-P-GW ), 在图中, 服务网关和分组数据 网关画在了一起。 DeNB和为 RN服务的移动管理实体间存在 S1-MME接 口, DeNB和为 RN服务的服务网关 RN-S-GW间存在 S1-U接口, RN-S-GW 和为 RN服务的分组数据网关 RN-P-GW间存在 S5/S8接口, RN-MME和 RN-S-GW间存在 SI 1接口。 从 RN-P-GW向外的接口是 SGi接口, 通过该 接口可以连接到为 UE服务的移动管理实体 UE-MME, 为 UE服务的服务 网关 UE-S-GW以及 RN的网管系统 (RN-OAM)。 SGi接口是一个 IP接口, 可以承载从 relay到 UE-MME的 S1-MME信令数据,以及 relay到 UE-S-GW 的 S1-U用户数据, 还有 relay的本地网关(LGW )到 UE-S-GW的 S5接口 数据。 换句话说, 这些数据是通过 relay的 EPS承载(从 relay经过 DeNB, RN-S-GW, 到 RN-P-GW )传输的。
支持本地 IP业务时, relay所服务的 UE的分组数据网关位于本地(即 本地网关 LGW, 并支持 LGW和 UE-S-GW间的 S5/S8接口), 而不是位于 核心网。 relay所服务的 UE通过中继节点连接到本地网关, 还可以进一步 连接到本地服务器以及局域网。 本地 IP业务可以有多种业务模式:
1 )本地服务器通过本地网关 /中继节点向 (一个或多个) UE广播或者 推送商品目录, 广告信息, 优惠信息, 地图 /^游信息, 天气信息, 交通信 息, 位置信息, 直播节目等, 或者 (一个或多个) UE (例如笔记本、 平板 电脑)通过中继节点 /本地网关访问本地服务器上的多媒体资源, 例如电影 文件, 音乐文件等, 或者 UE与中继节点 /本地网关与本地服务器的交互式 应用: 例如导航导游, 移动支付等;
2 )至少两个 UE通过中继节点 /本地网关和本地服务器建立连接, 并通 过本地服务器支持至少两个 UE间的社交网络应用例如文件共享,聊天, 游 戏等;
3 )至少两个 UE通过中继节点和本地网关建立直接连接(本地网关执 行本地路由 local routing, 也称为本地交换 local switch或者本地转发 local forwarding ),并支持至少两个 UE间的社交网络应用或组内通信应用例 口文 件共享, 聊天, 游戏等(两个 UE交互即点对点模式, 而多个 UE交互可以 采用多播 /组播模式;);
邻近服务或者设备间通信服务是在两个或多个近距离设备之间进行 IP 业务传输的一种服务, 然而, 如果是在两个或多个用户设备之间直接进行 传输的话(可称为直接通信模式, 一般是用户面数据在用户设备间直接传 输, 而控制面仍然经过基站和 MME ), 系统可能难以对这两个用户设备间 的业务进行监控和管理, 而且两个用户设备间的直接通信由于它们的发射 功率较小, 天线增益也小, 天线高度也较低(容易被障碍物遮挡)等因素 可能使得其通信范围很小。 因此, 更好的一种模式是使用本地 IP业务方式 以便运营商进行监控和管理(中继节点、 本地网关甚至本地服务器都是受 运营商监控和管理的), 并且通过中继节点的通信由于中继节点发射功率更 大, 天线增益也更大, 天线高度也更高而支持更大的通信范围 (这样更多 的用户能够使用邻近服务)。 这样, 不仅能支持中继节点与用户设备间的本 地服务或邻近服务, 也能支持两个或多个用户设备通过中继节点进行的本 地服务或邻近服务。优选的, 在核心网 MME和基站的控制下, 直接通信模 式与本地 IP业务模式(即两个或多个 UE的数据经过中继节点或基站转发 的模式)之间可以转换,运营商还可以根据业务类型、 UE身份、服务地区、 网络负荷、 监控需要(例如合法监听)等因素决定是采用直接通信模式还 是本地 IP业务模式。
当支持非本地 IP业务时, 为 UE服务的分组数据网关位于核心网 (即 UE-P-GW )。此时 UE数据经过 RN, DeNB, RN-S-GW, RN-P-GW, UE-S-GW 到 UE-P-GW。 系统可以支持不同 UE的本地 IP业务连接和远程 IP业务连 接, 也可以支持用户设备同时与多个网关间的 IP数据连接, 包括本地 IP连 接和远程 IP业务连接, 还可以支持同一 UE的两种 IP业务连接的转换, 还 可以支持同一 UE同时进行两种 IP业务连接。
图 11是采用支持本地 IP业务的第一大类中继系统架构下, 本地 IP业 务的 PDN连接建立流程。 该流程中, 中继节点内嵌入了本地网关, 或者中 继节点与本地网关共址, 或者中继节点以有线方式连接到本地网关。 在该 流程中, 为 RN服务的 S-GW、 P-GW (即 RN-S-GW、 RN-P-GW )位于核 心网。 该流程同样适用于实施例三中所介绍的另一种系统架构, 即 DeNB 集成 RN-S-GW和 RN-P-GW以及为 UE服务的 S1/X2 proxy功能。 图 11所 示流程包括以下步驟:
步驟 1101、 UE通过发送上行信息传输消息至 RN以发起 LIPA PDN连 接建立流程, 该上行信息传输消息中携带 NAS信息: PDN连接请求, 该 PDN连接请求中包含 UE请求的 LIPA业务的 APN。
步驟 1102、 RN接收上行信息传输消息后, 将其中的 NAS信息 (PDN 连接请求)封装进 S1接口的上行 NAS传输消息中, 并在该上行 NAS传输 消息中包含内嵌在其中或与其共址或与其有连接的 LGW的 IP地址, 再通 过 RN的数据无线 载发送至 DeNB, 由 DeNB通过 RN的用户面 GTP隧 道发送至服务 RN的 SGW及 PGW, 然后再路由至服务 UE的 MME。
步驟 1103、 服务 UE的 MME从接收的 S1消息中解析出 PDN连接请 求, 并根据其中携带的 APN判断出 UE请求建立的是 LIPA连接, 因此需 对执行 LIPA访问控制。如果 UE请求的 APN已被授权允许进行 LIPA接入 ( LIPA许可 ( ermission ) 的值为 "LIPA-only" 或 " LIPA-conditional " ), 制。 该流程中 LIPA访问控制成功, 则 MME发送 S 11接口的创建会话请求 消息给服务 UE的 SGW以创建 EPS承载。 MME需根据从 RN接收的 NAS 消息中包含的 LGW的地址为 LIPA PDN连接选择适当的 LGW, 并将该 LGW的地址包含在所述 S11接口的创建会话请求消息中以指示给 SGW。
步驟 1104、服务 UE的 SGW根据接收的 S11接口的创建会话请求消息 中包含的 LGW地址将 S5接口的创建会话请求消息发送给相应的 LGW。该 SI 1接口的消息先发送至 RN PGW和 RN SGW, 再经由 RN的 EPS承载发 送至 DeNB, DeNB通过空口 RN数据无线承载将所述 S11接口的消息发送 至 RN, 然后到达 LGW。 步驟 1105、 LGW为 LIPA PDN连接的 S5数据面分配 GTP TEID (在 S5用户面采用 GTP协议的情况下)或 GRE密钥( key ) (在 S5用户面采用 PMIP协议情况下), 并发送 S5接口的创建会话响应消息给 SGW, 该消息 中包含分配的 S5 GTP TEID或 GRE key。所述 S5接口的创建会话响应消息 同样经由 RN, DeNB , RN SGW, RN PGW到达 UE SGW。
步驟 1106、 UE SGW发送 Sll接口的创建会话响应消息给 UE MME, 该消息中携带 LGW分配的 S5 GTP TEID或 GRE key。
步驟 1107、 UE MME发送 SI接口的 E-RAB建立请求消息给 RN, 该 消息中以 E-RAB为粒度携带 LGW分配的 S5 GTP TEID或 GRE key。 该消 息中还包含 PDN连接接受消息。 所述 S1接口的 E-RAB建立请求消息同样 经由 RN PGW, RN SGW, DeNB发送至 RN。
步驟 1108、RN从接收的 S1接口的 E-RAB建立请求消息中解析出 PDN 连接接受消息, 并将该消息封装进 RRC连接重配置消息中发送给 UE, 并 为 UE配置 LIPAPDN连接的空口数据无线 载。
步驟 1109、 UE根据 RRC消息配置好空口数据无线承载后, 发送 RRC 连接重配置完成消息给 RN。
步驟 1110、 RN发送 S 1接口的 E-RAB建立响应消息给 UE MME , 该 消息经由 DeNB , RN SGW , RN PGW发送至 UE MME。
步驟 1111、 UE发送上行信息传输消息给 RN,该消息中包含 PDN连接 完成消息。
步驟 1112、 RN发送 S1接口的上行 NAS传输消息给 UE MME, 该消 息经由 DeNB , RN SGW , RN PGW发送至 UE MME , 该消息中携带 PDN 连接完成消息。
至此 LIPA业务的 LIPAPDN连接建立完成,该连接存在两条数据通道。 用户处于连接状态时, RN与 LGW之间的直接隧道可用于 LIPA数据传输; 用户处于空闲状态时, RN与 LGW之间的直接隧道会被释放, 此时启用核 心网隧道用于寻呼。 RN可通过其接收的关联标识(LGW分配的 S5 GTP TEID或 GRE key )识别哪些 E-RAB通过直接隧道传输 (而不需要通过核 心网侧隧道;),并建立起直接隧道的 RN中的 E-RAB承载和 L-GW中的 EPS 承载的映射关系。
图 5是另一种支持本地 IP业务的中继架构,是上面架构的另一种变化, 和图 4的架构的主要不同在于: relay包括 HeNB (在跟 relay服务的 UE通 信时 )功能和 UE功能(在跟 DeNB通信时), 而从 RN-P-GW出来的 SGi 接口连接到 UE-HeNB-GW, relay的 HeNB功能与 UE-HeNB-GW之间的 SI 接口数据通过 relay的 EPS承载传输, UE-HeNB-GW起到 S1代理作用, 即 在 relay 的 HeNB 功能与 UE-HeNB-GW 之间的 S1-MME 接口与 UE-HeNB-GW与 UE-MME间的 S1-MME接口间代理, 还可以支持 relay 的 HeNB 功能与 UE-HeNB-GW之间的 S1-U接口与 UE-HeNB-GW 与 UE-S-GW间的 S1-U接口间代理。
类似的架构还可以用到支持不同制式的 UE上(这种支持称为多无线接 入技术 multiple-radio-access-technology缩写为 multi-RAT支持 ), 图 6是一 种支持 UMTS UE ( 3G UE )的本地 IP业务的中继架构, 与图 5的架构不同 之处在于: relay包括 UMTS的家庭基站 HNB功能(在跟 relay服务的 UMTS UE通信时 )和 LTE UE功能(在跟 LTE DeNB通信时;), 而从 RN-P-GW出 来的 SGi接口连接到 UE-HNB-GW, relay的 HNB功能与 UE-HNB-GW之 间的 Iuh接口数据通过 relay的 EPS承载传输。 UE-HNB-GW与 3G核心网 的 MSC/VLR之间是 IuCS 接口 (以支持语音业务), 与 3G 核心网的 SGSN/GGSN之间是 IuPS接口 (以支持分组数据业务)。 为支持本地 IP业 务, relay的家庭基站 HNB功能还支持 LIPA功能( HNB嵌入 LGW或与 LGW共址或连接到 LGW ), LGW与 3G核心网中的 SGSN之间支持 Gn接 口, 该接口的数据传输需要经过 relay的 EPS承载。 当支持非本地 IP业务 时, 为车厢内的 UE服务的 GGSN位于核心网 (此时为远程 IP业务;)。
系统可以支持不同 UE的本地 IP业务连接和远程 IP业务连接,也可以 支持用户设备同时与多个网关间的 IP数据连接,包括本地 IP连接和远程 IP 业务连接, 还可以支持同一 UE的两种 IP业务连接的转换, 还可以支持同 一 UE同时进行两种 IP业务连接。
与图 5和图 6类似的架构还能用于支持 CDMA-2000的终端上, 此时, relay 集成的 H(e)NB 功能被 CDMA-2000 系统中的仔接入点 FAP(Femto access point)功能替代, H(e)NB-GW被 Femto-GW替代, 此外, 相应的核心 网网元和相应的接口也使用 CDMA-2000系统的网元和接口(例如移动交换 中心 MSC, 媒体网关 MGW,分组数据服务节点 PDSN )0 在此不再赘述。
实施例三
在企业、 家庭、 娱乐场所等地方, 如果部署有线回程有困难或者其它 原因 (例如成本), 运营商可能选择部署固定中继, 不过, 在这些地方, 中 继的使用用户同样有本地业务的需求, 例如本地接入局域网访问多媒体资 料(音乐, 电影, 视频, 电子书), 游戏, 社交网络(聊天, 共享文件)等 应用,使用本地业务能够提供良好的用户体验, 同时可以节省回程网络(特 别是 Un 口 ) 的带宽, 提供更高的访问速度(避免了通过可能成为瓶颈的 Un口;)。 在支持本地 IP业务之外, 本发明的架构也不影响对远程 IP业务的 支持, 以下分别通过图 7、 图 8和图 9阐述本发明架构在支持本地 IP业务 时 , 支持远程 IP业务时和同时支持两种 IP业务时的系统架构。
图 7是支持本地 IP业务的第一大类中继系统在支持本地 IP业务时的架 构图。
如图 7所示, 在提供本地服务或邻近服务的地理区域(例如室内)部 署了一个第一大类中继节点, 该中继节点与 Doner eNB (缩写为 DeNB )间 支持 Un接口, 中继节点和普通 UE之间支持 Uu接口。 第一大类中继节点 有独立的小区标识, 它自行管理其和服务的 UE间的 DRB, 并为中继节点 与普通 UE间的传输分配资源。 为支持本地 IP业务, 中继节点内嵌入了本 地网关, 或者中继节点与本地网关共址(collocate ), 或者中继节点通过有 线连接到本地网关。 系统支持 UE和本地网关经过中继节点的本地 PDN连 接。
所述本地网关包括本地緩存 ( local cache )和 /或本地服务器; 或所述本 地网关至少与下述网元和网络中的其中之一连接: 本地服务器、 局域网、 互联网, 以提供内容 /应用服务。
本地緩存(以及本地数据库, 本地内容提供设备)可以有效的减少回 程资源的开销,例如当一个文件被多个 UE使用时,通过本地緩存可以使得 回程资源只被使用一次,而不是每个 UE下载该文件时都要使用一次回程资 源。 本地网关可以使用网络低负荷时段进行本地緩存, 以避开系统负荷的 高峰期, 提高系统效率, 为此, 本地网关和 /或中继节点可以根据网络负荷 状况触发或停止本地緩存, 核心网的内容服务器也可以向中继节点和 /或本 地网关推送内容, 该推送同样可以根据网络负荷情况触发或停止。 本地网 关也可以在中继节点为本地 UE提供中继服务的同时进行本地緩存,具体来 说, 当数据从 DeNB到达中继节点后, 中继节点除了通过 Uu口发送给 UE 的一份之外, 还复制一份给本地网关作为本地緩存; 或者数据从核心网的 PDN-GW先到本地网关(经由 PDN-GW与 LGW间的隧道), 然后再从本 地网关到中继节点服务的 UE(—种实现方法是 UE的远程 IP连接从核心网 的 PDN-GW到本地网关再到 UE, 另一种实现方法是经由本地网关与 UE 间的本地 IP业务连接到达 UE ),以减小对回程资源的消耗和提高系统效率。 本地 IP数据流经过用户设备, 中继节点和本地网关到达本地緩存、 或者本 地服务器或者局域网, 或者反过来。 中继节点负责数据无线承载 DRB与本 地 PDN连接间的映射。
本实施例中的架构与实施例二中的架构有显著的不同, 实施例二中为 relay服务的 S-GW,P-GW (即 RN-S-GW,RN-P-GW )位于核心网, 而在本实 施例中 , DeNB集成了 RN-S-GW和 RN-P-GW以及为 UE服务的 S1/X2 proxy 功能, 因此 DeNB和 RN-MME间不仅支持 S1-MME接口 , 还支持 S11接 口 (实际是 DeNB集成的 RN-S-GW与 RN-MME间的接口;)。
中继节点与核心网移动管理实体(MME )间支持 S1-MME接口 , DeNB 为该接口执行代理功能,该接口功能包括对 UE和通过中继节点的本地网关 间的 PDN连接进行控制 (包括授权, 连接建立、 修改、 释放等) 以及支持 对 UE的寻呼。 中继节点与服务网关(UE-S-GW )间的 S1-U通过 DeNB代 理。 MME与服务网关 S-GW间支持 S 11接口, 该接口功能包括对 UE和通 过中继节点的本地网关间的会话进行管理(包括会话的创建、 修改、 释放) 以及支持对 UE数据的緩存。 服务网关与本地网关间支持 S5接口, 该接口 功能包括对 UE和通过中继节点的本地网关间的会话进行管理(包括会话的 创建、 修改、 释放)。 S5接口信令和数据经过 DeNB传输(实际上, 是通过 DeNB集成的 RN-P-GW的 SGi接口与 UE-S-GW连接)。
本地 IP业务可以有多种业务模式:
1 )本地服务器通过本地网关 /中继节点向 (一个或多个) UE广播或者 推送商品目录, 广告信息, 优惠信息, 地图 /^游信息, 天气信息, 交通信 息, 位置信息, 直播节目等, 或者 (一个或多个) UE (例如笔记本、 平板 电脑)通过中继节点 /本地网关访问本地服务器上的多媒体资源, 例如电影 文件, 音乐文件等, 或者 UE与中继节点 /本地网关与本地服务器的交互式 应用: 例如导航导游, 移动支付等;
2 )至少两个 UE通过中继节点 /本地网关和本地服务器建立连接, 并通 过本地服务器支持至少两个 UE间的社交网络应用例如文件共享,聊天, 游 戏等;
3 ) 至少两个 UE通过中继节点和本地网关建立直接连接(本地网关执 行本地路由 local routing, 也称为本地交换 local switch或者本地转发 local forwarding ),并支持至少两个 UE间的社交网络应用或组内通信应用例 口文 件共享, 聊天, 游戏等(两个 UE交互即点对点模式, 而多个 UE交互可以 采用多播 /组播模式;);
邻近服务或者设备间通信服务是在两个或多个近距离设备之间进行 IP 业务传输的一种服务, 然而, 如果是在两个或多个用户设备之间直接进行 传输的话(可称为直接通信模式, 一般是用户面数据在用户设备间直接传 输, 而控制面仍然经过基站和 MME ), 系统可能难以对这两个用户设备间 的业务进行监控和管理, 而且两个用户设备间的直接通信由于它们的发射 功率较小, 天线增益也小, 天线高度也较低(容易被障碍物遮挡)等因素 可能使得其通信范围很小。 因此, 更好的一种模式是使用本地 IP业务模式 以便运营商进行监控和管理(中继节点、 本地网关甚至本地服务器都是受 运营商监控和管理的), 并且通过中继节点的通信由于中继节点发射功率更 大, 天线增益也更大, 天线高度也更高而支持更大的通信范围 (这样更多 的用户能够使用邻近服务)。 这样, 不仅能支持中继节点与用户设备间的本 地服务或邻近服务, 也能支持两个或多个用户设备通过中继节点进行的本 地服务或邻近服务。优选的, 在核心网 MME和基站的控制下, 直接通信模 式与本地 IP业务模式之间可以转换, 运营商还可以根据业务类型、 UE身 份、 服务地区、 网络负荷、 监控需要(例如合法监听)等因素决定是采用 直接通信模式还是本地 IP业务模式。
图 8是支持本地 IP业务的第一大类中继系统在支持非本地 IP业务时的 架构图。
如图 8所示, 在提供本地服务或邻近服务的地理区域(例如室内)部 署了一个第一大类中继节点, 该中继节点与 Doner eNB (缩写为 DeNB )间 支持 Un接口, 中继节点和普通 UE之间支持 Uu接口。 第一大类中继节点 有独立的小区标识, 它自行管理其和服务的 UE间的 DRB, 并为中继节点 与普通 UE间的传输分配资源。 UE和位于核心网的分组数据网关 UE-P-GW 间的 PDN连接经过中继节点, DeNB, UE-S-GW, 这也可以称为远程 PDN 连接。
本实施例中的架构与实施例二中的架构有显著的不同, 实施例二中为 relay服务的 S-GW,P-GW (即 RN-S-GW,RN-P-GW )位于核心网, 而在本实 施例中 , DeNB集成了 RN-S-GW和 RN-P-GW以及为 UE服务的 S1/X2 proxy 功能, 因此 DeNB和 RN-MME间不仅支持 S1-MME接口 , 还支持 S11接 口 (实际是 DeNB集成的 RN-S-GW与 RN-MME间的接口;)。
中继节点与核心网 MME间支持 S 1 -MME接口 , DeNB为该接口执行 代理功能, 该接口功能包括对 UE和通过中继节点的本地网关间的 PDN连 接进行控制(包括授权, 连接建立、修改、释放等 )以及支持对 UE的寻呼。 中继节点与服务网关( UE-S-GW )间的 S 1 -U接口通过 DeNB代理。 UE-MME 与服务网关 (UE-S-GW ) 间支持 S11接口, 该接口功能包括对 UE和通过 中继节点的本地网关间的会话进行管理(包括会话的创建、 修改、 释放) 以及支持对 UE数据的緩存。 服务网关 (UE-S-GW)与核心网分组数据网关 ( UE-P-GW ) 间支持 S5或 S8接口, 该接口功能包括对 UE和核心网分组 数据网关间的会话进行管理(包括会话的创建、 修改、 释放)。
图 9是支持本地 IP业务的类型 2中继系统在同时支持本地和非本地 IP 业务时的架构图。 在这一架构下, 系统可以支持不同 UE的本地 IP业务连 接和远程 IP业务连接,也可以支持用户设备同时与多个网关间的 IP数据连 接, 包括本地 IP连接和远程 IP业务连接, 还可以支持同一 UE的两种 IP 业务连接的转换, 还可以支持同一 UE同时进行两种 IP业务连接。 补充说明, 实施例二的架构主要是以移动中继场景为例介绍的, 而实 施例三的架构主要是以固定中继场景为例介绍的, 实际上, 两种架构都可 以用在固定和移动场景下, 并且可以支持紧急情况下的通信 (例如发生灾 难、 事故时)或者临时通信(例如大型演出)。 另夕卜, RN-MME和 UE-MME 是逻辑上为 RN和为 UE服务的 MME, 实际上,二者可以是同一物理实体。 此外, 本发明所说的中继节点可能在实际系统中有不同的名称, 也有不同 的实现方式(例如 CPE+家庭基站方式), 但其只要具有下面的特征, 即为 中继节点:存在数据从基站出发经过该节点到达 UE或者从 UE出发经过该 节点到达基站。
实施例四
图 10为本发明提供的一种支持本地 IP业务功能的系统 1000, 该系统 包括核心网及中继节点, 其中, 核心网的移动管理实体 1001 和基站 1002 用于对所述中继节点 1010进行管理和控制, 所述中继节点 1010包括: 中继功能模块 1011 , 用于为 UE提供数据中继服务;
本地 IP功能模块 1012, 用于为 UE提供本地 IP接入功能。
优选地,对特定用户设备,仅中继功能模块为所述特定 UE提供数据中 继服务, 或仅本地 IP功能模块为所述特定 UE提供本地 IP接入功能, 或中 继功能模块和本地 IP功能模块同时为所述特定 UE提供服务。
优选地, 由核心网的移动管理实体和基站对所述中继节点中的中继功 能模块和 /或所述本地 IP功能模块的功能进行控制。
优选地, 所述系统支持所述中继功能模块提供中继服务的中继模式与 所述本地 IP功能模块提供本地 IP接入功能的本地 IP接入模式间的相互转 换。
优选地, 所述本地 IP功能模块还用于在所述移动管理实体和基站的控 制下执行基于所述本地网关的本地 IP业务模式与用户设备间直接通信模式 的相互转换。
该实施例提供的系统是基于前述实施例的方法步驟实现, 因此, 该系 统中所包含的网元及网元所包含的功能模块的功能都可直接从前述实施例 中直接导出或得到, 为节省篇幅, 此处不再赘述。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种基于通过中继节点实现本地 IP业务的方法, 包括:
通过所述中继节点,建立本地用户设备 UE与本地网关之间的分组数据 网络 PDN连接, 所述 UE与所述本地网关间通过所述中继节点传输本地 IP 业务数据。
2、 根据权利要求 1所述的方法, 其中, 将所述本地网关嵌入到中继节 点中, 或本地网关与中继节点共址, 或者本地网关与中继节点通过有线连 接。
3、 根据权利要求 1所述的方法, 其中, 所述本地网关包括本地緩存和 /或本地服务器;或所述本地网关至少与下述网元和网络中的其中之一连接: 本地服务器、 局域网、 互联网。
4、 根据权利要求 3所述的方法, 其中, 所述方法还包括:
由宿主基站 DeNB向所述中继节点和 /或本地网关指示网络负荷状况, 所述本地网关在网络低负荷时段对所述本地 IP业务进行本地緩存,和 /或所 述本地网关在中继节点为本地 UE提供中继服务的同时进行本地緩存。
5、 根据权利要求 4所述的方法, 其中, 所述本地网关在中继节点为本 地 UE提供中继服务的同时进行本地緩存的方法为:
当数据从 DeNB到达中继节点后, 中继节点除了通过与 UE之间的 Uu 口发送一份数据给 UE之外,还复制一份数据给本地网关用于本地緩存; 或 者数据从核心网的分组数据网关 PDN-GW先到本地网关, 然后再从本地网 关到中继节点服务的 UE。
6、 根据权利要求 1所述的方法, 其中, 所述中继节点包括以下至少之 一: 类型 1中继, 类型 1A中继, 类型 1B中继, 类型 2中继。
7、 根据权利要求 1所述的方法, 其中, 所述本地网关与核心网的服务 网关 S-GW间支持 S5接口。
8、 根据权利要求 7所述的方法, 其中, 所述本地网关与核心网的服务 网关 S-GW间的 S5接口数据通过中继节点和 DeNB传输。
9、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
由核心网的移动管理实体 MME对所述 UE与所述本地网关间的 PDN 连接的建立进行控制。
10、 根据权利要求 1所述的方法, 其中,
通过所述中继节点,建立两个或多个本地 UE与所述本地网关之间的分 组数据网络 PDN连接;
所述两个或多个本地 UE通过本地网关建立端到端的 IP业务流。
11、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
通过所述中继节点, 建立 UE与核心网的分组数据网关之间的 PDN连 接, 所述 UE 与所述核心网的分组数据网关间通过所述中继节点传输远程 IP业务数据。
12、 根据权利要求 11所述的方法, 其中, 所述方法还包括: 由核心网的 MME和基站 , 控制执行 UE和本地网关间的 PDN连接模 式, 与 UE和核心网的分组数据网关间的 PDN连接模式间的相互转换。
13、 根据权利要求 11所述的方法, 其中, 所述方法还包括: 所述 UE同时与多个网关间的 IP数据连接, 其中包括与所述本地网关 间的本地 PDN的连接以及与核心网的分组数据网关间的 PDN连接。
14、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
由核心网的 MME和基站控制执行基于所述本地网关的本地 IP业务模 式与 UE间直接通信模式的相互转换。
15、 一种支持本地 IP业务功能的系统, 包括中继节点、 基站、 移动管 理实体, 其中,
所述中继节点包括: 中继功能模块, 用于为 UE提供数据中继服务;
本地 IP功能模块, 用于为 UE提供本地 IP接入功能;
所述移动管理实体和基站用于对所述中继节点进行管理和控制。
16、 根据权利要求 15所述的系统, 其中,
对特定 UE, 仅中继功能模块为所述特定 UE提供数据中继服务, 或仅 本地 IP功能模块为所述特定 UE提供本地 IP接入功能,或中继功能模块和 本地 IP功能模块同时为所述特定 UE提供服务。
17、 根据权利要求 15所述的系统, 其中, 所述中继功能模块提供中继 服务的中继模式, 与所述本地 IP功能模块提供本地 IP接入功能的本地 IP 接入模式间的相互转换。
18、 根据权利要求 15至 17任一项所述的系统, 其中, 所述本地 IP功 能模块还用于在所述移动管理实体和基站的控制下执行基于所述本地网关 的本地 IP业务模式与 UE间直接通信模式的相互转换。
PCT/CN2012/086775 2012-02-22 2012-12-17 一种实现本地ip业务的方法及系统 WO2013123802A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12869312.4A EP2819443A4 (en) 2012-02-22 2012-12-17 METHOD AND SYSTEM FOR IMPLEMENTING LOCAL IP SERVICE
US14/380,429 US9882803B2 (en) 2012-02-22 2012-12-17 Method and system for implementing local IP service

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210040993.6 2012-02-22
CN201210040993.6A CN103297947B (zh) 2012-02-22 2012-02-22 一种实现本地ip业务的方法及系统

Publications (1)

Publication Number Publication Date
WO2013123802A1 true WO2013123802A1 (zh) 2013-08-29

Family

ID=49004979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086775 WO2013123802A1 (zh) 2012-02-22 2012-12-17 一种实现本地ip业务的方法及系统

Country Status (4)

Country Link
US (1) US9882803B2 (zh)
EP (1) EP2819443A4 (zh)
CN (1) CN103297947B (zh)
WO (1) WO2013123802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068731A1 (ja) * 2013-11-05 2017-03-09 シャープ株式会社 端末装置、リレー端末装置および通信制御方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536213B2 (en) * 2013-07-08 2020-01-14 Nokia Solutions And Networks Oy Establishment of packet data network connection via relay user equipment
WO2015011710A1 (en) * 2013-07-26 2015-01-29 Anagog Ltd. Associating external devices to vehicles and usage of said association
CN110493887A (zh) * 2013-09-13 2019-11-22 北京三星通信技术研究有限公司 建立本地分流承载的方法和设备
WO2015060756A1 (en) * 2013-10-23 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) A network node and method for handling cellular and d2d communications in a wireless communications network
CN105379378B (zh) * 2013-11-01 2019-07-09 华为技术有限公司 一种近距离业务注册方法及装置
KR101953204B1 (ko) 2014-06-11 2019-02-28 콘비다 와이어리스, 엘엘씨 로컬 콘텐츠 리다이렉션을 위한 매핑 서비스
CN106162929B (zh) * 2015-04-07 2021-08-06 中兴通讯股份有限公司 在设备直通系统中用户终端与中继节点的通信方法和装置
EP3318099A4 (en) * 2015-06-30 2018-11-21 Nokia Solutions and Networks Oy Fast and flexible deployment of user equipment-based relay
US10205507B2 (en) * 2015-08-28 2019-02-12 Tejas Networks, Ltd. Relay architecture, relay node, and relay method thereof
CN106878972B (zh) * 2015-12-11 2020-11-06 中国移动通信集团公司 一种网络接入方法、设备及系统
US10009826B1 (en) 2016-01-25 2018-06-26 Sprint Communications Company L.P. Wide area network (WAN) backhaul for wireless relays in a data communication network
US9973256B2 (en) 2016-01-25 2018-05-15 Sprint Communications Company, L.P. Relay gateway for wireless relay signaling in a data communication network
US9887761B2 (en) 2016-01-25 2018-02-06 Sprint Communications Company L.P. Wireless backhaul for wireless relays in a data communication network
US9913165B1 (en) 2016-02-03 2018-03-06 Sprint Communications Company L.P. Wireless relay quality-of-service in a data communication network
US9867114B2 (en) 2016-02-04 2018-01-09 Sprint Communications Company L.P. Wireless relay backhaul selection in a data communication network
US9608715B1 (en) 2016-03-02 2017-03-28 Sprint Cômmunications Company L.P. Media service delivery over a wireless relay in a data communication network
US10405358B1 (en) 2016-03-02 2019-09-03 Sprint Communications Company L.P. Data communication usage tracking in a wireless relay
US9973997B1 (en) 2016-03-03 2018-05-15 Sprint Communications Company, L.P. Data communication network to provide network access data sets for user equipment selection of a wireless relay
US10631211B1 (en) 2016-03-11 2020-04-21 Sprint Communications Company L.P. User equipment (UE) hand-over of a media session based on wireless relay characteristics
US10038491B2 (en) 2016-03-11 2018-07-31 Sprint Communications Company L.P. Proxy mobile internet protocol (PMIP) tunnel selection by a wireless relay in a data communication network
CN107277882B (zh) * 2016-04-07 2020-07-07 中国移动通信有限公司研究院 一种数据路由方法、装置和基站
WO2017188302A1 (ja) * 2016-04-26 2017-11-02 京セラ株式会社 リレーノード及び無線端末
FR3058860B1 (fr) * 2016-11-16 2019-08-02 Thales Procede de gestion du transfert cellulaire d'informations et architecture de reseau
CN106789538A (zh) * 2017-01-20 2017-05-31 福建三元达网络技术有限公司 一种兼容现网的无线回传方法及系统
EP3451580B1 (en) 2017-08-31 2021-07-21 HTC Corporation Device and method of handling packet routing
CN109982449B (zh) * 2017-12-27 2021-05-25 电信科学技术研究院 一种通过无线回程网络传输数据的方法和设备
US11564153B2 (en) * 2018-12-14 2023-01-24 Samsung Electronics Co., Ltd. Apparatus and method for initial access in wireless communication system
WO2022056708A1 (zh) * 2020-09-16 2022-03-24 华为技术有限公司 通信设备、数据传输的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126326A2 (en) * 2009-04-30 2010-11-04 Samsung Electronics Co., Ltd. Method and apparatus for supporting local ip access in a femto cell of a wireless communication system
CN102196403A (zh) * 2010-03-05 2011-09-21 华为技术有限公司 实现接入网本地网关锚定的方法和设备及通信系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682657B (zh) 2007-05-18 2014-06-25 诺基亚公司 使用接入点名称提供本地ip出口服务的系统和方法
US8856387B2 (en) 2008-04-24 2014-10-07 Qualcomm Incorporated Local IP access scheme
CN101860976B (zh) 2009-04-10 2012-10-10 电信科学技术研究院 实现用户设备本地ip接入的方法、设备及系统
US8804682B2 (en) 2009-04-17 2014-08-12 Panasonic Intellectual Property Corporation Of America Apparatus for management of local IP access in a segmented mobile communication system
CN102077525A (zh) 2009-04-22 2011-05-25 华为技术有限公司 一种实现本地ip接入的方法、系统及网络设备
EP2422577B1 (en) 2009-04-23 2015-03-25 Telefonaktiebolaget LM Ericsson (publ) Local ip access through a femto base station
US9480092B2 (en) 2009-04-23 2016-10-25 Qualcomm Incorporated Establishing packet data network connectivity for local internet protocol access traffic
US9198157B2 (en) 2009-05-08 2015-11-24 Qualcomm Incorporated Paging for local IP access packets
CN101895986A (zh) 2009-05-21 2010-11-24 中兴通讯股份有限公司 本地ip接入中实现寻呼的方法及系统
CN101932074B (zh) 2009-06-25 2013-01-23 华为技术有限公司 一种家庭基站本地ip接入的控制方法及装置
CN101959175B (zh) 2009-07-17 2014-03-19 中兴通讯股份有限公司 本地ip访问连接建立的实现方法及系统
CN101998365B (zh) 2009-08-14 2014-12-10 中兴通讯股份有限公司 支持本地ip接入的通信系统中资源管理方法与装置
CN101998449B (zh) * 2009-08-17 2015-07-22 中兴通讯股份有限公司 一种应用于无线中继的传输系统及传输方法
CN101998554A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 基于移动中继的切换方法和移动无线中继系统
KR101091300B1 (ko) 2009-08-21 2011-12-07 엘지전자 주식회사 이동통신 네트워크 내에서 제어 평면(Control Plane) 을 담당하는 서버 및 LIPA(Local IP Access) 서비스를 제어하는 방법
CN101998340B (zh) 2009-08-25 2016-02-10 中兴通讯股份有限公司 一种本地ip访问的计费方法及系统
CN102026293B (zh) * 2009-09-18 2015-05-20 中兴通讯股份有限公司 一种核心网获知中继节点接入方式的系统及方法
CN102036216B (zh) 2009-09-28 2013-03-13 华为终端有限公司 本地ip接入或选定的ip流量卸载的控制方法、装置与系统
CN102056136B (zh) 2009-10-28 2014-04-09 中兴通讯股份有限公司 支持本地ip访问的通信系统中隧道更新方法与系统
CN104901875B (zh) 2009-11-02 2018-03-02 Lg电子株式会社 直接路径使能的方法和相应的家庭蜂窝基站
CN102056141B (zh) 2009-11-04 2013-11-06 中兴通讯股份有限公司 一种实现本地接入的系统和方法
US8588793B2 (en) * 2009-12-04 2013-11-19 Interdigital Patent Holdings, Inc. Bandwidth management for a converged gateway in a hybrid network
CN102104980A (zh) 2009-12-22 2011-06-22 中兴通讯股份有限公司 本地ip接入连接的管理方法和装置
CN102111748B (zh) 2009-12-28 2014-04-30 中兴通讯股份有限公司 本地ip连接建立方法及系统
CN102131251A (zh) 2010-01-19 2011-07-20 北京三星通信技术研究有限公司 一种进行数据前转的方法
US9386607B2 (en) * 2010-06-17 2016-07-05 Qualcomm Incorporated Method and apparatus for managing packet data network connectivity
GB2494472A (en) * 2011-09-12 2013-03-13 Intellectual Ventures Holding 81 Llc Caching of content in a mobile communications network
KR20140123572A (ko) * 2012-02-06 2014-10-22 알까뗄 루슨트 모바일 중계국 송수신기용 장치, 방법 및 컴퓨터 판독가능 기록 매체, 시스템, 및 대중 교통 수단

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126326A2 (en) * 2009-04-30 2010-11-04 Samsung Electronics Co., Ltd. Method and apparatus for supporting local ip access in a femto cell of a wireless communication system
CN102196403A (zh) * 2010-03-05 2011-09-21 华为技术有限公司 实现接入网本地网关锚定的方法和设备及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819443A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068731A1 (ja) * 2013-11-05 2017-03-09 シャープ株式会社 端末装置、リレー端末装置および通信制御方法

Also Published As

Publication number Publication date
US20150010010A1 (en) 2015-01-08
CN103297947B (zh) 2018-06-26
US9882803B2 (en) 2018-01-30
EP2819443A4 (en) 2015-11-11
CN103297947A (zh) 2013-09-11
EP2819443A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2013123802A1 (zh) 一种实现本地ip业务的方法及系统
JP6177428B2 (ja) 小セルラー基地局アクセスシステム及びそのネットワークアクセスを実現する方法
US8730918B2 (en) Handover method based on mobile relay and mobile wireless relay system
US9504079B2 (en) System and method for communications in communications systems with relay nodes
CN102348255B (zh) 一种中继节点接入网络的方法和系统
EP2453590A1 (en) Relay communication system supporting multiple hops and access method thereof
WO2014169748A1 (zh) 一种双连接的实现方法及基站
WO2011000193A1 (zh) 一种无线中继系统中终端的移动性管理方法及系统
WO2011020386A1 (zh) 承载类型的指示方法、系统及传输分流网元
US9722940B2 (en) Implementation method for application for speaking right of LTE-based broadband trunking system
JP6213576B2 (ja) 移動通信システム、ゲートウェイ装置、コアネットワーク装置、通信方法
CN110650441B (zh) 宽带集群通信B-TrunC的业务处理方法及装置
CN102196405A (zh) 移动性管理实体获取会话管理信息参数的方法和系统
US8892089B2 (en) Communications system, base station apparatus, and communication method
WO2014000684A1 (zh) 一种进行切换的方法、系统和设备
WO2015085730A1 (zh) 一种实现本地网关业务的方法、系统及连接设备
WO2011054264A1 (zh) 一种建立本地ip访问下行数据通道的方法及系统
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
WO2014177083A1 (zh) 一种连接管理方法及接入网网元
WO2014177089A1 (zh) 一种连接移动性管理方法及节点设备
WO2012034454A1 (zh) 一种un接口的承载复用方法及系统
WO2011009353A1 (zh) 建立ip分流连接的实现方法和系统
WO2013166955A1 (zh) 本地网关的ip地址分配方法、中继节点及分组数据网关
JP2023546004A (ja) 単一の無線リソース制御接続を介した複数の非アクセス層接続の確立
WO2024074000A1 (en) Method and apparatus for communicating in iab network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14380429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012869312

Country of ref document: EP