WO2013166955A1 - 本地网关的ip地址分配方法、中继节点及分组数据网关 - Google Patents

本地网关的ip地址分配方法、中继节点及分组数据网关 Download PDF

Info

Publication number
WO2013166955A1
WO2013166955A1 PCT/CN2013/075254 CN2013075254W WO2013166955A1 WO 2013166955 A1 WO2013166955 A1 WO 2013166955A1 CN 2013075254 W CN2013075254 W CN 2013075254W WO 2013166955 A1 WO2013166955 A1 WO 2013166955A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
gateway
relay node
local gateway
packet data
Prior art date
Application number
PCT/CN2013/075254
Other languages
English (en)
French (fr)
Inventor
黄莹
谢峰
梁爽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013166955A1 publication Critical patent/WO2013166955A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of communications, and in particular to a local gateway (Local GateWay, L-GW for short) IP address allocation method, and a relay node. And packet data gateway.
  • a local gateway Local GateWay, L-GW for short IP address allocation method
  • a relay node a relay node.
  • packet data gateway BACKGROUND OF THE INVENTION
  • a home base station is a small, low-power base station that is mainly used in small-scale indoor places such as homes and offices.
  • the home base station is connected to the mobile operator core network through a cable access device such as a cable, DSL or optical fiber in the room to provide an access service based on the wireless mobile communication network for a specific user. It is an effective complement to existing network deployment and can effectively improve indoor voice and high-speed data service coverage.
  • the home base station in the LTE (Long Term Evolution) system defined by the Third Generation Partnership Projects (3GPP) standards organization is called HeNB (home eNB).
  • HeNB home eNB
  • LIPA Local IP Access
  • the UE connected to the HeNB can directly access the internal and external IP networks through the HeNB, where the user plane data does not pass through the core network, and the signaling still needs to be processed by the core network.
  • 3GPP implements the LIPA function by adding a logical unit local gateway L-GW, and the terminal needs to support multiple PDN connections.
  • the L-GW has basic EPC PGW functions, such as: 1) packet filtering and rate constraint of UE granularity; 2) UE IP address allocation; 3) SGi interface with the local PDN network.
  • the L-GW is integrated with the HeNB in the current standard, and is connected to the core network element SGW by using the S5 interface. And the S5 connection between the L-GW and the SGW needs to pass through the security gateway SeGW instead of the HeNB GW.
  • the HeNB that is associated with the L-GW carries the address of the L-GW in the S1 message carrying the UE requesting to establish the PDN connection request. If the UE requests to establish the LIPA PDN connection, the MME selects the L-GW as the PGW of the UE.
  • the wireless relay (Wireless Relay) technology is one of the technologies in the Long-Term Evolution advance (3GPP), which is referred to as the LTE-Advanced standard.
  • the relay node (RN) refers to the UE accessing its cell. Providing functions and services similar to those of a normal eNB, and accessing an eNB serving it through a wireless interface in a manner similar to a normal UE, and an eNB serving the RN is called a Donor eNB, referred to as a DeNB.
  • MME mobility management entity
  • the functions provided for the UE include: user access control, authentication, data encryption, service bearer control, paging, handover control and other control signaling processing.
  • the relay node can be divided into two types: a fixed relay and a mobile relay.
  • the fixed relay is designed to extend the coverage of the cell, reduce the dead zone in the communication, balance the load, transfer the traffic in the hotspot area, and save the transmit power of the user equipment (User Equipment, UE for short).
  • User Equipment User Equipment
  • the current high-speed railway has reached a speed of 350 km/h. Due to the Doppler frequency shift, frequent cell switching, and high-speed rail car penetration loss, the coverage of existing network base stations is difficult to meet the high-speed rail communication quality requirements. Therefore, the industry proposes to deploy relay nodes on high-speed rails, which are usually called mobile relays. Through the mobile relay technology, users in the high-speed train can communicate with the relatively stationary RN, and the RN can switch between different DeNBs during the high-speed rail movement, thereby avoiding a large number of users in the high-speed rail car. The handover ensures the communication quality between the UE and the RN.
  • FIG. 1 is a schematic diagram of a scenario in which a relay supports LIPA services in a fixed relay scenario.
  • Figure 2 and Figure 3 are schematic diagrams of two system architectures under the HEPA function of the mobile relay in the high-speed rail scenario.
  • the RN SGW/PGW functional entity is integrated in the DeNB.
  • the RN SGW/PGW functional entity is independent of the DeNB in the core network.
  • the L-GW functional entity is integrated in the RN node located in the car, and the data is transmitted and received through the Un air interface between the RN and the DeNB.
  • the L-GW is connected to the PDN network through the SGi interface.
  • the L-GW in the RN establishes the S5 interface core network tunnel with the UE SGW through the DeNB (the B RN SGW/PGW) , for paging and S5 signaling transmission of the IDLE state UE.
  • the address of the L-GW that is set up in the HeNB is allocated by the security gateway SeGW using the IKEv2 mechanism during the IPSec tunnel establishment process.
  • the HeNB may reuse the IP address for the S1 interface for the S5 interface to reuse the SI IPSec tunnel.
  • the relay node is not connected to the SeGW network element.
  • the L-GW is combined with the RN, all data sent by the core network element to the RN or the L-GW of the RN must be reached through a route with the DeNB or an independent RN PGW. That is, the road of S5 data The path needs to converge to the RN PGW to ensure that the S5 data can be sent to the L-GW in the RN.
  • the present invention provides a method for allocating an IP address of a local gateway, a relay node, and a packet data gateway to solve at least the above problem of how to obtain an address of the L-GW.
  • a method for allocating an IP address of a local gateway including: the packet data gateway assigns an IP address to the local gateway; and the packet data gateway sends the IP address to the local gateway.
  • the local gateway is combined with the relay node, and the packet data gateway is a packet data gateway serving the relay node.
  • the packet data gateway allocates an IP address to the local gateway, including: the packet data gateway allocates an IP address of the local gateway in a process of attaching the relay node; or, the packet data gateway allocates in a DHCP process after the attaching process of the relay node The IP address of the local gateway.
  • the packet data gateway allocates the IP address of the local gateway in the attaching process of the relay node, including: the packet data gateway allocates an IP address to the local gateway during the attaching process of the relay node, and sends the assigned IP address to The serving gateway served by the relay node; the serving gateway sends the received IP address to the mobility management entity serving the relay node; the mobility management entity sends the IP address to the relay node through the NAS message.
  • the method further includes: the relay node sending the IP address to the local gateway.
  • the packet data gateway allocates the IP address of the local gateway in the attaching process of the relay node, including: the packet data gateway allocates the first IP address to the relay node in the attaching process of the relay node, and assigns the second address to the local gateway IP address; the packet data gateway sends the first IP address and the second IP address to a serving gateway serving the relay node; the serving gateway sends the first IP address and the second IP address to the mobility management entity serving the relay node The mobility management entity sends the first IP address and the second IP address to the relay node through the NAS message.
  • the method further includes: the relay node sends the second IP address To the local gateway.
  • the packet data gateway before the first data address and the second IP address are allocated in the attaching process of the relay node, the packet data gateway further includes: the packet data gateway assigning the first IP address and the second IP address according to the auxiliary address allocation information,
  • the auxiliary address allocation information includes: address quantity information to be allocated and/or local gateway address type determining information.
  • the address type of the local gateway includes one of the following: IPv4, IPv6, and IPv4v6o.
  • the method includes: The transparent transmitting cell between the data gateways sends the secondary address allocation information to the packet data gateway; or the relay node sends the secondary address allocation information to the mobility management entity through the transparent non-access stratum message between the mobile management entity, and moves The management entity sends the secondary address allocation information to the serving gateway through the S11 interface message, and then the serving gateway sends the secondary address allocation information to the packet data gateway through the S5 interface message; or the relay node sends the secondary address allocation information to the donor base station through the RRC message.
  • the donor base station sends the secondary address allocation information to the mobility management entity through the S1 interface message, and the mobility management entity sends the secondary address allocation information to the serving gateway through the S11 interface message, and then the serving gateway sends the secondary address allocation information to the packet through the S5 interface message. data turn off.
  • the packet data gateway allocates the first IP address and the second IP address according to the auxiliary address allocation information, including: if the address quantity information to be allocated indicates that the packet data gateway needs to allocate two IP addresses, and the auxiliary address allocation information includes the local The gateway address type determining information, the packet data gateway assigning the first IP address to the relay node, and determining the IP address type of the local gateway address to be allocated according to the local gateway address type determining information, and assigning the second type of the type to the local gateway IP address.
  • the packet data gateway allocates an IP address of the local gateway in a DHCP process after the attaching process of the relay node, including: the packet data gateway allocates an IP address to the local gateway in the DHCP process; the packet gateway sends the assigned IP address To the relay node or the local gateway; preferably, the packet gateway sends the assigned IP address to the relay node or the local gateway, including: if the relay node is set up with the local gateway, the relay node stores the allocated IP address as The IP address of the local gateway; if the relay node is separated from the local gateway, and the packet gateway sends the assigned IP address to the relay node, the relay node stores the assigned IP address as the IP address of the local gateway; Separate from the local gateway, and the packet gateway sends the assigned IP address to the local gateway, the local gateway sends the assigned IP address to the relay node, and the relay node stores the assigned IP address as the IP address of the local gateway.
  • the method further includes: the relay node uses the acquired IP address of the local gateway to establish an S5 connection between the local gateway and the serving gateway serving the UE.
  • the relay node uses the acquired IP address of the local gateway for establishing an S5 connection between the local gateway and the serving gateway serving the UE, including: the S1 sent by the relay node to the mobility management entity serving the UE The message carries the IP address of the local gateway; the mobility management entity serving the UE establishes an S5 connection between the local gateway and the serving gateway serving the UE according to the IP address of the local gateway.
  • a packet data gateway comprising: an allocation module configured to allocate an IP address to a local gateway; and a transceiver module configured to send the assigned IP address to the local gateway.
  • the allocating module comprises: a first allocating submodule, configured to allocate a shared IP address to the relay node and the local gateway if the local gateway is combined with the relay node.
  • the allocating module comprises: a second allocating submodule, configured to allocate a first IP address to the relay node and a second IP address to the local gateway if the local gateway is separated from the relay node.
  • a relay node comprising: an obtaining module configured to acquire an IP address of a local gateway from a packet data gateway.
  • the obtaining module comprises: a first obtaining submodule, configured to acquire an IP address of the local gateway by the attaching process of the relay node.
  • a second obtaining submodule configured to acquire an IP address of the local gateway by using a DHCH manner after the attaching process of the relay node.
  • the relay node further comprises: an establishing module, configured to establish an S5 connection between the local gateway and the serving gateway serving the UE according to the IP address of the local gateway.
  • FIG. 1 is a schematic diagram of a scenario in which a relay supports a LIPA service in a fixed relay scenario according to the related art
  • FIG. 2 is a schematic diagram of a first system architecture in a mobile relay supporting LIPA function in a high-speed rail scenario according to the related art
  • 3 is a schematic diagram of a second system architecture of a mobile relay supporting LIPA function in a high-speed rail scenario according to the related art
  • 4 is a flowchart of a method for allocating a local gateway address according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a block structure of a relay node according to an embodiment of the present invention
  • FIG. 6 is a block diagram of a module structure of a packet data gateway according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a first system architecture of a mobile relay in a high-speed rail scenario according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a second system architecture of a mobile relay in a high-speed rail scenario according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a fourth system architecture of a mobile relay in a high-speed rail scenario according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a fourth system architecture of a mobile relay in a high-speed rail scenario according to an embodiment of the present invention
  • FIG. 12 is a schematic flowchart of a local gateway address allocation method according to Embodiment 1 of the present invention
  • FIG. 13 is a flow chart of a local gateway address allocation method according to Embodiment 2 of the present invention
  • Step S402 The packet data gateway allocates an IP address of the local gateway, where the local gateway is combined with the relay node, or the local gateway is separated from the relay node.
  • Step S404 the relay node acquires the allocated IP address and stores it as the IP address of the local gateway.
  • the IP address is allocated to the local gateway through the packet data gateway, thereby solving the address allocation problem of the local gateway, and ensuring that the S5 data sent by the core network can successfully reach the local gateway.
  • the packet data gateway may allocate the IP address of the local gateway in the attaching process of the relay node, or assign the IP address of the local gateway in the DHCP process after the attaching process.
  • the IP address assigned by the packet data gateway may be one, that is, the relay node and the local gateway share the allocated IP address.
  • the packet data gateway can also assign an IP address to each of the relay node and the local gateway.
  • the type of the assigned IP address may be IPv4 or IPv6 or IPv4v6.
  • the packet data gateway allocates the IP address of the local gateway in the process of attaching the relay node in the following two ways: Method 1: The packet data gateway allocates an IP address to the relay node, and sends the IP address to the service gateway. The serving gateway sends the received IP address to the mobility management entity; the mobility management entity sends the IP address to the relay node through the NAS message. The relay node stores the IP address as the IP address of the local gateway.
  • the relay node sends the secondary address allocation information to the packet data gateway through the transparent transmission cell between the packet and the packet data gateway; or the relay node sends the transparent non-access layer message between the relay management node and the mobility management entity Auxiliary address allocation information is sent to the mobility management entity, and the mobility management entity sends the secondary address allocation information to the serving gateway by using an S11 interface message, and then the serving gateway sends the secondary address allocation information to the packet data gateway by using an S5 interface message; or The relay node sends the secondary address allocation information to the donor base station through the RRC message, and the donor base station sends the secondary address allocation information to the mobility management entity through the S1 interface message, and the mobility management entity sends the secondary address allocation information to the serving gateway through the S11 interface message, and then The serving gateway sends the secondary address assignment information to the packet data gateway through the S5 interface message.
  • the auxiliary address allocation information includes: address quantity information to be allocated and local gateway address type determining information.
  • the address quantity information to be allocated is used to indicate whether the packet data gateway allocates two IP addresses; the local gateway address type determination information is used by the packet data gateway to determine the address type of the local gateway to be allocated. If the number of addresses to be allocated indicates that the packet data gateway needs to allocate two IP addresses, and the auxiliary address allocation information includes local gateway address type determination information, the packet data gateway allocates an IP address to the relay node of the UE identity, and according to the local The gateway address type determination information determines the address type of the local gateway address to be assigned, and assigns the IP address of the type to the local gateway.
  • the packet data gateway sends the assigned IP address to the serving gateway; the serving gateway sends the assigned IP address to the mobility management entity; the mobility management entity sends the assigned IP address to the relay node through the NAS message.
  • the relay node uses one of the IP addresses as the IP address of the local gateway and the other IP address as its own IP address.
  • the packet data gateway, the serving gateway, and the mobility management entity refer to a packet data gateway, a service gateway, and a mobility management entity that serve the relay node.
  • the method further includes: the relay node carrying the stored IP address of the local gateway in the S1 message sent by the serving UE to the mobility management entity of the UE served by the serving relay node;
  • the physical entity establishes an S5 connection between the local gateway and the serving gateway of the UE served by the serving relay node according to the IP address of the local gateway.
  • FIG. 5 is a block diagram showing the structure of a relay node according to an embodiment of the present invention.
  • the relay node includes: an obtaining module 10, configured to acquire an IP address of the local gateway from the packet data gateway, where the local gateway is combined with the relay node, or the local gateway is separated from the relay node.
  • the IP address is allocated to the local gateway through the packet data gateway, thereby solving the address allocation problem of the local gateway, and ensuring that the S5 data sent by the core network can successfully reach the local gateway.
  • the obtaining module 10 includes: a first acquiring submodule, configured to acquire an IP address of the local gateway by using an attach procedure of the relay node.
  • the first obtaining submodule includes: a first receiving unit, configured to receive a NAS message that is sent by the mobility management entity and includes an IP address; and a second storage unit configured to store the IP address as an IP address of the local gateway.
  • the first obtaining sub-module may further include: a second receiving unit, configured to receive a NAS message that is sent by the mobility management entity and includes a first IP address and a second IP address; and a second storage unit configured to store the second IP address as The IP address of the local gateway, and the first IP address is stored as the IP address of the relay node.
  • the relay node further includes: an establishing module 20, configured to establish an S5 connection between the local gateway and the serving gateway serving the UE according to the IP address of the local gateway.
  • the establishing module 30 may further include: a sending submodule, configured to carry an IP address of the local gateway in the S1 message sent to the mobility management entity, so that the mobility management entity establishes an S5 connection between the local gateway and the serving gateway according to the IP address.
  • the relay node further includes: a sending module 30, configured to send the auxiliary address allocation information to the packet data gateway by using the transparent transmission cell between the relay node and the packet data gateway; or set to pass the relay node and the mobility management entity
  • the inter-transmitted non-access stratum message sends the secondary address assignment information to the mobility management entity; or is configured to send the secondary address assignment information to the donor base station via the RRC message.
  • the auxiliary address allocation information is set to a packet data gateway to assign an IP address to the relay node and the local gateway.
  • the obtaining module 10 includes: a second acquiring submodule, configured to acquire an IP address of the local gateway by using a DHCP method after the attaching process of the relay node.
  • 6 is a block diagram showing the structure of a packet data gateway according to an embodiment of the present invention. As shown in FIG. 6, the packet data gateway includes: an allocating module 40, configured to allocate an IP address to the local gateway; and a transceiver module 50 configured to send the allocated IP address to a relay node that is set up or separated from the local gateway.
  • the distribution module 40 is coupled to the transceiver module 50.
  • the IP address is allocated to the local gateway through the packet data gateway, thereby solving the address allocation problem of the local gateway, and ensuring that the S5 data sent by the core network can successfully reach the local gateway.
  • the allocating module 40 may further include: a first allocating submodule, configured to allocate a shared IP address to the relay node and the local gateway.
  • the allocating module 40 may further include: a second allocation submodule, configured to allocate a first IP address and a second IP address, where the first IP address is an IP address of the relay node, and the second IP address is an IP address of the local gateway .
  • Figure 7 to Figure 11 are schematic diagrams of the system architecture of the mobile relay in the high-speed rail scenario.
  • the RN SGW/PGW is always located in the DeNB (also called the initial DeNB) that the RN serves when it initially accesses, and the RN switches to a different DeNB. SGW/PGW will not change.
  • This architecture is often referred to as architecture Alt 2.
  • the RN is composed of two UE functional entities and two eNB functional entities, and two RN cells in one RN are alternately connected to the DeNB along the high-speed rail.
  • the architecture is also based on the architecture Alt 2, commonly referred to as the architecture eAlt. 2-1. In the architecture shown in FIG.
  • the relay GW and the RN PGW are always located in the DeNB (also referred to as the initial DeNB) that the RN initially serves, and the RN SGW is located in the DeNB of the current serving RN, respectively located in different DeNBs.
  • the RN SGW and the RN PGW can be connected through an S5 or S8 interface.
  • the RN PGW does not change after the RN switches to a different DeNB, but the RN SGW changes.
  • the architecture is also based on the architecture Alt 2, commonly referred to as the architecture eAlt.2-2. In the architecture shown in FIG. 10, the relay GW and the RN SGW/PGW are separated from the DeNB, and are located in the core network.
  • FIG. 11 is a schematic diagram of a scenario in which a fix relay supports a LIPA service in a fixed relay scenario.
  • Figure 2 and Figure 3 are schematic diagrams of two system architectures in the high-speed rail scenario where the mobile relay supports the LIPA function.
  • the system architecture in the scenario of Figure 1 is the standardized architecture Alt 2 in LTE R10.
  • the system architecture of the mobile relay supporting LIPA shown in the scenario of FIG. 2 is based on the architecture Alt 2, and the architecture Alt 2 shown in FIG. 7 can be used, and the RN SGW/PGW is combined with the initial DeNB, and the RN switches to different DeNBs and then the RN SGW/ The PGW does not change; or the architecture eAlt. 2-1 shown in Figure 8 can be used, and the two RN cells alternately access different DeNBs, RN SGW/PGW The DeNB is set up with the current service; or the architecture eAlt.2-2 shown in FIG.
  • the RN PGW is set up with the initial DeNB
  • the RN SGW is set up with the currently served DeNB.
  • the RN SGW/PGW may also be separately configured with the DeNB, that is, the architecture eAlt.2-3 shown in FIG. 10 is adopted, and the RN SGW/PGW is always separated from the DeNB.
  • the system architecture of the mobile relay supporting LIPA shown in the scenario of Figure 3 adopts the architecture Alt 1 shown in Figure 11.
  • the RN SGW/PGW is always separated from the DeNB.
  • Embodiment 1 describes a method for an RN PGW to allocate an IP address of an L-GW in an RN attach process.
  • the RN PGW allocates an IP address only to the RN, and the RN uses its own IP address as the IP address of the L-GW. In the case, that is, the RN and the L-GW use the same IP address.
  • Fig. 12 depicts the flow of the first embodiment.
  • the SGW and PGW (RN SGW/PGW) of the serving RN are combined with the DeNB.
  • the RN SGW/PGW can also be separated from the DeNB, and the signaling procedure is similar to this embodiment.
  • the LGW is combined with the RN, and the LGW can also be separated from the RN.
  • Step S1201 After obtaining the DeNB list supporting the RN in the second phase initiated by the RN, that is, after obtaining the DeNB list supporting the RN through the first phase, the RN as the UE identity performs synchronization with one of the DeNBs, and establishes an RRC connection with the RN after the random access.
  • the setup completion message carries a NAS message (attach request message) to trigger the NAS process.
  • the PDN type, protocol configuration options (PCO) cell is included in the attach request message.
  • the PDN type cell is used to indicate the IP address type requested by the RN as the UE identity; the PCO is used for the transparent transmission parameter between the RN and the RN PGW, including the Address Allocation Preference indicating whether the RN passes the DHCPv4 mode after the default bearer activation in the RN attach Obtain an IPv4 address.
  • the DeNB After receiving the message, the DeNB carries the NAS message in an initial UE message (MME) to the MME (referred to as RN MME) of the serving RN.
  • MME initial UE message
  • the RN MME sends an S11 Interface Create Session Request message to the SGW of the serving RN (referred to as the RN SGW.
  • the PDN subscription context of the RN includes an IP address already assigned to the RN, the MME will allocate the message.
  • the IP address is sent to the SGW through the PDN address cell in the Create Session Request message.
  • the message further includes a Dual Address Bearer Flag, which is set by the MME to indicate whether the MME supports dual addressing.
  • Step S1203 the RN SGW sends the S5 interface.
  • Step S1204 The RN PGW selects a PDN type of an address to be allocated according to the PDN type, the Dual Address Bearer Flag and the operator policy of the RN request in the received Create Session Request message, and allocates an IP address to the RN according to the selected PDN type. If the received Create Session Request message includes the PDN address that has been signed in the subscription information sent by the MME, the address is sent to the UE.
  • Step S1205 The RN PGW sends an S5 interface Create Session Response message to the RN SGW, where the PDN Address cell indicates the IP address assigned to the RN.
  • Step S1206 The RN SGW sends an S11 Interface Create Session Response message to the RN MME, where the PDN Address cell indicates that it is an IP address allocated by the RN.
  • Step S1207 the RN MME sends an S1 interface initial context setup request message to the DeNB, where the NAS message attach accept message is included, and the NAS message includes a PDN Address cell indicating that the RN PGW allocates the RN for the RN. IP address.
  • Step S1208 After receiving the RRC connection reconfiguration message, the RN parses out the NAS PDU, that is, the attach accept message, obtains the IP address allocated by the RN PGW, and stores the IP address as the IP address of the L-GW. The RN then sends an RRC Connection Reconfiguration Complete message to the DeNB, and the DeNB receives an initial context setup response message to the RN MME. The RN attach process is completed so far, in which the RN PGW assigns an IP address to the RN and establishes an initial context of the RN at the DeNB.
  • the RN obtains its configuration information as the identity of the base station from the OAM, and after establishing the X2/S1 interface with the DeNB, can serve the UE with the identity of the base station of the relay node.
  • Step S1209 After the UE is served by the RN, if you want to use the LIPA service, you need to establish a LIPA PDN connection.
  • the UE sends the NAS PDU to the RN through the UL information transfer, and the NAS PDU includes a PDN connection setup request message.
  • the UE includes the APN of the LIPA connection to be established in the NAS message.
  • step S1210 the RN sends a UL NAS TRANSPORT message to the UE MME, where the NAS PDU in the message includes a PDN connection setup request message sent by the UE, and the RN carries the L-GW stored in step 408 in the S1 interface message. IP address.
  • the DeNB is combined with the RN SGW/PGW, the S1 message The RN is sent to the UE MME through the DeNB. If the DeNB is separated from the RN SGW/PGW, the SI message is sent by the RN to the UE MME via the DeNB and the RN SGW/PGW.
  • Step S1211 The PDN that the UE MME needs to establish through the APN sent by the UE that initiates the PDN connection is a LIPA PDN connection. And receiving the LGW address carried by the RN in the S1 message, that is, the RN can support the LIPA function, and then the UE MME checks the subscription data of the UE to determine whether to allow the LIPA connection establishment request. If allowed, the UE MME sends an S11 Interface Create Session Request message to the UE SGW.
  • the UE MME establishes an S5 connection between the UE SGW and the L-GW by using the IP address of the L-GW sent by the RN in the SI message, that is, the L-GW is selected as the PGW of the UE under the LIPA PDN connection.
  • the UE MME carries the IP address of the L-GW in the Create Session Request message to indicate the address of the L-GW that the UE SGW needs to establish the S5 connection.
  • Step S1212 The UE SGW sends an S5 Interface Create Session Request message to the L-GW. Since the address of the L-GW is allocated by the RN PGW, the message is first sent to the RN PGW, and then passes through the RN SGW, the DeNB.
  • Step S1213 The L-GW sends an S5 interface Create Session Response message to the UE SGW. Since the RN has only an air interface connection with the DeNB, the message is first sent to the DeNB, then to the RN SGW/PGW, and then to the UE SGW.
  • Step S1214 The UE SGW sends an S11 interface Create Session Response message to the UE MME.
  • Step S1215 The UE MME sends a NAS message to the RN through an SI interface bearer setup request message, where the NAS message is a PDN connection establishment accept message.
  • the UE MME carries the S5 TEID or GRE key allocated by the L-GW for each E-RAB, and is used by the RN to establish a mapping relationship between the E-RAB ID and the EPS bearer ID of the direct tunnel. Then, the RN then transparently transmits the NAS message to the UE.
  • Step S1216 The UE sends a NAS message to the UE MME, where the NAS message is a PDN connection setup complete message. At this point, the LIPA PDN connection establishment of the UE served by the RN is completed, and the LIPA service data can be sent to the RN through the direct tunnel between the L-GW and the RN after reaching the L-GW.
  • the S5 connection between the L-GW and the core network UE SGW can be used for paging of the IDLE state UE and transmission of S5 signaling.
  • Embodiment 2 This embodiment describes a method in which an RN PGW allocates an IP address of an L-GW in an RN attach process, and a PGW allocates an IP address to the RN and the L-GW, that is, the RN and the L-GW do not use. Same IP address.
  • Figure 13 depicts the flow of this second embodiment.
  • the SGW and PGW (RN SGW/PGW) of the serving RN are combined with the DeNB.
  • the RN SGW/PGW can also be separated from the DeNB, and the signaling procedure is similar to this embodiment.
  • Step S1301 After obtaining the DeNB list supporting the RN in the second phase initiated by the RN, that is, after obtaining the DeNB list supporting the RN, the RN that is the UE identity performs synchronization with one of the DeNBs, and establishes an RRC connection with the RN after the random access.
  • the setup completion message carries a NAS message (attach request message) to trigger the NAS process.
  • the PDN type, protocol configuration options (PCO) cell is included in the attach request message.
  • the PDN type cell is used to indicate the IP address type requested by the RN as the UE identity; the PCO is used for the transparent transmission parameter between the RN and the RN PGW, including the Address Allocation Preference indicating whether the RN passes the DHCPv4 mode after the default bearer activation in the RN attach Obtain an IPv4 address.
  • the attach request message further includes auxiliary address allocation information, where the auxiliary address allocation information includes address number information to be allocated and local gateway address type determining information.
  • the address quantity information to be allocated is used to indicate whether the packet data gateway allocates two IP addresses; the local gateway address type determining information is used by the packet data gateway to determine the address type of the local gateway to be allocated.
  • the address type can be IPv4, IPv6 or IPv4v6.
  • the DeNB After receiving the message, the DeNB carries the NAS message in an initial user message (initial UE message) and sends it to the RN MME.
  • Step S1302 The RN MME sends an Sll Interface Create Session Request message to the RN SGW. If the RN's PDN subscription context contains an IP address that has been assigned to it, the ij MME sends the already assigned IP address to the SGW through the PDN address cell in the Create Session Request message.
  • the message also includes a Dual Address Bearer Flag, which is set by the MME to indicate whether the MME supports dual addressing.
  • Step S1303 The RN SGW sends an S5 interface Create Session Request message to the RN PGW.
  • the Create Session Request message further includes the auxiliary address allocation information received by the RN SGW in step 502.
  • the interface is an internal interface.
  • the above is one way for the RN to send the secondary address assignment information.
  • the RN may also include the secondary address allocation information in the PCO cell for transparent transmission between the RN and the RN PGW.
  • Step S1304 The RN PGW selects a PDN type of an address of the RN to be allocated according to the PDN type, the Dual Address Bearer Flag and the operator policy of the RN requested in the received Create Session Request message, and allocates the RN according to the selected PDN type. IP address.
  • the PDN address that has been signed in the subscription information sent by the MME is sent to the UE. If the RN indicates that it obtains an IP address through DHCP after attaching it with the Address Allocation Preference in the PCO transparently transmitted with the RN PGW, the RN PGW sets the IP address PDN Address cell of the RN to 0.0.0.0. In addition, if the address quantity information to be allocated in the auxiliary address allocation information received by the RN PGW indicates that it allocates two IP addresses, and the auxiliary address allocation information includes the local gateway address type determination information, the RN PGW first determines according to the local gateway address type.
  • Step S1305 The RN PGW sends an S5 interface Create Session Response message to the RN SGW, where the message includes two IP addresses, that is, the RN PGW respectively allocates IP addresses for the RN and the L-GW.
  • Step S1306 The RN SGW sends an S11 interface Create Session Response message to the RN MME, where the message includes two IP addresses, that is, the RN PGW respectively allocates IP addresses for the RN and the L-GW.
  • Step S1307 the RN MME sends an S1 interface initial context setup request message to the DeNB, where the NAS message attach accept message is included, and the NAS message includes the RN PGW allocated for the RN and the L-GW respectively. IP address.
  • DeNB After DeNB received initial context setup request message, transmits an RRC connection reconfiguration message to the RN, which contains the NAS message received from the RN MME (attach accept) 0 RN receives the RRC connection reconfiguration message parsed wherein the NAS PDUs, i.e. attach The accept message stores the IP addresses allocated by the RN PGW for the RN and the L-GW, respectively.
  • the RN then sends an RRC Connection Reconfiguration Complete message to the DeNB, and the DeNB receives an initial context setup response message to the RN MME.
  • the RN attach procedure is completed so far, in which the RN PGW assigns an IP address to the RN and the L-GW, and establishes an initial context of the RN at the DeNB.
  • the RN obtains its configuration information as the identity of the base station from the OAM, and after establishing the X2/S1 interface with the DeNB, can serve the UE with the identity of the base station of the relay node.
  • Step S1308 After the UE is served by the RN, if you want to use the LIPA service, you need to establish a LIPA PDN connection.
  • the UE sends the NAS PDU to the RN through the UL information transfer, and the NAS PDU includes a PDN connection setup request message.
  • the UE includes the APN of the LIPA connection to be established in the NAS message.
  • the RN sends a UL NAS TRANSPORT message to the UE MME, where the NAS PDU in the message includes a PDN connection setup request message sent by the UE, and the RN carries the L-GW stored in step 507 in the S1 interface message. IP address. If the DeNB is set up with the RN SGW/PGW, the S1 message is sent by the RN to the UE MME via the DeNB. If the DeNB is separated from the RN SGW/PGW, the S1 message is sent by the RN to the UE MME via the DeNB and the RN SGW/PGW.
  • step S 1310 the UE MME identifies that the PDN connection to be established by the UE that initiates the PDN connection is a LIPA PDN connection, and receives the LGW address carried by the RN in the S1 message, that is, the RN can support the LIPA function, and then the UE The MME checks the subscription data of the UE to determine whether the LIPA connection establishment request is allowed. If allowed, the UE MME sends an S11 Interface Create Session Request message to the UE SGW.
  • the UE MME establishes an S5 connection between the UE SGW and the L-GW by using the IP address of the L-GW sent by the RN in the SI message, that is, the L-GW is selected as the PGW of the UE under the LIPA PDN connection.
  • the UE MME carries the IP address of the L-GW in the Create Session Request message to indicate the address of the L-GW that the UE SGW needs to establish the S5 connection.
  • Step S1311 The UE SGW sends an S5 interface Create Session Request message to the L-GW. Since the address of the L-GW is allocated by the RN PGW, the message is first sent to the RN PGW, and then passes through the RN SGW, the DeNB.
  • Step S1312 The L-GW sends an S5 interface Create Session Response message to the UE SGW. Since the RN has only an air interface connection with the DeNB, the message is first sent to the DeNB, then to the RN SGW/PGW, and then to the UE SGW.
  • the UE MME carries the S5 TEID or GRE key allocated by the L-GW for each E-RAB, and is used by the RN to establish a mapping relationship between the E-RAB ID and the EPS bearer ID of the direct tunnel. Then, the RN then transparently transmits the NAS message to the UE.
  • Step S1315 The UE sends a NAS message to the UE MME, where the NAS message is a PDN connection setup complete message.
  • Embodiment 3 This embodiment describes a method in which an RN PGW allocates an IP address of an L-GW in a DHCP process after the RN attach, and the PGW allocates an IP address to the RN and the L-GW, that is, the RN and the L-GW do not use. The same IP address.
  • Step S1401 After obtaining the DeNB list supporting the RN in the second phase initiated by the RN, that is, after obtaining the DeNB list supporting the RN, the RN that is the identity of the UE performs synchronization with the one DeNB, establishes an RRC connection with the eNB after the random access, and the RN is connected in the RRC.
  • the setup completion message carries a NAS message (attach request message) to trigger the NAS process.
  • the PDN type, protocol configuration options (PCO) cell is included in the attach request message.
  • the PDN type cell is used to indicate the IP address type requested by the RN as the UE identity; the PCO is used for the transparent transmission parameter between the RN and the RN PGW, including the Address Allocation Preference indicating whether the RN passes the DHCPv4 mode after the default bearer activation in the RN attach Obtain an IPv4 address.
  • Step SI 402 The RN MME sends an Sll Interface Create Session Request message to the RN SGW. If the RN's PDN subscription context contains an IP address that has been assigned to it, the ij MME sends the already assigned IP address to the SGW through the PDN address cell in the Create Session Request message. The message also includes a Dual Address Bearer Flag, which is set by the MME to indicate whether the MME supports dual addressing.
  • Step S1403 The RN SGW sends an S5 interface Create Session Request message to the RN PGW.
  • Step S1404 The RN PGW selects a PDN type of an address of the RN to be allocated according to the PDN type, the Dual Address Bearer Flag and the operator policy requested by the RN in the received Create Session Request message, and allocates an IP to the RN according to the selected PDN type. address. If the received Create Session Request message includes the PDN address that has been signed in the subscription information sent by the MME, the address is sent to the UE.
  • Step S1405 The RN PGW sends an S5 interface Create Session Response message to the RN SGW, where the message includes an IP address allocated by the RN PGW for the RN.
  • Step S1406 The RN SGW sends an S1 l interface setup session response (Create Session Response) message to the RN MME, where the message includes an IP address allocated by the RN PGW for the RN.
  • Step S1407 The RN MME sends an SI interface initial context setup request message to the DeNB, where the NAS message attach accept message is included, and the NAS message includes an IP address allocated by the RN PGW for the RN.
  • DeNB After DeNB received initial context setup request message, transmits an RRC connection reconfiguration message to the RN, which contains the NAS message received from the RN MME (attach accept) 0
  • the RN After receiving the RRC connection reconfiguration message, the RN parses out the NAS PDU, that is, the attach accept message, and stores the IP address allocated by the RN PGW for the RN. The RN then sends an RRC Connection Reconfiguration Complete message to the DeNB, and the DeNB receives an initial context setup response message to the RN MME. The RN attach process is completed so far, in which the RN PGW assigns an IP address to the RN and establishes an initial context of the RN at the DeNB. The RN obtains its configuration information as the identity of the base station from the OAM, and after establishing the X2/S1 interface with the DeNB, can serve the UE with the identity of the base station of the relay node.
  • Step S1408 In the case that the RN is combined with the LGW, the RN (or the L-GW functional entity co-located with the RN) initiates a DHCP procedure to the RN PGW, and obtains the IP address of the L-GW from the RN PGW during the DHCP interaction. In the case that the RN and the LGW are separated, the RN may initiate a DHCP procedure to the RN PGW, and obtain the IP address of the L-GW from the RN PGW in the DHCP interaction process; if the RN and the LGW are separated, the LGW initiates to the RN PGW.
  • the DHCP process obtains the IP address of the L-GW from the RN PGW during the DHCP interaction, and the LGW sends the IP address to the RN, and the RN stores it as the IP address of the LGW.
  • Step S1409 After the UE is served by the RN, if you want to use the LIPA service, you need to establish a LIPA PDN connection.
  • the UE sends the NAS PDU to the RN through the UL information transfer, and the NAS PDU includes a PDN connection setup request message.
  • the UE includes the APN of the LIPA connection to be established in the NAS message.
  • the RN sends a UL NAS TRANSPORT message to the UE MME, where the NAS PDU in the message includes a PDN connection setup request message sent by the UE, and the RN carries the IP of the L-GW obtained in step 608 in the S1 interface message. address. If the DeNB is set up with the RN SGW/PGW, the S1 message is sent by the RN to the UE MME via the DeNB. If the DeNB is separated from the RN SGW/PGW, the S1 message is sent by the RN to the UE MME via the DeNB and the RN SGW/PGW.
  • step S1411 the UE MME identifies that the PDN connection to be established by the UE that initiates the PDN connection is a LIPA PDN connection, and receives the LGW address carried by the RN in the S1 message, that is, the RN can support the LIPA function, and then the UE MME The UE's subscription data is checked to determine if the LIPA connection setup request is allowed. If allowed, the UE MME sends an S11 Interface Create Session Request message to the UE SGW.
  • the UE MME establishes an S5 connection between the UE SGW and the L-GW by using the IP address of the L-GW sent by the RN in the SI message, that is, the L-GW is selected as the PGW of the UE under the LIPA PDN connection.
  • the UE MME carries the IP address of the L-GW in the Create Session Request message to indicate the address of the L-GW that the UE SGW needs to establish the S5 connection.
  • Step S1412 The UE SGW sends an S5 Interface Create Session Request message to the L-GW. Since the address of the L-GW is allocated by the RN PGW, the message is first sent to the RN PGW, and then passes through the RN SGW, the DeNB.
  • Step S1413 The L-GW sends an S5 interface Create Session Response message to the UE SGW. Since the RN has only an air interface connection with the DeNB, the message is first sent to the DeNB, then to the RN SGW/PGW, and then to the UE SGW.
  • Step S1414 The UE SGW sends an S11 Interface Create Session Response message to the UE MME.
  • Step S1415 The UE MME sends a NAS message to the RN through an SI interface bearer setup request message, where the NAS message is a PDN connection establishment accept message.
  • the UE MME carries the S5 TEID or GRE key allocated by the L-GW for each E-RAB, and is used by the RN to establish a mapping relationship between the E-RAB ID and the EPS bearer ID of the direct tunnel. Then, the RN then transparently transmits the NAS message to the UE.
  • Step S1416 The UE sends a NAS message to the UE MME, where the NAS message is a PDN connection setup complete message.
  • the LIPA PDN connection establishment of the UE served by the RN is completed, and the LIPA service data arrives at the L-GW that is set up with the RN, and can be sent to the RN ⁇ -GW and the core network UE SGW through a direct tunnel between the L-GW and the RN.
  • the S5 connection can be used for paging of the IDLE state UE and transmission of S5 signaling.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, thereby Storing them in a storage device is performed by a computing device, and in some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种本地网关的IP地址分配方法,中继节点及分组数据网关,该分配方法包括:分组数据网关为本地网关分配IP地址;分组数据网关将IP地址发送至本地网关。通过本发明,采用分组数据网关为本地网关分配IP地址,从而解决了本地网关的地址分配问题,进而保证核心网发送的S5数据能成功到达本地网关。

Description

本地网关的 IP地址分配方法、 中继节点及分组数据网关 技术领域 本发明涉及通信领域,具体而言,涉及一种本地网关(Local GateWay, 简称 L-GW) 的 IP地址分配方法、 中继节点及分组数据网关。 背景技术 家庭基站是一种小型低功率基站, 主要用于家庭和办公室等小范围室内场所。 家 庭基站通过室内的电缆、 DSL或光纤等有线接入设备连接到移动运营商核心网, 为特 定用户提供基于无线移动通信网络的接入业务。 是对现有网络部署的有效补充, 能有 效提高室内语音和高速数据业务覆盖。 具有很多优点, 如低成本、 低功率、接入简单、 即插即用、节省回传、与现有终端兼容,提高网络覆盖等。第三代伙伴组织计划(Third Generation Partnership Projects,简称 3GPP )标准组织定义的 LTE(Long Term Evolution) 系统中家庭基站被称为 HeNB(home eNB)。 为了进一步减少对核心网的用户面负荷, 对 HeNB 系统提出了 LIPA ( Local IP Access) 需求。 连接于 HeNB之上的 UE可以通过 HeNB直接访问内部及外部的 IP网 络, 其中用户面数据不通过核心网, 而信令仍需由核心网处理。 3GPP通过增加逻辑单 元本地网关 L-GW来实现 LIPA功能, 同时终端需要支持多 PDN连接。 L-GW具有基 本的 EPC PGW功能, 例如: 1 ) UE粒度的包过滤及速率约束; 2 ) UE IP地址分配; 3 )与本地 PDN网络的 SGi接口。 L-GW在目前标准中与 HeNB合设, 并采用 S5接口 和核心网网元 SGW相连。 并且 L-GW与 SGW间的 S5连接需通过安全网关 SeGW, 而不通过 HeNB GW。与 L-GW合设的 HeNB在携带 UE请求建立 PDN连接请求的 S 1 消息中携带 L-GW的地址,若 UE请求建立的是 LIPA PDN连接,则 MME选择此 L-GW 做为 UE的 PGW并与其建立核心隧道。 另外, 对于 LIPA连接, 当 UE处连接态时, HeNB与 L-GW间存在直接隧道, 作为 LIPA业务的数据通道。 无线中继(Wireless Relay)技术是 3GPP推出的高级长期演进(Long-Term Evolution advance, 简称 LTE-Advanced标准中的技术之一。 中继节点 (Relay Node, 简称 RN ) 对接入其小区的 UE提供与普通 eNB类似的功能和服务, 又通过无线接口以类似于普 通 UE的方式接入一个服务于它的 eNB, 服务于 RN的 eNB称为 Donor eNB, 简称 DeNB。 DeNB与移动管理实体 ( Mobility Management Entity, 简称 MME )连接。 MME 为 UE提供的功能包括: 用户接入控制, 鉴权, 数据加密, 业务承载控制, 寻呼、 切 换控制等控制信令的处理。 根据中继节点是否会移动可分为固定中继 (fix relay)和移动中继 (mobile relay)两 种。 固定中继旨在扩展小区的覆盖范围、 减少通信中的死角地区、 平衡负载、 转移热 点地区的业务和节省用户设备 (User Equipment, 简称 UE) 的发射功率。 另一方面, 随着高速铁路大规模地建设和投入运行, 在列车上通信的需求不断增大。 当前高速铁 路实用速度已达到了 350公里 /小时, 受到多普勒频移, 小区频繁切换、 高铁车厢穿透 损耗大等影响, 现有网络基站的覆盖很难满足高铁的通信质量需求。 因此业界提出在 高铁上部署中继节点, 这种中继节点通常称为移动中继。 通过移动中继技术, 可以使 得高铁列车中的用户与相对静止的 RN进行通信, 而 RN在随着高铁移动过程中可在 不同的 DeNB之间进行切换,从而避免了高铁车厢中大量用户的同时切换,保证了 UE 和 RN之间的通信质量, 此外通过增强移动 RN与 DeNB之间的骨干连接, 能够较好 的解决高铁存在的一系列问题。 为了更好的满足用户需求及进一步提升用户体验, 3GPP考虑 relay支持 LIPA功 能以为 LTE UE提供高速本地业务, 并节省空口 backhaul link带宽资源。 例如, UE可 通过 RN节点中合设的 L-GW连接本地 PDN网络获取多媒体资源,或者通过本地服务 器支持多用户的社交网络应用例如文件共享, 聊天, 游戏等。 图 1为固定中继场景下, relay支持 LIPA业务的场景示意图。 图 2和图 3分别为高铁场景下 mobile relay支持 LIPA功能下的两种系统架构示意图。图 2所示架构中, DeNB中集成了 RN SGW/PGW 功能实体。 图 3所示架构中, RN SGW/PGW功能实体独立于 DeNB在核心网中。 如 上述图中所示, 位于车厢内的 RN节点中合设了 L-GW功能实体, RN与 DeNB间通 过 Un空口收发数据。 L-GW通过 SGi接口与 PDN网络相连。 对于存在 LIPA连接的 连接态 UE, L-GW与 RN之间存在直接隧道用于 LIPA业务数据, 并且 RN中 L-GW 通过 DeNB (禾 B RN SGW/PGW) 与 UE SGW建立 S5接口核心网隧道, 用于 IDLE态 UE的寻呼及 S5信令传输。 在 HeNB支持 LIPA的场景下, HeNB中合设的 L-GW的地址在 IPSec隧道建立过 程中由安全网关 SeGW使用 IKEv2机制分配。 HeNB可能将用于 S1接口的 IP地址重 用于 S5接口, 以重用 SI IPSec tunnel; 或者不重用 S1接口地址, 则需要另外重新建 立 IPSec tunnel。 但是在 relay支持 LIPA情况下, relay节点不与 SeGW网元相连。 并 且由于 L-GW与 RN合设, 所有由核心网网元发送给 RN或者 RN中合设的 L-GW的 数据必须通过与 DeNB合设的或者独立的 RN PGW路由才能到达。 也即 S5数据的路 由路径需收敛至 RN PGW才能保证 S5数据能发送至 RN中合设的 L-GW。对于在 relay 支持 LIPA场景下, 如何分配 L-GW的地址问题, 目前尚未提出有效的解决方案。 发明内容 本发明提供了一种本地网关的 IP地址分配方法、 中继节点及分组数据网关, 以至 少解决上述如何获取 L-GW的地址问题。 根据本发明的一个方面, 提供了一种本地网关的 IP地址分配方法, 包括: 分组数 据网关为本地网关分配 IP地址; 分组数据网关将 IP地址发送至本地网关。 优选地, 本地网关与中继节点合设或分设, 其中, 分组数据网关是为中继节点服 务的分组数据网关。 优选地, 分组数据网关为本地网关分配 IP地址, 包括: 分组数据网关在中继节点 的附着过程分配本地网关的 IP地址; 或者, 分组数据网关在中继节点的附着过程之后 的 DHCP过程中分配本地网关的 IP地址。 优选地, 分组数据网关在中继节点的附着过程分配本地网关的 IP地址, 包括: 分 组数据网关在中继节点的附着过程中为本地网关分配一个 IP地址, 并将分配的 IP地 址发送至为中继节点服务的服务网关;服务网关将接收到的 IP地址发送至为中继节点 服务的移动管理实体; 移动管理实体通过 NAS消息将 IP地址发送至中继节点。 优选地,在本地网关与中继节点分设的情况下,移动管理实体通过 NAS消息将 IP 地址发送至中继节点之后, 还包括: 中继节点将 IP地址发送至本地网关。 优选地, 分组数据网关在中继节点的附着过程分配本地网关的 IP地址, 包括: 分 组数据网关在中继节点的附着过程中为中继节点分配第一 IP地址, 以及为本地网关分 配第二 IP地址; 分组数据网关将第一 IP地址和第二 IP地址发送至为中继节点服务的 服务网关; 服务网关将第一 IP地址和第二 IP地址发送至为中继节点服务的移动管理 实体; 移动管理实体通过 NAS消息将第一 IP地址和第二 IP地址发送至中继节点。 优选地,在本地网关与中继节点分设的情况下,移动管理实体通过 NAS消息将第 一 IP地址和第二 IP地址发送至中继节点之后, 还包括: 中继节点将第二 IP地址发送 至本地网关。 优选地, 分组数据网关在中继节点的附着过程中分配第一 IP地址和第二 IP地址 之前, 还包括: 分组数据网关根据辅助地址分配信息分配第一 IP地址和第二 IP地址, 其中, 辅助地址分配信息包括: 需分配的地址数量信息和 /或本地网关地址类型确定信 息。 优选地, 本地网关的地址类型包括以下之一: IPv4、 IPv6、 IPv4v6o 优选地, 分组数据网关根据辅助地址分配信息分配第一 IP地址和第二 IP地址之 前, 包括: 中继节点通过其与分组数据网关间的透传信元发送辅助地址分配信息至分 组数据网关; 或者, 中继节点通过其与移动管理实体间的透传的非接入层消息发送辅 助地址分配信息至移动管理实体, 移动管理实体通过 S11接口消息将辅助地址分配信 息发送至服务网关,然后服务网关通过 S5接口消息将辅助地址分配信息发送至分组数 据网关; 或者, 中继节点通过 RRC消息发送辅助地址分配信息至施主基站, 施主基站 通过 S1 接口消息将辅助地址分配信息发送至移动管理实体, 移动管理实体通过 S11 接口消息将辅助地址分配信息发送至服务网关,然后服务网关通过 S5接口消息将辅助 地址分配信息发送至分组数据网关。 优选地, 分组数据网关根据辅助地址分配信息分配第一 IP地址和第二 IP地址, 包括; 若需分配的地址数量信息指示分组数据网关需要分配两个 IP地址, 且辅助地址 分配信息中包含本地网关地址类型确定信息, 则分组数据网关为中继节点分配第一 IP 地址,并且根据本地网关地址类型确定信息确定需要分配的本地网关地址的 IP地址类 型, 并为本地网关分配该类型的第二 IP地址。 优选地, 分组数据网关在中继节点的附着过程之后的 DHCP过程中分配本地网关 的 IP地址, 包括: 分组数据网关在 DHCP过程中为本地网关分配一个 IP地址; 分组 网关将分配的 IP地址发送至中继节点或本地网关; 优选地, 分组网关将分配的 IP地址发送至中继节点或本地网关, 包括: 若中继节 点与本地网关合设, 则中继节点将分配的 IP地址存储为本地网关的 IP地址; 若中继 节点与本地网关分设, 且分组网关将分配的 IP地址发送至中继节点, 则中继节点将分 配的 IP地址存储为本地网关的 IP地址; 若中继节点与本地网关分设, 且分组网关将 分配的 IP地址发送至本地网关, 则本地网关将分配的 IP地址发送至中继节点, 中继 节点将分配的 IP地址存储为本地网关的 IP地址。 优选地, 分组数据网关分配本地网关的 IP地址之后, 还包括: 中继节点将获取的 本地网关的 IP地址用于建立本地网关与为 UE服务的服务网关之间的 S5连接。 优选地, 中继节点将获取的本地网关的 IP地址用于建立本地网关与为 UE服务的 服务网关之间的 S5连接, 包括: 中继节点在发送至为 UE服务的移动管理实体的 S1 消息中携带本地网关的 IP地址; 为 UE服务的移动管理实体根据本地网关的 IP地址 建立本地网关与为 UE服务的服务网关之间的 S5连接。 根据本发明的另一方面, 提供了一种分组数据网关, 包括: 分配模块, 设置为为 本地网关分配 IP地址; 收发模块, 设置为将分配的 IP地址发送至本地网关。 优选地, 分配模块包括: 第一分配子模块, 设置为在本地网关与中继节点合设的 情况下, 为中继节点和本地网关分配一个共享的 IP地址。 优选地, 分配模块包括: 第二分配子模块, 设置为在本地网关与中继节点分设的 情况下, 为中继节点分配第一 IP地址, 以及为本地网关分配第二 IP地址。 根据本发明的又一方面, 提供了一种中继节点, 包括: 获取模块, 设置为从分组 数据网关获取本地网关的 IP地址。 优选地, 获取模块包括: 第一获取子模块, 设置为通过所述中继节点的附着过程 获取本地网关的 IP 地址。 第二获取子模块, 设置为在中继节点的附着过程之后通过 DHCH方式获取所述本地网关的 IP地址。 优选地, 中继节点还包括: 建立模块, 设置为根据所述本地网关的 IP地址建立本 地网关与为 UE服务的服务网关之间的 S5连接。 在本发明中, 通过分组数据网关为本地网关分配 IP地址, 从而解决了本地网关的 地址分配问题, 进而保证核心网发送的 S5数据能成功到达本地网关。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术的固定中继场景下 relay支持 LIPA业务的场景示意图; 图 2是根据相关技术的高铁场景下移动中继支持 LIPA功能下第一种系统架构示 意图; 图 3是根据相关技术的高铁场景下移动中继支持 LIPA功能下第二种系统架构示 意图; 图 4是根据本发明实施例的本地网关地址分配方法流程图; 图 5是根据本发明实施例的中继节点的模块结构框图; 图 6是根据本发明实施例的分组数据网关的模块结构框图; 图 7是根据本发明实施例的高铁场景下移动中继的第一种系统架构示意图; 图 8是根据本发明实施例的高铁场景下移动中继的第二种系统架构示意图; 图 9是根据本发明实施例的高铁场景下移动中继的第三种系统架构示意图; 图 10是根据本发明实施例的高铁场景下移动中继的第四种系统架构示意图; 图 11是根据本发明实施例的高铁场景下移动中继的第五种系统架构示意图; 图 12是根据本发明实施例一的本地网关地址分配方法流程示意图; 图 13是根据本发明实施例二的本地网关地址分配方法流程示意图; 以及 图 14是根据本发明实施例三的本地网关地址分配方法流程示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 4是根据本发明实施例的本地网关地址分配方法流程图。 如图 4所示, 该方法 包括: 步骤 S402, 分组数据网关分配本地网关的 IP地址, 其中, 本地网关与中继节点 合设, 或者本地网关与中继节点分设。 步骤 S404, 中继节点获取该分配的 IP地址并将其存储为本地网关的 IP地址。 在本实施例中, 通过分组数据网关为本地网关分配 IP地址, 从而解决了本地网关 的地址分配问题, 进而保证核心网发送的 S5数据能成功到达本地网关。 在上述实施例的步骤 S402中,分组数据网关可在中继节点的附着过程中分配本地 网关的 IP地址, 或者在其附着过程之后的 DHCP过程中分配本地网关的 IP地址。 其中, 分组数据网关分配的 IP地址可以是一个, 即中继节点和本地网关共用该分 配的 IP地址。 分组数据网关也可以为中继节点和本地网关各分配一个 IP地址。 其中, 所分配的 IP地址的类型可以是 IPv4或 IPv6或 IPv4v6。 其中,分组数据网关在中继节点的附着过程中分配本地网关的 IP地址可采用以下 两种方式: 方式一: 分组数据网关为中继节点分配一个 IP地址, 并将该 IP地址发送至服务 网关; 服务网关将接收到的 IP地址发送至移动管理实体; 移动管理实体通过 NAS消 息将 IP地址发送至中继节点。 中继节点将该 IP地址存储为本地网关的 IP地址。 方式二: 中继节点通过其与分组数据网关间的透传信元发送辅助地址分配信息至 分组数据网关; 或者, 中继节点通过其与移动管理实体间的透传的非接入层消息发送 辅助地址分配信息至移动管理实体, 移动管理实体通过 S11接口消息将所述辅助地址 分配信息发送至服务网关,然后服务网关通过 S5接口消息将所述辅助地址分配信息发 送至分组数据网关;或者,中继节点通过 RRC消息发送辅助地址分配信息至施主基站, 施主基站通过 S1接口消息将辅助地址分配信息发送至移动管理实体,移动管理实体通 过 S11接口消息将辅助地址分配信息发送至服务网关,然后服务网关通过 S5接口消息 将辅助地址分配信息发送至分组数据网关。 其中, 辅助地址分配信息包括: 需分配的地址数量信息和本地网关地址类型确定 信息。 需分配的地址数量信息用于指示分组数据网关是否分配两个 IP地址; 本地网关 地址类型确定信息用于分组数据网关确定需要分配的本地网关的地址类型。 若需分配的地址数量信息指示分组数据网关需要分配两个 IP地址,且辅助地址分 配信息中包含本地网关地址类型确定信息, 则分组数据网关为 UE身份的中继节点分 配 IP地址,并且根据本地网关地址类型确定信息确定需要分配的本地网关地址的地址 类型, 并为本地网关分配该类型的 IP地址。 分组数据网关将分配的 IP地址发送至服 务网关; 服务网关将分配的 IP地址发送至移动管理实体; 移动管理实体通过 NAS消 息将分配的 IP地址发送至中继节点。 中继节点将其中一个 IP地址作为本地网关的 IP 地址, 将另一个 IP地址作为其自身的 IP地址。 在上述实施例中, 分组数据网关、 服务网关和移动管理实体是指为中继节点服务 的分组数据网关、 服务网关和移动管理实体。 在上述步骤 S404之后, 还包括: 中继节点在为所服务的 UE发送的 S1消息中携 带存储的本地网关的 IP地址发送至服务中继节点所服务 UE的移动管理实体; 移动管 理实体根据本地网关的 IP地址建立本地网关与服务中继节点所服务 UE的服务网关的 S5连接。 图 5是根据本发明实施例的中继节点的模块结构框图。 如图 5所示, 该中继节点 包括: 获取模块 10, 设置为从分组数据网关获取本地网关的 IP地址, 其中, 本地网 关与中继节点合设, 或者本地网关与中继节点分设。 在本实施例中, 通过分组数据网关为本地网关分配 IP地址, 从而解决了本地网关 的地址分配问题, 进而保证核心网发送的 S5数据能成功到达本地网关。 其中, 获取模块 10包括: 第一获取子模块, 设置为通过中继节点的附着过程获取 本地网关的 IP地址。 第一获取子模块包括: 第一接收单元, 设置为接收移动管理实体 发送的包含一个 IP地址的 NAS消息; 第二存储单元, 设置为将 IP地址存储为本地网 关的 IP地址。 第一获取子模块还可包括: 第二接收单元, 设置为接收移动管理实体发 送的包含第一 IP地址和第二 IP地址的 NAS消息; 第二存储单元, 设置为将第二 IP 地址存储为本地网关的 IP地址, 以及将第一 IP地址存储为中继节点的 IP地址。 其中, 该中继节点还包括: 建立模块 20, 设置为根据本地网关的 IP地址建立本 地网关与为 UE服务的服务网关之间的 S5连接。 建立模块 30还可以包括: 发送子模 块, 设置为在发送至移动管理实体的 S1消息中携带本地网关的 IP地址, 以便移动管 理实体根据 IP地址建立本地网关与服务网关之间的 S5连接。 其中, 该中继节点还包括: 发送模块 30, 设置为通过中继节点与分组数据网关间 的透传信元发送辅助地址分配信息至分组数据网关; 或设置为通过中继节点与移动管 理实体间的透传的非接入层消息发送辅助地址分配信息至移动管理实体; 或设置为通 过 RRC消息发送辅助地址分配信息至施主基站。其中,辅助地址分配信息设置为分组 数据网关为中继节点和本地网关分配 IP地址。 其中, 获取模块 10包括: 第二获取子模块, 设置为在中继节点的附着过程之后通 过 DHCP方式获取本地网关的 IP地址。 图 6是根据本发明实施例的分组数据网关的模块结构框图。 如图 6所示, 该分组 数据网关包括: 分配模块 40, 设置为为本地网关分配 IP地址; 收发模块 50, 设置为 将分配的 IP地址发送至与本地网关合设或分设的中继节点。 分配模块 40和收发模块 50相耦合。 在本实施例中, 通过分组数据网关为本地网关分配 IP地址, 从而解决了本地网关 的地址分配问题, 进而保证核心网发送的 S5数据能成功到达本地网关。 其中, 分配模块 40还可以包括: 第一分配子模块, 设置为为中继节点和本地网关 分配共享的 IP地址。 分配模块 40还可以包括: 第二分配子模块, 设置为分配第一 IP 地址和第二 IP地址, 其中, 第一 IP地址为中继节点的 IP地址, 第二 IP地址为本地网 关的 IP地址。 图 7至图 11都是高铁场景下移动中继的系统架构示意图。 如图 7-11所示: 在图 7所示架构中, RN SGW/PGW总是位于 RN初始接入时为其服务的 DeNB(也 称为 initial DeNB) 中, RN切换到不同的 DeNB后 RN SGW/PGW不会发生改变。 该 架构通常称为架构 Alt 2。 在图 8所示架构中, RN由两个 UE功能实体和两个 eNB功能实体组成, 一个 RN 中两个 RN小区交替的接入高铁沿途的 DeNB中。 该架构也是基于架构 Alt 2, 通常称 为架构 eAlt. 2-1。 在图 9所示架构中, relay GW和 RN PGW总是位于 RN初始接入时为其服务的 DeNB (也称为 initial DeNB) 中, 而 RN SGW位于当前服务 RN的 DeNB中, 分别位 于不同 DeNB 中的 RN SGW与 RN PGW间可通过 S5或 S8接口相连。 RN切换到不 同的 DeNB后 RN PGW不会发生改变, 但 RN SGW会发生改变。 该架构也是基于架 构 Alt 2, 通常称为架构 eAlt.2-2。 在图 10所示架构中, relay GW和 RN SGW/PGW与 DeNB分设, 位于核心网中, RN切换到不同的 DeNB后 RN SGW/PGW不会发生改变。该架构也是基于架构 Alt 2, 通常称为架构 eAlt.2-3。 在图 11所示架构中, RN SGW/PGW与 DeNB分设, 位于核心网中, RN切换到 不同的 DeNB后 RN SGW/PGW不会发生改变。 该架构通常称为架构 Alt 1。 图 1为固定中继场景下, fix relay支持 LIPA业务的场景示意图。 图 2和图 3都为 高铁场景下 mobile relay支持 LIPA功能下的两种系统架构示意图。 图 1场景下的系统 架构为 LTE R10中已标准化的架构 Alt 2。 图 2场景下所示 mobile relay支持 LIPA的 系统架构是基于架构 Alt 2, 可以采用图 7所示架构 Alt 2, 则 RN SGW/PGW与 initial DeNB合设, RN切换到不同的 DeNB后 RN SGW/PGW不会发生改变; 或者可以采用 图 8所示架构 eAlt. 2-1, 则两个 RN小区一旦交替接入不同的 DeNB, RN SGW/PGW 与当前服务的 DeNB合设;或者可以采用图 9所示架构 eAlt.2-2,则 RN PGW与 initial DeNB合设, RN SGW与当前服务的 DeNB合设。 另夕卜, 图 2场景所示 mobile relay 支持 LIPA架构中, RN SGW/PGW还可能与 DeNB分设, 也即采用图 10所示架构 eAlt.2-3,则 RN SGW/PGW总是与 DeNB分设。图 3场景下所示 mobile relay支持 LIPA 的系统架构采用图 11所示架构 Alt 1, RN SGW/PGW总是与 DeNB分设。 下面所描述的各实施例均可应用于上述的各系统架构中。 实施例一 本实施例描述的是 RN PGW在 RN attach过程中分配 L-GW的 IP地址的方法, RN PGW仅为 RN分配 IP地址, RN将其自身的 IP地址作为 L-GW的 IP地址的情况, 也 即 RN和 L-GW使用相同的 IP地址。 图 12描述了该实施例一的流程。 在该实施例中 服务 RN的 SGW和 PGW (RN SGW/PGW) 与 DeNB合设。 RN SGW/PGW还可以与 DeNB分设, 其信令流程与该实施例类似。 在该实施例中 LGW与 RN合设, LGW还 可以与 RN分设。 步骤 S1201 , 在 RN启动的第二阶段, 也即通过第一阶段获得支持 RN的 DeNB 列表之后, 作为 UE身份的 RN与其中一个 DeNB执行同步、 随机接入之后与其建立 RRC连接, RN在 RRC连接建立完成消息中携带 NAS消息 (附着请求消息) 以触发 NAS流程。在附着请求消息中包含 PDN type, protocol configuration options (PCO)信 元。 其中 PDN type信元用于指示作为 UE身份的 RN请求的 IP地址类型; PCO用于 RN与 RN PGW间透传参数, 其中包括 Address Allocation Preference指示 RN在 RN attach中 default bearer activation之后是否通过 DHCPv4方式获取 IPv4地址。
DeNB收到该消息后将该 NAS消息携带在初始用户消息 (initial UE message) 中 发送至服务 RN的 MME (称为 RN MME)。 步骤 S1202, RN MME发送 S11接口建立会话请求(Create Session Request)消息 给服务 RN的 SGW (称为 RN SGW 若该 RN的 PDN subscription context中包含已 为其分配的 IP地址,则 MME将该已经分配的 IP地址通过该 Create Session Request消 息中 PDN address信元发送给 SGW。该消息中还包括 Dual Address Bearer Flag,由 MME 设置, 用于指示 MME是否支持 dual addressing。 步骤 S 1203, RN SGW发送 S5接口建立会话请求 (Create Session Request) 消息 给服务 RN的 PGW (称为 RN PGW 该场景下, 由于 RN SGW/PGW都与 DeNB合 设, 该接口为内部接口。 步骤 S1204, RN PGW根据接收的 Create Session Request消息中的 RN请求的 PDN type, Dual Address Bearer Flag及运营商策略来选择要分配的地址的 PDN type, 并根据 选择的 PDN type为 RN分配 IP地址。若接收的 Create Session Request消息中包括 MME 发送的签约信息中已签约的 PDN address,则将该地址发送给 UE。若 RN通过其与 RN PGW透传的 PCO中的 Address Allocation Preference指示其在 attach之后再通过 DHCP 方式获取 IP地址, 贝 U RN PGW将 RN的 IP地址 PDN Address信元设为 0.0.0.0。 步骤 S1205, RN PGW发送 S5接口建立会话响应(Create Session Response)消息 给 RN SGW, 其中包含 PDN Address信元指示其为 RN分配的 IP地址。 步骤 S1206, RN SGW发送 S11接口建立会话响应 (Create Session Response) 消 息给 RN MME, 其中包含 PDN Address信元指示其为 RN分配的 IP地址。 步骤 S1207, RN MME发送 S1 接口初始上下文建立请求 (initial context setup request)消息给 DeNB, 其中包含 NAS消息附着接受消息(attach accept), 该 NAS消 息中包含 PDN Address信元指示 RN PGW为 RN分配的 IP地址。
DeNB接收 initial context setup request消息后, 发送 RRC连接重配置消息给 RN, 其中包含从 RN MME接收的 NAS消息 (attach accept )。 步骤 S1208, RN接收 RRC连接重配置消息后解析出其中的 NAS PDU,也即 attach accept消息, 得到 RN PGW为其分配的 IP地址, 并将该 IP地址存储为 L-GW的 IP地 址。 之后 RN发送 RRC连接重配置完成消息给 DeNB, DeNB接收后发送初始上下文 建立响应(initial context setup response)消息给 RN MME。 至此完成 RN attach过程, 在此过程中 RN PGW为 RN分配 IP地址, 并在 DeNB处建立 RN的初始上下文。 RN 从 OAM处获取其作为基站身份的配置信息, 并且与 DeNB建立 X2/S1接口后便可以 以中继节点的基站身份为 UE服务。 步骤 S1209, RN所服务的 UE attach之后,想要使用 LIPA业务,则需要建立 LIPA PDN连接。 UE通过 UL information transfer携带 NAS PDU发送给 RN, 该 NAS PDU 包含 PDN连接建立请求消息。 UE在该 NAS消息中包含要建立的 LIPA连接的 APN。 步骤 S1210, RN发送 UL NAS TRANSPORT消息给 UE MME, 该消息中的 NAS PDU包含 UE发送的 PDN连接建立请求消息, 并且 RN在该 S 1接口消息中携带其在 步骤 408中存储的 L-GW的 IP地址。 若 DeNB与 RN SGW/PGW合设, 则该 S1消息 由 RN经过 DeNB发送至 UE MME; 若 DeNB与 RN SGW/PGW分设, 则该 SI消息 由 RN经过 DeNB和 RN SGW/PGW发送至 UE MME。 步骤 S1211,UE MME通过发起 PDN连接的 UE发送的 APN识别需要建立的 PDN 连接是 LIPA PDN连接。并且接收到 RN在 S1消息中携带的 LGW地址,也即说明 RN 可以支持 LIPA功能,然后 UE MME检查 UE的签约数据以确定是否允许该 LIPA连接 建立请求。 若允许, 则 UE MME发送 S11接口建立会话请求(Create Session Request) 消息给 UE SGW。 UE MME使用 SI消息中 RN发送的 L-GW的 IP地址建立 UE SGW 与 L-GW之间的 S5连接, 也即选择 L-GW为 UE在该 LIPA PDN连接下的 PGW。 UE MME在 Create Session Request消息中携带 L-GW的 IP地址以指示 UE SGW需要建立 S5连接的 L-GW的地址。 步骤 S1212, UE SGW发送 S5接口建立会话请求 (Create Session Request) 消息 给 L-GW, 由于 L-GW的地址是由 RN PGW分配的, 该消息首先发送至 RN PGW, 再 经过 RN SGW, DeNB, 然后发送至 L-GW。 步骤 S1213, L-GW发送 S5接口建立会话响应 (Create Session Response) 消息给 UE SGW。 由于 RN仅与 DeNB有空口连接, 该消息首先发送至 DeNB, 再经过 RN SGW/PGW, 然后发送至 UE SGW。 步骤 S1214, UE SGW发送 S11接口建立会话响应 (Create Session Response) 消 息给 UE MME。 步骤 S1215, UE MME通过 SI接口承载建立请求(bearer setup request)消息发送 NAS消息给 RN, 该 NAS消息为 PDN连接建立接受消息。 UE MME在该消息中对于 每一个 E-RAB都携带 L-GW分配的 S5 TEID或 GRE key, 用于 RN建立直接隧道的 E-RAB ID与 EPS bearer ID映射关系。 然后, RN再将该 NAS消息透传给 UE。 步骤 S1216, UE发送 NAS消息给 UE MME, 该 NAS消息为 PDN连接建立完成 消息。 至此, RN服务的 UE的 LIPA PDN连接建立完成, LIPA业务数据到达 L-GW 后可通过 L-GW与 RN间的直接隧道发送至 RN。 L-GW与核心网 UE SGW间的 S5连 接可用于 IDLE态 UE的寻呼及 S5信令的传输。 实施例二 本实施例描述的是 RN PGW在 RN attach过程中分配 L-GW的 IP地址的方法,并 且 PGW分别为 RN和 L-GW分配 IP地址的情况, 也即 RN和 L-GW不使用相同的 IP 地址。 图 13描述了该实施例二的流程。 在该实施例中服务 RN的 SGW和 PGW (RN SGW/PGW)与 DeNB合设。 RN SGW/PGW还可以与 DeNB分设, 其信令流程与该实 施例类似。 在该实施例中 LGW与 RN合设, LGW还可以与 RN分设。 步骤 S1301 , 在 RN启动的第二阶段, 也即通过第一阶段获得支持 RN的 DeNB 列表之后, 作为 UE身份的 RN与其中一个 DeNB执行同步、 随机接入之后与其建立 RRC连接, RN在 RRC连接建立完成消息中携带 NAS消息 (附着请求消息) 以触发 NAS流程。在附着请求消息中包含 PDN type, protocol configuration options (PCO)信 元。 其中 PDN type信元用于指示作为 UE身份的 RN请求的 IP地址类型; PCO用于 RN与 RN PGW间透传参数, 其中包括 Address Allocation Preference指示 RN在 RN attach中 default bearer activation之后是否通过 DHCPv4方式获取 IPv4地址。 另外, 该附着请求消息中还包括辅助地址分配信息, 该辅助地址分配信息包含需 分配的地址数量信息和本地网关地址类型确定信息。 其中需分配的地址数量信息用于 指示分组数据网关是否分配两个 IP地址;本地网关地址类型确定信息用于分组数据网 关确定需要分配的本地网关的地址类型。 地址类型可以为 IPv4, IPv6或 IPv4v6。 DeNB收到该消息后将该 NAS消息携带在初始用户消息消息( initial UE message ) 中发送至称为 RN MME。 步骤 S1302, RN MME发送 Sll接口建立会话请求(Create Session Request)消息 给称为 RN SGW。 若该 RN的 PDN subscription context中包含已为其分配的 IP地址, 贝 ij MME将该已经分配的 IP地址通过该 Create Session Request消息中 PDN address信 元发送给 SGW。 该消息中还包括 Dual Address Bearer Flag, 由 MME设置, 用于指示 MME是否支持 dual addressing。 步骤 S1303, RN SGW发送 S5接口建立会话请求 (Create Session Request) 消息 给 RN PGW。该 Create Session Request消息中还包含 RN SGW在步骤 502中接收的辅 助地址分配信息。 该场景下, 由于 RN SGW/PGW都与 DeNB合设, 该接口为内部接 Π。 上述为 RN发送辅助地址分配信息的一种方式。另外, RN还可以将辅助地址分配 信息包含在用于 RN与 RN PGW间透传的 PCO信元中。 步骤 S 1304, RN PGW根据接收的 Create Session Request消息中的 RN请求的 PDN type, Dual Address Bearer Flag及运营商策略来选择要分配的 RN的地址的 PDN type, 并根据选择的 PDN type为 RN分配 IP地址。 若接收的 Create Session Request消息中 包括 MME发送的签约信息中已签约的 PDN address, 则将该地址发送给 UE。 若 RN 通过其与 RN PGW透传的 PCO中的 Address Allocation Preference指示其在 attach之后 再通过 DHCP方式获取 IP地址, 则 RN PGW将 RN的 IP地址 PDN Address信元设为 0.0.0.0。 另外,若 RN PGW接收的辅助地址分配信息中需分配的地址数量信息指示其分配 两个 IP地址, 且辅助地址分配信息中包含本地网关地址类型确定信息, 则 RN PGW 先根据本地网关地址类型确定信息确定需要分配的 L-GW地址的地址类型, 然后为 L-GW分配该类型的 IP地址。 步骤 S1305, RN PGW发送 S5接口建立会话响应(Create Session Response)消息 给 RN SGW, 该消息中包含两个 IP地址, 即 RN PGW分别为 RN和 L-GW分配的 IP 地址。 步骤 S1306, RN SGW发送 S11接口建立会话响应 (Create Session Response) 消 息给 RN MME, 该消息中包含两个 IP地址, 即 RN PGW分别为 RN和 L-GW分配的 IP地址。 步骤 S1307, RN MME发送 S1 接口初始上下文建立请求 (initial context setup request)消息给 DeNB, 其中包含 NAS消息附着接受消息(attach accept), 该 NAS消 息中包含 RN PGW分别为 RN和 L-GW分配的 IP地址。
DeNB接收 initial context setup request消息后, 发送 RRC连接重配置消息给 RN, 其中包含从 RN MME接收的 NAS消息 (attach accept ) 0 RN接收 RRC连接重配置消息后解析出其中的 NAS PDU,也即 attach accept消息, 存储 RN PGW分别为 RN和 L-GW分配的 IP地址。 之后 RN发送 RRC连接重配置完成消息给 DeNB, DeNB接收后发送初始上下文 建立响应(initial context setup response)消息给 RN MME。 至此完成 RN attach过程, 在此过程中 RN PGW为 RN和 L-GW分配 IP地址, 并在 DeNB处建立 RN的初始上 下文。 RN从 OAM处获取其作为基站身份的配置信息,并且与 DeNB建立 X2/S1接口 后便可以以中继节点的基站身份为 UE服务。 步骤 S1308, RN所服务的 UE attach之后,想要使用 LIPA业务,则需要建立 LIPA PDN连接。 UE通过 UL information transfer携带 NAS PDU发送给 RN, 该 NAS PDU 包含 PDN连接建立请求消息。 UE在该 NAS消息中包含要建立的 LIPA连接的 APN。 步骤 S 1309, RN发送 UL NAS TRANSPORT消息给 UE MME, 该消息中的 NAS PDU包含 UE发送的 PDN连接建立请求消息, 并且 RN在该 S 1接口消息中携带其在 步骤 507中存储的 L-GW的 IP地址。 若 DeNB与 RN SGW/PGW合设, 则该 S1消息 由 RN经过 DeNB发送至 UE MME; 若 DeNB与 RN SGW/PGW分设, 则该 S1消息 由 RN经过 DeNB和 RN SGW/PGW发送至 UE MME。 步骤 S 1310, UE MME通过发起 PDN连接的 UE发送的 APN识别需要建立的 PDN 连接是 LIPA PDN连接,并且接收到 RN在 S1消息中携带的 LGW地址,也即说明 RN 可以支持 LIPA功能,然后 UE MME检查 UE的签约数据以确定是否允许该 LIPA连接 建立请求。 若允许, 则 UE MME发送 S11接口建立会话请求(Create Session Request) 消息给 UE SGW。 UE MME使用 SI消息中 RN发送的 L-GW的 IP地址建立 UE SGW 与 L-GW之间的 S5连接, 也即选择 L-GW为 UE在该 LIPA PDN连接下的 PGW。 UE MME在 Create Session Request消息中携带 L-GW的 IP地址以指示 UE SGW需要建立 S5连接的 L-GW的地址。 步骤 S1311, UE SGW发送 S5接口建立会话请求 (Create Session Request) 消息 给 L-GW, 由于 L-GW的地址是由 RN PGW分配的, 该消息首先发送至 RN PGW, 再 经过 RN SGW, DeNB, 然后发送至与 RN合设的 L-GW。 步骤 S1312, L-GW发送 S5接口建立会话响应 (Create Session Response) 消息给 UE SGW。 由于 RN仅与 DeNB有空口连接, 该消息首先发送至 DeNB, 再经过 RN SGW/PGW, 然后发送至 UE SGW。 步骤 S1313, UE SGW发送 S11接口建立会话响应 (Create Session Response) 消 息给 UE MME。 步骤 S1314, UE MME通过 SI接口承载建立请求(bearer setup request)消息发送 NAS消息给 RN, 该 NAS消息为 PDN连接建立接受消息。 UE MME在该消息中对于 每一个 E-RAB都携带 L-GW分配的 S5 TEID或 GRE key, 用于 RN建立直接隧道的 E-RAB ID与 EPS bearer ID映射关系。 然后, RN再将该 NAS消息透传给 UE。 步骤 S1315, UE发送 NAS消息给 UE MME, 该 NAS消息为 PDN连接建立完成 消息。至此, RN服务的 UE的 LIPA PDN连接建立完成, LIPA业务数据到达与 RN合 设的 L-GW后可通过 L-GW与 RN间的直接隧道发送至 RN丄 -GW与核心网 UE SGW 间的 S5连接可用于 IDLE态 UE的寻呼及 S5信令的传输。 实施例三 本实施例描述的是 RN PGW在 RN attach之后的 DHCP过程中分配 L-GW的 IP 地址的方法, 并且 PGW分别为 RN和 L-GW分配 IP地址的情况, 也即 RN和 L-GW 不使用相同的 IP地址。 图 14描述了该实施例的流程。 在该实施例中服务 RN的 SGW 禾口 PGW (RN SGW/PGW)与 DeNB合设。 RN SGW/PGW还可以与 DeNB分设, 其信 令流程与该实施例类似。 在该实施例中 LGW与 RN合设, LGW还可以与 RN分设。 步骤 S1401 , 在 RN启动的第二阶段, 也即通过第一阶段获得支持 RN的 DeNB 列表之后, 作为 UE身份的 RN与其中一个 DeNB执行同步、 随机接入之后与其建立 RRC连接, RN在 RRC连接建立完成消息中携带 NAS消息 (附着请求消息) 以触发 NAS流程。在附着请求消息中包含 PDN type, protocol configuration options (PCO)信 元。 其中 PDN type信元用于指示作为 UE身份的 RN请求的 IP地址类型; PCO用于 RN与 RN PGW间透传参数, 其中包括 Address Allocation Preference指示 RN在 RN attach中 default bearer activation之后是否通过 DHCPv4方式获取 IPv4地址。
DeNB收到该消息后将该 NAS消息携带在初始用户消息消息(initial UE message) 中发送至 RN MME。 步骤 SI 402, RN MME发送 Sll接口建立会话请求(Create Session Request)消息 给称为 RN SGW。 若该 RN的 PDN subscription context中包含已为其分配的 IP地址, 贝 ij MME将该已经分配的 IP地址通过该 Create Session Request消息中 PDN address信 元发送给 SGW。 该消息中还包括 Dual Address Bearer Flag, 由 MME设置, 用于指示 MME是否支持 dual addressing。 步骤 S 1403, RN SGW发送 S5接口建立会话请求 (Create Session Request) 消息 给 RN PGW。 该场景下, 由于 RN SGW/PGW都与 DeNB合设, 该接口为内部接口。 步骤 S1404, RN PGW根据接收的 Create Session Request消息中的 RN请求的 PDN type, Dual Address Bearer Flag及运营商策略来选择要分配的 RN的地址的 PDN type, 并根据选择的 PDN type为 RN分配 IP地址。 若接收的 Create Session Request消息中 包括 MME发送的签约信息中已签约的 PDN address, 则将该地址发送给 UE。 若 RN 通过其与 RN PGW透传的 PCO中的 Address Allocation Preference指示其在 attach之后 再通过 DHCP方式获取 IP地址, 则 RN PGW将 RN的 IP地址 PDN Address信元设为 0.0.0.0。 步骤 S1405, RN PGW发送 S5接口建立会话响应(Create Session Response)消息 给 RN SGW, 该消息中包含 RN PGW为 RN分配的 IP地址。 步骤 S1406, RN SGW发送 Sl l接口建立会话响应 (Create Session Response) 消 息给 RN MME, 该消息中包含 RN PGW为 RN分配的 IP地址。 步骤 S1407, RN MME发送 SI 接口初始上下文建立请求 (initial context setup request)消息给 DeNB, 其中包含 NAS消息附着接受消息(attach accept), 该 NAS消 息中包含 RN PGW为 RN分配的 IP地址。
DeNB接收 initial context setup request消息后, 发送 RRC连接重配置消息给 RN, 其中包含从 RN MME接收的 NAS消息 (attach accept ) 0
RN接收 RRC连接重配置消息后解析出其中的 NAS PDU,也即 attach accept消息, 存储 RN PGW为 RN分配的 IP地址。 之后 RN发送 RRC连接重配置完成消息给 DeNB, DeNB接收后发送初始上下文 建立响应(initial context setup response)消息给 RN MME。 至此完成 RN attach过程, 在此过程中 RN PGW为 RN分配 IP地址, 并在 DeNB处建立 RN的初始上下文。 RN 从 OAM处获取其作为基站身份的配置信息, 并且与 DeNB建立 X2/S1接口后便可以 以中继节点的基站身份为 UE服务。 步骤 S1408, RN与 LGW合设的情况下, RN (或与 RN合设的 L-GW功能实体) 向 RN PGW发起 DHCP过程, 在该 DHCP交互过程中从 RN PGW获得 L-GW的 IP 地址。在 RN与 LGW分设的情况下, RN可向 RN PGW发起 DHCP过程,在该 DHCP 交互过程中从 RN PGW获得 L-GW的 IP地址;若在 RN与 LGW分设的情况下, LGW 向 RN PGW发起 DHCP过程, 在该 DHCP交互过程中从 RN PGW获得 L-GW的 IP 地址, 则 LGW将该 IP地址发送给 RN, RN将其存储为 LGW的 IP地址。 步骤 S1409, RN所服务的 UE attach之后,想要使用 LIPA业务,则需要建立 LIPA PDN连接。 UE通过 UL information transfer携带 NAS PDU发送给 RN, 该 NAS PDU 包含 PDN连接建立请求消息。 UE在该 NAS消息中包含要建立的 LIPA连接的 APN。 步骤 S1410, RN发送 UL NAS TRANSPORT消息给 UE MME, 该消息中的 NAS PDU包含 UE发送的 PDN连接建立请求消息, 并且 RN在该 S1接口消息中携带其在 步骤 608中获得的 L-GW的 IP地址。 若 DeNB与 RN SGW/PGW合设, 则该 S1消息 由 RN经过 DeNB发送至 UE MME; 若 DeNB与 RN SGW/PGW分设, 则该 S1消息 由 RN经过 DeNB和 RN SGW/PGW发送至 UE MME。 步骤 S1411,UE MME通过发起 PDN连接的 UE发送的 APN识别需要建立的 PDN 连接是 LIPA PDN连接,并且接收到 RN在 S1消息中携带的 LGW地址,也即说明 RN 可以支持 LIPA功能,然后 UE MME检查 UE的签约数据以确定是否允许该 LIPA连接 建立请求。 若允许, 则 UE MME发送 S11接口建立会话请求(Create Session Request) 消息给 UE SGW。 UE MME使用 SI消息中 RN发送的 L-GW的 IP地址建立 UE SGW 与 L-GW之间的 S5连接, 也即选择 L-GW为 UE在该 LIPA PDN连接下的 PGW。 UE MME在 Create Session Request消息中携带 L-GW的 IP地址以指示 UE SGW需要建立 S5连接的 L-GW的地址。 步骤 S1412, UE SGW发送 S5接口建立会话请求 (Create Session Request) 消息 给 L-GW, 由于 L-GW的地址是由 RN PGW分配的, 该消息首先发送至 RN PGW, 再 经过 RN SGW, DeNB, 然后发送至与 RN合设的 L-GW。 步骤 S1413, L-GW发送 S5接口建立会话响应 (Create Session Response) 消息给 UE SGW。 由于 RN仅与 DeNB有空口连接, 该消息首先发送至 DeNB, 再经过 RN SGW/PGW, 然后发送至 UE SGW。 步骤 S1414, UE SGW发送 S11接口建立会话响应 (Create Session Response) 消 息给 UE MME。 步骤 S1415, UE MME通过 SI接口承载建立请求(bearer setup request)消息发送 NAS消息给 RN, 该 NAS消息为 PDN连接建立接受消息。 UE MME在该消息中对于 每一个 E-RAB都携带 L-GW分配的 S5 TEID或 GRE key, 用于 RN建立直接隧道的 E-RAB ID与 EPS bearer ID映射关系。 然后, RN再将该 NAS消息透传给 UE。 步骤 S1416, UE发送 NAS消息给 UE MME, 该 NAS消息为 PDN连接建立完成 消息。至此, RN服务的 UE的 LIPA PDN连接建立完成, LIPA业务数据到达与 RN合 设的 L-GW后可通过 L-GW与 RN间的直接隧道发送至 RN丄 -GW与核心网 UE SGW 间的 S5连接可用于 IDLE态 UE的寻呼及 S5信令的传输。 从以上的描述中, 可以看出, 通过本发明, 采用分组数据网关为本地网关分配 IP 地址,从而解决了本地网关的地址分配问题,进而保证核心网发送的 S5数据能成功到 达本地网关。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种本地网关的 IP地址分配方法, 包括:
分组数据网关为本地网关分配 IP地址;
所述分组数据网关将所述 IP地址发送至所述本地网关。
2. 根据权利要求 1所述的方法, 其中, 所述本地网关与中继节点合设或分设, 其 中, 所述分组数据网关是为所述中继节点服务的分组数据网关。
3. 根据权利要求 2所述的方法, 其中, 分组数据网关为本地网关分配 IP地址, 包 括- 所述分组数据网关在中继节点的附着过程分配所述本地网关的 IP地址; 或者, 所述分组数据网关在中继节点的附着过程之后的 DHCP过程中分配 所述本地网关的 IP地址。
4. 根据权利要求 3所述的方法, 其中, 所述分组数据网关在中继节点的附着过程 分配所述本地网关的 IP地址, 包括:
所述分组数据网关在中继节点的附着过程中为所述本地网关分配一个 IP 地址, 并将分配的所述 IP地址发送至为所述中继节点服务的服务网关;
所述服务网关将接收到的所述 IP 地址发送至为所述中继节点服务的移动 管理实体;
所述移动管理实体通过所述 NAS消息将所述 IP地址发送至所述中继节点。
5. 根据权利要求 4所述的方法,其中,在所述本地网关与中继节点分设的情况下, 所述移动管理实体通过所述 NAS消息将所述 IP地址发送至所述中继节点之后, 还包括:
所述中继节点将所述 IP地址发送至所述本地网关。
6. 根据权利要求 3所述的方法, 其中, 所述分组数据网关在中继节点的附着过程 分配所述本地网关的 IP地址, 包括:
所述分组数据网关在中继节点的附着过程中为所述中继节点分配第一 IP 地址, 以及为所述本地网关分配第二 IP地址; 所述分组数据网关将所述第一 IP地址和所述第二 IP地址发送至为所述中 继节点服务的服务网关;
所述服务网关将所述第一 IP地址和所述第二 IP地址发送至为中继节点服 务的移动管理实体;
所述移动管理实体通过所述 NAS消息将所述第一 IP地址和所述第二 IP地 址发送至所述中继节点。 根据权利要求 6所述的方法,其中,在所述本地网关与中继节点分设的情况下, 所述移动管理实体通过所述 NAS消息将所述第一 IP地址和所述第二 IP地址发 送至所述中继节点之后, 还包括:
所述中继节点将所述第二 IP地址发送至所述本地网关。 根据权利要求 6所述的方法, 其中, 所述分组数据网关在中继节点的附着过程 中分配第一 IP地址和第二 IP地址之前, 还包括:
所述分组数据网关根据辅助地址分配信息分配所述第一 IP 地址和所述第 二 IP地址, 其中, 所述辅助地址分配信息包括: 需分配的地址数量信息和 /或 所述本地网关地址类型确定信息。 根据权利要求 8所述的方法, 其中, 所述本地网关的地址类型包括以下之一: IPv4、 IPv6、 IPv4v6。 根据权利要求 8所述的方法, 其中, 所述分组数据网关根据辅助地址分配信息 分配所述第一 IP地址和所述第二 IP地址之前, 包括:
所述中继节点通过其与所述分组数据网关间的透传信元发送所述辅助地址 分配信息至所述分组数据网关;
或者, 所述中继节点通过其与所述移动管理实体间的透传的非接入层消息 发送所述辅助地址分配信息至所述移动管理实体, 所述移动管理实体通过 S11 接口消息将所述辅助地址分配信息发送至服务网关, 然后服务网关通过 S5 接 口消息将所述辅助地址分配信息发送至所述分组数据网关;
或者, 所述中继节点通过 RRC 消息发送所述辅助地址分配信息至施主基 站, 所述施主基站通过 S1 接口消息将所述辅助地址分配信息发送至移动管理 实体, 所述移动管理实体通过 S11接口消息将所述辅助地址分配信息发送至服 务网关, 然后服务网关通过 S5 接口消息将所述辅助地址分配信息发送至所述 分组数据网关。
11. 根据权利要求 10所述的方法,其中,分组数据网关根据所述辅助地址分配信息 分配所述第一 IP地址和所述第二 IP地址, 包括;
若需分配的地址数量信息指示分组数据网关需要分配两个 IP地址,且辅助 地址分配信息中包含本地网关地址类型确定信息, 则所述分组数据网关为所述 中继节点分配所述第一 IP地址,并且根据本地网关地址类型确定信息确定需要 分配的本地网关地址的 IP地址类型,并为所述本地网关分配该类型的所述第二 IP地址。
12. 根据权利要求 3所述的方法, 其中, 所述分组数据网关在中继节点的附着过程 之后的 DHCP过程中分配所述本地网关的 IP地址, 包括:
所述分组数据网关在 DHCP过程中为本地网关分配一个 IP地址; 所述分组网关将分配的所述 IP地址发送至中继节点或本地网关;
13. 根据权利要求 11所述的方法, 其中, 所述分组网关将分配的所述 IP地址发送 至中继节点或本地网关, 包括:
若所述中继节点与所述本地网关合设,则所述中继节点将分配的所述 IP地 址存储为所述本地网关的 IP地址;
若所述中继节点与所述本地网关分设,且所述分组网关将分配的所述 IP地 址发送至所述中继节点,则所述中继节点将分配的所述 IP地址存储为所述本地 网关的 IP地址;
若所述中继节点与所述本地网关分设,且所述分组网关将分配的所述 IP地 址发送至所述本地网关,则所述本地网关将分配的所述 IP地址发送至所述中继 节点, 所述中继将分配的所述 IP地址存储为所述本地网关的 IP地址。
14. 根据权利要求 1至 13任一项所述的方法,其中,分组数据网关分配本地网关的 IP地址之后, 还包括:
所述中继节点将获取的所述本地网关的 IP地址用于建立本地网关与为 UE 服务的服务网关之间的 S5连接。
15. 根据权利要求 14 所述的方法, 其中, 所述中继节点将获取的所述本地网关的 IP地址用于建立本地网关与为 UE服务的服务网关之间的 S5连接, 包括: 所述中继节点在发送至为 UE服务的移动管理实体的 SI消息中携带所述本 地网关的 IP地址;
所述为 UE服务的移动管理实体根据所述本地网关的 IP地址建立本地网关 与为 UE服务的服务网关之间的 S5连接。
16. 一种分组数据网关, 包括:
分配模块, 设置为为本地网关分配 IP地址;
收发模块, 设置为将分配的所述 IP地址发送至所述本地网关。
17. 根据权利要求 16所述的分组数据网关, 其中, 所述分配模块包括:
第一分配子模块, 设置为在所述本地网关与中继节点合设的情况下, 为所 述中继节点和所述本地网关分配一个共享的 IP地址。
18. 根据权利要求 16所述的分组数据网关, 其中, 所述分配模块包括:
第二分配子模块, 设置为在所述本地网关与中继节点分设的情况下, 为所 述中继节点分配第一 IP地址, 以及为本地网关分配第二 IP地址。
19. 一种中继节点, 包括:
获取模块, 设置为从分组数据网关获取本地网关的 IP地址。
20. 根据权利要求 19所述的中继节点, 其中, 所述获取模块包括:
第一获取子模块, 设置为通过所述中继节点的附着过程获取所述本地网关 的 IP地址;
第二获取子模块,设置为在所述中继节点的附着过程之后通过 DHCH方式 获取所述本地网关的 IP地址。
21. 根据权利要求 20所述的中继节点, 其中, 还包括:
建立模块, 设置为根据所述本地网关的 IP地址建立所述本地网关与为 UE 服务的服务网关之间的 S5连接。
PCT/CN2013/075254 2012-05-11 2013-05-07 本地网关的ip地址分配方法、中继节点及分组数据网关 WO2013166955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210146422.0A CN103391330B (zh) 2012-05-11 2012-05-11 本地网关的ip地址分配方法、中继节点及分组数据网关
CN201210146422.0 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013166955A1 true WO2013166955A1 (zh) 2013-11-14

Family

ID=49535485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075254 WO2013166955A1 (zh) 2012-05-11 2013-05-07 本地网关的ip地址分配方法、中继节点及分组数据网关

Country Status (2)

Country Link
CN (1) CN103391330B (zh)
WO (1) WO2013166955A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040408A (zh) * 2021-11-02 2022-02-11 恒安嘉新(北京)科技股份公司 一种基于4g移动网络模拟环境的靶场系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951837B (zh) * 2013-12-18 2020-12-11 中兴通讯股份有限公司 一种小基站环境下交互信息的方法、基站和移动管理实体
US10440761B2 (en) * 2014-07-11 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Node and method for secure connected vehicle small cells
CN108307521A (zh) * 2016-06-30 2018-07-20 中兴通讯股份有限公司 本地ip接入业务实现方法及装置、系统、家庭演进基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525711A (zh) * 2003-01-21 2004-09-01 ���ǵ�����ʽ���� 用于在不同的专用网的网络设备之间支持通信的网关
CN102065469A (zh) * 2009-11-13 2011-05-18 中兴通讯股份有限公司 一种减少ip地址需求的方法和移动网络系统
CN102238704A (zh) * 2010-05-05 2011-11-09 中国移动通信集团公司 无线网络中为ue选择本地网关的方法和装置
US20120093074A1 (en) * 2010-10-15 2012-04-19 Nokia Siemens Networks Oy Local breakout with local gateway for mobile users

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009866A1 (en) * 2007-06-26 2008-12-31 France Télécom Apparatuses and method for communicating a request for an internet protocol address to the visited serving gateway
CN102396250A (zh) * 2009-04-17 2012-03-28 松下电器产业株式会社 用于在分段移动通信系统中管理本地ip访问的设备
CN101990171B (zh) * 2009-08-06 2013-11-06 电信科学技术研究院 一种接入节点的接入方法和设备
CN102056129A (zh) * 2009-11-05 2011-05-11 中兴通讯股份有限公司 本地ip访问连接的建立方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525711A (zh) * 2003-01-21 2004-09-01 ���ǵ�����ʽ���� 用于在不同的专用网的网络设备之间支持通信的网关
CN102065469A (zh) * 2009-11-13 2011-05-18 中兴通讯股份有限公司 一种减少ip地址需求的方法和移动网络系统
CN102238704A (zh) * 2010-05-05 2011-11-09 中国移动通信集团公司 无线网络中为ue选择本地网关的方法和装置
US20120093074A1 (en) * 2010-10-15 2012-04-19 Nokia Siemens Networks Oy Local breakout with local gateway for mobile users

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040408A (zh) * 2021-11-02 2022-02-11 恒安嘉新(北京)科技股份公司 一种基于4g移动网络模拟环境的靶场系统
CN114040408B (zh) * 2021-11-02 2024-05-28 恒安嘉新(北京)科技股份公司 一种基于4g移动网络模拟环境的靶场系统

Also Published As

Publication number Publication date
CN103391330B (zh) 2018-09-14
CN103391330A (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
EP3468254B1 (en) Method and apparatus for supporting local ip access in a femto cell of a wireless communication system
US9357571B2 (en) Local network and method for establishing connection between local gateway and home base station
EP2475142B1 (en) Method and system for acquiring route strategies
US9986462B2 (en) Double-connection implementation method and base station
EP2797380B1 (en) Method, entity and system for realizing cluster service
EP2523487B1 (en) Method, apparatus and system for realizing integrity protection
US20180192461A1 (en) Method and device for connecting non-3gpp or non-ip device to lte-based communication system
EP2709418A2 (en) Data transmission method, stream distribution node device, user equipment and system
US20150023250A1 (en) Method for establishing an interface and communication between a relay node and a core network
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2019042396A1 (zh) 网络接入和接入控制方法、装置
WO2017000889A1 (zh) 无线接入网设备、数据处理方法和ip报文处理方法
WO2017008252A1 (zh) 一种ip地址分配的方法和装置
CN104468312B (zh) 一种无线中继站及其接入核心网的方法和系统
WO2014075644A1 (zh) 本地ip访问连接释放的方法及装置、移动管理单元、无线侧网元
WO2013189443A2 (zh) 一种家庭基站中获取标识和地址匹配关系的方法、系统及网关
KR20150001251A (ko) 무선 통신 시스템에서 데이터 트래픽 분산을 위한 방법 및 장치
CN103582075B (zh) 一种rn支持多种无线接入系统的方法
WO2013166955A1 (zh) 本地网关的ip地址分配方法、中继节点及分组数据网关
CN101909088A (zh) 家庭基站系统中获取公网ip地址的方法及系统
CN103428670B (zh) 一种访问控制方法及移动管理实体
CN103220735A (zh) 一种rn移动后的用户平面建立方法
CN103517256A (zh) 一种mme的本地ip接入能力信息获取方法和基站
CN114071606B (zh) 一种切换方法、装置及控制设备
KR101665934B1 (ko) 다중 무선전송기술이 적용된 무선 백홀 시스템에서의 데이터 라우팅 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787070

Country of ref document: EP

Kind code of ref document: A1