WO2013121938A1 - Charged particle beam device, sample mask unit, and conversion member - Google Patents

Charged particle beam device, sample mask unit, and conversion member Download PDF

Info

Publication number
WO2013121938A1
WO2013121938A1 PCT/JP2013/052649 JP2013052649W WO2013121938A1 WO 2013121938 A1 WO2013121938 A1 WO 2013121938A1 JP 2013052649 W JP2013052649 W JP 2013052649W WO 2013121938 A1 WO2013121938 A1 WO 2013121938A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
mask unit
mask
observation
unit
Prior art date
Application number
PCT/JP2013/052649
Other languages
French (fr)
Japanese (ja)
Inventor
山口 直樹
宏史 武藤
岩谷 徹
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2013121938A1 publication Critical patent/WO2013121938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31777Lithography by projection
    • H01J2237/31788Lithography by projection through mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography
    • H01J2237/31794Problems associated with lithography affecting masks

Definitions

  • the present invention relates to a charged particle beam apparatus capable of observing a sample milled with an ion milling device for producing a sample observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and the like, and the charged particle beam.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the present invention relates to a sample mask unit used in the apparatus and a conversion member for sharing the sample mask unit between the charged particle beam apparatus and the observation apparatus.
  • An ion milling device is a device for polishing the surface or cross section of metal, glass, ceramic, etc. by irradiating with an argon ion beam, etc., and a pretreatment device for observing the surface or cross section of a sample with an electron microscope It is suitable as.
  • the vicinity of the part to be observed is cut using, for example, a diamond cutter, a thread saw, etc., and then the cut surface is mechanically polished and attached to a sample stage for an electron microscope. I was observing.
  • a soft sample such as a polymer material or aluminum has a problem that the observation surface is crushed or deep scratches remain due to abrasive particles.
  • a hard sample such as glass or ceramic is difficult to polish, and a composite material in which a soft material and a hard material are laminated has a problem that cross-sectional processing is extremely difficult.
  • ion milling has an effect that a hard sample and a composite material can be polished easily, and a mirror-like cross section can be easily obtained, even if a soft sample can be processed without collapsing the surface form.
  • Patent Document 1 describes a sample holder and a holder fixture of an ion milling apparatus.
  • an ion beam irradiation means for irradiating a sample with an ion beam disposed in a vacuum chamber and an inclination having an inclination axis disposed in the vacuum chamber and in a direction substantially perpendicular to the ion beam.
  • a sample preparation apparatus comprising: a stage; a sample holder disposed on the tilt stage; and holding the sample; and a shielding material positioned on the tilt stage and blocking a part of an ion beam that irradiates the sample.
  • sample preparation apparatus in which a sample processing by the ion beam is performed while changing an inclination angle of the inclination stage, and an optical microscope for adjusting the position of the sample is attached to an upper end portion of the sample stage drawing mechanism. ing.
  • Patent Document 3 describes a sample holder of an ion milling apparatus that can be directly fixed to an SEM sample stage support table without using an SEM sample table.
  • a sample mask unit that fixes the positional relationship between the sample and the mask. It is necessary to remove it from the SEM and place it again at the observation position on the SEM.
  • the present invention provides an ion milling apparatus, a scanning electron microscope, and a processing method or an observation method using these apparatuses that can observe a milled sample while maintaining the positional relationship between the mask and the sample.
  • the purpose is to do.
  • a sample mask unit used in an ion milling apparatus comprising a sample holder for holding the sample, a mask for shielding a part of the sample fixed to the sample holder from the ion beam, the sample and the mask,
  • the sample mask unit including the positioning unit that fixes the shielding positional relationship of the sample mask is placed in a state where the processed surface of the sample processed with the ion beam is observed, the processed surface is more than the structure of the sample mask unit. It is configured to be fixed at a position close to the observation beam source.
  • FIG. 2 is a schematic configuration diagram of a sample mask unit of Example 1.
  • FIG. It is a schematic block diagram of a sample mask unit and a conversion holder. It is a schematic block diagram of the conventional sample mask unit and a conversion holder.
  • FIG. 1 shows a configuration of an ion milling apparatus according to the present embodiment.
  • the upper view of FIG. 1 is a top view of the ion milling apparatus, and the lower view of FIG. 1 is a side sectional view of the ion milling apparatus.
  • the ion beam means an argon ion beam, but the present embodiment is not limited to the argon ion beam.
  • the ion source 1 generates an ion beam, and the sample is irradiated with the ion beam.
  • the direction of the ion beam in the lower diagram of FIG. 1 is the depth direction from the front side of the drawing.
  • the current density of argon ions in the ion source 1 of argon ions is controlled by the ion source controller 9.
  • the vacuum chamber 15 can be in a vacuum or atmospheric state by controlling the vacuum exhaust system 8 by the vacuum exhaust system control unit 11 and can maintain the state.
  • a sample mask unit 21 is installed inside the vacuum chamber.
  • the sample mask unit 21 is a member having a positioning mechanism for the mask 2 and the sample 3. A specific structure of the sample mask unit 21 will be described later.
  • the mask 2 covers a portion that does not require the processing of the sample so that the portion that does not need the processing of the sample is not irradiated with the ion beam for processing, and is configured by a member that does not transmit the ion beam. . Therefore, the mask 2 is arranged closer to the ion source than the sample 3. A part of the ion beam is shielded by the mask 2 and milled by the ion beam along the end surface of the mask 2. In the example of FIG. 1, the lower part of the sample is covered with the mask 2 so that the lower part of the sample 3 (the part hidden by the mask 2 in FIG.
  • the mirror polished surface of the sample 3 refers to a cross section of the sample 3 that is parallel to the optical axis (perpendicular to the paper surface) of the ion beam and is milled by the ion beam.
  • the mirror-polished surface of the sample refers to the surface of the sample 3 that faces the processing observation window 14.
  • the vacuum chamber 15 has a rectangular parallelepiped shape (box shape) that forms a space for forming a normal vacuum atmosphere, or a shape equivalent thereto.
  • a processing observation window 14 is provided on the upper surface of the vacuum chamber 15 (the direction opposite to the direction of the gravitational field in a gravitational environment), and the side surface (the surface adjacent to the upper surface and perpendicular to the direction of the gravitational field).
  • the ion source 1 and the sample fine movement mechanism 6 are provided. Moreover, the ion source 1 and the sample fine movement apparatus 6 are arrange
  • the sample fine movement base 5 is disposed on the flange 12 that also serves as a part of the container wall of the vacuum chamber 15 via the sample fine movement mechanism 6 provided on the side surface of the vacuum chamber 15, and opens the vacuum chamber 15 to the atmospheric state. At this time, by pulling out the flange 12 along the linear guide 13, the sample fine movement base 5 and the sample mask unit 21 installed on the sample fine movement base 5 to which the sample 3 is fixed are drawn out of the vacuum chamber 15. It is configured as follows.
  • the sample fine movement base 5 is provided with a rotating body 7 on which a sample holding member (member holding the sample including the sample mask unit fine movement mechanism 4) can be placed.
  • the rotating body 7 functions as a support for supporting the sample holding member.
  • the sample fine movement base 5 is configured to be able to rotate and tilt at an arbitrary angle with respect to the optical axis of the ion beam irradiated from the side surface of the vacuum chamber 15 by the rotating body 7. Is controlled by the sample fine movement control unit 10.
  • the sample mask unit fine movement mechanism 4 is configured to be movable in the front and rear, right and left directions in the direction perpendicular to the optical axis of the ion beam, that is, in the X and Y directions.
  • the sample mask unit 21 has a positioning mechanism for the mask 2 and the sample 3. Specifically, the positioning mechanism has means for adjusting the positional relationship between the mask 2 and the sample 3 and means for fixing the adjusted positional relationship. At least the sample holder 23, its rotating mechanism, and mask 2 and its fine adjustment mechanism are integrated. Further, the sample mask unit fine movement mechanism 4 attached thereto may be referred to as a sample mask unit 21.
  • a sample holder rotating ring 22 and a sample holder rotating screw are provided as a sample holder rotating mechanism 28, and the sample holder can be rotated perpendicularly to the optical axis 51 of the ion beam.
  • the sample holder rotating ring 22 is configured to rotate by turning the sample holder rotating mechanism 28, and the reverse rotation is returned by the spring pressure of a spring attached to the tip of the sample holder rotating mechanism 28.
  • the mask 2 is fixed to the mask holder 25 with a mask fixing screw 27.
  • the mask holder 25 moves along the linear guide 24 by operating a mask fine adjustment mechanism (that is, a mask position adjustment unit) 26, thereby finely adjusting the positions of the sample 3 and the mask 2.
  • the sample 3 is bonded and fixed to the sample holder 23.
  • the sample holder 23 is inserted into the sample holder rotating ring 22 to adjust the position of the sample holder 23 in the height direction, and the sample holder 23 is closely attached to the mask 2 and fixed.
  • the problem here is observation of the mirror-polished surface of the sample 3.
  • a sample such as a sample holder rotating ring 22, a mask fine adjusting mechanism 26, a sample holder rotating mechanism 28, and a sample mask unit fine adjustment mechanism 29 are provided on the mirror polished surface side of the sample 3.
  • the component parts and the mechanism part of the mask unit 21 are arranged. For this reason, when observing from a direction perpendicular to the mirror-polished surface, the above-described components and mechanisms interfere with the observation field of view, or the distance between the mirror-polished surface and the observation light source or charged particle beam source is shortened. Inconvenience that it cannot be performed.
  • the sample is mirror-polished (processed surface) when the sample is fixed to the sample mask unit and installed in the ion milling apparatus having the observation device or the observation means.
  • the sample mask unit is configured to be fixed at a position closer to the observation light source or the charged particle beam source than the structure of the sample mask unit such as a position adjusting mechanism.
  • the sample mask unit of the present embodiment will be specifically described.
  • FIG. 3 shows the sample mask unit 21 of this embodiment.
  • the sample 3 is fixed so that the mirror-polished surface side of the sample 3 is the end of the sample mask unit 21.
  • the sample holder rotating ring 22 and the sample holder rotating mechanism 28 that are components of the sample mask unit 21 are arranged inside the mirror polished surface of the sample 3.
  • the mask fine adjustment mechanism 26 and the sample mask unit fine movement adjustment mechanism 29 are disposed on the opposite side of the mirror-polished surface of the sample 3.
  • the mechanism part of the sample mask unit 21 is arranged to be concentrated on the side opposite to the mirror-polished surface side of the sample 3.
  • the mask fine adjustment mechanism 26 and the sample mask unit fine movement adjustment mechanism 29 are disposed on the opposite side of the mirror-polished surface, but may be surfaces in a direction different from the mirror-polished surface. That is, these mechanisms may be disposed on a surface different from the surface facing the observation light source.
  • the sample holder rotating ring 22 and the sample holder rotating mechanism 28 are provided on the surface facing the observation light source. However, these mechanisms may be provided on the other surface of the sample mask unit. Good. What is important is that the sample mask unit is configured such that the mechanism provided on the surface of the sample mask unit facing the light source for observation is farther from the mirror-polished surface of the sample with respect to the light source for observation.
  • the direction of the observation light source with respect to the sample coincides with the direction of the processing observation window 14 with respect to the sample.
  • the constituent parts of the sample mask unit 21 By disposing the constituent parts of the sample mask unit 21 as described above, there are no interfering parts in the direction perpendicular to the mirror polishing surface of the sample 3 (the light source direction for observation). Observation from a direction perpendicular to the surface becomes possible. It is also possible to reduce the distance between the mirror-polished surface of the sample 3 and the observation light source or charged particle beam source from the direction perpendicular to the mirror-polished surface. Furthermore, since there are no interfering parts in the direction of the mirror-polished surface of the sample 3 (the optical axis direction of the milling process), the ion beam is applied to portions other than the sample 3 and the mask 2 due to the rotation inclination during the cross-sectional milling process.
  • the particles sputtered by the ion beam can be prevented from depositing and adhering to the sample 3.
  • milling since there was no part or the like that interfered with the direction of the mirror-polished surface of sample 3 (the optical axis direction of the milling process) and the direction perpendicular to the mirror-polished surface (light source direction for observation), milling was performed. When observing the mirror-polished surface of the sample, user convenience can be improved.
  • the processing observation window 14 is provided on the upper surface of the vacuum chamber 15 and the ion source 1 is provided on the side surface as shown in FIG. It is possible to confirm the processing state from the direction perpendicular to the mirror-polished surface of the sample 3 through the processing observation window 14 without removing. Therefore, even when the ion-milled sample is observed and milled again, an adjustment operation for aligning the mask and the sample becomes unnecessary.
  • the progress of the milling process can be confirmed by installing an optical microscope above the processing observation window 14.
  • the processing can be finished and the sample can be taken out, which leads to an improvement in throughput.
  • the optical microscope has an optical system that focuses light emitted from a light source and irradiates the sample onto the sample.
  • an electron microscope may be installed above the processing observation window 14.
  • the electron microscope has an electron optical system that focuses the electron beam emitted from the electron source and irradiates the sample. Especially, the electron microscope scans the sample with the electron beam to detect secondary and reflected electrons from the sample.
  • a scanning electron microscope is preferred. Although a detailed description of the electron microscope is omitted, a general configuration may be used.
  • the milling process is first stopped and observed with an electron microscope.
  • the desired processing range is not obtained, the electron beam irradiation is stopped, the ion beam is irradiated again, and the milling processing is restarted.
  • the image can be acquired by enlarging to a necessary magnification, which leads to further improvement in throughput.
  • observation with an optical microscope and an electron microscope has been described, but other observation means may be used as long as the surface of the sample is observed from a specific direction.
  • This embodiment can be applied to an ion milling apparatus and other charged particle beam apparatuses provided with a sample processing means. It is particularly suitable for observing the processed sample with another observation device such as a scanning electron microscope or an optical microscope.
  • Confirmation of the processing state of the mirror-polished surface of the sample 3 is not limited to observation from the processing observation window 14 of the ion milling apparatus.
  • an electron microscope is installed in the processing observation window 14, the apparatus becomes large and the apparatus becomes expensive. Therefore, when observing the mirror-polished surface of the sample 3 in more detail, it is necessary to take out from the ion milling apparatus and observe with an observation apparatus such as an SEM or an optical microscope. Below, the example observed with SEM is demonstrated.
  • the sample holder 23 to which the sample 3 is fixed is removed from the sample mask unit 21 of the ion milling apparatus, and the sample holder 23 is directly or directly mounted on the SEM sample stage support.
  • the sample is fixed through a table, and the processing state of the mirror-polished surface of the sample 3 is observed.
  • the sample holder 23 is removed from the SEM sample stage support or the SEM sample stage, and is reattached to the sample mask unit 21 of the ion milling device, and then the readjustment to the milling position is required. Become. Therefore, there is a problem that the work becomes complicated and takes time.
  • FIG. 4 shows an example in which the sample mask unit 21 shown in FIG. 3 shown in the first embodiment is mounted on a conversion holder for fixing to a sample stage support part of an SEM.
  • the conversion holder of the present embodiment has at least a sample mask unit mounting portion that is attached to the sample mask unit and an SEM sample base support mounting portion that is attached to the SEM sample base support portion. Furthermore, it has positioning fixing means for positioning the sample mask unit. More specifically, it will be described in detail below.
  • the sample mask unit 21 has a sample mask unit fixing part 30 for fixing to the sample fine movement base 5, a sample mask unit fixing part screw 32, and a sample mask unit positioning for installation at a fixed position with reproducibility.
  • a mechanism 31 is provided.
  • the sample mask unit positioning mechanism 31 uniquely determines the position and direction of the sample mask unit 21 with respect to the sample holder fixing portion of the observation apparatus. Therefore, even if the processing by the ion milling device and the observation by the observation device such as a microscope are repeated, the sample can be observed at the same position and direction every time, so that the processing can be easily performed while checking the progress of the processing.
  • the sample mask unit fixing part 30, the sample mask unit fixing part screw 32, and the sample mask unit positioning mechanism 31 have a surface facing the observation light source in the sample mask unit 21. Are provided on different surfaces.
  • FIG. 4 shows an example in which these are provided on the surface opposite to the surface facing the observation light source, the present invention is not limited to this.
  • a conversion holder 41 is attached to the sample mask unit fixing portion 30, the sample mask unit fixing portion screw 32, and the sample mask unit positioning mechanism 31.
  • the conversion holder 41 is installed at a fixed position with a reproducibility, a conversion holder support portion 42, a conversion holder support portion screw hole 44 for fixing the sample mask unit 21.
  • the conversion holder positioning mechanism 43 is provided. These are engaged with the sample mask unit fixing portion 30, the sample mask unit fixing portion screw 32, and the sample mask unit positioning mechanism 31, and include the positioning mechanism 31 of the sample mask unit 21 and the positioning mechanism 43 of the conversion holder 41.
  • the sample mask unit 21 is fixed to the conversion holder 41 by aligning the positions and fixing the sample mask unit fixing part 30 and the conversion holder support part 42 with the sample mask unit fixing part screw 32 and the conversion holder support part screw hole 44. On the other hand, it is fixed at a fixed position with reproducibility.
  • the sample mask unit positioning mechanism 31 and the conversion holder positioning mechanism 43 for installing at a fixed position with reproducibility are not limited to pins and holes as shown in FIG.
  • a key and a groove may be used, and pins and holes may be installed in reverse.
  • the number of positioning mechanisms is not limited to one, and a plurality of positioning mechanisms may be installed. It is only necessary that the sample mask unit 21 and the conversion holder 41 are fixed at a fixed position with reproducibility.
  • the method for fixing the sample mask unit 21 and the conversion holder 41 includes a sample mask unit fixing part 30 and a conversion holder support part 42, a sample mask unit fixing part screw 32 and a conversion holder support. It is not limited to the method of fixing with the partial screw hole 44.
  • the unevenness of the sample mask unit fixing part 30 and the conversion holder support part 42 may be reversed or not circular.
  • the structure of the sample mask unit fixing part screw 32 and the conversion holder support part screw hole 44 may be reversed, and the number is not limited to one.
  • the conversion holder support 42 may be pressed and fixed with a plurality of set screws, may be fixed by inserting a split pin, or may be fixed by clamping the convex portion.
  • the sample mask unit 21 and the conversion holder 41 may be fixed.
  • the conversion holder 41 equipped with the sample mask unit 21 is attached to the SEM sample stage support part by fixing the SEM sample stage support part attachment mechanism 45 and the SEM sample stage support part. Accordingly, it is possible to observe the processing state of the mirror-polished surface of the sample 3 with the SEM without removing the sample holder 23 to which the sample 3 is fixed from the sample mask unit 21.
  • the SEM sample stage support part mounting mechanism 45 uniquely fixes the positional relationship and direction between the conversion holder 41 and the SEM sample stage support part.
  • SEM observation can be performed while maintaining the position and direction of the sample mask unit 21 with respect to the sample holder fixing portion of the observation apparatus fixed by the sample mask unit positioning mechanism 31 described above.
  • milling such as a processing position relationship between the ion source 1 and the sample 3 and a shielding position relationship between the mask 2 and the sample 3 is performed.
  • the readjustment to the milling position is not performed.
  • the sample can be fixed to the sample fine movement base 5 of the ion milling apparatus and milled again.
  • the sample mask unit 21 is fixed at a reproducible fixed position with respect to the conversion holder 41, the mirror polished surface of the sample 3 is also reproducible with respect to the SEM sample stage support. Therefore, when observing with SEM again after re-milling, it is possible to observe with SEM the processed state of the mirror-polished surface of sample 3 in the same observation field before re-milling. .
  • the sample mask unit 21 and the conversion holder 41 are fixed using the attachment / detachment mechanism between the sample mask unit 21 and the sample fine movement base 5, but the present invention is not limited to this mechanism.
  • An attachment / detachment mechanism between the sample mask unit 21 and an optical microscope for observing the shielding positional relationship between the mask 2 and the sample 3 that are separately formed from the vacuum chamber 15 may be used.
  • An attachment / detachment mechanism may be provided.
  • the sample mask unit 21 is fixed to the SEM sample stage support through the conversion holder 41.
  • the present invention is not limited to this.
  • the sample mask unit 21 and the SEM sample stage support part may be provided with a positioning mechanism that can be fixed at a reproducible fixed position and an attachment / detachment mechanism. .
  • FIG. 5 shows an example in which the sample mask unit 21 shown in FIG. 2 having the structure of the conventional example is mounted on a conversion holder for fixing to the sample stage support portion of the SEM for comparison with the present embodiment.
  • the sample holder 23 to which the sample 3 is fixed is not removed from the sample mask unit 21 by being fixed to the SEM sample stage support portion via the conversion holder 41.
  • the sample holder rotating ring 22 the mask fine adjustment mechanism 26 Since the component parts and mechanism parts of the sample mask unit 21, such as the sample holder rotating mechanism 28 and the sample mask unit fine adjustment mechanism 29, are arranged, observation from a direction perpendicular to the mirror-polished surface is not possible.
  • the sample mask unit 21 must be fixed obliquely by the conversion holder 41 and fixed to the SEM sample stage support, and the mirror-polished surface. On the other hand, there is an inconvenience that observation is possible only from an oblique direction.
  • the configuration of the sample mask unit 21 is such that the mirror polished surface side of the sample 3 is the end of the sample mask unit 21 as shown in the first embodiment.
  • the sample mask unit 21 of the present embodiment can be attached to the SEM sample stage support part via the conversion holder 41.
  • the sample is moved from the vacuum chamber of the ion milling device to the sample chamber of the observation device for observation, the milling by the ion milling device and the processing state of the mirror polished surface of the sample 3 milled by the SEM It is possible to repeatedly perform the observation without the need for readjustment.
  • the sample 3 is fixed even when the sample is transferred to an apparatus different from the ion milling apparatus for observation. Without removing the sample holder 23 from the sample mask unit 21, the positional relationship adjusted for carrying out milling, such as the processing positional relationship between the ion source 1 and the sample 3 and the shielding positional relationship between the mask 2 and the sample 3, can be obtained. It can be observed while being held.

Abstract

Conventional ion milling devices have required readjustment of the positional relationship between a sample and a mask in order to mill the sample again after observing, with an SEM, the extent to which the sample being milled is machined. Therefore, there has been a problem that work becomes complicated and takes time. In view of this point, the purpose of the present invention is to provide a charged particle beam device capable of observing a milled sample while maintaining the positional relationship between a mask and the sample, a sample mask unit, and a conversion member for sharing the sample mask unit between the charged particle beam device and an observation device. A charged particle beam device comprising a machining means for machining the surface of a sample by an ion beam, and an observation means for observing the machined surface, wherein a sample mask unit is configured such that the machined surface machined by the ion beam is secured at a position closer to a beam source for observation than structures of the sample mask unit.

Description

荷電粒子線装置、試料マスクユニット、および変換部材Charged particle beam apparatus, sample mask unit, and conversion member
本発明は、走査電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などで観察される試料を作製するためのイオンミリング装置でミリングされた試料を観察できる荷電粒子線装置、および当該荷電粒子線装置で用いられる試料マスクユニット、および試料マスクユニットを荷電粒子線装置と観察装置で共用するための変換部材に関する。 The present invention relates to a charged particle beam apparatus capable of observing a sample milled with an ion milling device for producing a sample observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and the like, and the charged particle beam. The present invention relates to a sample mask unit used in the apparatus and a conversion member for sharing the sample mask unit between the charged particle beam apparatus and the observation apparatus.
 イオンミリング装置は、金属、ガラス、セラミックなどの表面あるいは断面を、アルゴンイオンビームを照射するなどして研磨するための装置であり、電子顕微鏡により試料の表面あるいは断面を観察するための前処理装置として好適である。 An ion milling device is a device for polishing the surface or cross section of metal, glass, ceramic, etc. by irradiating with an argon ion beam, etc., and a pretreatment device for observing the surface or cross section of a sample with an electron microscope It is suitable as.
 電子顕微鏡による試料の断面観察において、従来は観察したい部位の近傍を例えばダイヤモンドカッター、糸のこぎり等を使用して切断した後、切断面を機械研磨し、電子顕微鏡用の試料台に取り付けて像を観察していた。 In the cross-sectional observation of a sample with an electron microscope, conventionally, the vicinity of the part to be observed is cut using, for example, a diamond cutter, a thread saw, etc., and then the cut surface is mechanically polished and attached to a sample stage for an electron microscope. I was observing.
 機械研磨の場合、例えば高分子材料やアルミニウムのように柔らかい試料では、観察表面がつぶれる、あるいは研磨剤の粒子によって深い傷が残るといった問題があった。又、例えばガラスあるいはセラミックのように固い試料では研磨が難しく、柔らかい材料と固い材料とが積層された複合材料では、断面加工が極めて難しいという問題があった。 In the case of mechanical polishing, for example, a soft sample such as a polymer material or aluminum has a problem that the observation surface is crushed or deep scratches remain due to abrasive particles. In addition, for example, a hard sample such as glass or ceramic is difficult to polish, and a composite material in which a soft material and a hard material are laminated has a problem that cross-sectional processing is extremely difficult.
 これに対し、イオンミリングは、柔らかい試料でも表面の形態がつぶれることなく加工できる、固い試料および複合材料の研磨が可能である、鏡面状態の断面を容易に得ることができるという効果がある。 On the other hand, ion milling has an effect that a hard sample and a composite material can be polished easily, and a mirror-like cross section can be easily obtained, even if a soft sample can be processed without collapsing the surface form.
 なお、イオンミリング装置では、試料の加工したい部分のみを加工用のビームで照射し加工を要さない部分は加工用のビームを非照射とするため、試料の加工を要さない部分をマスクで覆って加工している。 In the ion milling apparatus, only the portion of the sample that is desired to be processed is irradiated with the processing beam, and the portion that does not require processing is not irradiated with the processing beam. Therefore, the portion that does not require processing of the sample is masked. Covered and processed.
 特許文献1には、イオンミリング装置の試料ホルダおよびホルダ固定具に関して記載されている。 Patent Document 1 describes a sample holder and a holder fixture of an ion milling apparatus.
 特許文献2には、真空チャンバ内に配置され、試料にイオンビームを照射するためのイオンビーム照射手段と、前記真空チャンバ内に配置され、前記イオンビームにほぼ垂直な方向の傾斜軸をもつ傾斜ステージと、その傾斜ステージ上に配置され、前記試料を保持する試料ホルダと、前記傾斜ステージ上に位置し、前記試料を照射するイオンビームの一部を遮る遮蔽材とを備えた試料作製装置であり、前記傾斜ステージの傾斜角を変化させながら、前記イオンビームによる試料加工を行うようにし、試料の位置調整用の光学顕微鏡が試料ステージ引出し機構の上端部に取り付けられた試料作製装置が記載されている。 In Patent Document 2, an ion beam irradiation means for irradiating a sample with an ion beam disposed in a vacuum chamber and an inclination having an inclination axis disposed in the vacuum chamber and in a direction substantially perpendicular to the ion beam. A sample preparation apparatus comprising: a stage; a sample holder disposed on the tilt stage; and holding the sample; and a shielding material positioned on the tilt stage and blocking a part of an ion beam that irradiates the sample. There is described a sample preparation apparatus in which a sample processing by the ion beam is performed while changing an inclination angle of the inclination stage, and an optical microscope for adjusting the position of the sample is attached to an upper end portion of the sample stage drawing mechanism. ing.
 特許文献3には、SEM試料台を介さずに直接SEM試料台支持台に固定できるイオンミリング装置の試料ホルダに関して記載されている。 Patent Document 3 describes a sample holder of an ion milling apparatus that can be directly fixed to an SEM sample stage support table without using an SEM sample table.
特開平9-293475号公報Japanese Patent Laid-Open No. 9-293475 特開2005-91094号公報JP 2005-91094 A 特開2007-018920号公報JP 2007-018920 A
 従来のイオンミリング装置では、ミリング中の試料について、どの程度加工(ミリング)されているかをSEMにて観察する場合、ミリングされた試料を、試料とマスクの位置関係を固定している試料マスクユニットから取り外して、SEMでの観察位置に配置しなおす必要がある。 In a conventional ion milling apparatus, when observing with a SEM how much processing (milling) is performed on a sample being milled, a sample mask unit that fixes the positional relationship between the sample and the mask. It is necessary to remove it from the SEM and place it again at the observation position on the SEM.
 そのため、SEMにてミリングの状態を観察し、再度ミリングが必要と判断された場合、試料をSEMでの観察位置から取り外し、イオンミリング装置の試料マスクユニットに再度取り付けし、ミリングを再開する必要がある。しかし、この方法では、試料ホルダを試料マスクユニットから一度取り外ししてしまっているため、再度ミリングを実施するためには試料とマスクの位置関係を再調整する必要が生じる。このため、作業が煩雑になり、時間がかかるといった問題があった。 Therefore, when the milling state is observed with the SEM and it is determined that the milling is necessary again, it is necessary to remove the sample from the observation position with the SEM, reattach it to the sample mask unit of the ion milling device, and restart the milling. is there. However, in this method, since the sample holder is once removed from the sample mask unit, it is necessary to readjust the positional relationship between the sample and the mask in order to perform milling again. For this reason, there is a problem that the work becomes complicated and takes time.
 本発明は、かかる点に鑑みて、マスクと試料との位置関係を保ったまま、ミリングされた試料を観察できるイオンミリング装置、走査電子顕微鏡、およびこれらの装置での加工方法または観察方法を提供することを目的とする。 In view of the above, the present invention provides an ion milling apparatus, a scanning electron microscope, and a processing method or an observation method using these apparatuses that can observe a milled sample while maintaining the positional relationship between the mask and the sample. The purpose is to do.
 イオンミリング装置で用いられる試料マスクユニットであって、前記試料を保持する試料ホルダと、前記試料ホルダに固定された前記試料の一部を前記イオンビームから遮蔽するマスクと、前記試料と前記マスクとの遮蔽位置関係を固定する位置決め部とを備える試料マスクユニットは、イオンビームで加工された試料の加工面を観察する状態に設置された場合に、前記加工面が前記試料マスクユニットの構造物より前記観察用ビーム源に対して近い位置に固定されるように構成されていることを特徴とする。 A sample mask unit used in an ion milling apparatus, comprising a sample holder for holding the sample, a mask for shielding a part of the sample fixed to the sample holder from the ion beam, the sample and the mask, When the sample mask unit including the positioning unit that fixes the shielding positional relationship of the sample mask is placed in a state where the processed surface of the sample processed with the ion beam is observed, the processed surface is more than the structure of the sample mask unit. It is configured to be fixed at a position close to the observation beam source.
本発明によれば、イオンミリングされた試料を観察し、再度ミリングする場合の調整作業を容易にすることができる。 ADVANTAGE OF THE INVENTION According to this invention, the adjustment operation | work when observing the ion milled sample and milling again can be made easy.
イオンミリング装置の概略構成図である。It is a schematic block diagram of an ion milling apparatus. 従来の試料マスクユニットの概略構成図である。It is a schematic block diagram of the conventional sample mask unit. 実施例1の試料マスクユニットの概略構成図である。2 is a schematic configuration diagram of a sample mask unit of Example 1. FIG. 試料マスクユニットと変換ホルダの概略構成図である。It is a schematic block diagram of a sample mask unit and a conversion holder. 従来の試料マスクユニットと変換ホルダの概略構成図である。It is a schematic block diagram of the conventional sample mask unit and a conversion holder.
 以下、図面を参照して本発明を実施するための形態(以下、実施形態と記述)を詳細に説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings.
 以下で説明する実施例1,2においては試料断面のミリング加工および観察について説明するが、本発明は断面ミリング加工だけでなく、平面ミリング加工においても同様に適用できる。
<第一の実施形態>
 本実施例は、イオンミリング装置、走査電子顕微鏡、光学式顕微鏡、観察手段と加工手段とを備えたその他荷電粒子線装置に適用可能である。
In Examples 1 and 2 described below, milling and observation of a sample cross section will be described. However, the present invention can be applied not only to cross-sectional milling but also to plane milling.
<First embodiment>
The present embodiment can be applied to an ion milling device, a scanning electron microscope, an optical microscope, and other charged particle beam devices provided with observation means and processing means.
 図1は、本実施例によるイオンミリング装置の構成を示したものである。図1の上図はイオンミリング装置の上面図であり、図1の下図はイオンミリング装置の側面断面図である。以下では、イオン源からアルゴンイオンビームを照射する場合について説明する。従って、以下でイオンビームはアルゴンイオンビームを意味するが、本実施例はアルゴンイオンビームに限定されない。 FIG. 1 shows a configuration of an ion milling apparatus according to the present embodiment. The upper view of FIG. 1 is a top view of the ion milling apparatus, and the lower view of FIG. 1 is a side sectional view of the ion milling apparatus. Below, the case where an argon ion beam is irradiated from an ion source is demonstrated. Therefore, hereinafter, the ion beam means an argon ion beam, but the present embodiment is not limited to the argon ion beam.
 イオン源1はイオンビームを発生させ、試料に対してイオンビームが照射される。なお、図1の下図におけるイオンビームの方向は紙面手前方向から奥行き方向である。アルゴンイオンのイオン源1におけるアルゴンイオンの電流密度は、イオン源制御部9で制御される。真空チャンバ15は真空排気系制御部11にて真空排気系8を制御して、真空または大気の状態にでき、その状態を保持できる。真空チャンバの内部に試料マスクユニット21が設置されている。 The ion source 1 generates an ion beam, and the sample is irradiated with the ion beam. In addition, the direction of the ion beam in the lower diagram of FIG. 1 is the depth direction from the front side of the drawing. The current density of argon ions in the ion source 1 of argon ions is controlled by the ion source controller 9. The vacuum chamber 15 can be in a vacuum or atmospheric state by controlling the vacuum exhaust system 8 by the vacuum exhaust system control unit 11 and can maintain the state. A sample mask unit 21 is installed inside the vacuum chamber.
 試料マスクユニット21はマスク2と試料3との位置決め機構を有する部材である。具体的な試料マスクユニット21の構造については後述する。マスク2は、試料の加工が不要な部分に対して加工用のイオンビームが照射されないように、試料の加工が不要な部分を覆うものであって、イオンビームを透過しない部材で構成されている。したがってマスク2は試料3よりイオン源側に配置される。マスク2によりイオンビームの一部を遮蔽し、マスク2の端面に沿ってイオンビームによりミリング加工される。図1の例では試料の下部をマスク2で覆うことにより、試料3の下部(図1においてマスク2により隠れている部分)にはイオンビームが照射されない。以下で試料3の鏡面研磨面とは、試料3のうち、イオンビームの光軸(紙面垂直方向)に平行な面であって、イオンビームによりミリング加工された試料3の断面を指す。図1の例では、試料の鏡面研磨面は試料3のうち加工観察窓14と対向する面をいう。 The sample mask unit 21 is a member having a positioning mechanism for the mask 2 and the sample 3. A specific structure of the sample mask unit 21 will be described later. The mask 2 covers a portion that does not require the processing of the sample so that the portion that does not need the processing of the sample is not irradiated with the ion beam for processing, and is configured by a member that does not transmit the ion beam. . Therefore, the mask 2 is arranged closer to the ion source than the sample 3. A part of the ion beam is shielded by the mask 2 and milled by the ion beam along the end surface of the mask 2. In the example of FIG. 1, the lower part of the sample is covered with the mask 2 so that the lower part of the sample 3 (the part hidden by the mask 2 in FIG. 1) is not irradiated with the ion beam. Hereinafter, the mirror polished surface of the sample 3 refers to a cross section of the sample 3 that is parallel to the optical axis (perpendicular to the paper surface) of the ion beam and is milled by the ion beam. In the example of FIG. 1, the mirror-polished surface of the sample refers to the surface of the sample 3 that faces the processing observation window 14.
 真空チャンバ15は、通常真空雰囲気を形成するための空間を形成する直方体形状(箱型)、或いはそれに準ずる形状をなしている。真空チャンバ15の上面(重力のある環境で、重力場の向う方向と反対の方向)には加工観察窓14が設けられ、側面(上面に隣接する面であって、重力場の向う方向と垂直な方向)にはイオン源1および、試料微動機構6が設けられる。また、イオン源1と試料微動装置6は直交するように側面に配置される。さらに、加工観察窓14にスパッタされた粒子が堆積することを防ぐために、加工観察窓14の下部にシャッターを設置してもよい。 The vacuum chamber 15 has a rectangular parallelepiped shape (box shape) that forms a space for forming a normal vacuum atmosphere, or a shape equivalent thereto. A processing observation window 14 is provided on the upper surface of the vacuum chamber 15 (the direction opposite to the direction of the gravitational field in a gravitational environment), and the side surface (the surface adjacent to the upper surface and perpendicular to the direction of the gravitational field). The ion source 1 and the sample fine movement mechanism 6 are provided. Moreover, the ion source 1 and the sample fine movement apparatus 6 are arrange | positioned at a side surface so that it may orthogonally cross. Further, a shutter may be installed below the processing observation window 14 in order to prevent the sputtered particles from accumulating on the processing observation window 14.
 試料微動ベース5は、真空チャンバ15の側面に設けられた試料微動機構6を介して、真空チャンバ15の容器壁の一部を兼ねるフランジ12に配置されており、真空チャンバ15を大気状態に開放した時に、フランジ12をリニアガイド13に沿って引き出すことで、試料微動ベース5および、試料微動ベース5に設置された、試料3が固定された試料マスクユニット21を真空チャンバ15の外部へ引き出されるように構成されている。 The sample fine movement base 5 is disposed on the flange 12 that also serves as a part of the container wall of the vacuum chamber 15 via the sample fine movement mechanism 6 provided on the side surface of the vacuum chamber 15, and opens the vacuum chamber 15 to the atmospheric state. At this time, by pulling out the flange 12 along the linear guide 13, the sample fine movement base 5 and the sample mask unit 21 installed on the sample fine movement base 5 to which the sample 3 is fixed are drawn out of the vacuum chamber 15. It is configured as follows.
 また、試料微動ベース5には、試料保持部材(試料マスクユニット微動機構4を含む試料を保持する部材)を載置可能な回転体7が設けられている。回転体7は、試料保持部材を支持する支持台として機能する。また、試料微動ベース5は、回転体7により真空チャンバ15側面方向より照射されるイオンビームの光軸に対して任意の角度に回転傾斜できるように構成されており、回転傾斜させる方向と傾斜角度は、試料微動制御部10により制御される。試料微動ベース5を回転傾斜させることにより、試料ホルダ23に固定されている試料3を、イオンビームの光軸に対して所望の角度に設定することができる。試料マスクユニット微動機構4は、イオンビームの光軸に対して垂直方向の前後左右、すなわち、X方向とY方向に移動できるように構成される。 Further, the sample fine movement base 5 is provided with a rotating body 7 on which a sample holding member (member holding the sample including the sample mask unit fine movement mechanism 4) can be placed. The rotating body 7 functions as a support for supporting the sample holding member. The sample fine movement base 5 is configured to be able to rotate and tilt at an arbitrary angle with respect to the optical axis of the ion beam irradiated from the side surface of the vacuum chamber 15 by the rotating body 7. Is controlled by the sample fine movement control unit 10. By rotating and tilting the sample fine movement base 5, the sample 3 fixed to the sample holder 23 can be set at a desired angle with respect to the optical axis of the ion beam. The sample mask unit fine movement mechanism 4 is configured to be movable in the front and rear, right and left directions in the direction perpendicular to the optical axis of the ion beam, that is, in the X and Y directions.
 図2を用いて、従来の試料マスクユニットの構成を説明する。 
 上述の通り、試料マスクユニット21は、マスク2と試料3との位置決め機構を有する。具体的には、位置決め機構とはマスク2と試料3との位置関係を調整する手段と、調整された位置関係を固定する手段を有するものであって、少なくとも試料ホルダ23とその回転機構、マスク2とその微調整機構とを一体にしたものを称する。また、これに試料マスクユニット微動機構4を取り付けたものを、試料マスクユニット21と称することもある。
The configuration of a conventional sample mask unit will be described with reference to FIG.
As described above, the sample mask unit 21 has a positioning mechanism for the mask 2 and the sample 3. Specifically, the positioning mechanism has means for adjusting the positional relationship between the mask 2 and the sample 3 and means for fixing the adjusted positional relationship. At least the sample holder 23, its rotating mechanism, and mask 2 and its fine adjustment mechanism are integrated. Further, the sample mask unit fine movement mechanism 4 attached thereto may be referred to as a sample mask unit 21.
 図2では、試料ホルダの回転機構28として試料ホルダ回転リング22と、試料ホルダ回転ねじが備えられており、イオンビームの光軸51に対して、垂直に試料ホルダを回転できるようにしている。試料ホルダ回転リング22は、試料ホルダ回転機構28を回すことによって回転するように構成されており、逆回転は試料ホルダ回転機構28の先に取り付けられたばねのばね圧で戻るようになっている。 In FIG. 2, a sample holder rotating ring 22 and a sample holder rotating screw are provided as a sample holder rotating mechanism 28, and the sample holder can be rotated perpendicularly to the optical axis 51 of the ion beam. The sample holder rotating ring 22 is configured to rotate by turning the sample holder rotating mechanism 28, and the reverse rotation is returned by the spring pressure of a spring attached to the tip of the sample holder rotating mechanism 28.
 マスク2は、マスクホルダ25にマスク固定ねじ27により固定される。マスクホルダ25は、マスク微調整機構(すなわちマスク位置調整部)26を操作することによって、リニアガイド24に沿って移動し、これにより試料3とマスク2の位置が微調整される。試料3は、試料ホルダ23に接着固定される。試料ホルダ23は、試料ホルダ回転リング22に挿入され、試料ホルダ23の高さ方向の位置を調整し、試料ホルダ23はマスク2に密着され固定される。 The mask 2 is fixed to the mask holder 25 with a mask fixing screw 27. The mask holder 25 moves along the linear guide 24 by operating a mask fine adjustment mechanism (that is, a mask position adjustment unit) 26, thereby finely adjusting the positions of the sample 3 and the mask 2. The sample 3 is bonded and fixed to the sample holder 23. The sample holder 23 is inserted into the sample holder rotating ring 22 to adjust the position of the sample holder 23 in the height direction, and the sample holder 23 is closely attached to the mask 2 and fixed.
 ここで問題になるのは、試料3の鏡面研磨面の観察である。 
 図2に示す従来の試料マスクユニットでは、試料3の鏡面研磨面側には、試料ホルダ回転リング22、マスク微調整機構26、試料ホルダ回転機構28および、試料マスクユニット微動調整機構29といった、試料マスクユニット21の構成部品および機構部が配されている。このため、鏡面研磨面に垂直な方向から観察する場合、前述の構成部品および機構部が観察視野と干渉したり、鏡面研磨面と観察用の光源または荷電粒子線源との間の距離を短くしたりすることができないといった不都合が生じる。また、試料3周辺にマスク2以外の構成部品や機構部が配されている場合、断面ミリング加工の際に、回転傾斜により試料3およびマスク2以外の部分にイオンビームが誤って照射され、イオンビームによりスパッタされた粒子が、試料3に堆積および、付着する可能性がある。
The problem here is observation of the mirror-polished surface of the sample 3.
In the conventional sample mask unit shown in FIG. 2, a sample such as a sample holder rotating ring 22, a mask fine adjusting mechanism 26, a sample holder rotating mechanism 28, and a sample mask unit fine adjustment mechanism 29 are provided on the mirror polished surface side of the sample 3. The component parts and the mechanism part of the mask unit 21 are arranged. For this reason, when observing from a direction perpendicular to the mirror-polished surface, the above-described components and mechanisms interfere with the observation field of view, or the distance between the mirror-polished surface and the observation light source or charged particle beam source is shortened. Inconvenience that it cannot be performed. In addition, when components or mechanisms other than the mask 2 are arranged around the sample 3, the ion beam is accidentally irradiated to the portions other than the sample 3 and the mask 2 due to the rotation inclination during the cross-sectional milling process, There is a possibility that particles sputtered by the beam are deposited on and adhered to the sample 3.
 そこで、本実施例の試料マスクユニット21では、試料が試料マスクユニットに固定され、かつ、観察装置または観察手段を有するイオンミリング装置に設置された状態において、試料の鏡面研磨面(加工面)が位置調整機構等の試料マスクユニットの構造物より観察用の光源または荷電粒子線源に対して近い位置に固定されるように、試料マスクユニットが構成されている。以下、具体的に本実施例の試料マスクユニットを説明する。 Therefore, in the sample mask unit 21 of the present embodiment, the sample is mirror-polished (processed surface) when the sample is fixed to the sample mask unit and installed in the ion milling apparatus having the observation device or the observation means. The sample mask unit is configured to be fixed at a position closer to the observation light source or the charged particle beam source than the structure of the sample mask unit such as a position adjusting mechanism. Hereinafter, the sample mask unit of the present embodiment will be specifically described.
 図3に本実施例の試料マスクユニット21を示す。試料3の鏡面研磨面側が試料マスクユニット21の端部になるように固定する。また、試料マスクユニット21の構成部品である、試料ホルダ回転リング22および、試料ホルダ回転機構28を、試料3の鏡面研磨面の内側になるよう配置する。また、マスク微調整機構26および、試料マスクユニット微動調整機構29を、試料3の鏡面研磨面と反対側に配置する。試料マスクユニット21の機構部を試料3の鏡面研磨面側と逆側に集中して配置する構成とする。 FIG. 3 shows the sample mask unit 21 of this embodiment. The sample 3 is fixed so that the mirror-polished surface side of the sample 3 is the end of the sample mask unit 21. In addition, the sample holder rotating ring 22 and the sample holder rotating mechanism 28 that are components of the sample mask unit 21 are arranged inside the mirror polished surface of the sample 3. In addition, the mask fine adjustment mechanism 26 and the sample mask unit fine movement adjustment mechanism 29 are disposed on the opposite side of the mirror-polished surface of the sample 3. The mechanism part of the sample mask unit 21 is arranged to be concentrated on the side opposite to the mirror-polished surface side of the sample 3.
 なお、ここではマスク微調整機構26および試料マスクユニット微動調整機構29は鏡面研磨面と反対側に配置するとしたが、鏡面研磨面と異なる方向の面であればよい。すなわち、これらの機構は観察用の光源に対向する面とは異なる面に配置されていればよい。また、上記では試料ホルダ回転リング22および、試料ホルダ回転機構28を観察用の光源に対向する面に設けられる構成としたが、これらの機構が試料マスクユニットの他の面に設けられていてもよい。重要なのは、試料マスクユニットの観察用の光源に対向する面に設けられる機構が、試料の鏡面研磨面より観察用の光源に対して遠くなるように、試料マスクユニットが構成されることである。 Here, the mask fine adjustment mechanism 26 and the sample mask unit fine movement adjustment mechanism 29 are disposed on the opposite side of the mirror-polished surface, but may be surfaces in a direction different from the mirror-polished surface. That is, these mechanisms may be disposed on a surface different from the surface facing the observation light source. In the above description, the sample holder rotating ring 22 and the sample holder rotating mechanism 28 are provided on the surface facing the observation light source. However, these mechanisms may be provided on the other surface of the sample mask unit. Good. What is important is that the sample mask unit is configured such that the mechanism provided on the surface of the sample mask unit facing the light source for observation is farther from the mirror-polished surface of the sample with respect to the light source for observation.
 なお、本実施例では図1の加工観察窓の外側に観察用の光学系が設けられることとしているので、試料に対する観察用の光源の方向は、試料に対する加工観察窓14の方向と一致する。 In the present embodiment, since the observation optical system is provided outside the processing observation window in FIG. 1, the direction of the observation light source with respect to the sample coincides with the direction of the processing observation window 14 with respect to the sample.
 上述のように試料マスクユニット21の構成部品を配置することで、試料3の鏡面研磨面に垂直な方向(観察用の光源方向)には、干渉する部品等が無くなるため、試料3の鏡面研磨面に垂直な方向からの観察が可能となる。また、試料3の鏡面研磨面と鏡面研磨面に垂直な方向からの観察用の光源または荷電粒子線源との間の距離を短くすることも可能となる。さらに、試料3の鏡面研磨面の方向(ミリング加工の光軸方向)にも、干渉する部品等が無くなるため、断面ミリング加工の際に、回転傾斜により試料3およびマスク2以外の部分にイオンビームが誤って照射されることが無くなることで、イオンビームによりスパッタされた粒子が、試料3に堆積および、付着することを防ぐことが可能となる。本実施例では、試料3の鏡面研磨面の方向(ミリング加工の光軸方向)にも鏡面研磨面に垂直な方向(観察用の光源方向)にも干渉する部品等がないため、ミリング加工した試料の鏡面研磨面を観察する場合にユーザの利便性を向上させることができる。 By disposing the constituent parts of the sample mask unit 21 as described above, there are no interfering parts in the direction perpendicular to the mirror polishing surface of the sample 3 (the light source direction for observation). Observation from a direction perpendicular to the surface becomes possible. It is also possible to reduce the distance between the mirror-polished surface of the sample 3 and the observation light source or charged particle beam source from the direction perpendicular to the mirror-polished surface. Furthermore, since there are no interfering parts in the direction of the mirror-polished surface of the sample 3 (the optical axis direction of the milling process), the ion beam is applied to portions other than the sample 3 and the mask 2 due to the rotation inclination during the cross-sectional milling process. As a result, the particles sputtered by the ion beam can be prevented from depositing and adhering to the sample 3. In this example, since there was no part or the like that interfered with the direction of the mirror-polished surface of sample 3 (the optical axis direction of the milling process) and the direction perpendicular to the mirror-polished surface (light source direction for observation), milling was performed. When observing the mirror-polished surface of the sample, user convenience can be improved.
 以上の試料マスクユニットを用いることで、図1に示すような、真空チャンバ15の上面に加工観察窓14、側面にイオン源1を設けられたイオンミリング装置において、試料マスクユニット21から試料ホルダ23を取り外すことなく、加工観察窓14を通して、試料3の鏡面研磨面に垂直な方向から、加工状態を確認することが可能となる。したがって、イオンミリングされた試料を観察し再度ミリングする場合であっても、マスクと試料の位置合わせの調整作業が不要となる。 By using the sample mask unit described above, in the ion milling apparatus in which the processing observation window 14 is provided on the upper surface of the vacuum chamber 15 and the ion source 1 is provided on the side surface as shown in FIG. It is possible to confirm the processing state from the direction perpendicular to the mirror-polished surface of the sample 3 through the processing observation window 14 without removing. Therefore, even when the ion-milled sample is observed and milled again, an adjustment operation for aligning the mask and the sample becomes unnecessary.
 加工観察窓14の上部に、光学顕微鏡を設置することにより、ミリング加工の進捗が確認できる。所望の加工範囲まで加工が完了した時点で、加工を終了し、試料を取り出すことができるため、スループットの向上につながる。光学顕微鏡は、光源から出る光を集束して試料上に照射する光学系を有するものであり、説明は省略するが、一般的な構成のものであればよい。 The progress of the milling process can be confirmed by installing an optical microscope above the processing observation window 14. When the processing is completed to the desired processing range, the processing can be finished and the sample can be taken out, which leads to an improvement in throughput. The optical microscope has an optical system that focuses light emitted from a light source and irradiates the sample onto the sample.
 さらに、前述した光学顕微鏡に代えて、加工観察窓14の上部に、電子顕微鏡を設置してもよい。電子顕微鏡は、電子源から出る電子線を集束して試料上に照射する電子光学系を有するものであり、特に電子線によって試料上を走査することで試料からの二次電子や反射電子を検出する走査電子顕微鏡が好適である。電子顕微鏡についての詳しい説明は省略するが、一般的な構成のものであればよい。ミリング加工の進捗を確認するときは、まずミリング加工を一度停止し、電子顕微鏡による観察を行う。所望の加工範囲が得られていない場合は、電子ビーム照射を停止し、再度イオンビームを照射し、ミリング加工を再開する。所望の加工範囲が得られている場合は、必要となる倍率まで拡大し、画像を取得することができるため、さらなるスループットの向上につながる。 Furthermore, instead of the optical microscope described above, an electron microscope may be installed above the processing observation window 14. The electron microscope has an electron optical system that focuses the electron beam emitted from the electron source and irradiates the sample. Especially, the electron microscope scans the sample with the electron beam to detect secondary and reflected electrons from the sample. A scanning electron microscope is preferred. Although a detailed description of the electron microscope is omitted, a general configuration may be used. When confirming the progress of the milling process, the milling process is first stopped and observed with an electron microscope. When the desired processing range is not obtained, the electron beam irradiation is stopped, the ion beam is irradiated again, and the milling processing is restarted. When a desired processing range is obtained, the image can be acquired by enlarging to a necessary magnification, which leads to further improvement in throughput.
 なお、上記では光学顕微鏡と電子顕微鏡での観察について述べたが、特定の方向から試料の表面を観察する手段であれば、これ以外の観察手段であっても良い。 In the above description, observation with an optical microscope and an electron microscope has been described, but other observation means may be used as long as the surface of the sample is observed from a specific direction.
 近年、特に半導体分野で、複合材料を電子顕微鏡で断面観察することが重要となってきており、複合材料の断面を鏡面研磨する重要性が増している。本実施例により、ミリング中の試料をSEMにて観察した後、ミリング位置への再調整作業を介さずに、容易に再度ミリングを実施することが可能となり、きわめて効率的である。
<第2の実施形態>
 本実施例は、イオンミリング装置、試料の加工手段を備えたその他荷電粒子線装置に適用可能である。特に、加工した試料を走査電子顕微鏡、光学式顕微鏡等、別の観察装置で観察する場合に好適である。
In recent years, particularly in the semiconductor field, it has become important to observe a cross-section of a composite material with an electron microscope, and the importance of mirror-polishing the cross-section of the composite material has increased. According to this embodiment, after the sample being milled is observed with the SEM, the milling can be easily performed again without performing the readjustment to the milling position, which is extremely efficient.
<Second Embodiment>
This embodiment can be applied to an ion milling apparatus and other charged particle beam apparatuses provided with a sample processing means. It is particularly suitable for observing the processed sample with another observation device such as a scanning electron microscope or an optical microscope.
 試料3の鏡面研磨面の加工状態の確認は、イオンミリング装置の加工観察窓14からの観察に限定されるものではない。加工観察窓14に電子顕微鏡を設置する場合、装置が大型化し、また装置が高価になってしまう。そのため、より詳細に試料3の鏡面研磨面を観察する場合、イオンミリング装置から取り出して、SEMや光学顕微鏡等の観察装置で観察する必要がある。以下ではSEMにて観察する例を説明する。 Confirmation of the processing state of the mirror-polished surface of the sample 3 is not limited to observation from the processing observation window 14 of the ion milling apparatus. When an electron microscope is installed in the processing observation window 14, the apparatus becomes large and the apparatus becomes expensive. Therefore, when observing the mirror-polished surface of the sample 3 in more detail, it is necessary to take out from the ion milling apparatus and observe with an observation apparatus such as an SEM or an optical microscope. Below, the example observed with SEM is demonstrated.
 従来の方法では、SEMにて観察する場合、試料3を固定した試料ホルダ23を、イオンミリング装置の試料マスクユニット21から取り外して、SEM試料台支持部に、試料ホルダ23を直接もしくは、SEM試料台を介して固定し、試料3の鏡面研磨面の加工状態を観察する。再度加工が必要と判断された場合、試料ホルダ23をSEM試料台支持部もしくは、SEM試料台から取り外し、イオンミリング装置の試料マスクユニット21に再度取り付け後、ミリング位置への再調整作業が必要となる。そのため、作業が煩雑になり、時間がかかるといった問題がある。 In the conventional method, when observing with an SEM, the sample holder 23 to which the sample 3 is fixed is removed from the sample mask unit 21 of the ion milling apparatus, and the sample holder 23 is directly or directly mounted on the SEM sample stage support. The sample is fixed through a table, and the processing state of the mirror-polished surface of the sample 3 is observed. When it is determined that the processing is necessary again, the sample holder 23 is removed from the SEM sample stage support or the SEM sample stage, and is reattached to the sample mask unit 21 of the ion milling device, and then the readjustment to the milling position is required. Become. Therefore, there is a problem that the work becomes complicated and takes time.
 そこで本実施例では、再加工の際に必要となるミリング位置への再調整作業を不要とすることで、容易に試料3の鏡面研磨面の加工状態をSEMにて観察する方法について説明する。この場合、実施例1とは異なり、イオンミリング装置の真空試料室から一旦試料を取り出して、SEMの試料室に試料を移す作業が必要となる。 Therefore, in this embodiment, a method for easily observing the processed state of the mirror-polished surface of the sample 3 with an SEM by eliminating the need for readjustment to the milling position required for reworking will be described. In this case, unlike the first embodiment, it is necessary to take out the sample from the vacuum sample chamber of the ion milling apparatus and transfer the sample to the sample chamber of the SEM.
 ミリング位置への再調整作業を不要とするためには、試料マスクユニット21から試料ホルダ23を取り外すことなく、SEMにて試料3の鏡面研磨面の加工状態を観察することができれば良い。そこで、試料マスクユニット21をSEMの試料台支持部に固定するための変換ホルダを準備する。 In order to eliminate the need for readjustment to the milling position, it is only necessary to observe the processing state of the mirror-polished surface of the sample 3 with the SEM without removing the sample holder 23 from the sample mask unit 21. Therefore, a conversion holder for fixing the sample mask unit 21 to the SEM sample stage support is prepared.
 図4は、第一の実施形態に示す図3の試料マスクユニット21を、SEMの試料台支持部に固定するための変換ホルダに装着した例である。 FIG. 4 shows an example in which the sample mask unit 21 shown in FIG. 3 shown in the first embodiment is mounted on a conversion holder for fixing to a sample stage support part of an SEM.
 本実施例の変換ホルダは、少なくとも試料マスクユニットに取り付けられる試料マスクユニット用取付部と、SEMの試料台支持部に取り付けられるSEM試料台支持部用取付部とを有する。さらに試料マスクユニットの位置決めを行うための位置決め固定手段を有する。より具体的には、以下で詳しく説明する。 The conversion holder of the present embodiment has at least a sample mask unit mounting portion that is attached to the sample mask unit and an SEM sample base support mounting portion that is attached to the SEM sample base support portion. Furthermore, it has positioning fixing means for positioning the sample mask unit. More specifically, it will be described in detail below.
 試料マスクユニット21には、試料微動ベース5に固定するための、試料マスクユニット固定部30、試料マスクユニット固定部ねじ32および、再現性のある決まった位置に設置するための、試料マスクユニット位置決め機構31が備わっている。試料マスクユニット位置決め機構31によって、観察装置の試料ホルダ固定部に対する試料マスクユニット21の位置および方向が一意に決められる。したがって、イオンミリング装置による加工と、顕微鏡等の観察装置による観察を繰り返しても、毎回同じ位置および方向で試料を観察できるため、容易に加工の進み具合を確認しながら加工することができる。 The sample mask unit 21 has a sample mask unit fixing part 30 for fixing to the sample fine movement base 5, a sample mask unit fixing part screw 32, and a sample mask unit positioning for installation at a fixed position with reproducibility. A mechanism 31 is provided. The sample mask unit positioning mechanism 31 uniquely determines the position and direction of the sample mask unit 21 with respect to the sample holder fixing portion of the observation apparatus. Therefore, even if the processing by the ion milling device and the observation by the observation device such as a microscope are repeated, the sample can be observed at the same position and direction every time, so that the processing can be easily performed while checking the progress of the processing.
 試料マスクユニット固定部30、試料マスクユニット固定部ねじ32、試料マスクユニット位置決め機構31は、試料マスクユニットが観察装置に設置された場合において、試料マスクユニット21のうち観察用光源に対向する面とは異なる面に設けられている。図4では観察用光源に対向する面と反対側の面にこれらが設けられている例を示しているが、これに限られない。試料マスクユニット固定部30、試料マスクユニット固定部ねじ32、試料マスクユニット位置決め機構31に対して変換ホルダ41が取り付けられる。 When the sample mask unit is installed in the observation apparatus, the sample mask unit fixing part 30, the sample mask unit fixing part screw 32, and the sample mask unit positioning mechanism 31 have a surface facing the observation light source in the sample mask unit 21. Are provided on different surfaces. Although FIG. 4 shows an example in which these are provided on the surface opposite to the surface facing the observation light source, the present invention is not limited to this. A conversion holder 41 is attached to the sample mask unit fixing portion 30, the sample mask unit fixing portion screw 32, and the sample mask unit positioning mechanism 31.
 変換ホルダ41には、試料微動ベース5と同様に、試料マスクユニット21を固定するための、変換ホルダ支持部42、変換ホルダ支持部ねじ穴44および、再現性のある決まった位置に設置するための、変換ホルダ位置決め機構43を設ける。これらは試料マスクユニット固定部30、試料マスクユニット固定部ねじ32、試料マスクユニット位置決め機構31に係合するものであって、試料マスクユニット21の位置決め機構31と、変換ホルダ41の位置決め機構43の位置を合わせ、試料マスクユニット固定部30と変換ホルダ支持部42を、試料マスクユニット固定部ねじ32と変換ホルダ支持部ねじ穴44にて固定することで、試料マスクユニット21は、変換ホルダ41に対し、再現性のある決まった位置に固定される。 Similarly to the sample fine movement base 5, the conversion holder 41 is installed at a fixed position with a reproducibility, a conversion holder support portion 42, a conversion holder support portion screw hole 44 for fixing the sample mask unit 21. The conversion holder positioning mechanism 43 is provided. These are engaged with the sample mask unit fixing portion 30, the sample mask unit fixing portion screw 32, and the sample mask unit positioning mechanism 31, and include the positioning mechanism 31 of the sample mask unit 21 and the positioning mechanism 43 of the conversion holder 41. The sample mask unit 21 is fixed to the conversion holder 41 by aligning the positions and fixing the sample mask unit fixing part 30 and the conversion holder support part 42 with the sample mask unit fixing part screw 32 and the conversion holder support part screw hole 44. On the other hand, it is fixed at a fixed position with reproducibility.
 ここで、再現性のある決まった位置に設置するための、試料マスクユニット位置決め機構31および、変換ホルダ位置決め機構43は、図4に示すような、ピンとホールに限定されるものではない。例えば、キーと溝でも構わないし、ピンとホールの設置も逆でも構わない。なお、位置決め機構の数は、1つに限定されるものではなく、複数設置しても構わない。試料マスクユニット21と、変換ホルダ41が、再現性のある決まった位置に固定されればよい。 Here, the sample mask unit positioning mechanism 31 and the conversion holder positioning mechanism 43 for installing at a fixed position with reproducibility are not limited to pins and holes as shown in FIG. For example, a key and a groove may be used, and pins and holes may be installed in reverse. The number of positioning mechanisms is not limited to one, and a plurality of positioning mechanisms may be installed. It is only necessary that the sample mask unit 21 and the conversion holder 41 are fixed at a fixed position with reproducibility.
 また、試料マスクユニット21と変換ホルダ41を固定するための方法は、図4に示すような、試料マスクユニット固定部30と変換ホルダ支持部42を、試料マスクユニット固定部ねじ32と変換ホルダ支持部ねじ穴44にて固定する方法に限定されるものではない。試料マスクユニット固定部30と変換ホルダ支持部42の凹凸は逆でも構わないし、円形で無くても良い。試料マスクユニット固定部ねじ32と変換ホルダ支持部ねじ穴44の構造も逆でも構わないし、数量も1つに限定されるものではない。変換ホルダ支持部42を複数の止めネジで押さえこみ固定しても構わないし、割りピンを差し込んで固定しても構わないし、凸部をクランピングして固定しても構わない。試料マスクユニット21と、変換ホルダ41が、固定されればよい。 Further, as shown in FIG. 4, the method for fixing the sample mask unit 21 and the conversion holder 41 includes a sample mask unit fixing part 30 and a conversion holder support part 42, a sample mask unit fixing part screw 32 and a conversion holder support. It is not limited to the method of fixing with the partial screw hole 44. The unevenness of the sample mask unit fixing part 30 and the conversion holder support part 42 may be reversed or not circular. The structure of the sample mask unit fixing part screw 32 and the conversion holder support part screw hole 44 may be reversed, and the number is not limited to one. The conversion holder support 42 may be pressed and fixed with a plurality of set screws, may be fixed by inserting a split pin, or may be fixed by clamping the convex portion. The sample mask unit 21 and the conversion holder 41 may be fixed.
 試料マスクユニット21を装着した変換ホルダ41は、SEM試料台支持部取付機構45とSEM試料台支持部を固定することで、SEM試料台支持部に取り付けられる。これによって、試料3を固定した試料ホルダ23を試料マスクユニット21から取り外すことなく、SEMにて試料3の鏡面研磨面の加工状態を観察することが可能となる。 The conversion holder 41 equipped with the sample mask unit 21 is attached to the SEM sample stage support part by fixing the SEM sample stage support part attachment mechanism 45 and the SEM sample stage support part. Accordingly, it is possible to observe the processing state of the mirror-polished surface of the sample 3 with the SEM without removing the sample holder 23 to which the sample 3 is fixed from the sample mask unit 21.
 SEM試料台支持部取付機構45は、変換ホルダ41とSEM試料台支持部との位置関係および方向を一意に固定するものであるのが望ましい。これによって、上述の試料マスクユニット位置決め機構31によって固定された、観察装置の試料ホルダ固定部に対する試料マスクユニット21の位置および方向を保ったまま、SEM観察することができる。 また、試料3を固定した試料ホルダ23を試料マスクユニット21から取り外していないことから、イオン源1と試料3との加工位置関係および、マスク2と試料3との遮蔽位置関係といった、ミリングを実施するために調整された位置関係は、試料マスクユニット21によって保持されているため、SEMにて試料3の鏡面研磨面の加工状態を観察した後、ミリング位置への再調整作業を介さずに、イオンミリング装置の試料微動ベース5に固定し、再度ミリングを実施することが可能となる。 It is desirable that the SEM sample stage support part mounting mechanism 45 uniquely fixes the positional relationship and direction between the conversion holder 41 and the SEM sample stage support part. Thus, SEM observation can be performed while maintaining the position and direction of the sample mask unit 21 with respect to the sample holder fixing portion of the observation apparatus fixed by the sample mask unit positioning mechanism 31 described above. Further, since the sample holder 23 to which the sample 3 is fixed is not removed from the sample mask unit 21, milling such as a processing position relationship between the ion source 1 and the sample 3 and a shielding position relationship between the mask 2 and the sample 3 is performed. Since the positional relationship adjusted to be held by the sample mask unit 21, after observing the processing state of the mirror-polished surface of the sample 3 with the SEM, the readjustment to the milling position is not performed. The sample can be fixed to the sample fine movement base 5 of the ion milling apparatus and milled again.
 さらに、試料マスクユニット21は、変換ホルダ41に対し、再現性のある決まった位置に固定されることから、SEM試料台支持部に対しても、試料3の鏡面研磨面が再現性のある決まった位置に固定されるため、再ミリング後、再度SEMにて観察する場合、再ミリング前の同一観察視野にて、試料3の鏡面研磨面の加工状態をSEMにて観察することが可能となる。 Furthermore, since the sample mask unit 21 is fixed at a reproducible fixed position with respect to the conversion holder 41, the mirror polished surface of the sample 3 is also reproducible with respect to the SEM sample stage support. Therefore, when observing with SEM again after re-milling, it is possible to observe with SEM the processed state of the mirror-polished surface of sample 3 in the same observation field before re-milling. .
 なお、本実施例では、試料マスクユニット21と変換ホルダ41の固定は、試料マスクユニット21と、試料微動ベース5との着脱機構を用いたが、その機構に限定されるものではない。試料マスクユニット21と、真空チャンバ15から別体に構成されるマスク2と試料3との遮蔽位置関係を観測する光学顕微鏡との着脱機構を用いても良いし、変換ホルダ41のために専用の着脱機構を備えても良い。 In the present embodiment, the sample mask unit 21 and the conversion holder 41 are fixed using the attachment / detachment mechanism between the sample mask unit 21 and the sample fine movement base 5, but the present invention is not limited to this mechanism. An attachment / detachment mechanism between the sample mask unit 21 and an optical microscope for observing the shielding positional relationship between the mask 2 and the sample 3 that are separately formed from the vacuum chamber 15 may be used. An attachment / detachment mechanism may be provided.
 また、本実施例では、試料マスクユニット21は変換ホルダ41を介して、SEM試料台支持部に固定したが、これに限定されるものではない。試料マスクユニット21をSEM試料台支持部へ直接固定できるように、試料マスクユニット21とSEM試料台支持部に、再現性のある決まった位置に固定できる位置決め機構と、着脱機構を備えても良い。 In this embodiment, the sample mask unit 21 is fixed to the SEM sample stage support through the conversion holder 41. However, the present invention is not limited to this. In order to directly fix the sample mask unit 21 to the SEM sample stage support part, the sample mask unit 21 and the SEM sample stage support part may be provided with a positioning mechanism that can be fixed at a reproducible fixed position and an attachment / detachment mechanism. .
 図5は、本実施例との比較のために、従来例の構造である図2に示す試料マスクユニット21を、SEMの試料台支持部に固定するための変換ホルダに装着した例である。 FIG. 5 shows an example in which the sample mask unit 21 shown in FIG. 2 having the structure of the conventional example is mounted on a conversion holder for fixing to the sample stage support portion of the SEM for comparison with the present embodiment.
 従来例の試料マスクユニット21であっても、変換ホルダ41を介してSEM試料台支持部に固定することにより、試料3を固定した試料ホルダ23を試料マスクユニット21から取り外すことなく、SEMにて試料3の鏡面研磨面の加工状態を観察することができるが、従来例の試料マスクユニット21にあっては、試料3の鏡面研磨面側に、試料ホルダ回転リング22、マスク微調整機構26、試料ホルダ回転機構28および、試料マスクユニット微動調整機構29といった、試料マスクユニット21の構成部品および機構部が配されているため、鏡面研磨面に垂直な方向からの観察ができない。従って、前述の構成部品および機構部が観察視野と干渉することを回避するため、試料マスクユニット21を変換ホルダ41にて斜めに固定しSEM試料台支持部に固定する必要があり、鏡面研磨面に対し斜めの方向からしか観察することができないという不都合があった。 Even in the case of the sample mask unit 21 of the conventional example, the sample holder 23 to which the sample 3 is fixed is not removed from the sample mask unit 21 by being fixed to the SEM sample stage support portion via the conversion holder 41. Although the processing state of the mirror-polished surface of the sample 3 can be observed, in the sample mask unit 21 of the conventional example, the sample holder rotating ring 22, the mask fine adjustment mechanism 26, Since the component parts and mechanism parts of the sample mask unit 21, such as the sample holder rotating mechanism 28 and the sample mask unit fine adjustment mechanism 29, are arranged, observation from a direction perpendicular to the mirror-polished surface is not possible. Therefore, in order to avoid the above-described components and mechanism from interfering with the observation field, the sample mask unit 21 must be fixed obliquely by the conversion holder 41 and fixed to the SEM sample stage support, and the mirror-polished surface. On the other hand, there is an inconvenience that observation is possible only from an oblique direction.
 しかしながら、本実施例の試料マスクユニット21にあっては、第一の実施形態でも示したように、試料3の鏡面研磨面側が試料マスクユニット21の端部になるよう、試料マスクユニット21の構成部品を配置することで、試料3の鏡面研磨面と鏡面研磨面に垂直な方向からのSEM用の電子源との間には、干渉する部品等が無くなるため、SEMによる観察においても、試料3の鏡面研磨面に垂直な方向から加工状態の観察が可能となる。 However, in the sample mask unit 21 of this example, the configuration of the sample mask unit 21 is such that the mirror polished surface side of the sample 3 is the end of the sample mask unit 21 as shown in the first embodiment. By arranging the parts, there are no interfering parts between the mirror-polished surface of the sample 3 and the SEM electron source from the direction perpendicular to the mirror-polished surface. The processing state can be observed from the direction perpendicular to the mirror polished surface.
 以上のことから、本実施例の試料マスクユニット21は、変換ホルダ41を介してSEM試料台支持部に取り付けることができる。これによって、観察のためにイオンミリング装置の真空チャンバから観察装置の試料室に試料を移動する場合において、イオンミリング装置によるミリング加工および、SEMによるミリング加工された試料3の鏡面研磨面の加工状態の観察を、再調整作業不要で繰り返し実施することが可能となる。 From the above, the sample mask unit 21 of the present embodiment can be attached to the SEM sample stage support part via the conversion holder 41. As a result, when the sample is moved from the vacuum chamber of the ion milling device to the sample chamber of the observation device for observation, the milling by the ion milling device and the processing state of the mirror polished surface of the sample 3 milled by the SEM It is possible to repeatedly perform the observation without the need for readjustment.
 さらに、変換ホルダ41が再現性のある決まった位置に固定できる位置決め機構を備えることで、イオンミリング装置とは別の装置に試料を移し変えて観察する場合であっても、試料3を固定した試料ホルダ23を試料マスクユニット21から取り外すことなく、イオン源1と試料3との加工位置関係および、マスク2と試料3との遮蔽位置関係といった、ミリングを実施するために調整された位置関係を保持したまま、観察することができる。 Furthermore, by providing a positioning mechanism that can fix the conversion holder 41 at a fixed position with reproducibility, the sample 3 is fixed even when the sample is transferred to an apparatus different from the ion milling apparatus for observation. Without removing the sample holder 23 from the sample mask unit 21, the positional relationship adjusted for carrying out milling, such as the processing positional relationship between the ion source 1 and the sample 3 and the shielding positional relationship between the mask 2 and the sample 3, can be obtained. It can be observed while being held.
1 イオン源
2 マスク
3 試料
4 試料マスクユニット微動機構
5 試料微動ベース
6 試料微動機構
7 回転体
8 真空排気系
9 イオン源制御部
10 試料微動制御部
11 真空排気系制御部
12 フランジ
13,24 リニアガイド
14 加工観察窓
15 真空チャンバ
21 試料マスクユニット
22 試料ホルダ回転リング
23 試料ホルダ
25 マスクホルダ
26 マスク微調整機構
27 マスク固定ねじ
28 試料ホルダ回転機構
29 試料マスクユニット微動調整機構
30 試料マスクユニット固定部
31 試料マスクユニット位置決め機構
32 試料マスクユニット固定部ねじ
41 変換ホルダ
42 変換ホルダ支持部
43 変換ホルダ位置決め機構
44 変換ホルダ支持部ねじ穴
45 変換ホルダSEM試料台支持部取付機構
51 イオンビームの光軸
DESCRIPTION OF SYMBOLS 1 Ion source 2 Mask 3 Sample 4 Sample mask unit fine movement mechanism 5 Sample fine movement base 6 Sample fine movement mechanism 7 Rotating body 8 Vacuum exhaust system 9 Ion source control part 10 Sample fine movement control part 11 Vacuum exhaust system control part 12 Flange 13, 24 Linear Guide 14 Processing observation window 15 Vacuum chamber 21 Sample mask unit 22 Sample holder rotating ring 23 Sample holder 25 Mask holder 26 Mask fine adjustment mechanism 27 Mask fixing screw 28 Sample holder rotation mechanism 29 Sample mask unit fine adjustment mechanism 30 Sample mask unit fixing part 31 Sample mask unit positioning mechanism 32 Sample mask unit fixing part screw 41 Conversion holder 42 Conversion holder support part 43 Conversion holder positioning mechanism 44 Conversion holder support part screw hole 45 Conversion holder SEM sample stage support part mounting mechanism 51 Optical axis of ion beam

Claims (8)

  1.  イオンビームによって試料表面を加工する加工手段と、加工した面を観察する観察手段を有する荷電粒子線装置において、
     真空チャンバに取り付けられ、試料にイオンビームを照射するイオンビーム源と、
     前記試料を保持する試料ホルダと、前記試料ホルダに固定された前記試料の一部を前記イオンビームから遮蔽するマスクと、前記試料と前記マスクとの遮蔽位置関係を固定する位置決め部とを備える試料マスクユニットと、
     前記試料の前記イオンビームによって加工された加工面の観察に用いる光または荷電粒子線を発生する観察用ビーム源と、
     前記光または荷電粒子線を集束して前記加工面に照射する観察用光学系と、
    を備え、
     前記試料マスクユニットは、前記加工面が前記試料マスクユニットの構造物より前記観察用ビーム源に対して近い位置に固定されるように構成されていることを特徴とする荷電粒子線装置。
    In a charged particle beam apparatus having a processing means for processing a sample surface with an ion beam and an observation means for observing the processed surface,
    An ion beam source attached to a vacuum chamber and irradiating the sample with an ion beam;
    A sample comprising: a sample holder for holding the sample; a mask for shielding a part of the sample fixed to the sample holder from the ion beam; and a positioning unit for fixing a shielding positional relationship between the sample and the mask. A mask unit;
    An observation beam source for generating light or a charged particle beam used for observing a processed surface processed by the ion beam of the sample;
    An observation optical system that focuses the light or charged particle beam and irradiates the processed surface;
    With
    The charged particle beam apparatus, wherein the sample mask unit is configured such that the processing surface is fixed at a position closer to the observation beam source than a structure of the sample mask unit.
  2.  請求項1に記載の荷電粒子線装置において、さらに、
     前記試料マスクユニットは前記遮蔽位置関係を調整するマスク位置調整部とを備え、
     前記マスク位置調整部は、前記試料マスクユニットのうち前記観察用ビーム源に対向する面とは異なる面に配置されていることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 1, further comprising:
    The sample mask unit includes a mask position adjusting unit that adjusts the shielding positional relationship,
    The charged particle beam apparatus, wherein the mask position adjusting unit is disposed on a surface of the sample mask unit that is different from a surface facing the observation beam source.
  3.  イオンビームによって試料を加工するイオンミリング装置と、前記イオンビームによって加工された前記試料の加工面を観察用ビーム源から発生する光または荷電粒子線によって観察する観察装置と、で共用される試料マスクユニットに取り付けられる変換部材であって、
     前記試料マスクユニットは、
     前記試料を保持する試料ホルダと、
     前記試料ホルダに固定された前記試料の一部を前記イオンビームから遮蔽するマスクと、
     前記試料と前記マスクとの遮蔽位置関係を固定する位置決め部とを備え、
     前記試料マスクユニットは、前記試料マスクユニットが前記観察装置に設置された場合に、前記加工面が、前記試料マスクユニットの構造物より前記観察用ビーム源に対して近い位置に固定されるように構成されており、
     当該変換部材は、前記試料マスクユニットに係合する第一の取付部と、前記観察装置の試料ホルダ固定部に係合する第二の取付部とを有し、
     前記第一の取付部は、前記試料マスクユニットが前記観察装置に設置された場合に前記試料マスクユニットのうち前記観察用ビーム源に対向する面とは異なる面に取り付けられることを特徴とする変換部材。
    A sample mask shared by an ion milling apparatus that processes a sample by an ion beam and an observation apparatus that observes a processed surface of the sample processed by the ion beam by light or a charged particle beam generated from an observation beam source A conversion member attached to the unit,
    The sample mask unit includes:
    A sample holder for holding the sample;
    A mask for shielding a part of the sample fixed to the sample holder from the ion beam;
    A positioning unit for fixing a shielding positional relationship between the sample and the mask;
    When the sample mask unit is installed in the observation apparatus, the sample mask unit is fixed so that the processing surface is closer to the observation beam source than the structure of the sample mask unit. Configured,
    The conversion member has a first attachment portion that engages with the sample mask unit, and a second attachment portion that engages with a sample holder fixing portion of the observation apparatus,
    The conversion is characterized in that the first attachment portion is attached to a surface different from a surface facing the observation beam source in the sample mask unit when the sample mask unit is installed in the observation apparatus. Element.
  4.  請求項3に記載の変換部材において、さらに、
     前記変換部材は、前記観察装置の試料ホルダ固定部に対する前記試料マスクユニットの位置および方向を一意に固定する位置決め固定手段を有することを特徴とする変換部材。
    The conversion member according to claim 3, further comprising:
    The said conversion member has the positioning fixing means which fixes the position and direction of the said sample mask unit with respect to the sample holder fixing | fixed part of the said observation apparatus uniquely, The conversion member characterized by the above-mentioned.
  5.  イオンビームによって試料を加工するイオンミリング装置と、前記イオンビームによって加工された前記試料の加工面を観察用ビーム源から発生する光または荷電粒子線によって観察する観察装置と、で共用される試料マスクユニットにおいて、
     前記試料マスクユニットは、
     前記試料を保持する試料ホルダと、
     前記試料ホルダに固定された前記試料の一部を前記イオンビームから遮蔽するマスクと、
     前記試料と前記マスクとの遮蔽位置関係を固定する位置決め部とを備え、
     前記試料マスクユニットが前記観察装置に設置された場合に、
     前記加工面が、前記試料マスクユニットの構造物より前記観察用ビーム源に対して近い位置に固定されるように構成されていることを特徴とする試料マスクユニット。
    A sample mask shared by an ion milling apparatus that processes a sample by an ion beam and an observation apparatus that observes a processed surface of the sample processed by the ion beam by light or a charged particle beam generated from an observation beam source In the unit
    The sample mask unit includes:
    A sample holder for holding the sample;
    A mask for shielding a part of the sample fixed to the sample holder from the ion beam;
    A positioning unit for fixing a shielding positional relationship between the sample and the mask;
    When the sample mask unit is installed in the observation device,
    The sample mask unit, wherein the processing surface is configured to be fixed at a position closer to the observation beam source than the structure of the sample mask unit.
  6.  請求項5に記載の試料マスクユニットにおいて、さらに、
     前記試料マスクユニットは前記遮蔽位置関係を調整するマスク位置調整部とを備え、
     前記マスク位置調整部は、前記試料マスクユニットが前記観察装置に設置された場合に前記試料マスクユニットのうち前記観察用ビーム源に対向する面とは異なる面に配置されていることを特徴とする試料マスクユニット。
    The sample mask unit according to claim 5, further comprising:
    The sample mask unit includes a mask position adjusting unit that adjusts the shielding positional relationship,
    The mask position adjusting unit is arranged on a surface different from a surface facing the observation beam source in the sample mask unit when the sample mask unit is installed in the observation apparatus. Sample mask unit.
  7.  請求項5に記載の試料マスクユニットにおいて、
     前記試料マスクユニットは、前記イオンミリング装置の試料ホルダ固定部に係合する第一の取付部と、前記観察装置の試料ホルダ固定部に係合する第二の取付部とを、備えた変換部材を介して、観察装置の試料ホルダ固定部に取り付けられることを特徴とする試料マスクユニット。
    The sample mask unit according to claim 5,
    The sample mask unit includes a conversion member including a first attachment portion that engages with a sample holder fixing portion of the ion milling device and a second attachment portion that engages with a sample holder fixing portion of the observation device. A sample mask unit which is attached to a sample holder fixing part of an observation apparatus via
  8.  請求項7に記載の試料マスクユニットにおいて、
     前記変換部材は、前記観察装置の試料ホルダ固定部に対する前記試料マスクユニットの位置および方向を一意に固定する位置決め固定手段を有することを特徴とする試料マスクユニット。
    The sample mask unit according to claim 7,
    The sample mask unit, wherein the conversion member has positioning fixing means for uniquely fixing the position and direction of the sample mask unit with respect to the sample holder fixing portion of the observation apparatus.
PCT/JP2013/052649 2012-02-13 2013-02-06 Charged particle beam device, sample mask unit, and conversion member WO2013121938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012027959A JP2013165002A (en) 2012-02-13 2012-02-13 Charged particle beam device, sample mask unit, and conversion member
JP2012-027959 2012-02-13

Publications (1)

Publication Number Publication Date
WO2013121938A1 true WO2013121938A1 (en) 2013-08-22

Family

ID=48984051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052649 WO2013121938A1 (en) 2012-02-13 2013-02-06 Charged particle beam device, sample mask unit, and conversion member

Country Status (2)

Country Link
JP (1) JP2013165002A (en)
WO (1) WO2013121938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283277A1 (en) * 2022-05-24 2023-11-29 Leica Mikrosysteme GmbH Sample holder, loading device, and method for inserting a sample into a sample holder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053073A1 (en) * 2022-09-08 2024-03-14 株式会社日立ハイテク Ion milling device, section milling processing method, and section milling holder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097536A (en) * 1995-06-23 1997-01-10 Nec Corp Specimen fixture
JPH11149896A (en) * 1997-11-17 1999-06-02 Hitachi Ltd Specimen stand for scanning electron microscope
JP2002231171A (en) * 2001-01-29 2002-08-16 Nippon Light Metal Co Ltd Sample holding device
JP2004109097A (en) * 2002-09-20 2004-04-08 Toshiba Corp Polishing jig for physical analysis and method of physical analysis
JP2006269342A (en) * 2005-03-25 2006-10-05 Hitachi High-Tech Science Systems Corp Ion milling device
JP2008014820A (en) * 2006-07-06 2008-01-24 Fujifilm Corp Sample stand
WO2011101613A1 (en) * 2010-02-17 2011-08-25 Lancaster University Business Enterprises Limited Method and apparatus for ion beam polishing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097536A (en) * 1995-06-23 1997-01-10 Nec Corp Specimen fixture
JPH11149896A (en) * 1997-11-17 1999-06-02 Hitachi Ltd Specimen stand for scanning electron microscope
JP2002231171A (en) * 2001-01-29 2002-08-16 Nippon Light Metal Co Ltd Sample holding device
JP2004109097A (en) * 2002-09-20 2004-04-08 Toshiba Corp Polishing jig for physical analysis and method of physical analysis
JP2006269342A (en) * 2005-03-25 2006-10-05 Hitachi High-Tech Science Systems Corp Ion milling device
JP2008014820A (en) * 2006-07-06 2008-01-24 Fujifilm Corp Sample stand
WO2011101613A1 (en) * 2010-02-17 2011-08-25 Lancaster University Business Enterprises Limited Method and apparatus for ion beam polishing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283277A1 (en) * 2022-05-24 2023-11-29 Leica Mikrosysteme GmbH Sample holder, loading device, and method for inserting a sample into a sample holder

Also Published As

Publication number Publication date
JP2013165002A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
KR101470267B1 (en) Ion milling device
JP6710270B2 (en) Ion milling device and ion milling method
JP4675701B2 (en) Ion milling apparatus and ion milling method
JP4486462B2 (en) Sample preparation method and sample preparation apparatus
WO2012070517A1 (en) Ion milling device and ion milling processing method
JP4553739B2 (en) Sample holder and ion beam processing apparatus
JP2018200815A (en) Ion milling device and specimen holder
JP4398396B2 (en) Ion milling equipment
WO2017134764A1 (en) Sample holder, ion milling apparatus, sample processing method, sample observation method, and sample processing/observation method
JP5331342B2 (en) Ion milling equipment
WO2013121938A1 (en) Charged particle beam device, sample mask unit, and conversion member
JP2009245783A (en) Ion milling device and ion milling method
JP4675860B2 (en) Ion milling apparatus and method
JP6831443B2 (en) Ion milling device and ion milling method
JP6427601B2 (en) Ion milling mask position adjusting method, electron microscope and mask adjusting device
JP4455432B2 (en) Ion milling apparatus and ion milling method
JP6828095B2 (en) Ion milling method
JP2020194789A (en) Ion milling method and ion milling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749151

Country of ref document: EP

Kind code of ref document: A1