WO2024053073A1 - Ion milling device, section milling processing method, and section milling holder - Google Patents

Ion milling device, section milling processing method, and section milling holder Download PDF

Info

Publication number
WO2024053073A1
WO2024053073A1 PCT/JP2022/033809 JP2022033809W WO2024053073A1 WO 2024053073 A1 WO2024053073 A1 WO 2024053073A1 JP 2022033809 W JP2022033809 W JP 2022033809W WO 2024053073 A1 WO2024053073 A1 WO 2024053073A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding plate
sample
holder
milling
ion
Prior art date
Application number
PCT/JP2022/033809
Other languages
French (fr)
Japanese (ja)
Inventor
直弘 藤田
久幸 高須
斉 鴨志田
敦史 上野
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/033809 priority Critical patent/WO2024053073A1/en
Publication of WO2024053073A1 publication Critical patent/WO2024053073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects

Definitions

  • the present invention relates to an ion milling device, a cross-sectional milling method, and a cross-sectional milling holder.
  • Ion milling equipment irradiates the surface or cross section of a sample (e.g., metal, semiconductor, glass, ceramic, etc.) with an unfocused ion beam (Ar ions, etc.) accelerated to several kV, and generates a stress-free material using a sputtering phenomenon.
  • a smooth machined surface can be obtained by repelling atoms on the sample surface. This is an excellent method for smoothing the surface or cross section of a sample to be observed using an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is a characteristic.
  • Patent Document 1 discloses that the upper part of the workpiece is covered with a shielding plate, and the part protruding from the shielding plate is irradiated with an ion beam to be etched, thereby mirror-polishing the part of the sample along the edge of the shielding plate.
  • a method for producing a cross-sectional observation sample is disclosed. According to the disclosure of Patent Document 1, by performing ion beam irradiation while moving the shielding plate by the reciprocating movement of a rod fixed to one side of the shielding plate, the shielding plate is irradiated with the ion beam during processing of one sample. The depth of the depressions that occur can be made shallower, and the life of the shielding plate can be extended.
  • Patent Document 1 can reduce damage to the shielding plate due to ion beam irradiation, and is therefore effective even when performing cross-sectional milling for a long time, such as when exposing a cross-section of a thick sample. It is conceivable that.
  • performing ion beam irradiation for a long time with reduced adhesion between the shielding plate and the sample leads to a reduction in cross-sectional accuracy.
  • An ion milling apparatus that is an embodiment of the present invention includes a sample stage on which a cross-sectional milling holder that holds a sample and a shielding plate is mounted, an ion gun that emits an unfocused ion beam toward the sample, and a sample stage that holds a sample and a shielding plate. It has a shielding plate drive unit that changes the position of the shielding plate with respect to the sample in the edge direction along the boundary between the sample held in the cross-section milling holder and the shielding plate.
  • FIG. 1 is a diagram showing the overall configuration of an ion milling device. It is a figure which shows the state of a shielding plate and a sample by cross-sectional milling processing.
  • FIG. 3 is a diagram showing the adhesion between a sample and a shielding plate.
  • FIG. 3 is a diagram showing the adhesion between a sample and a shielding plate. It is a front view of a cross-sectional milling holder. It is a side view of a cross-sectional milling holder. It is a schematic diagram which shows the movement operation of a shielding board.
  • FIG. 3 is a schematic diagram showing a cross-sectional milling holder attached to the motor unit. It is a flowchart of cross-sectional milling processing accompanied by a movement operation of a shielding plate.
  • FIG. 1 is a diagram showing the overall configuration of an ion milling device.
  • a sample 1 is placed on a sample stage 2, and an ion beam is irradiated onto the sample 1 from an ion gun 4.
  • the ion gun 4 employs a penning method, which is effective for downsizing the structure.
  • argon ions are generated by colliding electrons generated by Penning discharge with argon gas inside the ion gun, and the generated argon ions are accelerated and emitted as an ion beam.
  • the ion gun 4 is supplied with a discharge voltage for generating a Penning discharge from a high-voltage power supply 5a and an acceleration voltage for accelerating argon ions, and is supplied with argon gas whose flow rate is controlled by an MFC (Mass Flow Controller) 5b. is supplied.
  • MFC Mass Flow Controller
  • a shielding plate 3 is arranged on the sample 1 to shield the ion beam irradiated onto the sample 1 from the ion gun 4, and the portion of the sample 1 exposed so as to protrude from the end face of the shielding plate 3 is milled by the ion beam. (cross-sectional milling).
  • the sample stage 2 is driven by a stage drive unit 9 during the cross-section milling process.
  • the stage drive unit 9 causes the sample stage 2 to swing around a swing axis S (Y direction) set perpendicular to the ion beam center B of the ion beam, and to perform a swing motion between the sample 1 and the shielding plate 3.
  • a sliding operation is performed along the edge direction along the boundary (when the sample 1 is directly facing the ion gun 4, the direction perpendicular to the ion beam center B and the swing axis S (X direction)).
  • the machined surface can be smoothed.
  • the processing width in the edge direction can be expanded by a sliding operation in which the sample 1 is moved back and forth in the edge direction around the ion beam center B.
  • the ion milling process is performed in the sample chamber 6 which is evacuated by the exhaust system 10.
  • the ion milling apparatus of this embodiment includes a shielding plate driving section 8 that moves the shielding plate 3 in the edge direction with respect to the sample 1.
  • the shielding plate drive unit 8 and the stage drive unit 9 are shown as being outside the sample chamber 6 in FIG. It is not limited to location.
  • the sample 1 is shown as being placed on the sample stage 2 in a simplified manner, but as described later, the sample 1 and the shielding plate 3 are held by a cross-section milling holder, and the cross-section milling holder is mounted on the sample stage 2.
  • Control of the ion milling apparatus is performed by a computer 12 and a controller 11, which may also be collectively referred to as a control section.
  • the computer 12 sets the ion milling conditions set by the user to the controller 11, and the controller 11 adjusts each component of the ion milling apparatus (ion gun 4, sample stage 2, shielding plate 3, exhaust system 10) based on the set control values. etc.).
  • FIG. 2 is a diagram showing the state of the shielding plate 3 and the sample 1 when the cross-sectional milling process is performed without moving the shielding plate 3. It can be seen that as the machining time elapses, the upper end of the shielding plate 3 is also gradually milled. If the upper end of the shielding plate 3 is deeply cut by the ion beam, the impact of the ions on the sample 1 will become non-uniform, and there is a risk that disturbances such as irregularities will occur in the cross section of the sample 1 to be cross-sectionally milled.
  • the shielding plate drive unit 8 of this embodiment moves the shielding plate 3 in the edge direction with respect to the sample 1, thereby widening the influence of the ion beam irradiated on the shielding plate 3 during the cross-sectional milling process. This prevents a portion of the shielding plate 3 from being deeply damaged and affecting the cross section of the sample 1.
  • FIG. 3A and 3B are diagrams showing the adhesion between the sample 1 and the shielding plate 3. Note that sample 1 here is a Si plate.
  • FIG. 3A shows a state in which the sample 1 is being processed, and the sample 1 and the shielding plate 3 are fixed without any gap.
  • FIG. 3B shows a state when the shielding plate 3 is moved in the edge direction, and a gap 31 is created between the sample 1 and the shielding plate 3.
  • FIG. 4A is a front view (view from the ion gun 4), and FIG. 4B is a side view.
  • the shielding plate 3 is fixed to the shielding plate retainer 43 by fixing screws 44.
  • the shielding plate presser 43 is fixed to the sample holder 41 by a shielding plate fixing screw 42.
  • the shielding plate presser 43 has the function of adjusting the adhesion between the shielding plate 3 and the sample 1.
  • the material of the shielding plate presser 43 it is desirable to use a metal having spring properties, for example, phosphor bronze.
  • the shielding plate fixing screw 42 is fixed to the sample holder 41 through the groove 45 of the shielding plate retainer 43.
  • the groove 45 has a length corresponding to the diameter of the shield plate fixing screw 42 in the vertical direction (Y direction), and is formed to be long in the horizontal direction (edge direction).
  • FIG. 4C is a schematic diagram showing the movement of the shielding plate 3 in the cross-section milling holder 40.
  • the shield plate fixing screw 42 is located at the longitudinal center of the groove 45
  • the shield plate fixing screw 42 is located to the right of the longitudinal center of the groove 45 when viewed from the ion gun.
  • the cross-section milling holder 40c is in a state in which the shielding plate fixing screw 42 is located to the left of the longitudinal center of the groove 45 when viewed from the ion gun.
  • a center line 47 is shown in order to clearly show the relative positional relationship of the movement of the shielding plate 3.
  • FIG. 5 shows a schematic diagram (top view) of the detailed configuration of the shielding plate driving section 8 that moves the shielding plate 3.
  • the shielding plate drive section 8 includes a motor unit 50 attached to the back surface of the cross-section milling holder 40, a rotating body 51 rotated by the motor unit 50, a shielding plate moving mechanism 52, and a power cable that supplies power to the motor unit 50. 53.
  • the motor unit 50 rotates the rotating body 51 under the control of the controller 11.
  • the rotation direction of the rotating body 51 can be switched between clockwise and counterclockwise.
  • the shielding plate moving mechanism 52 uses the rotation of the rotating body 51 as a drive source for rotating the shielding plate fixing screw 42 and as a driving source for moving the position of the shielding plate fixing screw 42 within the groove 45 .
  • FIG. 6 shows a flowchart of the cross-sectional milling process that involves the movement of the shielding plate 3.
  • Step 101 The user places the sample 1 to be cross-sectionally milled on the ion milling device, sets the processing conditions for the sample 1 from the computer 12 to the ion milling device, and then sends a processing start instruction.
  • Step 102 The control unit causes the ion gun 4 to irradiate the sample 1 with an ion beam for a predetermined period of time, and processes the sample 1 (cross-sectional milling process). Depending on the machining conditions, the control section also causes a swing motion or a slide motion to be executed.
  • Step 103 The control unit temporarily stops processing the sample 1.
  • Step 104 The shielding plate driving unit 8 loosens the shielding plate fixing screw 42 of the cross-section milling holder 40 to weaken the adhesion between the sample 1 and the shielding plate 3.
  • Step 105 With the adhesiveness between the sample 1 and the shielding plate 3 weakened, the shielding plate driving section 8 moves the shielding plate 3 by a certain amount in the edge direction with respect to the sample 1.
  • Step 106 The shielding plate drive unit 8 tightens the shielding plate fixing screw 42 of the cross-section milling holder 40 to strengthen the adhesion between the sample 1 and the shielding plate 3.
  • Step 107 The control unit restarts processing and transitions to Step 102.
  • the predetermined time for processing in step 102 and the amount of movement of the shielding plate 3 in step 105 may be dynamically adjusted according to the processing conditions set in step 101.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above are described in detail to make the present invention easier to understand, and the present invention is not necessarily limited to having all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized in hardware by, for example, designing an integrated circuit.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, files, etc. that realize each function is stored in memory, recording devices such as hard disks, SSDs (Solid State Drives), or recording media such as IC cards, memory cards, optical recording media, magnetic recording media, etc. can be placed in

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

An ion milling device has: a sample stage (2) on which is installed a section milling holder that holds a sample (2) and a shielding plate (3); an ion gun (4) that emits a non-convergent ion beam toward the sample; and a shielding plate driving unit (8) that changes the adhesion of the sample and the shielding plate and the position of the shielding plate with respect to the sample in an edge direction along a border between the sample and the shielding plate held by the section milling holder.

Description

イオンミリング装置、断面ミリング処理方法及び断面ミリングホルダIon milling device, cross-section milling method, and cross-section milling holder
 本発明は、イオンミリング装置、断面ミリング処理方法及び断面ミリングホルダに関する。 The present invention relates to an ion milling device, a cross-sectional milling method, and a cross-sectional milling holder.
 イオンミリング装置は、試料(例えば、金属、半導体、ガラス、セラミックなど)の表面あるいは断面に、数kVに加速させた非集束のイオンビーム(Arイオンなど)を照射し、スパッタリング現象により無応力で試料表面の原子を弾き飛ばすことにより、平滑な加工面を得ることができる。これは、走査電子顕微鏡(SEM:Scanning Electron Microscope)や透過電子顕微鏡(TEM:Transmission Electron Microscope)に代表される電子顕微鏡により、試料の表面あるいは断面を観察するための平滑加工を行うために優れた特性である。 Ion milling equipment irradiates the surface or cross section of a sample (e.g., metal, semiconductor, glass, ceramic, etc.) with an unfocused ion beam (Ar ions, etc.) accelerated to several kV, and generates a stress-free material using a sputtering phenomenon. A smooth machined surface can be obtained by repelling atoms on the sample surface. This is an excellent method for smoothing the surface or cross section of a sample to be observed using an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is a characteristic.
 特許文献1には、被加工物の上部を遮蔽板で覆い、その遮蔽板から突き出した部分にイオンビームを照射してエッチングすることにより、遮蔽板のエッジに沿った部分の試料を鏡面研磨する断面観察試料の作製方法が開示される。特許文献1の開示によれば、遮蔽板の一側面に固定されたロッドの往復運動により遮蔽板を移動しながらイオンビーム照射を行うことにより、一試料の加工中にイオンビーム照射により遮蔽板に生じる窪みの深さを浅くすることができ、遮蔽板の寿命を長くすることができる。 Patent Document 1 discloses that the upper part of the workpiece is covered with a shielding plate, and the part protruding from the shielding plate is irradiated with an ion beam to be etched, thereby mirror-polishing the part of the sample along the edge of the shielding plate. A method for producing a cross-sectional observation sample is disclosed. According to the disclosure of Patent Document 1, by performing ion beam irradiation while moving the shielding plate by the reciprocating movement of a rod fixed to one side of the shielding plate, the shielding plate is irradiated with the ion beam during processing of one sample. The depth of the depressions that occur can be made shallower, and the life of the shielding plate can be extended.
特開2012-2740号公報Japanese Patent Application Publication No. 2012-2740
 イオンミリング装置による断面ミリング処理によってきれいな断面を得るためには、イオンが遮蔽板と試料との間に入り込まないよう、遮蔽板と試料とを密着させる必要がある。特許文献1の開示において、遮蔽板と試料とを密着させた状態で遮蔽板を移動させるとすれば、遮蔽板と試料との摩擦の作用により、遮蔽板と試料台との間に挟み込んだ試料の位置がずれてしまうおそれがある。したがって、遮蔽板と試料との密着性を低下させた状態でイオンビーム照射を行うことになる。 In order to obtain a clean cross section through cross-sectional milling using an ion milling device, it is necessary to bring the shield plate and sample into close contact so that ions do not enter between the shield plate and the sample. In the disclosure of Patent Document 1, if the shielding plate is moved with the shielding plate and the sample in close contact with each other, the sample sandwiched between the shielding plate and the sample stage will be moved due to the effect of friction between the shielding plate and the sample. There is a risk that the position may shift. Therefore, ion beam irradiation is performed with reduced adhesion between the shielding plate and the sample.
 特許文献1開示の技術は、イオンビーム照射による遮蔽板の損傷を浅くすることができるため、厚い試料の断面を露出させるときのように、長時間の断面ミリング処理を行う場合にも有効であると考えられる。しかしながら、遮蔽板と試料との密着性を低下させた状態で長時間のイオンビーム照射を行うことは、断面の精度を低下させることにつながる。断面の精度を低下させることなく、イオンビーム照射による遮蔽板の損傷を分散させるためには、試料を加工するときと遮蔽板を移動させるときとで、それぞれに適切な試料と遮蔽板との密着度が得られるよう制御する必要がある。 The technique disclosed in Patent Document 1 can reduce damage to the shielding plate due to ion beam irradiation, and is therefore effective even when performing cross-sectional milling for a long time, such as when exposing a cross-section of a thick sample. it is conceivable that. However, performing ion beam irradiation for a long time with reduced adhesion between the shielding plate and the sample leads to a reduction in cross-sectional accuracy. In order to disperse damage to the shielding plate due to ion beam irradiation without reducing cross-sectional accuracy, it is necessary to ensure proper contact between the sample and the shielding plate when processing the sample and when moving the shielding plate. It is necessary to control the temperature so that the temperature is maintained.
 本発明の一実施の態様であるイオンミリング装置は、試料と遮蔽板とを保持する断面ミリングホルダが搭載される試料ステージと、試料に向けて非集束のイオンビームを放出するイオンガンと、試料と遮蔽板との密着性、及び断面ミリングホルダに保持された試料と遮蔽板との境界に沿ったエッジ方向における試料に対する遮蔽板の位置を変化させる遮蔽板駆動部とを有する。 An ion milling apparatus that is an embodiment of the present invention includes a sample stage on which a cross-sectional milling holder that holds a sample and a shielding plate is mounted, an ion gun that emits an unfocused ion beam toward the sample, and a sample stage that holds a sample and a shielding plate. It has a shielding plate drive unit that changes the position of the shielding plate with respect to the sample in the edge direction along the boundary between the sample held in the cross-section milling holder and the shielding plate.
 断面ミリング処理における深さ方向の加工範囲を拡大できる。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 It is possible to expand the processing range in the depth direction in cross-sectional milling processing. Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.
イオンミリング装置の全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of an ion milling device. 断面ミリング処理による遮蔽板と試料の様子を示す図である。It is a figure which shows the state of a shielding plate and a sample by cross-sectional milling processing. 試料と遮蔽板との密着性を示す図である。FIG. 3 is a diagram showing the adhesion between a sample and a shielding plate. 試料と遮蔽板との密着性を示す図である。FIG. 3 is a diagram showing the adhesion between a sample and a shielding plate. 断面ミリングホルダの正面図である。It is a front view of a cross-sectional milling holder. 断面ミリングホルダの側面図である。It is a side view of a cross-sectional milling holder. 遮蔽板の移動動作を示す模式図である。It is a schematic diagram which shows the movement operation of a shielding board. モータユニットに断面ミリングホルダを取り付けた状態の模式図である。FIG. 3 is a schematic diagram showing a cross-sectional milling holder attached to the motor unit. 遮蔽板の移動動作を伴う断面ミリング処理のフローチャートである。It is a flowchart of cross-sectional milling processing accompanied by a movement operation of a shielding plate.
 図1は、イオンミリング装置の全体構成を示す図である。試料1は試料ステージ2上に設置され、イオンガン4から試料1にイオンビームが照射される。イオンガン4としては、構造を小型化するために有効なペニング方式を採用する。ぺニング方式のイオンガンでは、イオンガン内部においてぺニング放電によって発生させた電子とアルゴンガスとを衝突させることによってアルゴンイオンを生成し、生成したアルゴンイオンを加速してイオンビームとして放出する。このため、イオンガン4には、高圧電源5aからぺニング放電を発生させるための放電電圧、アルゴンイオンを加速させるための加速電圧が印加され、MFC(Mass Flow Controller)5bにより流量制御されたアルゴンガスが供給される。 FIG. 1 is a diagram showing the overall configuration of an ion milling device. A sample 1 is placed on a sample stage 2, and an ion beam is irradiated onto the sample 1 from an ion gun 4. The ion gun 4 employs a penning method, which is effective for downsizing the structure. In a Penning type ion gun, argon ions are generated by colliding electrons generated by Penning discharge with argon gas inside the ion gun, and the generated argon ions are accelerated and emitted as an ion beam. For this reason, the ion gun 4 is supplied with a discharge voltage for generating a Penning discharge from a high-voltage power supply 5a and an acceleration voltage for accelerating argon ions, and is supplied with argon gas whose flow rate is controlled by an MFC (Mass Flow Controller) 5b. is supplied.
 試料1上には、イオンガン4から試料1に照射されるイオンビームを遮蔽する遮蔽板3が配置され、遮蔽板3の端面から突き出すように露出された試料1の部分がイオンビームによってミリングされる(断面ミリング)。試料ステージ2は、断面ミリング処理中、ステージ駆動部9によって駆動される。例えば、ステージ駆動部9は試料ステージ2に、イオンビームのイオンビーム中心Bと直交するように設定されるスイング軸S(Y方向)を中心としたスイング動作と、試料1と遮蔽板3との境界に沿ったエッジ方向(試料1がイオンガン4と正対している場合には、イオンビーム中心B及びスイング軸Sと直交する方向(X方向))に沿ったスライド動作とを行わせる。スイング軸Sを中心に試料1を所定の角度範囲(スイング角度)でスイングさせるスイング動作により、加工面を平滑化させることができる。また、イオンビーム中心Bを中心として試料1をエッジ方向に行き来させるスライド動作により、エッジ方向の加工幅を広げることができる。イオンミリング処理は排気系10により真空排気された試料室6内において行われる。さらに、本実施例のイオンミリング装置は、遮蔽板3を試料1に対してエッジ方向に移動させる遮蔽板駆動部8を備えている。なお、遮蔽板駆動部8、ステージ駆動部9は図1では試料室6の外部にあるように示されているが、駆動部の存在を模式的に示しているのみであり、駆動部の配置位置を限定しているものではない。また、図1では試料1が試料ステージ2にそのまま載せられているように簡略化して示されているが、後述するように試料1と遮蔽板3とは断面ミリングホルダによって保持され、断面ミリングホルダが試料ステージ2上に搭載される。 A shielding plate 3 is arranged on the sample 1 to shield the ion beam irradiated onto the sample 1 from the ion gun 4, and the portion of the sample 1 exposed so as to protrude from the end face of the shielding plate 3 is milled by the ion beam. (cross-sectional milling). The sample stage 2 is driven by a stage drive unit 9 during the cross-section milling process. For example, the stage drive unit 9 causes the sample stage 2 to swing around a swing axis S (Y direction) set perpendicular to the ion beam center B of the ion beam, and to perform a swing motion between the sample 1 and the shielding plate 3. A sliding operation is performed along the edge direction along the boundary (when the sample 1 is directly facing the ion gun 4, the direction perpendicular to the ion beam center B and the swing axis S (X direction)). By swinging the sample 1 around the swing axis S in a predetermined angle range (swing angle), the machined surface can be smoothed. In addition, the processing width in the edge direction can be expanded by a sliding operation in which the sample 1 is moved back and forth in the edge direction around the ion beam center B. The ion milling process is performed in the sample chamber 6 which is evacuated by the exhaust system 10. Further, the ion milling apparatus of this embodiment includes a shielding plate driving section 8 that moves the shielding plate 3 in the edge direction with respect to the sample 1. Although the shielding plate drive unit 8 and the stage drive unit 9 are shown as being outside the sample chamber 6 in FIG. It is not limited to location. In addition, in FIG. 1, the sample 1 is shown as being placed on the sample stage 2 in a simplified manner, but as described later, the sample 1 and the shielding plate 3 are held by a cross-section milling holder, and the cross-section milling holder is mounted on the sample stage 2.
 イオンミリング装置の制御は、計算機12とコントローラ11とにより行われ、これらを包括して制御部と呼ぶこともある。計算機12はユーザにより設定されたイオンミリング条件をコントローラ11に設定し、コントローラ11は設定された制御値に基づき、イオンミリング装置の各構成(イオンガン4、試料ステージ2、遮蔽板3、排気系10など)を制御する。 Control of the ion milling apparatus is performed by a computer 12 and a controller 11, which may also be collectively referred to as a control section. The computer 12 sets the ion milling conditions set by the user to the controller 11, and the controller 11 adjusts each component of the ion milling apparatus (ion gun 4, sample stage 2, shielding plate 3, exhaust system 10) based on the set control values. etc.).
 図2は、遮蔽板3を移動させることなく断面ミリング処理をおこなわせた場合における、遮蔽板3と試料1の様子を示した図である。加工時間が経過するとともに、遮蔽板3の上端も徐々にミリングされていることが分かる。遮蔽板3の上端がイオンビームによって深く切削されてしまうと、試料1に対するイオンの衝突が不均一となり、断面ミリング処理される試料1の断面に凹凸などの乱れが生じるおそれがある。このため、本実施例の遮蔽板駆動部8は、遮蔽板3を試料1に対してエッジ方向に移動させることにより、断面ミリング処理期間中に遮蔽板3に照射されるイオンビームの影響を広い範囲に分散させ、遮蔽板3の一部が深く傷つき、試料1の断面に影響を与えることを防止する。 FIG. 2 is a diagram showing the state of the shielding plate 3 and the sample 1 when the cross-sectional milling process is performed without moving the shielding plate 3. It can be seen that as the machining time elapses, the upper end of the shielding plate 3 is also gradually milled. If the upper end of the shielding plate 3 is deeply cut by the ion beam, the impact of the ions on the sample 1 will become non-uniform, and there is a risk that disturbances such as irregularities will occur in the cross section of the sample 1 to be cross-sectionally milled. For this reason, the shielding plate drive unit 8 of this embodiment moves the shielding plate 3 in the edge direction with respect to the sample 1, thereby widening the influence of the ion beam irradiated on the shielding plate 3 during the cross-sectional milling process. This prevents a portion of the shielding plate 3 from being deeply damaged and affecting the cross section of the sample 1.
 ここで、断面ミリング処理中においては、試料1と遮蔽板3との密着性を強くしておくことが望まれる。試料1と遮蔽板3との隙間にイオンが入り込むことで試料1の断面に乱れが生じるおそれがあるためである。一方、そのように密着性の強い状態で遮蔽板3を試料1に対して移動させようとすると、試料1と遮蔽板3との摩擦によって、試料1が位置ずれするおそれがある。図3A,Bは、試料1と遮蔽板3との密着性を示す図である。なお、ここでの試料1はSi板である。図3Aは試料1を加工中の状態であり、試料1と遮蔽板3とは隙間なく固定されている。一方、図3Bは遮蔽板3をエッジ方向に移動させるときの状態であり、試料1と遮蔽板3との間に隙間31が生じている。これにより、遮蔽板3の移動によって試料ホルダ上で試料1が動いてしまうといった不都合を防止することができる。 Here, during the cross-sectional milling process, it is desirable to strengthen the adhesion between the sample 1 and the shielding plate 3. This is because ions entering the gap between the sample 1 and the shielding plate 3 may cause disturbances in the cross section of the sample 1. On the other hand, if it is attempted to move the shielding plate 3 relative to the sample 1 in such a state of strong adhesion, there is a risk that the sample 1 will be displaced due to friction between the sample 1 and the shielding plate 3. 3A and 3B are diagrams showing the adhesion between the sample 1 and the shielding plate 3. Note that sample 1 here is a Si plate. FIG. 3A shows a state in which the sample 1 is being processed, and the sample 1 and the shielding plate 3 are fixed without any gap. On the other hand, FIG. 3B shows a state when the shielding plate 3 is moved in the edge direction, and a gap 31 is created between the sample 1 and the shielding plate 3. Thereby, it is possible to prevent the inconvenience that the sample 1 moves on the sample holder due to the movement of the shielding plate 3.
 図4A,Bを用いて、試料1に遮蔽板3を固定する断面ミリングホルダ40の構造を説明する。図4Aが正面図(イオンガン4からみた図)、図4Bが側面図である。遮蔽板3は、固定ねじ44によって遮蔽板おさえ43に固定されている。また、遮蔽板おさえ43は、遮蔽板固定ねじ42によって試料ホルダ41に固定されている。遮蔽板おさえ43は、遮蔽板3と試料1との密着性を調整する働きを有する。遮蔽板固定ねじ42を締めることにより密着性が高め、遮蔽板固定ねじ42を緩めることにより密着性が弱めることができる。遮蔽板おさえ43の材料としては、ばね性を有する金属、例えばリン青銅とすることが望ましい。遮蔽板固定ねじ42を締めることで、Z方向に力がかかり、遮蔽板3と試料1との間の高い密着性を実現する。 The structure of the cross-section milling holder 40 that fixes the shielding plate 3 to the sample 1 will be explained using FIGS. 4A and 4B. FIG. 4A is a front view (view from the ion gun 4), and FIG. 4B is a side view. The shielding plate 3 is fixed to the shielding plate retainer 43 by fixing screws 44. Further, the shielding plate presser 43 is fixed to the sample holder 41 by a shielding plate fixing screw 42. The shielding plate presser 43 has the function of adjusting the adhesion between the shielding plate 3 and the sample 1. By tightening the shielding plate fixing screws 42, the adhesion can be increased, and by loosening the shielding plate fixing screws 42, the adhesion can be weakened. As the material of the shielding plate presser 43, it is desirable to use a metal having spring properties, for example, phosphor bronze. By tightening the shielding plate fixing screw 42, force is applied in the Z direction, and high adhesion between the shielding plate 3 and the sample 1 is realized.
 また、遮蔽板固定ねじ42は、遮蔽板おさえ43の溝45を通って試料ホルダ41に固定される。溝45は、縦方向(Y方向)は遮蔽板固定ねじ42の直径にあわせた長さとされる一方で、横方向(エッジ方向)に長く形成されている。これにより、溝45の長手方向(エッジ方向)における遮蔽板固定ねじ42の位置を変えることによって、遮蔽板3を試料1に対してX方向に移動させることができる。 Furthermore, the shielding plate fixing screw 42 is fixed to the sample holder 41 through the groove 45 of the shielding plate retainer 43. The groove 45 has a length corresponding to the diameter of the shield plate fixing screw 42 in the vertical direction (Y direction), and is formed to be long in the horizontal direction (edge direction). Thereby, by changing the position of the shielding plate fixing screw 42 in the longitudinal direction (edge direction) of the groove 45, the shielding plate 3 can be moved in the X direction with respect to the sample 1.
 図4Cは、断面ミリングホルダ40における遮蔽板3の移動動作を示す模式図である。断面ミリングホルダ40aは遮蔽板固定ねじ42が溝45の長手方向の中心に位置する状態であり、断面ミリングホルダ40bは遮蔽板固定ねじ42が溝45の長手方向の中心よりも、イオンガンからみて右寄りに位置する状態であり、断面ミリングホルダ40cは遮蔽板固定ねじ42が溝45の長手方向の中心よりも、イオンガンからみて左寄りに位置する状態である。図4Cでは遮蔽板3の移動動作の相対的な位置関係を分かりやすく示すため、中心線47を示している。このように、遮蔽板3が固定された遮蔽板おさえ43を試料ホルダ41に対してエッジ方向(左右)に移動動作させることにより、試料1に対して遮蔽板3をエッジ方向(左右)に移動動作させることができる。遮蔽板おさえ43を移動させるときには、試料1が位置ずれしないように、遮蔽板固定ねじ42を緩めた状態で行う必要がある。 FIG. 4C is a schematic diagram showing the movement of the shielding plate 3 in the cross-section milling holder 40. In the cross-section milling holder 40a, the shield plate fixing screw 42 is located at the longitudinal center of the groove 45, and in the cross-section milling holder 40b, the shield plate fixing screw 42 is located to the right of the longitudinal center of the groove 45 when viewed from the ion gun. The cross-section milling holder 40c is in a state in which the shielding plate fixing screw 42 is located to the left of the longitudinal center of the groove 45 when viewed from the ion gun. In FIG. 4C, a center line 47 is shown in order to clearly show the relative positional relationship of the movement of the shielding plate 3. In this way, by moving the shielding plate holder 43 to which the shielding plate 3 is fixed in the edge direction (left and right) with respect to the sample holder 41, the shielding plate 3 is moved in the edge direction (left and right) with respect to the sample 1. It can be made to work. When moving the shielding plate holder 43, it is necessary to loosen the shielding plate fixing screw 42 so that the sample 1 does not shift.
 遮蔽板3の移動動作を断面ミリング処理中に行うため、遮蔽板3を電動制御する。図5に、遮蔽板3を移動動作させる遮蔽板駆動部8の詳細構成の模式図(上面図)を示す。遮蔽板駆動部8は、断面ミリングホルダ40の背面に取り付けられるモータユニット50と、モータユニット50によって回転させられる回転体51と、遮蔽板移動機構52と、モータユニット50に電力を供給する電源ケーブル53とを備える。モータユニット50は、コントローラ11の制御に応じて回転体51を回転させる。回転体51は、時計方向、反時計方向に回転方向を切り替え可能とされる。遮蔽板移動機構52は、回転体51の回転を遮蔽板固定ねじ42を回転させるための駆動源、遮蔽板固定ねじ42の溝45内での位置を移動させるための駆動源として用いる。 In order to move the shielding plate 3 during the cross-sectional milling process, the shielding plate 3 is electrically controlled. FIG. 5 shows a schematic diagram (top view) of the detailed configuration of the shielding plate driving section 8 that moves the shielding plate 3. As shown in FIG. The shielding plate drive section 8 includes a motor unit 50 attached to the back surface of the cross-section milling holder 40, a rotating body 51 rotated by the motor unit 50, a shielding plate moving mechanism 52, and a power cable that supplies power to the motor unit 50. 53. The motor unit 50 rotates the rotating body 51 under the control of the controller 11. The rotation direction of the rotating body 51 can be switched between clockwise and counterclockwise. The shielding plate moving mechanism 52 uses the rotation of the rotating body 51 as a drive source for rotating the shielding plate fixing screw 42 and as a driving source for moving the position of the shielding plate fixing screw 42 within the groove 45 .
 図6に、遮蔽板3の移動動作を伴う断面ミリング処理のフローチャートを示す。 FIG. 6 shows a flowchart of the cross-sectional milling process that involves the movement of the shielding plate 3.
 ステップ101:利用者は、断面ミリング処理を行う試料1をイオンミリング装置に載置するとともに、計算機12からイオンミリング装置に試料1の加工条件を設定した後、加工開始指示を送る。 Step 101: The user places the sample 1 to be cross-sectionally milled on the ion milling device, sets the processing conditions for the sample 1 from the computer 12 to the ion milling device, and then sends a processing start instruction.
 ステップ102:制御部は、所定の時間だけイオンガン4から試料1にイオンビームを照射させ、試料1に対する加工(断面ミリング処理)を行う。加工条件に応じて、制御部は、スイング動作やスライド動作も実行させる。 Step 102: The control unit causes the ion gun 4 to irradiate the sample 1 with an ion beam for a predetermined period of time, and processes the sample 1 (cross-sectional milling process). Depending on the machining conditions, the control section also causes a swing motion or a slide motion to be executed.
 ステップ103:制御部は、試料1の加工を一時停止する。 Step 103: The control unit temporarily stops processing the sample 1.
 ステップ104:遮蔽板駆動部8は、断面ミリングホルダ40の遮蔽板固定ねじ42を緩め、試料1と遮蔽板3との密着性を弱める。 Step 104: The shielding plate driving unit 8 loosens the shielding plate fixing screw 42 of the cross-section milling holder 40 to weaken the adhesion between the sample 1 and the shielding plate 3.
 ステップ105:試料1と遮蔽板3との密着性を弱めた状態で、遮蔽板駆動部8は遮蔽板3を試料1に対してエッジ方向に一定量移動させる。 Step 105: With the adhesiveness between the sample 1 and the shielding plate 3 weakened, the shielding plate driving section 8 moves the shielding plate 3 by a certain amount in the edge direction with respect to the sample 1.
 ステップ106:遮蔽板駆動部8は、断面ミリングホルダ40の遮蔽板固定ねじ42を締め、試料1と遮蔽板3との密着性を強める。 Step 106: The shielding plate drive unit 8 tightens the shielding plate fixing screw 42 of the cross-section milling holder 40 to strengthen the adhesion between the sample 1 and the shielding plate 3.
 ステップ107:制御部は、加工を再開し、ステップ102へ遷移する。 Step 107: The control unit restarts processing and transitions to Step 102.
 ステップ102における加工を行う所定時間、及びステップ105における遮蔽板3の移動量は、ステップ101で設定する加工条件によって、動的に調整するようにしてもよい。 The predetermined time for processing in step 102 and the amount of movement of the shielding plate 3 in step 105 may be dynamically adjusted according to the processing conditions set in step 101.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすくするために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above are described in detail to make the present invention easier to understand, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、メモリカード、光学記録媒体、磁気記録媒体等の記録媒体に置くことができる。 Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized in hardware by, for example, designing an integrated circuit. Furthermore, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, files, etc. that realize each function is stored in memory, recording devices such as hard disks, SSDs (Solid State Drives), or recording media such as IC cards, memory cards, optical recording media, magnetic recording media, etc. can be placed in
1:試料、2:試料ステージ、3:遮蔽板、4:イオンガン、5a:高圧電源、5b:MFC、6:試料室、8:遮蔽板駆動部、9:ステージ駆動部、10:排気系、11:コントローラ、12:計算機、31:隙間、40:断面ミリングホルダ、41:試料ホルダ、42:遮蔽板固定ねじ、43:遮蔽板おさえ、44:固定ねじ、45:溝、47:中心線、50:モータユニット、51:回転体、52:遮蔽板移動機構、53:電源ケーブル。 1: sample, 2: sample stage, 3: shielding plate, 4: ion gun, 5a: high voltage power supply, 5b: MFC, 6: sample chamber, 8: shielding plate drive unit, 9: stage drive unit, 10: exhaust system, 11: Controller, 12: Computer, 31: Gap, 40: Cross-section milling holder, 41: Sample holder, 42: Shield plate fixing screw, 43: Shield plate presser, 44: Fixing screw, 45: Groove, 47: Center line, 50: Motor unit, 51: Rotating body, 52: Shielding plate moving mechanism, 53: Power cable.

Claims (12)

  1.  試料と遮蔽板とを保持する断面ミリングホルダが搭載される試料ステージと、
     前記試料に向けて非集束のイオンビームを放出するイオンガンと、
     前記試料と前記遮蔽板との密着性、及び前記断面ミリングホルダに保持された前記試料と前記遮蔽板との境界に沿ったエッジ方向における前記試料に対する前記遮蔽板の位置を変化させる遮蔽板駆動部とを有するイオンミリング装置。
    a sample stage equipped with a cross-section milling holder that holds the sample and a shielding plate;
    an ion gun that emits an unfocused ion beam toward the sample;
    a shielding plate driving unit that changes the adhesion between the sample and the shielding plate and the position of the shielding plate with respect to the sample in an edge direction along a boundary between the sample held in the cross-section milling holder and the shielding plate; An ion milling device having
  2.  請求項1において、
     前記試料の断面ミリング処理を制御する制御部を有し、
     前記制御部は、前記イオンガンからの前記試料への前記イオンビームの照射を停止して、前記遮蔽板駆動部により前記試料と前記遮蔽板との密着性を弱めて前記エッジ方向における前記試料に対する前記遮蔽板の位置を移動させ、前記試料と前記遮蔽板との密着性を強めた後に、前記イオンガンからの前記試料への前記イオンビームの照射を再開するイオンミリング装置。
    In claim 1,
    comprising a control unit that controls cross-sectional milling processing of the sample;
    The control unit stops irradiation of the ion beam from the ion gun to the sample, and causes the shielding plate drive unit to weaken the adhesion between the sample and the shielding plate to reduce the amount of contact between the sample and the sample in the edge direction. The ion milling apparatus restarts irradiation of the ion beam from the ion gun to the sample after moving the position of the shielding plate to strengthen the adhesion between the sample and the shielding plate.
  3.  請求項2において、
     前記制御部は、所定時間の前記イオンガンからの前記試料への前記イオンビームの照射と前記エッジ方向における前記試料に対する前記遮蔽板の位置の移動とを繰り返し実行するイオンミリング装置。
    In claim 2,
    The control unit is an ion milling apparatus that repeatedly executes irradiation of the ion beam onto the sample from the ion gun for a predetermined time and movement of the position of the shielding plate with respect to the sample in the edge direction.
  4.  請求項1において、
     前記試料ステージに、前記イオンビームのイオンビーム中心と直交するように設定されるスイング軸を中心としたスイング動作と、前記エッジ方向に前記試料を移動させるスライド動作とを行わせるステージ駆動部を有するイオンミリング装置。
    In claim 1,
    The sample stage includes a stage drive unit that causes the sample stage to perform a swing operation centered on a swing axis set perpendicular to the ion beam center of the ion beam, and a slide operation that moves the sample in the edge direction. Ion milling equipment.
  5.  請求項2において、
     前記断面ミリングホルダは、前記遮蔽板が固定される遮蔽板おさえと、前記遮蔽板と前記試料を挟み込む試料ホルダと、前記遮蔽板おさえを前記試料ホルダに固定する遮蔽板固定ねじとを備え、
     前記遮蔽板固定ねじは、前記遮蔽板おさえに設けられた前記エッジ方向に長手方向を有する溝を通って前記遮蔽板おさえを前記試料ホルダに固定するイオンミリング装置。
    In claim 2,
    The cross-section milling holder includes a shielding plate holder to which the shielding plate is fixed, a sample holder that sandwiches the shielding plate and the sample, and a shielding plate fixing screw that fixes the shielding plate holder to the sample holder,
    The shielding plate fixing screw fixes the shielding plate holder to the sample holder through a groove provided in the shielding plate holder and having a longitudinal direction in the edge direction.
  6.  請求項5において、
     前記遮蔽板駆動部は、前記遮蔽板固定ねじが前記遮蔽板おさえの溝を通る位置を移動させるイオンミリング装置。
    In claim 5,
    The shielding plate drive unit is an ion milling device that moves the position where the shielding plate fixing screw passes through the groove of the shielding plate holder.
  7.  請求項5において、
     前記遮蔽板駆動部は、モータユニットと、前記モータユニットによって回転させられる回転体と、前記回転体の回転を駆動源として、前記遮蔽板固定ねじの回転または移動を行う遮蔽板駆動機構とを備えるイオンミリング装置。
    In claim 5,
    The shielding plate driving section includes a motor unit, a rotating body rotated by the motor unit, and a shielding plate driving mechanism that rotates or moves the shielding plate fixing screw using rotation of the rotating body as a drive source. Ion milling equipment.
  8.  請求項5において、
     前記遮蔽板おさえの材料はリン青銅であるイオンミリング装置。
    In claim 5,
    In the ion milling device, the material of the shielding plate is phosphor bronze.
  9.  イオンミリング装置を用いた断面ミリング処理方法であって、
     前記イオンミリング装置は、試料と遮蔽板とを保持する断面ミリングホルダが搭載される試料ステージと、前記試料に向けて非集束のイオンビームを放出するイオンガンと、前記試料と前記遮蔽板との密着性、及び前記断面ミリングホルダに保持された前記試料と前記遮蔽板との境界に沿ったエッジ方向における前記試料に対する前記遮蔽板の位置を変化させる遮蔽板駆動部とを備え、
     前記イオンガンは、前記試料への前記イオンビームの照射を所定時間経過後に停止し、
     前記遮蔽板駆動部は、前記試料と前記遮蔽板との密着性を弱めて前記エッジ方向における前記試料に対する前記遮蔽板の位置を移動させ、再度前記試料と前記遮蔽板との密着性を強め、
     前記イオンガンは、前記試料への前記イオンビームの照射を再開する断面ミリング処理方法。
    A cross-sectional milling method using an ion milling device,
    The ion milling apparatus includes a sample stage on which a cross-sectional milling holder for holding a sample and a shielding plate is mounted, an ion gun that emits an unfocused ion beam toward the sample, and a structure in which the sample and the shielding plate are brought into close contact with each other. and a shielding plate drive unit that changes the position of the shielding plate with respect to the sample in the edge direction along the boundary between the sample held in the cross-section milling holder and the shielding plate,
    The ion gun stops irradiating the sample with the ion beam after a predetermined period of time;
    The shielding plate drive unit weakens the adhesion between the sample and the shielding plate, moves the position of the shielding plate with respect to the sample in the edge direction, and increases the adhesion between the sample and the shielding plate again,
    A cross-sectional milling processing method in which the ion gun restarts irradiation of the ion beam onto the sample.
  10.  請求項9において、
     所定時間の前記イオンガンからの前記試料への前記イオンビームの照射と前記エッジ方向における前記試料に対する前記遮蔽板の位置の移動とを繰り返し実行する断面ミリング処理方法。
    In claim 9,
    A cross-sectional milling processing method that repeatedly performs irradiation of the ion beam onto the sample from the ion gun for a predetermined time and movement of the position of the shielding plate with respect to the sample in the edge direction.
  11.  イオンミリング装置による断面ミリング処理のために、試料と遮蔽板とを保持する断面ミリングホルダであって、
     前記遮蔽板が固定される遮蔽板おさえと、
     前記遮蔽板と前記試料を挟み込む試料ホルダと、
     前記遮蔽板おさえを前記試料ホルダに固定する遮蔽板固定ねじとを有し、
     前記遮蔽板固定ねじは、前記遮蔽板おさえに設けられ、前記試料と前記遮蔽板との境界に沿ったエッジ方向に長手方向を有する溝を通って前記遮蔽板おさえを前記試料ホルダに固定する断面ミリングホルダ。
    A cross-section milling holder that holds a sample and a shielding plate for cross-section milling processing by an ion milling device,
    a shielding plate holder to which the shielding plate is fixed;
    a sample holder that sandwiches the shielding plate and the sample;
    a shielding plate fixing screw for fixing the shielding plate holder to the sample holder;
    The shielding plate fixing screw is provided in the shielding plate holder, and has a cross section that fixes the shielding plate holder to the sample holder through a groove having a longitudinal direction in an edge direction along the boundary between the sample and the shielding plate. milling holder.
  12.  請求項11において、
     前記遮蔽板おさえの材料はリン青銅である断面ミリングホルダ。
    In claim 11,
    A cross-sectional milling holder in which the material of the shielding plate is phosphor bronze.
PCT/JP2022/033809 2022-09-08 2022-09-08 Ion milling device, section milling processing method, and section milling holder WO2024053073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033809 WO2024053073A1 (en) 2022-09-08 2022-09-08 Ion milling device, section milling processing method, and section milling holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033809 WO2024053073A1 (en) 2022-09-08 2022-09-08 Ion milling device, section milling processing method, and section milling holder

Publications (1)

Publication Number Publication Date
WO2024053073A1 true WO2024053073A1 (en) 2024-03-14

Family

ID=90192479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033809 WO2024053073A1 (en) 2022-09-08 2022-09-08 Ion milling device, section milling processing method, and section milling holder

Country Status (1)

Country Link
WO (1) WO2024053073A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014996A (en) * 2005-07-08 2007-01-25 Hitachi High-Tech Science Systems Corp Ion milling device, and ion milling method
WO2011013311A1 (en) * 2009-07-30 2011-02-03 株式会社 日立ハイテクノロジーズ Ion milling device
JP2013524243A (en) * 2010-04-11 2013-06-17 ガタン インコーポレイテッド Ion beam sample preparation thermal management apparatus and method
JP2013165002A (en) * 2012-02-13 2013-08-22 Hitachi High-Technologies Corp Charged particle beam device, sample mask unit, and conversion member
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system
JP2018190628A (en) * 2017-05-09 2018-11-29 日本電子株式会社 Sample holder unit and sample observation apparatus
JP2019003732A (en) * 2017-06-12 2019-01-10 日本電子株式会社 Specimen holder system and specimen observation device
JP2019160575A (en) * 2018-03-13 2019-09-19 日本電子株式会社 Ion milling device and sample holder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014996A (en) * 2005-07-08 2007-01-25 Hitachi High-Tech Science Systems Corp Ion milling device, and ion milling method
WO2011013311A1 (en) * 2009-07-30 2011-02-03 株式会社 日立ハイテクノロジーズ Ion milling device
JP2013524243A (en) * 2010-04-11 2013-06-17 ガタン インコーポレイテッド Ion beam sample preparation thermal management apparatus and method
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system
JP2013165002A (en) * 2012-02-13 2013-08-22 Hitachi High-Technologies Corp Charged particle beam device, sample mask unit, and conversion member
JP2018190628A (en) * 2017-05-09 2018-11-29 日本電子株式会社 Sample holder unit and sample observation apparatus
JP2019003732A (en) * 2017-06-12 2019-01-10 日本電子株式会社 Specimen holder system and specimen observation device
JP2019160575A (en) * 2018-03-13 2019-09-19 日本電子株式会社 Ion milling device and sample holder

Similar Documents

Publication Publication Date Title
JP5480110B2 (en) Ion milling apparatus and ion milling processing method
JP3263920B2 (en) Sample preparation apparatus and method for electron microscope
JP6710270B2 (en) Ion milling device and ion milling method
EP2747120B1 (en) Method of smoothing solid surface with gas cluster ion beam
JP5619002B2 (en) Ion milling equipment
JP4037809B2 (en) Mask for ion milling sample preparation device and sample preparation device
JP4486462B2 (en) Sample preparation method and sample preparation apparatus
JP2008204905A (en) Ion milling apparatus and method of ion milling processing
JP2018200815A (en) Ion milling device and specimen holder
JP4765106B2 (en) Solid sample surface flattening method
WO2017134764A1 (en) Sample holder, ion milling apparatus, sample processing method, sample observation method, and sample processing/observation method
WO2024053073A1 (en) Ion milling device, section milling processing method, and section milling holder
US11621143B2 (en) Ion milling apparatus and method of manufacturing sample
CN109478488B (en) Charged particle beam device
KR20190002590A (en) Ion milling device
JP6831443B2 (en) Ion milling device and ion milling method
US20150311028A1 (en) Apparatus and Method for Sample Preparation
JP2007190593A (en) Substrate holding device and substrate working device
TWI766500B (en) Ion Milling Device
WO2017188132A1 (en) Ion beam irradiation device and ion beam irradiation method
JP6828095B2 (en) Ion milling method
JP2005310977A (en) Ion beam processing method
JP2020194789A (en) Ion milling method and ion milling device
JP2007250367A (en) Ion beam processing device and ion beam processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958151

Country of ref document: EP

Kind code of ref document: A1