WO2013121844A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2013121844A1
WO2013121844A1 PCT/JP2013/051342 JP2013051342W WO2013121844A1 WO 2013121844 A1 WO2013121844 A1 WO 2013121844A1 JP 2013051342 W JP2013051342 W JP 2013051342W WO 2013121844 A1 WO2013121844 A1 WO 2013121844A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
radiator
heat exchanger
compressor
Prior art date
Application number
PCT/JP2013/051342
Other languages
English (en)
French (fr)
Inventor
めぐみ 重田
泰隆 根岸
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2013121844A1 publication Critical patent/WO2013121844A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a vehicle air conditioner applicable to, for example, an electric vehicle.
  • the refrigerant discharged from the compressor is caused to flow into the radiator to dissipate heat, and the refrigerant that has circulated through the radiator is caused to flow into the outdoor heat exchanger via the first expansion valve to absorb heat.
  • the heating operation is performed by causing the compressor to suck the refrigerant that has passed through the heat exchanger.
  • the refrigerant discharged from the compressor is caused to flow into the radiator to dissipate heat, and a part of the refrigerant flowing through the radiator is caused to flow into the outdoor heat exchanger via the first expansion valve.
  • Dehumidification heating is performed by allowing the other refrigerant flowing through the radiator to flow into the heat absorber through the second expansion valve to absorb the heat and sucking the refrigerant flowing through the outdoor heat exchanger and the heat absorber into the compressor. There is something to drive.
  • the refrigerant flowing through the outdoor heat exchanger hardly absorbs heat from the outside air, There is a case where the heat absorption amount in the outdoor heat exchanger is insufficient.
  • the compressor is operated with insufficient heat absorption in the outdoor heat exchanger, the amount of refrigerant circulating in the refrigerant circuit decreases and the amount of heat released from the radiator decreases, which is necessary. It may be difficult to obtain a sufficient heating capacity.
  • the object of the present invention is to prevent a decrease in the refrigerant discharge amount from the compressor in an environment of low outside air temperature, to obtain the heating capacity necessary during the heating operation, and to improve the heating capacity during the dehumidifying heating operation.
  • An object of the present invention is to provide a vehicle air conditioner that can be dehumidified without being lowered.
  • the present invention provides a compressor that compresses and discharges a refrigerant, a radiator that radiates heat from the refrigerant, a heat absorber that absorbs heat from the refrigerant, and an outdoor heat exchanger that radiates or absorbs heat from the refrigerant.
  • the refrigerant discharged from the compressor flows into the radiator to dissipate the heat, and the refrigerant flowing through the radiator flows into the outdoor heat exchanger through the first expansion valve to absorb heat, and the refrigerant flows through the outdoor heat exchanger.
  • the refrigerant circuit for heating that causes the compressor to suck in, the refrigerant discharged from the compressor to flow into the radiator to dissipate heat, and a part of the refrigerant that has circulated through the radiator passes through the first expansion valve to the outdoor heat exchanger Dehumidification heating that causes the refrigerant to flow in and absorb the heat, flow the other refrigerant flowing through the radiator into the heat absorbing device via the second expansion valve, absorb the heat, and suck the refrigerant flowing through the outdoor heat exchanger and the heat absorbing device into the compressor Refrigerant circuit, heating refrigerant circuit and dehumidifying heating
  • a bypass circuit that sucks a part of the refrigerant flowing out of the radiator into a part where the refrigerant in the middle of compression of the compressor flows, a third expansion valve that decompresses the refrigerant flowing through the bypass circuit, and a third expansion A heat exchanger for exchanging heat between the refrigerant
  • the heat radiation amount in the radiator can be increased, so that the heating capability can be improved during the heating operation, and the heating is performed during the dehumidifying heating operation. Dehumidification is possible without reducing the capacity. Further, even when the refrigerant circulation amount is reduced during dehumidifying heating, the operation can be performed without a shortage of the return amount of oil to the compressor.
  • 1 to 6 show a first embodiment of the present invention.
  • the vehicle air conditioner of the present invention includes an air conditioning unit 10 provided in a vehicle interior, and a refrigerant circuit 20 configured to extend between the vehicle interior and the exterior of the vehicle interior.
  • the air conditioning unit 10 has an air flow passage 11 for circulating the air supplied to the vehicle interior.
  • an outside air intake port 11 a for allowing the air outside the vehicle interior to flow into the air flow passage 11
  • an inside air intake port 11 b for allowing the air inside the vehicle interior to flow into the air flow passage 11, Is provided.
  • a foot outlet 11 c that blows out air flowing through the air flow passage 11 toward the feet of the passengers in the passenger compartment, and air flowing through the air flow passage 11 are supplied to the vehicle.
  • a vent outlet 11d that blows out toward the upper body of the passenger in the room, and a differential outlet 11e that blows out the air flowing through the air flow passage 11 toward the surface of the vehicle windshield toward the vehicle interior side. ing.
  • An indoor blower 12 such as a sirocco fan for circulating air from one end side to the other end side of the air flow passage 11 is provided on one end side in the air flow passage 11.
  • an inlet switching damper 13 that can open one of the outside air inlet 11a and the inside air inlet 11b and close the other is provided.
  • an outside air supply mode in which air flows from the outside air suction port 11a into the air flow passage 11 is set.
  • the inside air circulation mode in which air flows from the inside air suction port 11b into the air flow passage 11 is set.
  • the suction port switching damper 13 when the suction port switching damper 13 is positioned between the outside air suction port 11a and the inside air suction port 11b, and the outside air suction port 11a and the inside air suction port 11b are opened, the outside air suction port 11a by the suction port switching damper 13 is opened. And the inside / outside air suction mode in which air flows into the air flow passage 11 from the outside air suction port 11a and the inside air suction port 11b at a ratio corresponding to the respective opening ratios of the inside air suction port 11b.
  • the outlet switching dampers 13b, 13c, and 13d for opening and closing the outlets 11c, 11d, and 11e are provided at the foot outlet 11c, the vent outlet 11d, and the differential outlet 11e on the other end side of the air flow passage 11, respectively. Is provided.
  • the outlet switching dampers 13b, 13c, and 13d are configured to be interlocked by a link mechanism (not shown).
  • the foot outlet 11c is opened by the outlet switching dampers 13b, 13c, and 13d
  • the vent outlet 11d is closed, and the differential outlet 11e is slightly opened, the air flowing through the air flow passage 11 is reduced. Most of the air is blown from the foot outlet 11c and the remaining air is blown from the differential outlet 11e.
  • the temperature of the air blown from the foot outlet 11c is blown out from the vent outlet 11d in the bi-level mode.
  • the positional relationship and the structure are such that a temperature difference that is higher than the temperature of the air is generated.
  • the air flow passage 11 on the downstream side in the air flow direction of the indoor blower 12 is provided with a heat absorber 14 for cooling and dehumidifying the air flowing through the air flow passage 11.
  • a heat radiator 15 for heating the air flowing through the air flow passage 11 is provided in the air flow passage 11 on the downstream side in the air flow direction of the heat absorber 14.
  • the heat absorber 14 and the heat radiator 15 are heat exchangers including fins and tubes for exchanging heat between the refrigerant flowing through the interior and the air flowing through the air flow passage 11.
  • the air flow path 11 between the heat absorber 14 and the heat radiator 15 is provided with an air mix damper 16 for adjusting the rate of heating by the heat radiator 15 of the air flowing through the air flow path 11.
  • an air mix damper 16 for adjusting the rate of heating by the heat radiator 15 of the air flowing through the air flow path 11.
  • the air mix damper 16 closes the upstream side of the radiator 15 in the air flow passage 11 and opens the portion other than the radiator 15 so that the opening degree becomes 0%, and the upstream side of the radiator 15 in the air flow passage 11. Is opened and the opening is 100% with the portion other than the radiator 15 closed.
  • the refrigerant circuit 20 includes the heat absorber 14, the radiator 15, a compressor 21 for compressing the refrigerant, an outdoor heat exchanger 22 for exchanging heat between the refrigerant and air outside the passenger compartment, the radiator 15, and outdoor heat.
  • the first internal heat exchanger 23 for exchanging heat between at least the refrigerant flowing out of the radiator 15 and the refrigerant flowing out of the heat absorber 14 of the exchanger 22, an expansion means as a first expansion valve, and a condensation pressure adjusting means
  • the first control valve 24 having a refrigerant flow path that can be switched to the expansion means side or the condensation pressure adjustment means side, heat exchange between a part of the refrigerant flowing out of the radiator 15 and other refrigerant flowing out of the radiator 15
  • the second internal heat exchanger 25 the first electromagnetic valve 26a, the second electromagnetic valve 26b, the third electromagnetic valve 26c, the first to second check valves 27a and 27b, and the expansion for the heat absorber as the second expansion valve.
  • the expansion valve 29 for the second internal heat exchanger as a third expansion valve for decompressing a part of the medium, separating the gaseous refrigerant from the liquid refrigerant and preventing the liquid refrigerant from being sucked into the compressor 21
  • the accumulator 30 is connected to each other by a copper tube or an aluminum tube.
  • the refrigerant flow path 20 a is provided by connecting the refrigerant inflow side of the radiator 15 to the refrigerant discharge side of the compressor 21.
  • a refrigerant flow passage 20b is provided on the refrigerant outflow side of the radiator 15 by connecting the high-pressure refrigerant inflow side of the second internal heat exchanger 25.
  • a refrigerant flow passage 20 c is provided on the high-pressure refrigerant outflow side of the second internal heat exchanger 25 by connecting the refrigerant inflow side of the first control valve 24.
  • a refrigerant flow passage 20d is provided on the refrigerant outflow side of the first control valve 24 on the expansion means side by connecting one end side of the outdoor heat exchanger 22.
  • a first check valve 27a is provided in the refrigerant flow passage 20d.
  • a refrigerant flow passage 20e is provided on the refrigerant outflow side of the first control valve 24 on the side of the condensing pressure adjusting means, to which the other end side of the outdoor heat exchanger 22 is connected.
  • a refrigerant flow passage 20f is provided on the other end side of the outdoor heat exchanger 22 by connecting the refrigerant suction side of the compressor 21 in parallel with the refrigerant flow passage 20e.
  • a first electromagnetic valve 26a and an accumulator 30 are provided in order from the upstream side in the refrigerant flow direction.
  • the refrigerant flow passage 20c is provided with a refrigerant flow passage 20g by connecting the high-pressure refrigerant inflow side of the first internal heat exchanger 23 to the refrigerant flow passage 20c.
  • a second electromagnetic valve 26b is provided in the refrigerant flow passage 20g.
  • a refrigerant flow passage 20h is provided on the high-pressure refrigerant outflow side of the first internal heat exchanger 23 by connecting the refrigerant inflow side of the heat absorber 14.
  • a heat absorber expansion valve 28 is provided in the refrigerant flow passage 20h.
  • a refrigerant flow passage 20 i is provided on the refrigerant outflow side of the heat absorber 14 by connecting the low-pressure refrigerant inflow side of the first internal heat exchanger 23.
  • a refrigerant flow passage 20j is provided on the low-pressure refrigerant outflow side of the first internal heat exchanger 23 by connecting between the first electromagnetic valve 26a of the refrigerant flow passage 20f and the accumulator 30.
  • a refrigerant flow passage 20k is provided on one end side of the outdoor heat exchanger 22 by connecting the downstream side in the refrigerant flow direction of the second electromagnetic valve 26b of the refrigerant flow passage 20g in parallel with the refrigerant flow passage 20d. Yes.
  • a third electromagnetic valve 26c and a second check valve 27b are provided in the refrigerant flow passage 20k in order from the upstream side in the refrigerant flow direction.
  • the refrigerant flow passage 20b is provided with a refrigerant flow passage 20l by branching and connected to the low-pressure refrigerant inflow side of the second internal heat exchanger 25.
  • a second internal heat exchanger expansion valve 29 is provided in the refrigerant flow passage 20l.
  • a refrigerant flow passage 20m is provided on the low-pressure refrigerant outflow side of the second internal heat exchanger 25 by being connected to the refrigerant suction side of the compressor 21.
  • the bypass circuit 31 is configured by the refrigerant flow path 201, the low-pressure side of the second internal heat exchanger 25, and the refrigerant flow path 20m.
  • the compressor 21 and the outdoor heat exchanger 22 are arranged in an engine room outside the vehicle compartment.
  • the compressor 21 is provided with a pair of refrigerant suction ports, one refrigerant suction port is connected to the refrigerant flow passage 20f, and the other refrigerant suction port is connected to the refrigerant flow passage 20m.
  • the other refrigerant inlet connected to the refrigerant flow passage 20m communicates with a portion through which the refrigerant in the middle of compression flows.
  • the compressor 21 is driven by an electric motor, and the rotation speed can be adjusted by inverter control.
  • the outdoor heat exchanger 22 is a heat exchanger composed of fins and tubes for exchanging heat between the refrigerant circulating inside and the air outside the vehicle compartment.
  • the outdoor heat exchanger 22 functions as a heat absorber, the refrigerant flows from one end side of the refrigerant flow path, and when the outdoor heat exchanger 22 functions as a radiator, the refrigerant flows from the other end side of the refrigerant flow path.
  • a gas-liquid separation unit 22a capable of storing a liquid refrigerant when functioning as a radiator, and a liquid refrigerant flowing out of the gas-liquid separation unit 22a are supercooled.
  • a supercooling portion 22b for providing the above state.
  • the outdoor heat exchanger 22 is provided with an outdoor blower 22c for exchanging heat between air outside the passenger compartment and the refrigerant when the vehicle is stopped.
  • the first internal heat exchanger 23 is, for example, a double-pipe type or a stacked type heat exchanger, and exchanges heat between the refrigerant and the refrigerant.
  • the first control valve 24 decompresses the refrigerant flowing into the outdoor heat exchanger 22 during the heating operation and the first dehumidifying heating operation on the expansion means side.
  • the first control valve 24 controls the condensation pressure of the refrigerant in the radiator 15 during the dehumidifying and cooling operation on the condensation pressure adjusting means side.
  • the first control valve 24 has a stepping motor for switching the refrigerant flow path to the expansion means side or the condensation pressure adjusting means side and adjusting the opening degree of each refrigerant flow path.
  • the second internal heat exchanger 25 is, for example, a double-pipe type or a stacked type heat exchanger, and exchanges heat between the refrigerant and the refrigerant.
  • the heat absorber expansion valve 28 is a temperature expansion valve whose valve opening can be adjusted according to the temperature of the refrigerant flowing out of the heat absorber 14.
  • the temperature expansion valve for example, an outflow refrigerant passage through which the refrigerant flowing out from the heat absorber flows, a temperature sensing rod for detecting the temperature through the outflow refrigerant passage, and a diaphragm for moving the valve body, An integrally formed box-type temperature expansion valve is used.
  • the second internal heat exchanger expansion valve 29 is an electronic expansion valve, and the controller switches the opening and closing of the valve based on, for example, the temperature outside the passenger compartment, and adjusts the valve opening.
  • a cooling operation In the vehicle air conditioner configured as described above, a cooling operation, a dehumidifying and cooling operation, a heating operation, a first dehumidifying and heating operation, and a second dehumidifying and heating operation are performed.
  • a cooling operation In the vehicle air conditioner configured as described above, a cooling operation, a dehumidifying and cooling operation, a heating operation, a first dehumidifying and heating operation, and a second dehumidifying and heating operation are performed.
  • each operation will be described.
  • the refrigerant flow path of the first control valve 24 is set on the condensation pressure adjusting means side, the third electromagnetic valve 26c is opened, and the first and second electromagnetic valves 26a. 26b are closed, the expansion valve 29 for the second internal heat exchanger is closed, and the compressor 21 is operated. Thereby, the refrigerant discharged from the compressor 21 is, as shown in FIG.
  • the refrigerant flows in the order of the refrigerant flow paths 20j and 20f and is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the outdoor heat exchanger 22 and absorbs heat in the heat absorber 14.
  • the refrigerant flowing through the refrigerant circuit 20 also radiates heat in the radiator 15.
  • circulates the outdoor heat exchanger 22 will be in the state of a supercooling by flowing through the gas-liquid separation part 22a and the supercooling part 22b, and will flow into the refrigerant
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is cooled by exchanging heat with the refrigerant in the heat absorber 14 to set the temperature in the vehicle interior as a target.
  • the air is blown into the vehicle interior as the target air temperature TAO, which is the temperature of the air to be blown out from the air outlets 11c, 11d, and 11e.
  • the target blowing temperature TAO is calculated based on the detected environmental conditions and the target set temperature Tset by detecting environmental conditions such as the temperature Tam outside the vehicle interior, the temperature Tr inside the vehicle interior, and the amount of solar radiation Ts.
  • the air in the air flow passage 11 circulated by operating the indoor fan 12 is dehumidified by being cooled by exchanging heat with the refrigerant that absorbs heat in the heat absorber 14. .
  • the air dehumidified in the heat absorber 14 is heated by exchanging heat with the refrigerant that dissipates heat in the radiator 15 and is blown into the passenger compartment as air at the target blowing temperature TAO.
  • the refrigerant flow path of the first control valve 24 is set on the expansion means side, the first electromagnetic valve 26a is opened, and the second and third electromagnetic valves 26b and 26c are closed,
  • the compressor 21 is operated with the second internal heat exchanger expansion valve 29 closed.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG. 3, the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passage 20b, the high-pressure side of the second internal heat exchanger 25, the refrigerant flow passage 20c, 20d, the outdoor heat exchanger 22, and the refrigerant flow passage 20f are circulated in this order and sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the outdoor heat exchanger 22.
  • the air in the air flow passage 11 circulated by operating the indoor fan 12 is heated by exchanging heat with the refrigerant in the radiator 15 without exchanging heat with the refrigerant in the heat absorber 14. Then, the air becomes the target blowing temperature TAO and is blown into the passenger compartment.
  • the refrigerant flow path of the first control valve 24 is set on the expansion means side, the first and second electromagnetic valves 26a and 26b are opened, and the third electromagnetic valve 26c is set.
  • the compressor 21 is operated by closing the second internal heat exchanger expansion valve 29.
  • the refrigerant discharged from the compressor 21 passes through the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passage 20b, the high-pressure side of the second internal heat exchanger 25, and the refrigerant flow passage 20c as shown in FIG. Circulate in order.
  • refrigerant flowing through the refrigerant flow passage 20c flows through the refrigerant flow passage 20d, the outdoor heat exchanger 22, and the refrigerant flow passage 20f in this order, and is sucked into the compressor 21.
  • Other refrigerants flowing through the refrigerant flow passage 20c are the refrigerant flow passage 20g, the high-pressure side of the first internal heat exchanger 23, the refrigerant flow passage 20h, the heat absorber 14, the refrigerant flow passage 20i, and the first internal heat exchanger.
  • the refrigerant flows in the order of the low pressure side 23 and the refrigerant flow passages 20j and 20f, and is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 radiates heat in the radiator 15 and absorbs heat in the heat absorber 14 and the outdoor heat exchanger 22.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is dehumidified by being cooled by heat exchange with the refrigerant in the heat absorber 14.
  • the air dehumidified in the heat absorber 14 is heated when a part of the air exchanges heat with the refrigerant in the radiator 15, and is blown into the vehicle interior as air at the target blowing temperature TAO.
  • the refrigerant circuit 20 closes the refrigerant flow path of the first control valve 24, opens the second electromagnetic valve 26b, closes the first and third electromagnetic valves 26a and 26c, (2)
  • the internal heat exchanger expansion valve 29 is closed and the compressor 21 is operated. Thereby, the refrigerant discharged from the compressor 21 is, as shown in FIG.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the heat absorber 14.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is cooled by exchanging heat with the refrigerant in the heat absorber 14 as in the first dehumidifying heating operation. Is dehumidified.
  • the air dehumidified in the heat absorber 14 is heated when a part of the air exchanges heat with the refrigerant in the radiator 15, and is blown into the vehicle interior at the target blowing temperature TAO.
  • the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, and the second dehumidifying and heating operation are performed as follows. It is switched based on environmental conditions such as the humidity outside the passenger compartment, the humidity Th inside the passenger compartment, and the amount of solar radiation Ts.
  • the modes of the outlets 11c, 11d, and 11e are switched by the outlet switching dampers 13b, 13c, and 13d.
  • the opening degree of the air mix damper 16 is adjusted so that the temperature of the air blown from the blowout ports 11c, 11d, and 11e becomes the target blowout temperature TAO.
  • the foot mode, the vent mode, and the bi-level mode are switched according to the target blowout temperature TAO.
  • the foot mode is set when the target blowing temperature TAO is a high temperature such as 40 ° C. or higher.
  • the vent mode is set when the target blowing temperature TAO is low, for example, less than 25 ° C.
  • the target blowing temperature TAO is a temperature between the target blowing temperature TAO where the foot mode is set and the target blowing temperature TAO where the vent mode is set
  • the bi-level mode is set.
  • the heating operation or the first dehumidifying heating operation if the temperature of the air outside the vehicle compartment becomes low (for example, 10 degrees or less below zero), it is difficult for the refrigerant flowing through the outdoor heat exchanger 22 to absorb heat.
  • the heating operation or the first dehumidifying heating operation if the heat absorption amount in the outdoor heat exchanger 22 is insufficient, the circulation amount of the refrigerant in the refrigerant circuit 20 is reduced, the heat radiation amount from the radiator 15 is reduced, and the heating capacity is reduced. There may be a shortage.
  • the second internal heat exchanger expansion valve 29 is opened to increase the heat radiation amount in the radiator 15. To do.
  • the refrigerant flowing out of the radiator 15 and flowing through the refrigerant flow passage 20l is decompressed by the second internal heat exchanger expansion valve 29 to become a gas-liquid two-phase state, and the low pressure of the second internal heat exchanger 25 Flows into the side.
  • the refrigerant flowing through the low-pressure side of the second internal heat exchanger 25 flows out of the radiator 15 and exchanges heat with the refrigerant flowing through the high-pressure side of the second internal heat exchanger 25 to absorb heat, and is in a gas-liquid two-phase state.
  • the refrigerant is sucked into the portion where the refrigerant in the middle of compression of the compressor 21 flows.
  • the refrigerant flowing through the high-pressure side of the second internal heat exchanger 25 exchanges heat with the refrigerant flowing through the low-pressure side of the second internal heat exchanger 25 to dissipate heat and become supercooled. It distribute
  • the compressor 21 sucks the gas-liquid two-phase refrigerant into the portion where the refrigerant in the middle of compression flows, the refrigerant discharge amount even if the heat absorption amount in the outdoor heat exchanger 22 is small Will increase.
  • the refrigerant discharge amount of the compressor 21 increases, the heat dissipation amount in the radiator 15 increases.
  • pressure side of the 2nd internal heat exchanger 25 will be in a supercooling state, the heat absorption amount in the outdoor heat exchanger 22 will increase during heating operation, and it will be outdoor during 1st dehumidification heating operation. The amount of heat absorption in each of the heat exchanger 22 and the heat absorber 14 increases.
  • the bypass circuit 31 (refrigerant circulation) that causes the compressor 21 to suck a part of the refrigerant flowing out of the radiator 15 during the heating operation or the dehumidifying heating operation.
  • Path 20l, 20m the second internal heat exchanger expansion valve 29 for depressurizing the refrigerant flowing through the bypass circuit 31, and the refrigerant and the radiator flowing through the bypass circuit 31 depressurized by the second internal heat exchanger expansion valve 29
  • a second internal heat exchanger 25 that exchanges heat with the other refrigerant that flows out of the refrigerant, and the refrigerant in the gas-liquid two-phase state is sucked into the portion of the compressor 21 through which the refrigerant in the middle of compression flows.
  • the refrigerant discharge amount from the compressor 21 is opened by opening the second internal heat exchanger expansion valve 29. Since the amount of heat radiation in the radiator 15 can be increased, the heating capacity during heating operation can be improved, and dehumidification can be performed without reducing the heating capacity during the first dehumidifying heating operation. . Further, since the refrigerant in the gas-liquid two-phase state is sucked into the compressor 21, it is possible to ensure the return amount of the lubricating oil necessary for lubricating the compressor 21.
  • FIG. 7 shows a second embodiment of the present invention.
  • symbol is attached
  • the second internal heat exchanger 25 and the second internal heat exchanger expansion valve 29 in the bypass circuit 31 are integrally configured.
  • the refrigerant can be circulated as in the above-described embodiment, and the gas-liquid two-phase refrigerant can be sucked into the compressor 21.
  • the second By opening the expansion valve 29 for the internal heat exchanger, the amount of refrigerant discharged from the compressor 21 can be increased and the amount of heat released from the radiator 15 can be increased, so that the heating capacity during heating operation can be improved. It is possible to perform dehumidification without reducing the heating capacity during the first dehumidifying heating operation. Further, since the refrigerant in the gas-liquid two-phase state is sucked into the compressor 21, it is possible to ensure the return amount of the lubricating oil necessary for lubricating the compressor 21.
  • the second internal heat exchanger 25 and the second internal heat exchanger expansion valve 29 in the bypass circuit 31 are integrally formed. As a result, the number of parts can be reduced, and the manufacturing cost can be reduced.
  • FIG. 8 shows a third embodiment of the present invention.
  • symbol is attached
  • a refrigerant radiator 33 as a radiator that exchanges heat between water and a refrigerant as a heat medium is air. It is provided outside the flow passage 11.
  • a water circuit 40 serving as a heat medium circuit through which water flows is connected to the heat exchanging unit 33a for exchanging heat between the water in the refrigerant radiator 33 and the refrigerant.
  • the water circuit 40 includes a water pump 41 that discharges water, a heater core 42 that serves as a heat medium radiator for exchanging heat between the air that flows through the air flow passage 11 and water, and heat that is discharged from an engine for traveling the vehicle.
  • a radiator 43 as an exhaust heat absorption part for absorbing water into water and an electric heater 44 for heating water are connected.
  • the refrigerant can be circulated in the same manner as in the above-described embodiment, and the gas-liquid two-phase refrigerant can be sucked into the compressor 21.
  • the water pump 41 is operated to circulate water during the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, and the second dehumidifying and heating operation.
  • the water flowing through the water circuit 40 absorbs heat from the refrigerant in the refrigerant radiator 33 and exchanges heat with the air flowing through the air flow passage 11 in the heater core 42 to radiate heat.
  • the water flowing through the water circuit 40 is heated by the heat discharged from the engine in the radiator 43 in addition to being heated in the refrigerant radiator 33.
  • the heating amount of the air flowing through the air flow passage 11 is insufficient, the insufficient heating amount can be compensated by heating the water flowing through the water circuit 40 with the electric heater 44.
  • the second internal heat By opening the exchanger expansion valve 29, the amount of refrigerant discharged from the compressor 21 can be increased, and the amount of heat released from the refrigerant radiator 33 can be increased. Therefore, the heating capacity during heating operation can be improved. Dehumidification is possible without reducing the heating capacity during the first dehumidifying heating operation. Further, since the refrigerant in the gas-liquid two-phase state is sucked into the compressor 21, it is possible to ensure the return amount of the lubricating oil necessary for lubricating the compressor 21.
  • a radiator 43 for heating water flowing through the water circuit 40 by heat discharged from the engine is connected to the water circuit 40.
  • heating operation and first dehumidifying heating operation can be performed by heating the water in the water circuit 40 with the heat discharged from the engine, so the energy consumption can be reduced by effectively using the exhaust heat of the engine. It becomes possible to reduce.
  • an electric heater 44 for heating the water flowing through the water circuit 40 is provided. As a result, it is possible to compensate for the insufficient amount of heat in the heating capacity during the heating operation or the first dehumidifying heating operation, so that the interior of the vehicle can be maintained at the required temperature.
  • the amount of heat in the heating capacity during the heating operation or the first dehumidifying heating operation is shown by heating the water flowing through the water circuit 40 by the electric heater 44. It is not limited to.
  • an electric heater 44 may be provided between the accumulator 30 and the compressor 21 in the refrigerant flow passage 20 f and the refrigerant flowing through the refrigerant circuit 20 may be heated by the electric heater 44.
  • the attachment position of the electric heater 44 with respect to the refrigerant circuit 20 is not limited to between the accumulator 30 and the compressor 21.
  • the electric heater 44 may be provided between the second internal heat exchanger 25 and the compressor 21 in the bypass circuit 31, or may be provided between the discharge side of the compressor 21 and the refrigerant radiator 33. Good.
  • an electric heater 44 may be provided in each of the water circuit 40 and the refrigerant circuit 20 so that the water flowing through the water circuit 40 and the refrigerant flowing through the refrigerant circuit 20 are simultaneously heated by the electric heater 44.
  • circulates water as a heat medium was shown, it is not restricted to this,
  • the antifreezing liquid which has ethylene glycol as a main component can also be used as a heat medium. is there.
  • the water circuit 40 is connected to the radiator 43 for absorbing the heat discharged from the engine into the water.
  • the present invention is not limited to this.
  • heat that is discharged when the vehicle travels such as heat that is discharged from an electric motor or a battery provided in the vehicle, may be absorbed by water flowing through the water circuit 40.
  • FIG. 10 shows a fourth embodiment of the present invention.
  • symbol is attached
  • the refrigerant circuit 20 of the vehicle air conditioner is provided with one refrigerant inlet and one refrigerant outlet in place of the first control valve 24 in the first embodiment.
  • a second control valve 34 capable of adjusting the valve opening in the respective ranges of the condensation pressure adjustment region.
  • the refrigerant flow path 20 a is provided by connecting the refrigerant inflow side of the radiator 15 to the refrigerant discharge side of the compressor 21.
  • a refrigerant flow passage 20b is provided on the refrigerant outflow side of the radiator 15 by connecting the high-pressure refrigerant inflow side of the second internal heat exchanger 25.
  • a refrigerant flow passage 20 c is provided on the high-pressure refrigerant outflow side of the second internal heat exchanger 25 by connecting the refrigerant inflow side of the second control valve 34.
  • a refrigerant flow passage 20 d is provided on the refrigerant outflow side of the second control valve 34 by connecting the refrigerant inflow side of the outdoor heat exchanger 22.
  • a refrigerant flow passage 20e is provided on the refrigerant outflow side of the outdoor heat exchanger 22 by connecting the refrigerant intake side of the compressor 21.
  • the refrigerant flow passage 20e is provided with a first electromagnetic valve 26a and an accumulator 30 in order from the upstream side in the refrigerant flow direction.
  • the refrigerant flow passage 20c is provided with a refrigerant flow passage 20f by connecting the high-pressure refrigerant inflow side of the first internal heat exchanger 23 to the refrigerant flow passage 20c.
  • a second electromagnetic valve 26b and a first check valve 27a are provided in order from the upstream side in the refrigerant flow direction.
  • a refrigerant flow passage 20 g is provided on the high-pressure refrigerant outflow side of the first internal heat exchanger 23 by connecting the refrigerant inflow side of the heat absorber 14.
  • a heat absorber expansion valve 28 is provided in the refrigerant flow passage 20g.
  • a refrigerant flow passage 20 h is provided on the refrigerant outflow side of the heat absorber 14 by connecting the low-pressure refrigerant inflow side of the first internal heat exchanger 23.
  • a refrigerant flow passage 20i is provided on the low-pressure refrigerant outflow side of the first internal heat exchanger 23 by connecting the first electromagnetic valve 26a and the accumulator 30 of the refrigerant flow passage 20e.
  • a refrigerant flow passage 20j is provided on the refrigerant outflow side of the outdoor heat exchanger 22 by connecting the refrigerant inflow side of the gas-liquid separator 22a in parallel with the refrigerant flow passage 20e.
  • a third electromagnetic valve 26c is provided in the refrigerant flow passage 20j.
  • a refrigerant flow passage 20k is provided on the refrigerant outflow side of the gas-liquid separation unit 22a by connecting the downstream side in the refrigerant flow direction of the first check valve 27a of the refrigerant flow passage 20f via the supercooling unit 22b. Yes.
  • a second check valve 27b is provided in the refrigerant flow passage 20k.
  • the refrigerant flow passage 20b is provided with a refrigerant flow passage 20l by branching and connected to the low-pressure refrigerant inflow side of the second internal heat exchanger 25.
  • a second internal heat exchanger expansion valve 29 is provided in the refrigerant flow passage 20l.
  • a refrigerant flow passage 20m is provided on the low-pressure refrigerant outflow side of the second internal heat exchanger 25 by being connected to the refrigerant suction side of the compressor 21.
  • the bypass circuit 31 is configured by the refrigerant flow path 201, the low-pressure side of the second internal heat exchanger 25, and the refrigerant flow path 20m.
  • the refrigerant flow path of the second control valve 34 is set on the expansion means side, the first electromagnetic valve 26a is opened, and the first The second to third electromagnetic valves 26b, 26c are closed, the second internal heat exchanger expansion valve 29 is closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 passes through the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passage 20b, the high pressure side of the second internal heat exchanger 25, the refrigerant flow passages 20c and 20d, and the outdoor heat exchanger 22.
  • the refrigerant flows in the order of the refrigerant flow passage 20e and is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the outdoor heat exchanger 22.
  • the refrigerant flow path of the second control valve 34 is set on the expansion means side, the first and second electromagnetic valves 26a and 26b are opened, and the third electromagnetic valve 26 c is closed, the second internal heat exchanger expansion valve 29 is closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 flows in order through the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passage 20b, the high-pressure side of the second internal heat exchanger 25, and the refrigerant flow passage 20c.
  • a part of the refrigerant flowing through the refrigerant flow passage 20c flows in the order of the refrigerant flow passage 20d, the outdoor heat exchanger 22, and the refrigerant flow passage 20e and is sucked into the compressor 21.
  • Other refrigerants flowing through the refrigerant flow passage 20c include the refrigerant flow passage 20f, the high-pressure side of the first internal heat exchanger 23, the refrigerant flow passage 20g, the heat absorber 14, the refrigerant flow passage 20h, and the first internal heat exchanger.
  • the refrigerant flows in the order of the low pressure side 23 and the refrigerant flow passages 20 i and 20 e and is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 radiates heat in the radiator 15 and absorbs heat in the heat absorber 14 and the outdoor heat exchanger 22.
  • the expansion valve 29 for the second internal heat exchanger When the expansion valve 29 for the second internal heat exchanger is opened during the heating operation or the first dehumidifying heating operation, a part of the refrigerant flowing out of the radiator 15 is the refrigerant flow passage 20l, the first, as in the first embodiment. 2
  • the refrigerant flows in the order of the low pressure side of the internal heat exchanger 25 and the refrigerant flow passage 20m and is sucked into the compressor 21.
  • the second By opening the expansion valve 29 for the internal heat exchanger, it is possible to increase the amount of refrigerant discharged from the compressor 21 and increase the amount of heat dissipated in the refrigerant radiator 33, thereby improving the heating capacity during heating operation.
  • dehumidification is possible without reducing the heating capacity during the first dehumidifying heating operation.
  • the refrigerant in the gas-liquid two-phase state is sucked into the compressor 21, it is possible to ensure the return amount of the lubricating oil necessary for lubricating the compressor 21.
  • refrigerant circuit 20 of the fourth embodiment can also be applied to a circuit including the water circuit 40 of the third embodiment.
  • the expansion means for decompressing the refrigerant flowing into the outdoor heat exchanger 22 during the heating operation and the first dehumidifying heating operation and the refrigerant condensing pressure in the radiator 15 during the dehumidifying and cooling operation are controlled.
  • the 1st control valve 24 and the 2nd control valve 34 which have a condensing pressure adjustment means were shown, it is not restricted to this.
  • an expansion means having a variable opening and a condensation pressure adjustment means may be configured separately.
  • the bypass circuit 31 is connected to the refrigerant suction port communicating with the portion through which the refrigerant in the middle of compression of the compressor 21 provided with a pair of refrigerant suction ports circulates. It is not limited to.
  • the bypass circuit 31 may be connected to the refrigerant flow passage between the first stage and the second stage.
  • the second internal heat exchanger expansion valve 29 is an electronic expansion valve capable of opening and closing the valve and adjusting the valve opening.
  • the present invention is not limited to this.
  • the bypass circuit 31 may be provided with a temperature expansion valve as an expansion valve for the second internal heat exchanger and an opening / closing valve such as an electromagnetic valve capable of opening / closing the bypass circuit 31.
  • DESCRIPTION OF SYMBOLS 10 Air conditioning unit, 14 ... Heat absorber, 15 ... Radiator, 20 ... Refrigerant circuit, DESCRIPTION OF SYMBOLS 21 ... Compressor, 22 ... Outdoor heat exchanger, 24 ... 1st control valve, 25 ... 2nd internal heat exchanger, 26a, 26b, 26c ... 1st-3rd solenoid valve, 29 ... 2nd internal heat exchanger Expansion valve, 31 ... bypass circuit, 33 ... refrigerant radiator, 33a ... heat exchanger, 40 ... water circuit, 41 ... water pump, 42 ... heater core, 43 ... radiator, 44 ... electric heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 低外気温の環境下における圧縮機からの冷媒吐出量の低下を防止して、暖房運転時に必要な暖房能力を得ることができ、除湿暖房運転時に暖房能力を低下させることなく除湿することのできる車両用空気調和装置を提供する。 暖房運転時や除湿暖房運転時において、放熱器15から流出する冷媒の一部を圧縮機21に吸入させるバイパス回路31(冷媒流通路20l,20m)と、バイパス回路31を流通する冷媒を減圧する第2内部熱交換器用膨張弁29と、第2内部熱交換器用膨張弁29で減圧したバイパス回路31を流通する冷媒と放熱器15から流出するその他の冷媒とを熱交換する第2内部熱交換器25と、を備え、圧縮機21の圧縮途中の冷媒が流通する部分に気液2相状態の冷媒を吸入させている。

Description

車両用空気調和装置
 本発明は、例えば、電気自動車に適用可能な車両用空気調和装置に関するものである。
 従来、この種の車両用空気調和装置では、冷媒を圧縮して吐出する圧縮機と、冷媒を放熱させる放熱器と、冷媒を吸熱させる吸熱器と、冷媒を放熱または吸熱させる室外熱交換器と、を備えたものが知られている(例えば、特許文献1参照)。
 前記車両用空気調和装置では、圧縮機が吐出した冷媒を放熱器に流入させて放熱させ、放熱器を流通した冷媒を第1膨張弁を介して室外熱交換器に流入させて吸熱させ、室外熱交換器を流通した冷媒を圧縮機に吸入させることによって暖房運転を行っている。
 また、前記車両用空気調和装置において、圧縮機が吐出した冷媒を放熱器に流入させて放熱させ、放熱器を流通した冷媒の一部を第1膨張弁を介して室外熱交換器に流入させて吸熱させ、放熱器を流通したその他の冷媒を第2膨張弁を介して吸熱器に流入させて吸熱させ、室外熱交換器および吸熱器を流通した冷媒を圧縮機に吸入させることによって除湿暖房運転を行うものがある。
特開2000-25446号公報
 前記車両用空気調和装置では、外気温が低温の環境下(例えば、零下10℃以下)において暖房運転や除湿暖房運転を行うと、室外熱交換器を流通する冷媒が外気から吸熱し難くなり、室外熱交換器における吸熱量が不足する場合がある。前記車両用空気調和装置では、室外熱交換器における吸熱量が不足した状態で圧縮機の運転を行うと、冷媒回路の冷媒の循環量が減少して放熱器からの放熱量が低下し、必要な暖房能力を得ることが困難となる場合がある。
 本発明の目的とするところは、低外気温の環境下における圧縮機からの冷媒吐出量の低下を防止して、暖房運転時に必要な暖房能力を得ることができ、除湿暖房運転時に暖房能力を低下させることなく除湿することのできる車両用空気調和装置を提供することにある。
 本発明は、前記目的を達成するために、冷媒を圧縮して吐出する圧縮機と、冷媒を放熱させる放熱器と、冷媒を吸熱させる吸熱器と、冷媒を放熱または吸熱させる室外熱交換器と、圧縮機が吐出した冷媒を放熱器に流入させて放熱させ、放熱器を流通した冷媒を第1膨張弁を介して室外熱交換器に流入させて吸熱させ、室外熱交換器を流通した冷媒を圧縮機に吸入させる暖房用冷媒回路と、圧縮機が吐出した冷媒を放熱器に流入させて放熱させ、放熱器を流通した冷媒の一部を第1膨張弁を介して室外熱交換器に流入させて吸熱させ、放熱器を流通したその他の冷媒を第2膨張弁を介して吸熱器に流入させて吸熱させ、室外熱交換器および吸熱器を流通した冷媒を圧縮機に吸入させる除湿暖房用冷媒回路と、暖房用冷媒回路および除湿暖房用冷媒回路において、放熱器から流出する冷媒の一部を圧縮機の圧縮途中の冷媒が流通する部分に吸入させるバイパス回路と、バイパス回路を流通する冷媒を減圧する第3膨張弁と、第3膨張弁で減圧したバイパス回路を流通する冷媒と放熱器から流出するその他の冷媒とを熱交換する熱交換器と、を備え、圧縮機の圧縮途中の冷媒が流通する部分には、気液2相状態の冷媒を吸入させている。
 これにより、放熱器から流出した冷媒の一部を第3膨張弁によって減圧することで、気液2相状態の冷媒が圧縮機の圧縮途中の冷媒が流通する部分に吸入されることから、圧縮機の冷媒吐出量を増加させることで、放熱器における放熱量を増加させることが可能となる。
 本発明によれば、圧縮機の冷媒吐出量を増加させることで、放熱器における放熱量を増加させることができるので、暖房運転時において暖房能力を向上させることができ、除湿暖房運転時において暖房能力を低下させることなく除湿が可能となる。また、除湿暖房時に冷媒循環量が低下した状態でも、圧縮機へのオイルの戻り量が不足することなく運転可能となる。
本発明の第1実施形態を示す車両用空気調和装置の概略構成図である。 冷房運転および除湿冷房運転を示す車両用空気調和装置の概略構成図である。 暖房運転を示す車両用空気調和装置の概略構成図である。 第1除湿暖房運転を示す車両用空気調和装置の概略構成図である。 第2除湿暖房運転を示す車両用空気調和装置の概略構成図である。 暖房運転中に第2内部熱交換器用膨張弁を開放した状態を示す車両用空気調和装置の概略構成図である。 本発明の第2実施形態を示す車両用空気調和装置の概略構成図である。 本発明の第3実施形態を示す車両用空気調和装置の概略構成図である。 電気ヒータの取付位置の他の例を示す車両用空気調和装置の概略構成図である。 本発明の第4実施形態を示す車両用空気調和装置の概略構成図である。
 図1乃至図6は、本発明の第1実施形態を示すものである。
 本発明の車両用空気調和装置は、図1に示すように、車室内に設けられた空調ユニット10と、車室内および車室外に亘って構成された冷媒回路20と、を備えている。
 空調ユニット10は、車室内に供給する空気を流通させるための空気流通路11を有している。空気流通路11の一端側には、車室外の空気を空気流通路11に流入させるための外気吸入口11aと、車室内の空気を空気流通路11に流入させるための内気吸入口11bと、が設けられている。また、空気流通路11の他端側には、空気流通路11を流通する空気を車室内の搭乗者の足元に向かって吹き出させるフット吹出口11cと、空気流通路11を流通する空気を車室内の搭乗者の上半身に向かって吹き出させるベント吹出口11dと、空気流通路11を流通する空気を車両のフロントガラスの車室内側の面に向かって吹き出させるデフ吹出口11eと、が設けられている。
 空気流通路11内の一端側には、空気流通路11の一端側から他端側に向かって空気を流通させるためのシロッコファン等の室内送風機12が設けられている。
 空気流通路11の一端側には、外気吸入口11a及び内気吸入口11bの一方を開放して他方を閉鎖することが可能な吸入口切換えダンパ13が設けられている。吸入口切換えダンパ13によって内気吸入口11bが閉鎖されて外気吸入口11aが開放されると、外気吸入口11aから空気が空気流通路11に流入する外気供給モードとなる。また、吸入口切換えダンパ13によって外気吸入口11aが閉鎖されて内気吸入口11bが開放されると、内気吸入口11bから空気が空気流通路11に流入する内気循環モードとなる。さらに、吸入口切換えダンパ13が外気吸入口11aと内気吸入口11bとの間に位置し、外気吸入口11aと内気吸入口11bがそれぞれ開放されると、吸入口切換えダンパ13による外気吸入口11a及び内気吸入口11bのそれぞれの開口率に応じた割合で、外気吸入口11aと内気吸入口11bとから空気が空気流通路11に流入する内外気吸入モードとなる。
 空気流通路11の他端側のフット吹出口11c、ベント吹出口11d及びデフ吹出口11eのそれぞれには、各吹出口11c,11d,11eを開閉するための吹出口切換えダンパ13b,13c,13dが設けられている。この吹出口切換えダンパ13b,13c,13dは、図示しないリンク機構によって連動するように構成されている。ここで、吹出口切換えダンパ13b,13c,13dによってフット吹出口11cが開放されてベント吹出口11dが閉鎖され、デフ吹出口11eが僅かに開放されると、空気流通路11を流通する空気の大部分がフット吹出口11cから吹き出されると共に残りの空気がデフ吹出口11eから吹き出されるフットモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びデフ吹出口11eが閉鎖されてベント吹出口11dが開放されると、空気流通路11を流通する空気の全てがベント吹出口11dから吹き出されるベントモードとなる。さらに、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが開放されてデフ吹出口11eが閉鎖されると、空気流通路11を流通する空気がフット吹出口11c及びベント吹出口11dから吹き出されるバイレベルモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが閉鎖されてデフ吹出口11eが開放されると、空気流通路11を流通する空気がデフ吹出口11eから吹き出されるデフモードとなる。また、吹出口切換えダンパ13b,13c,13dによってベント吹出口11dが閉鎖されてフット吹出口11c及びデフ吹出口11eが開放されると、空気流通路11を流通する空気がフット吹出口11c及びデフ吹出口11eから吹き出されるデフフットモードとなる。尚、空気流通路11、フット吹出口11c、ベント吹出口11d、後述する吸熱器及び放熱器は、バイレベルモードにおいて、フット吹出口11cから吹き出される空気の温度がベント吹出口11dから吹き出される空気の温度よりも高温となる温度差を生じさせるような、互いの位置関係および構造となっている。
 室内送風機12の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を冷却及び除湿するための吸熱器14が設けられている。また、吸熱器14の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を加熱するための放熱器15が設けられている。吸熱器14及び放熱器15は、それぞれ内部を流通する冷媒と空気流通路11を流通する空気とを熱交換させるためのフィンとチューブ等からなる熱交換器である。
 吸熱器14と放熱器15との間の空気流通路11には、空気流通路11を流通する空気の放熱器15によって加熱される割合を調整するためのエアミックスダンパ16が設けられている。エアミックスダンパ16は、空気流通路11の放熱器15の上流側を閉鎖する方向に移動させることによって、放熱器15において熱交換する空気の割合が減少し、空気流通路11の放熱器15以外の部分側に移動させることによって、放熱器15において熱交換する空気の割合が増加する。エアミックスダンパ16は、空気流通路11の放熱器15の上流側を閉鎖して放熱器15以外の部分を開放した状態で開度が0%となり、空気流通路11の放熱器15の上流側を開放し、放熱器15以外の部分を閉鎖した状態で開度が100%となる。
 冷媒回路20は、前記吸熱器14、前記放熱器15、冷媒を圧縮するための圧縮機21、冷媒と車室外の空気とを熱交換するための室外熱交換器22、放熱器15および室外熱交換器22の少なくとも放熱器15から流出する冷媒と吸熱器14から流出する冷媒とを熱交換させるための第1内部熱交換器23、第1膨張弁としての膨張手段と凝縮圧力調整手段とを有し、膨張手段側または凝縮圧力調整手段側に冷媒流路を切換え可能な第1制御弁24、放熱器15から流出する冷媒の一部と放熱器15から流出するその他の冷媒とを熱交換させるための第2内部熱交換器25、第1電磁弁26a、第2電磁弁26b、第3電磁弁26c、第1~第2逆止弁27a,27b、第2膨張弁としての吸熱器用膨張弁28、放熱器15から流出する冷媒の一部を減圧するための第3膨張弁としての第2内部熱交換器用膨張弁29、気体の冷媒と液体の冷媒を分離して液体の冷媒が圧縮機21に吸入されることを防止するためのアキュムレータ30、を有し、これらは銅管やアルミニウム管によって接続されている。
 具体的には、圧縮機21の冷媒吐出側に放熱器15の冷媒流入側が接続されることによって、冷媒流通路20aが設けられている。また、放熱器15の冷媒流出側には、第2内部熱交換器25の高圧冷媒流入側が接続されることによって、冷媒流通路20bが設けられている。第2内部熱交換器25の高圧冷媒流出側には、第1制御弁24の冷媒流入側が接続されることによって、冷媒流通路20cが設けられている。第1制御弁24の膨張手段側の冷媒流出側には、室外熱交換器22の一端側が接続されることによって、冷媒流通路20dが設けられている。冷媒流通路20dには、第1逆止弁27aが設けられている。また、第1制御弁24の凝縮圧力調整手段側の冷媒流出側には、室外熱交換器22の他端側が接続されることによって、冷媒流通路20eが設けられている。室外熱交換器22の他端側には、冷媒流通路20eと並列に、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20fが設けられている。冷媒流通路20fには、冷媒流通方向の上流側から順に、第1電磁弁26a、アキュムレータ30が設けられている。冷媒流通路20cには、第1内部熱交換器23の高圧冷媒流入側が接続されることによって冷媒流通路20gが設けられている。冷媒流通路20gには、第2電磁弁26bが設けられている。第1内部熱交換器23の高圧冷媒流出側には、吸熱器14の冷媒流入側が接続されることによって、冷媒流通路20hが設けられている。冷媒流通路20hには、吸熱器用膨張弁28が設けられている。吸熱器14の冷媒流出側には、第1内部熱交換器23の低圧冷媒流入側が接続されることによって、冷媒流通路20iが設けられている。第1内部熱交換器23の低圧冷媒流出側には、冷媒流通路20fの第1電磁弁26aとアキュムレータ30との間が接続されることによって、冷媒流通路20jが設けられている。室外熱交換器22の一端側には、冷媒流通路20dと並列に、冷媒流通路20gの第2電磁弁26bの冷媒流通方向の下流側が接続されることによって、冷媒流通路20kが設けられている。冷媒流通路20kには、冷媒流通方向の上流側から順に、第3電磁弁26c、第2逆止弁27bが設けられている。冷媒流通路20bには、分岐して第2内部熱交換器25の低圧冷媒流入側が接続されることによって、冷媒流通路20lが設けられている。冷媒流通路20lには、第2内部熱交換器用膨張弁29が設けられている。第2内部熱交換器25の低圧冷媒流出側には、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20mが設けられている。ここで、冷媒流通路20l、第2内部熱交換器25の低圧側および冷媒流通路20mによってバイパス回路31が構成される。
 圧縮機21及び室外熱交換器22は、車室外のエンジンルーム内に配置されている。
 圧縮機21は、一対の冷媒吸入口が設けられ、一方の冷媒吸入口に冷媒流通路20fが接続され、他方の冷媒吸入口に冷媒流通路20mが接続されている。冷媒流通路20mが接続された他方の冷媒吸入口は、圧縮途中の冷媒が流通する部分に連通している。圧縮機21は、電動モータによって駆動され、インバータ制御によって回転数の調整が可能である。
 室外熱交換器22は、内部を流通する冷媒と車室外の空気とを熱交換させるためのフィンとチューブ等からなる熱交換器である。室外熱交換器22は、吸熱器として機能する場合に冷媒流路の一端側から冷媒が流入し、放熱器として機能する場合に冷媒流路の他端側から冷媒が流入する。室外熱交換器22の冷媒流路の一端側には、放熱器として機能する場合に液体の冷媒を貯留可能な気液分離部22aと、気液分離部22aから流出する液体の冷媒を過冷却の状態とするための過冷却部22bと、が設けられている。また、室外熱交換器22には、車両の停止時に車室外の空気と冷媒とを熱交換させるための室外送風機22cが設けられている。
 第1内部熱交換器23は、例えば、二重管式や積層式の熱交換器であり、冷媒と冷媒とを熱交換させるものである。
 第1制御弁24は、膨張手段側において暖房運転および第1除湿暖房運転時に室外熱交換器22に流入する冷媒を減圧する。また、第1制御弁24は、凝縮圧力調整手段側において除湿冷房運転時に放熱器15における冷媒の凝縮圧力を制御する。第1制御弁24は、冷媒流路を膨張手段側または凝縮圧力調整手段側に切換えるとともに、それぞれの冷媒流路の開度を調整するためのステッピングモータを有している。
 第2内部熱交換器25は、例えば、二重管式や積層式の熱交換器であり、冷媒と冷媒とを熱交換させるものである。
 吸熱器用膨張弁28は、吸熱器14から流出する冷媒の温度に応じて弁開度を調整可能な温度膨張弁である。温度膨張弁としては、例えば、吸熱器から流出する冷媒が流通する流出冷媒流路と、流出冷媒流路を流通する温度を検出する感温棒と、弁体を移動させるためのダイヤフラムと、を一体に形成したボックス型の温度膨張弁が用いられる。
 第2内部熱交換器用膨張弁29は、電子式の膨張弁であり、コントローラによって、例えば、車室外の温度に基づいて弁の開閉が切り替えられるとともに、弁開度が調整される。
 以上のように構成された車両用空気調和装置では、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転が行われる。以下、それぞれの運転について説明する。
 冷房運転及び除湿冷房運転において、冷媒回路20では、第1制御弁24の冷媒流路を凝縮圧力調整手段側に設定し、第3電磁弁26cを開放するとともに、第1および第2電磁弁26a,26bを閉鎖し、第2内部熱交換器用膨張弁29を閉鎖して圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図2に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、第2内部熱交換器25の高圧側、冷媒流通路20c,20e、室外熱交換器22、冷媒流通路20k,20g、第1内部熱交換器23の高圧側、冷媒流通路20h、吸熱器14、冷媒流通路20i、第1内部熱交換器23の低圧側、冷媒流通路20j,20fの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、冷房運転において、室外熱交換器22において放熱して吸熱器14において吸熱する。除湿冷房運転として、図2の一点鎖線に示すように、エアミックスダンパ16が開放されると、冷媒回路20を流通する冷媒は放熱器15においても放熱する。また、室外熱交換器22を流通する冷媒は、気液分離部22aおよび過冷却部22bを流通することで、過冷却の状態となって冷媒流通路20kに流入する。
 このとき、冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却され、車室内の温度を目標設定温度Tsetとするために吹出口11c,11d,11eから吹き出すべき空気の温度である目標吹出温度TAOとなって車室内に吹き出される。
 目標吹出温度TAOは、車室外の温度Tam、車室内の温度Tr、日射量Ts等の環境条件を検出し、検出された環境条件と目標設定温度Tsetに基づいて算出されるものである。
 また、除湿冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において吸熱する冷媒と熱交換して冷却されることによって除湿される。吸熱器14において除湿された空気は、放熱器15おいて放熱する冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 暖房運転において、冷媒回路20では、第1制御弁24の冷媒流路を膨張手段側に設定し、第1電磁弁26aを開放するとともに、第2および第3電磁弁26b,26cを閉鎖し、第2内部熱交換器用膨張弁29を閉鎖して圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図3に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、第2内部熱交換器25の高圧側、冷媒流通路20c,20d、室外熱交換器22、冷媒流通路20fの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、室外熱交換器22において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換することなく、放熱器15において冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 第1除湿暖房運転において、冷媒回路20では、第1制御弁24の冷媒流路を膨張手段側に設定し、第1および第2電磁弁26a,26bを開放するとともに、第3電磁弁26cを閉鎖し、第2内部熱交換器用膨張弁29を閉鎖して圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図4に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、第2内部熱交換器25の高圧側、冷媒流通路20cを順に流通する。冷媒流通路20cを流通する冷媒の一部は、冷媒流通路20d、室外熱交換器22、冷媒流通路20fの順に流通して圧縮機21に吸入される。また、冷媒流通路20cを流通するその他の冷媒は、冷媒流通路20g、第1内部熱交換器23の高圧側、冷媒流通路20h、吸熱器14、冷媒流通路20i、第1内部熱交換器23の低圧側、冷媒流通路20j,20f、の順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14及び室外熱交換器22において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 第2除湿暖房運転において、冷媒回路20では、第1制御弁24の冷媒流路を閉鎖し、第2電磁弁26bを開放するとともに、第1および第3電磁弁26a,26cを閉鎖し、第2内部熱交換器用膨張弁29を閉鎖して圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図5に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、第2内部熱交換器25の高圧側、冷媒流通路20c,20g、第1内部熱交換器23の高圧側、冷媒流通路20h、吸熱器14、冷媒流通路20i、第1内部熱交換器23の低圧側、冷媒流通路20j,20fの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、前記第1除湿暖房運転と同様に、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOとなって車室内に吹き出される。
 オートエアコンスイッチがオンの状態に設定されている場合には、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転が、車室外の温度Tam、車室内の温度Tr、車室外の湿度、車室内の湿度Th、日射量Ts等の環境条件に基づいて切換えられる。
 また、吹出口11c,11d,11eのモードが、吹出口切換えダンパ13b,13c,13dによって切換えられる。エアミックスダンパ16の開度は、吹出口11c,11d,11eから吹出される空気の温度が目標吹出温度TAOとなるように調整される。
 また、各運転において、フットモード、ベントモード、バイレベルモードの切り替えが、目標吹出温度TAOに応じて行われる。具体的には、目標吹出温度TAOが例えば40℃以上など、高温となる場合にフットモードに設定される。また、目標吹出温度TAOが例えば25℃未満など、低温となる場合にベントモードが設定される。さらに、目標吹出温度TAOが、フットモードが設定される目標吹出温度TAOとベントモードが設定される目標吹出温度TAOとの間の温度の場合にバイレベルモードに設定される。
 また、暖房運転中や第1除湿暖房運転中において、車室外の空気の温度が低くなると(例えば零下10度以下等)、室外熱交換器22を流通する冷媒が吸熱し難くなる。暖房運転中や第1除湿暖房運転中において、室外熱交換器22における吸熱量が不足すると、冷媒回路20の冷媒の循環量が減少して放熱器15からの放熱量が減少し、暖房能力が不足する場合がある。
 このため、暖房運転中や第1除湿暖房運転中に車室外の空気の温度が低くなる場合には、放熱器15における放熱量を増加させるために、第2内部熱交換器用膨張弁29を開放する。
 暖房運転中や第1除湿暖房運転中に第2内部熱交換器用膨張弁29を開放すると、放熱器15から流出する冷媒は、図6に示すように、一部が冷媒流通路20l、第2内部熱交換器25、冷媒流通路20mの順に流通して圧縮機21に吸入される。
 このとき、放熱器15から流出して冷媒流通路20lを流通する冷媒は、第2内部熱交換器用膨張弁29によって減圧されて気液2相状態となって第2内部熱交換器25の低圧側に流入する。第2内部熱交換器25の低圧側を流通する冷媒は、放熱器15から流出して第2内部熱交換器25の高圧側を流通する冷媒と熱交換して吸熱し、気液2相状態で圧縮機21の圧縮途中の冷媒が流通する部分に吸入される。また、第2内部熱交換器25の高圧側を流通する冷媒は、第2内部熱交換器25の低圧側を流通する冷媒と熱交換して放熱して過冷却状態となり、暖房運転中は室外熱交換器22に向かって流通し、第1除湿暖房運転中は室外熱交換器22と吸熱器14のそれぞれに向かって流通する。
 これにより、圧縮機21は、圧縮途中の冷媒が流通する部分に気液2相状態の冷媒を吸入することから、室外熱交換器22における吸熱量が小さい状態であっても、冷媒の吐出量が増加する。圧縮機21の冷媒の吐出量が増加すると、放熱器15における放熱量が増加する。
 また、圧縮機21には、気液2相状態の冷媒が吸入されることから、圧縮機21の潤滑に必要な潤滑油の戻り量を確保することができる。
 また、第2内部熱交換器25の高圧側を流通した冷媒は、過冷却状態となることから、暖房運転中は室外熱交換器22における吸熱量が増加し、第1除湿暖房運転中は室外熱交換器22および吸熱器14のそれぞれにおける吸熱量が増加する。
 このように、本実施形態の車両用空気調和装置によれば、暖房運転時や除湿暖房運転時において、放熱器15から流出する冷媒の一部を圧縮機21に吸入させるバイパス回路31(冷媒流通路20l,20m)と、バイパス回路31を流通する冷媒を減圧する第2内部熱交換器用膨張弁29と、第2内部熱交換器用膨張弁29で減圧したバイパス回路31を流通する冷媒と放熱器15から流出するその他の冷媒とを熱交換する第2内部熱交換器25と、を備え、圧縮機21の圧縮途中の冷媒が流通する部分に気液2相状態の冷媒を吸入させている。これにより、暖房運転中や第1除湿暖房運転中に車室外の空気の温度が低くなる場合には、第2内部熱交換器用膨張弁29を開放することによって圧縮機21からの冷媒の吐出量を増加させ、放熱器15における放熱量を増加させることができるので、暖房運転時における暖房能力を向上させることができ、第1除湿暖房運転時における暖房能力を低下させることなく除湿が可能となる。また、圧縮機21には、気液2相状態の冷媒が吸入されることから、圧縮機21の潤滑に必要な潤滑油の戻り量を確保することができる。
 図7は、本発明の第2実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置は、図7に示すように、バイパス回路31における第2内部熱交換器25と第2内部熱交換器用膨張弁29が一体に構成されている。
 以上ように構成された車両用空気調和装置では、前記実施形態と同様に冷媒を流通させることが可能であり、気液2相状態の冷媒を圧縮機21に吸入させることが可能である。
 このように、本実施形態の車両用空気調和装置によれば、前記実施形態と同様に、暖房運転中や第1除湿暖房運転中に車室外の空気の温度が低くなる場合には、第2内部熱交換器用膨張弁29を開放することによって圧縮機21からの冷媒の吐出量を増加させ、放熱器15における放熱量を増加させることができるので、暖房運転時における暖房能力を向上させることができ、第1除湿暖房運転時における暖房能力を低下させることなく除湿が可能となる。また、圧縮機21には、気液2相状態の冷媒が吸入されることから、圧縮機21の潤滑に必要な潤滑油の戻り量を確保することができる。
 また、バイパス回路31における第2内部熱交換器25と第2内部熱交換器用膨張弁29を一体に形成している。これにより、部品点数を低減させることが可能となり、製造コストの低減を図ることが可能となる。
 図8は、本発明の第3実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置は、前記第1実施形態の放熱器15の代わりとして、図8に示すように、熱媒体としての水と冷媒とを熱交換させる放熱器としての冷媒放熱器33が空気流通路11外に設けられている。
 冷媒放熱器33の水を冷媒と熱交換させるための熱交換部33aには、水が流通する熱媒体回路としての水回路40が接続されている。水回路40には、水を吐出する水ポンプ41と、空気流通路11を流通する空気と水を熱交換させるための熱媒体放熱器としてのヒータコア42と、車両走行用のエンジンが排出する熱を水に吸熱させるための排出熱吸熱部としてのラジエータ43と、水を加熱するための電気ヒータ44と、が接続されている。
 以上のように構成された車両用空気調和装置において、前記実施形態と同様に冷媒を流通させることが可能であり、気液2相状態の冷媒を圧縮機21に吸入させることが可能である。
 また、水回路40では、除湿冷房運転、暖房運転、第1除湿暖房運転および第2除湿暖房運転の際に水ポンプ41を運転して水を流通させる。
 水回路40を流通する水は、冷媒放熱器33において冷媒から吸熱し、ヒータコア42において空気流通路11を流通する空気と熱交換して放熱する。水回路40を流通する水は、冷媒放熱器33において加熱される以外に、ラジエータ43においてエンジンの排出する熱によって加熱される。また、空気流通路11を流通する空気の加熱量が不足する場合には、電気ヒータ44によって水回路40を流通する水を加熱することによって、不足する加熱量を補うことが可能である。
 このように、本実施形態の車両用空気調和装置では、前記実施形態と同様に、暖房運転中や第1除湿暖房運転中に車室外の空気の温度が低くなる場合には、第2内部熱交換器用膨張弁29を開放することによって圧縮機21からの冷媒の吐出量を増加させ、冷媒放熱器33における放熱量を増加させることができるので、暖房運転時における暖房能力を向上させることができ、第1除湿暖房運転時における暖房能力を低下させることなく除湿が可能となる。また、圧縮機21には、気液2相状態の冷媒が吸入されることから、圧縮機21の潤滑に必要な潤滑油の戻り量を確保することができる。
 また、エンジンの排出する熱によって水回路40を流通する水を加熱するためのラジエータ43が水回路40に接続されている。これにより、水回路40の水をエンジンの排出する熱によって加熱することによって、暖房運転や第1除湿暖房運転を行うことができるので、エンジンの排出熱を有効に利用してエネルギーの消費量を低減することが可能となる。
 また、水回路40を流通する水を加熱するための電気ヒータ44を備えている。これにより、暖房運転時や第1除湿暖房運転時における暖房能力の不足熱量を補うことが可能となるので、車室内を要求される温度に維持することが可能となる。
 尚、前記第3実施形態では、暖房運転時や第1除湿暖房運転時における暖房能力の不足熱量を電気ヒータ44によって水回路40を流通する水を加熱するようにしたものを示したが、これに限られるものではない。例えば、図9に示すように、冷媒流通路20fのアキュムレータ30と圧縮機21との間に電気ヒータ44を設け、電気ヒータ44によって冷媒回路20を流通する冷媒を加熱するようにしてもよい。また、冷媒回路20に対する電気ヒータ44の取り付け位置としては、アキュムレータ30と圧縮機21との間に限られない。例えば、電気ヒータ44を、バイパス回路31における第2内部熱交換器25と圧縮機21との間に設けてもよいし、圧縮機21の吐出側と冷媒放熱器33との間に設けてもよい。また、水回路40および冷媒回路20のそれぞれに電気ヒータ44を設け、水回路40を流通する水と冷媒回路20を流通する冷媒を同時に電気ヒータ44によって加熱するようにしてもよい。
 また、前記第3実施形態では、熱媒体として水を流通させる水回路40を示したが、これに限られるものではなく、例えばエチレングリコールを主成分とする不凍液を熱媒体として用いることも可能である。
 また、前記第3実施形態では、水回路40に、エンジンの排出する熱を水に吸熱させるためのラジエータ43を接続したものを示したが、これに限られるものではない。例えば、車両に設けられた電動モータやバッテリから排出される熱等、車両の走行時に排出される熱を、水回路40を流通する水に吸熱させるようにしてもよい。
 図10は、本発明の第4実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置の冷媒回路20は、図10に示すように、第1実施形態における第1制御弁24の代わりに、冷媒流入口および冷媒流出口がそれぞれ1つずつ設けられ、減圧領域と凝縮圧力調整領域のそれぞれの範囲で弁開度を調整可能な第2制御弁34を備えている。
 具体的には、圧縮機21の冷媒吐出側に放熱器15の冷媒流入側が接続されることによって、冷媒流通路20aが設けられている。また、放熱器15の冷媒流出側には、第2内部熱交換器25の高圧冷媒流入側が接続されることによって、冷媒流通路20bが設けられている。第2内部熱交換器25の高圧冷媒流出側には、第2制御弁34の冷媒流入側が接続されることによって、冷媒流通路20cが設けられている。第2制御弁34の冷媒流出側には、室外熱交換器22の冷媒流入側が接続されることによって、冷媒流通路20dが設けられている。また、室外熱交換器22の冷媒流出側には、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20eが設けられている。冷媒流通路20eには、冷媒流通方向の上流側から順に、第1電磁弁26a、アキュムレータ30が設けられている。冷媒流通路20cには、第1内部熱交換器23の高圧冷媒流入側が接続されることによって、冷媒流通路20fが設けられている。冷媒流通路20fには、冷媒流通方向の上流側から順に、第2電磁弁26b、第1逆止弁27aが設けられている。第1内部熱交換器23の高圧冷媒流出側には、吸熱器14の冷媒流入側が接続されることによって、冷媒流通路20gが設けられている。冷媒流通路20gには、吸熱器用膨張弁28が設けられている。吸熱器14の冷媒流出側には、第1内部熱交換器23の低圧冷媒流入側が接続されることによって、冷媒流通路20hが設けられている。第1内部熱交換器23の低圧冷媒流出側には、冷媒流通路20eの第1電磁弁26aとアキュムレータ30との間が接続されることによって、冷媒流通路20iが設けられている。室外熱交換器22の冷媒流出側には、冷媒流通路20eと並列に、気液分離部22aの冷媒流入側が接続されることによって、冷媒流通路20jが設けられている。冷媒流通路20jには、第3電磁弁26cが設けられている。気液分離部22aの冷媒流出側には、過冷却部22bを介して冷媒流通路20fの第1逆止弁27aの冷媒流通方向下流側が接続されることによって、冷媒流通路20kが設けられている。冷媒流通路20kには、第2逆止弁27bが設けられている。冷媒流通路20bには、分岐して第2内部熱交換器25の低圧冷媒流入側が接続されることによって、冷媒流通路20lが設けられている。冷媒流通路20lには、第2内部熱交換器用膨張弁29が設けられている。第2内部熱交換器25の低圧冷媒流出側には、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20mが設けられている。ここで、冷媒流通路20l、第2内部熱交換器25の低圧側および冷媒流通路20mによってバイパス回路31が構成される。
 以上のように構成された車両用空気調和装置の暖房運転において、冷媒回路20では、第2制御弁34の冷媒流路を膨張手段側に設定し、第1電磁弁26aを開放するとともに、第2~第3電磁弁26b,26cを閉鎖し、第2内部熱交換器用膨張弁29を閉鎖して圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、冷媒流通路20a、放熱器15、冷媒流通路20b、第2内部熱交換器25の高圧側、冷媒流通路20c,20d、室外熱交換器22、冷媒流通路20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、室外熱交換器22において吸熱する。
 また、第1除湿暖房運転において、冷媒回路20では、第2制御弁34の冷媒流路を膨張手段側に設定し、第1および第2電磁弁26a,26bを開放するとともに、第3電磁弁26cを閉鎖し、第2内部熱交換器用膨張弁29を閉鎖して圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、冷媒流通路20a、放熱器15、冷媒流通路20b、第2内部熱交換器25の高圧側、冷媒流通路20cを順に流通する。冷媒流通路20cを流通する冷媒の一部は、冷媒流通路20d、室外熱交換器22、冷媒流通路20eの順に流通して圧縮機21に吸入される。また、冷媒流通路20cを流通するその他の冷媒は、冷媒流通路20f、第1内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、第1内部熱交換器23の低圧側、冷媒流通路20i,20e、の順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14及び室外熱交換器22において吸熱する。
 暖房運転中や第1除湿暖房運転中に第2内部熱交換器用膨張弁29を開放すると、放熱器15から流出する冷媒は、第1実施形態と同様に、一部が冷媒流通路20l、第2内部熱交換器25の低圧側、冷媒流通路20mの順に流通して圧縮機21に吸入される。
 このように、本実施形態の車両用空気調和装置によれば、前記実施形態と同様に、暖房運転中や第1除湿暖房運転中に車室外の空気の温度が低くなる場合には、第2内部熱交換器用膨張弁29を開放することによって圧縮機21からの冷媒の吐出量を増加させ、冷媒放熱器33における放熱量を増加させることができるので、暖房運転時における暖房能力を向上させることができ、第1除湿暖房運転時における暖房能力を低下させることなく除湿が可能となる。また、圧縮機21には、気液2相状態の冷媒が吸入されることから、圧縮機21の潤滑に必要な潤滑油の戻り量を確保することができる。
 尚、前記第4実施形態の冷媒回路20は、前記第3実施形態の水回路40を備えたものに対しても適用可能である。
 尚、前記実施形態では、暖房運転および第1除湿暖房運転時に室外熱交換器22に流入する冷媒を減圧するための膨張手段と除湿冷房運転時に放熱器15における冷媒の凝縮圧力を制御するための凝縮圧力調整手段とを有する第1制御弁24および第2制御弁34を示したが、これに限られるものではない。例えば、冷媒回路20に、第1制御弁24および第2制御弁34の代わりに開度が可変の膨張手段と凝縮圧力調整手段とを別々に構成するようにしてもよい。
 また、前記実施形態では、一対の冷媒吸入口が設けられた圧縮機21の圧縮途中の冷媒が流通する部分に連通する冷媒吸入口にバイパス回路31を接続するようにしたものを示したがこれに限られるものではない。例えば、圧縮機21が二段圧縮機の場合に、一段目と二段目との間の冷媒流通路にバイパス回路31を接続するようにしてもよい。
 また、前記実施形態では、第2内部熱交換器用膨張弁29を弁の開閉および弁開度の調整が可能な電子膨張弁としたものを示したが、これに限られるものではない。例えば、バイパス回路31に、第2内部熱交換器用膨張弁としての温度膨張弁と、バイパス回路31を開閉可能な電磁弁等の開閉弁と、を設けるようにしてもよい。
 10…空調ユニット、14…吸熱器、15…放熱器、20…冷媒回路、
21…圧縮機、22…室外熱交換器、24…第1制御弁、25…第2内部熱交換器、26a,26b,26c…第1~第3電磁弁、29…第2内部熱交換器用膨張弁、31…バイパス回路、33…冷媒放熱器、33a…熱交換部、40…水回路、41…水ポンプ、42…ヒータコア、43…ラジエータ、44…電気ヒータ。

Claims (7)

  1.  冷媒を圧縮して吐出する圧縮機と、
     冷媒を放熱させる放熱器と、
     冷媒を吸熱させる吸熱器と、
     冷媒を放熱または吸熱させる室外熱交換器と、
     圧縮機が吐出した冷媒を放熱器に流入させて放熱させ、放熱器を流通した冷媒を第1膨張弁を介して室外熱交換器に流入させて吸熱させ、室外熱交換器を流通した冷媒を圧縮機に吸入させる暖房用冷媒回路と、
     圧縮機が吐出した冷媒を放熱器に流入させて放熱させ、放熱器を流通した冷媒の一部を第1膨張弁を介して室外熱交換器に流入させて吸熱させ、放熱器を流通したその他の冷媒を第2膨張弁を介して吸熱器に流入させて吸熱させ、室外熱交換器および吸熱器を流通した冷媒を圧縮機に吸入させる除湿暖房用冷媒回路と、
     暖房用冷媒回路および除湿暖房用冷媒回路において、放熱器から流出する冷媒の一部を圧縮機の圧縮途中の冷媒が流通する部分に吸入させるバイパス回路と、
     バイパス回路を流通する冷媒を減圧する第3膨張弁と、
     第3膨張弁で減圧したバイパス回路を流通する冷媒と放熱器から流出するその他の冷媒とを熱交換する熱交換器と、を備え、
     圧縮機の圧縮途中の冷媒が流通する部分には、気液2相状態の冷媒を吸入させる
     ことを特徴とする車両用空気調和装置。
  2.  第3膨張弁は、熱交換器と一体に形成されている
     ことを特徴とする請求項1に記載の車両用空気調和装置。
  3.  熱媒体を吐出する熱媒体ポンプと、
     放熱器に設けられ、放熱器を流通する冷媒と熱媒体とを熱交換させる熱交換部と、
     熱媒体を放熱させる熱媒体放熱器と、
     熱媒体ポンプから吐出された熱媒体を熱交換部に流入させて吸熱させ、熱交換部を流通した熱媒体を熱媒体放熱器に流入させて放熱させ、熱媒体放熱器を流通した熱媒体を熱媒体ポンプに吸入させる熱媒体回路と、を備えた
     ことを特徴とする請求項1または2に記載の車両用空気調和装置。
  4.  熱媒体回路を流通する熱媒体を加熱するための熱媒体加熱部を備えた
     ことを特徴とする請求項3に記載の車両用空気調和装置。
  5.  熱媒体加熱部は、熱媒体回路を流通する熱媒体を加熱可能な電気ヒータである
     ことを特徴とする請求項4に記載の車両用空気調和装置。
  6.  熱媒体加熱部は、熱媒体回路に設けられ、他の機器から排出される熱を熱媒体回路を流通する熱媒体に吸熱させる排出熱吸熱部である
     ことを特徴とする請求項4に記載の車両用空気調和装置。
  7.  暖房用冷媒回路および除湿暖房用冷媒回路を流通する冷媒を加熱する冷媒加熱部を備えた
     ことを特徴とする請求項1乃至6のいずれかに記載の車両用空気調和装置。
PCT/JP2013/051342 2012-02-15 2013-01-23 車両用空気調和装置 WO2013121844A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012030395 2012-02-15
JP2012-030395 2012-02-15
JP2012-104849 2012-05-01
JP2012104849A JP2013189180A (ja) 2012-02-15 2012-05-01 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2013121844A1 true WO2013121844A1 (ja) 2013-08-22

Family

ID=48983969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051342 WO2013121844A1 (ja) 2012-02-15 2013-01-23 車両用空気調和装置

Country Status (2)

Country Link
JP (1) JP2013189180A (ja)
WO (1) WO2013121844A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025905A1 (ja) * 2013-08-23 2015-02-26 サンデン株式会社 車両用空気調和装置
WO2015041209A1 (ja) * 2013-09-18 2015-03-26 サンデン株式会社 車両用空気調和装置
CN106163842A (zh) * 2014-07-31 2016-11-23 翰昂汽车零部件有限公司 车用热泵系统
CN106288743A (zh) * 2016-09-20 2017-01-04 中国汽车工业工程有限公司 热闪干系统的加热除湿装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250428B2 (ja) * 2014-02-12 2017-12-20 東芝キヤリア株式会社 冷凍サイクル装置
DE102018104301A1 (de) * 2018-02-26 2019-08-29 Hanon Systems Vorrichtung für ein Klimatisierungssystem eines Kraftfahrzeugs sowie Verfahren zum Betreiben der Vorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232547A (ja) * 1994-02-25 1995-09-05 Sanden Corp 車両用空気調和装置
JP2001041601A (ja) * 1999-07-30 2001-02-16 Denso Corp 冷凍サイクル装置
JP2009127939A (ja) * 2007-11-22 2009-06-11 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JP2010159967A (ja) * 2010-04-19 2010-07-22 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025446A (ja) * 1998-07-09 2000-01-25 Denso Corp 空調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232547A (ja) * 1994-02-25 1995-09-05 Sanden Corp 車両用空気調和装置
JP2001041601A (ja) * 1999-07-30 2001-02-16 Denso Corp 冷凍サイクル装置
JP2009127939A (ja) * 2007-11-22 2009-06-11 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JP2010159967A (ja) * 2010-04-19 2010-07-22 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473358B (zh) * 2013-08-23 2017-10-24 三电控股株式会社 车辆用空调装置
JP2015040019A (ja) * 2013-08-23 2015-03-02 サンデン株式会社 車両用空気調和装置
US10047988B2 (en) 2013-08-23 2018-08-14 Sanden Holdings Corporation Vehicle air conditioner
WO2015025905A1 (ja) * 2013-08-23 2015-02-26 サンデン株式会社 車両用空気調和装置
CN105473358A (zh) * 2013-08-23 2016-04-06 三电控股株式会社 车辆用空调装置
US9873307B2 (en) 2013-09-18 2018-01-23 Sanden Holdings Corporation Vehicular air conditioner
CN105579259A (zh) * 2013-09-18 2016-05-11 三电控股株式会社 车用空调装置
JP2015058774A (ja) * 2013-09-18 2015-03-30 サンデン株式会社 車両用空気調和装置
WO2015041209A1 (ja) * 2013-09-18 2015-03-26 サンデン株式会社 車両用空気調和装置
CN106163842A (zh) * 2014-07-31 2016-11-23 翰昂汽车零部件有限公司 车用热泵系统
CN106163842B (zh) * 2014-07-31 2018-11-06 翰昂汽车零部件有限公司 车用热泵系统
US10661632B2 (en) 2014-07-31 2020-05-26 Hanon Systems Heat pump system for vehicle
CN106288743A (zh) * 2016-09-20 2017-01-04 中国汽车工业工程有限公司 热闪干系统的加热除湿装置
CN106288743B (zh) * 2016-09-20 2019-11-22 中国汽车工业工程有限公司 热闪干系统的加热除湿装置

Also Published As

Publication number Publication date
JP2013189180A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
JP6088753B2 (ja) 車両用空気調和装置
JP5944154B2 (ja) 車両用空気調和装置
JP6838518B2 (ja) 冷凍サイクル装置
JP2015101180A (ja) ヒートポンプシステム
WO2013121844A1 (ja) 車両用空気調和装置
WO2020137232A1 (ja) 温度調整装置
JP2020142789A (ja) 熱管理システム
WO2020158207A1 (ja) 車両用空気調和装置
JP2012176659A (ja) 車両用空気調和装置
WO2013121843A1 (ja) 車両用空気調和装置
WO2021095338A1 (ja) 冷凍サイクル装置
JP2014069639A (ja) 冷凍サイクル装置
WO2018079122A1 (ja) 車両用空気調和装置及びその製造方法
JP5851697B2 (ja) 車両用空気調和装置
WO2022038950A1 (ja) 冷凍サイクル装置
WO2020145019A1 (ja) 車両用空気調和装置
WO2014010482A1 (ja) 車両用空気調和装置
WO2020149063A1 (ja) 車両用空気調和装置
WO2021020161A1 (ja) 車両用空気調和装置
WO2020137236A1 (ja) 車両用空気調和装置
JP2013139991A (ja) 車両用空気調和装置
JP2012254670A (ja) 空調装置
WO2021176846A1 (ja) 熱管理システム
WO2019230116A1 (ja) 車両用空気調和装置
JP6073588B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749048

Country of ref document: EP

Kind code of ref document: A1