WO2013121123A1 - Dispositif de transmission de couple pour vehicule automobile - Google Patents

Dispositif de transmission de couple pour vehicule automobile Download PDF

Info

Publication number
WO2013121123A1
WO2013121123A1 PCT/FR2013/050162 FR2013050162W WO2013121123A1 WO 2013121123 A1 WO2013121123 A1 WO 2013121123A1 FR 2013050162 W FR2013050162 W FR 2013050162W WO 2013121123 A1 WO2013121123 A1 WO 2013121123A1
Authority
WO
WIPO (PCT)
Prior art keywords
masses
synchronizing
pendulum
zones
transmission device
Prior art date
Application number
PCT/FR2013/050162
Other languages
English (en)
Inventor
Roel Verhoog
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Publication of WO2013121123A1 publication Critical patent/WO2013121123A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum

Definitions

  • the present invention relates to a torque transmission device for a motor vehicle.
  • US 2010/0269497 discloses a hydraulic torque converter for coupling an output shaft of an internal combustion engine, such as a crankshaft, to an input shaft of a gearbox.
  • the torque converter conventionally comprises an impeller impeller, adapted to hydrokinetically drive a turbine blade wheel, via a reactor.
  • the impeller wheel is rotatably coupled to the crankshaft and the turbine wheel is rotatably coupled to two guide washers.
  • the latter are movably mounted around a central hub externally coupled in rotation to an annular web and intended to be internally coupled to the input shaft of the gearbox.
  • a clutch is used to transmit a torque from the crankshaft to the guide washers, without involving the impeller wheel and the turbine wheel.
  • This clutch comprises an input element coupled to the crankshaft and an output element, in the form of a splined hub, fixed to the guide washers.
  • Elastic members are circumferentially mounted between the annular web and the guide washers. These elastic members are grouped in pairs, the elastic members of the same pair being arranged in series via a common phasing member, so that the elastic members deform in phase relative to each other .
  • Pendulum damping means are mounted on the phasing member and comprise pendular masses mounted movably on the radially outer periphery of the phasing member.
  • the pendulum damping means and the resilient members can absorb and dampen vibrations and rotational acyclisms, due in particular to the explosions of the internal combustion engine.
  • Such pendulum damping means can be used on other torque transmission devices, such as in particular damping double flywheels.
  • a double damping flywheel conventionally comprises a primary flywheel intended to be coupled to a crankshaft, and a secondary flywheel intended to be coupled to an input shaft of a gearbox by via a clutch.
  • the two wheels are movable in rotation relative to one another and are coupled via, in particular, elastic members.
  • Pendular masses may be mounted on a support formed by a movable member of the double damping flywheel, such as a guide ring, an annular web or a phasing member.
  • a movable member of the double damping flywheel such as a guide ring, an annular web or a phasing member.
  • the masses are then mounted on the support, generally by means of guide rollers engaged in oblong holes in an arc of the masses and the support.
  • the concavities of the holes of the masses are opposed to the concavities of the holes of the support.
  • the movement of the masses obtained is of the pendular type and is a function of the shape of the aforementioned oblong holes.
  • DE 10 2009 042 836 proposes disposing elastomeric material stops circumferentially between the pendulum masses.
  • the pendulum masses are supported in their extreme positions against the elastomeric stops, which reduces noise.
  • a random behavior of the pendular masses has been detected, for certain particular operating conditions, in particular in a range of rotation of the movable support, for example between 2500 and 3000 revolutions per minute.
  • the masses can indeed move asynchronously relative to each other, which reduces the performance of the pendulum damping.
  • the document FR 2 781 029 proposes to connect the pendulum masses by links at their circumferential ends. Each link is articulated on the circumferential ends of two adjacent masses, by means of two rivets, so that the masses are moved synchronously relative to each other.
  • the large number of links articulated between the links and the pendular masses generates friction, and thus a hysteresis and a delay in operation.
  • the displacement of the pendular masses is thus done with a certain delay with respect to the engine explosions, this delay being able to go as far as to generate a phase opposition with respect to the vibrations generated by the explosions.
  • the efficiency of the pendular damping means is thus limited, the vibrations can even be amplified in the case of a phase opposition.
  • the document CH 163 965 also discloses means for synchronizing the pendulum masses, comprising a pivoting central part, and peripheral parts arranged circumferentially between the pendulum masses.
  • the peripheral portions are pivotally mounted on the central portion and at each of the circumferential ends of the corresponding adjacent pendulum masses.
  • This solution comprises a large number of articulated links and has the same disadvantages as before.
  • the document WO 201 1/1 10153 proposes means for synchronizing pendulum masses comprising arcuate spacers movably mounted in arcuate openings. arranged in the support of the pendular masses.
  • the circumferential ends of the masses comprise studs extending axially inside the arcuate openings and intended to bear on either side of the spacers.
  • the spacers and the corresponding openings have relatively large dimensions.
  • the openings in the support weaken the latter.
  • the invention aims in particular to provide a simple, effective and economical solution to this problem.
  • Pendulum damping means comprising at least two pendular masses, mounted circumferentially and movably on said movable support, characterized in that it comprises
  • At least one synchronizing member which is pivotally mounted about a pivot on the movable support and which is disposed circumferentially between the two pendulum masses, circumferential ends of said masses having areas adapted to bear on the synchronizing member. on both sides of the latter when said masses move relative to the support, causing the synchronization member to pivot about the corresponding pivot, in order to synchronize the movements of said masses (26), characterized in that the synchronization member comprises
  • the ends of the pendulum masses facing the synchronization member each comprising a first zone able to bear on the synchronization part of the synchronization member; during the displacement of the corresponding pendulum mass with respect to the support, and a second zone able to bear against the abutment portion of the synchronization member, in an extreme position of the pendulum mass and in that
  • the synchronization part of the synchronizing member comprises two opposite concave zones, facing towards each of the pendulum masses, the first zones of the circumferential ends of the pendulum masses having fingers adapted to bear on the concave areas.
  • the synchronizing member thus pivots around a single pivot on the movable support, which limits friction during operation and increases the effectiveness of the pendulum damping means.
  • the circumferential ends of the pendular masses simply bear against the synchronizing element and can therefore be detached slightly from the synchronization element in certain positions, in order to respect the complex trajectory of the pendulum masses in operation.
  • the synchronizing member thus provides both the synchronization function and the stop function, in case of saturation of the pendulum damping means.
  • the abutment portion of the synchronizing member and the second zones of the pendular masses may be designed so that their contact areas are situated in line with the pivot axis of the synchronization member.
  • the synchronization portion of the synchronizing member comprises two opposite concave zones facing towards each of the pendulum masses, the first zones of the circumferential ends of the pendular masses having fingers adapted to bear on the concave zones.
  • each of the concave zones of the synchronization member forms an inner retaining zone close to the pivot axis and an outer retaining zone remote from the pivot axis, said retaining zone inner and said outer retaining zone being designed to retain the fingers within the concave areas when the pendulum masses are moved radially inwardly and / or outwardly.
  • the synchronizing member thus also ensures the radial holding function of the pendular masses, at least partially. Such a maintenance is necessary, in operation, when the masses are centrifuged radially outwards, or in the stopping phase, when some of the masses can fall downwards, radially inwards.
  • the fingers of the pendular masses extend circumferentially towards the synchronizing member, beyond the second zones of the pendular masses.
  • the fingers of the pendular masses may have a rounded shape complementary to a shape of a surface of the synchronizing member. The fingers can then pivot more easily around their contact area with the synchronizing member.
  • the synchronizing member may be made of plastic material, which makes it possible to reduce the noise during possible shocks with the pendular masses.
  • the torque transmission device comprises
  • the elastic members being arranged in series through said phasing member, so that the elastic members of each group deform in phase with each other, the pendulum masses being mounted so that mobile on the phasing member, on either side of the synchronization member.
  • the torque transmission device may comprise at least two pendulum masses mounted on one side of the phasing member and at least two pendular masses mounted on the other side of the phasing member, a synchronization member. being mounted on each side of the phasing member, circumferentially between the corresponding pendulum masses.
  • This characteristic makes it possible to balance the whole, by proposing a symmetrical structure.
  • the pendulum masses are mounted on and between two movable supports, the synchronizing member being mounted between these two supports while being pivotally mounted on at least one of the two supports.
  • FIG. 1 is a schematic view of a torque transmission device according to the invention, in the form of a hydrodynamic torque converter,
  • FIG. 2 is a front view of a portion of the torque converter
  • FIG. 3 is a sectional view along the line A-A of FIG. 2,
  • FIG. 4 is a sectional view along the line B-B of FIG.
  • FIGS. 5 to 7 are detailed perspective views, illustrating the circumferential ends of two masses and the synchronizing member, in various operating positions,
  • FIGS. 8 and 9 are cross-sectional views, according to two different section planes, illustrating an alternative embodiment of the invention.
  • a hydrodynamic torque converter according to the invention is shown schematically and partially in FIG.
  • This converter makes it possible to transmit a torque of an output shaft of an internal combustion engine of a motor vehicle, such as for example a crankshaft 1, to an input shaft 2 of a gearbox.
  • the torque converter conventionally comprises an impeller impeller 3 capable of hydrokinetically driving a turbine blade wheel 4 via a reactor 5.
  • the impeller wheel 3 is coupled to the crankshaft 1 and the turbine wheel 4 is coupled to a turbine hub 6, itself coupled to two guide washers 7, hereinafter referred to respectively as the rear guide washer 7a and the washer front guide 7b, with reference to their position in FIGS. 3 and 4.
  • the front guide ring 7b and the turbine hub 6 are pivotally mounted about a splined central hub 8, to be coupled to the input shaft 2 of the gearbox.
  • the central hub 8 comprises in particular, from the rear to the front, a first cylindrical portion 9, a second cylindrical position 10 around which the rear guide washer 7a is pivotally mounted, a radial wall 11 facing forward , and a third cylindrical portion 12 around which the turbine hub 6 is pivotally mounted.
  • the front guide ring 7b is mounted around the turbine hub 6 and fixed thereto.
  • the two guide washers 7a, 7b extend radially and delimit between them an internal space 13 housing elastic members 14.
  • the rear guide washer 7a has a cylindrical rim 15 at its radially outer periphery, extending towards the front guide ring 7b and fixed thereto.
  • a splined hub 16 is also attached to the rear face of the rear guide washer 7a.
  • This corrugated hub 16 has a radial portion 17 fixed on said rear face of the rear guide washer 7a, and a corrugated cylindrical flange 18 extending rearwardly from the radially outer periphery of the radial portion 17.
  • the radially inner periphery 19 of the corrugated hub 16 surrounds the cylindrical portion 9 of the central hub 8.
  • a clutch 20 (FIG. 1) makes it possible to transmit a torque from the crankshaft 1 to the guide washers 7a, 7b, in a determined operating phase, without involving the impeller wheel 3 and the turbine wheel 4.
  • This clutch 20 comprises an input member 21 coupled to the crankshaft and an output member, including the splined hub 16.
  • annular web 22 extending radially is mounted in the inner space 13 and is fixed on the central hub 8, at its radial face 1 1, by means of rivets.
  • the annular web 22 and the guide washers 7a, 7b conventionally comprise windows 23 serving to accommodate the elastic members 14.
  • the elastic members 14 are circumferentially mounted between the annular web 22 and the guide washers 7a, 7b. More particularly, the elastic members 14 are arranged in pairs.
  • the elastic members 14a, 14b (FIG. 1) of the same pair are arranged in series via a common phasing member 24, so that the elastic members 14a, 14b deform in phase with each other. others.
  • Pendulum damping means 25 are mounted on the phasing member 24.
  • the pendulum damping means 25 comprise pendular masses 26 movably mounted at the radially outer periphery of the phasing member 24.
  • the pendulum damping means comprise twelve pendular masses 26, six masses 26 being disposed on each side of the outer periphery of the phasing member 24.
  • the masses 26 are arranged facing each other and are connected two two by spacers 27 ( Figures 5 to 7) passing through oblong holes formed in the phasing member 24.
  • These spacers 27 are also able to roll over the edges of the oblong holes of the phasing member 24, so as to guide the pendulum masses 26 during their displacement.
  • the pendulum damping means 25 and the resilient members 14 absorb and dampen vibrations and rotational acyclisms, due in particular to the explosions of the internal combustion engine.
  • the invention can also be applied to torque transmission devices without elastic members.
  • Synchronizing members 28 made of plastics material are mounted between the circumferential ends 29 of the pendular masses 26, on either side of the phasing member 24.
  • synchronization 28 comprise a synchronization portion 28a, radially external, and a stop portion 28b, radially internal.
  • the synchronizing members 28 are pivotally mounted around cylindrical pivots 30 carried by the phasing member 24, at their abutment portion 28b. Each pivot 30 passes through a hole of the phasing member 24 and serves to mount two synchronization members 28, arranged opposite one another.
  • the ends of the pivots 30 comprise elastic rings 31 or circlips, mounted in grooves of the pivots 30, so as to axially immobilize the synchronizing members 28.
  • the abutment portions 28b have a generally cylindrical shape and are traversed by the pivots 30.
  • the synchronizing portions 28a extend from the abutment portions 28b and each have two concave-shaped opposite side regions 32, arranged symmetrically with respect to each other. to a plane passing through the axis X of rotation of the corresponding synchronizing member 28.
  • the circumferential ends 29 of the pendular masses each comprise a first zone located radially outside, forming a finger 33 whose rounded end is intended to abut in the corresponding concave zone 32 of the corresponding synchronizing member 28.
  • the circumferential ends 29 of the pendular masses further comprise second zones 34 having flat and radially extending surfaces designed to bear against the abutment portions 28b of the synchronizing members 28.
  • the applied force of a mass 26 on the synchronizing member 28 is substantially perpendicular to the surface formed by a second zone 34 and passes through the axis X of the synchronization member 28.
  • the rounded fingers 33 located at the radially outer periphery of the pendular masses 26, are connected to the second zone 34 by a substantially flat wall 35 and extending obliquely with respect to the radial direction.
  • the fingers 33 of the pendular masses 26 thus extend circumferentially towards the synchronizing member 28, beyond the second zones 34 of the pendular masses 26.
  • the shapes and dimensions of the pendular masses 26 and the synchronizing members 28 are such that, after mounting, the fingers 33 of the pendular masses 26 are retained within the concave zones 32 of the synchronizing members 28, whatever the position said pendulum masses 26 and said synchronizing members 28.
  • the fingers 33 are able to abut against the outer and inner peripheral parts of the concave zones 32, so as to prevent the accidental removal of the fingers 33 out of these concave zones 32 and thus ensure the radial retention of the pendular masses 26 .
  • the phasing washer 24 is rotated, causing the pendulum masses 26 to move relative to the phasing washer 24, synchronously, via the synchronizing members 28 which pivot about the pivots 30 (FIGS. 5 and 6).
  • Synchronous displacement means that the masses 26 are displaced at the same time, and in the same direction.
  • the oblique face 35 does not rest on the synchronizing member 28.
  • the shapes of the synchronizing members 28 and the circumferential ends 29 of the pendulum masses 26 are such that the bearing areas between them different elements are strictly limited to the fingers 33 and the second zones 34, as regards the pendulum masses 26, as well as to the zones concave 32 and the cylindrical stop zones 28b, with regard to the synchronizing members 28.
  • the angular displacement of the synchronizing members 28 is between -50 ° and + 50 °.
  • the pendulum masses 26 which are no longer centrifuged can fall back under the effect of their own weight. In this case, the fall of some of the masses 26 is limited by the support of the fingers 33 on the inner edges 35 (FIGS. 5 to 7) of the concave zones 32.
  • An operating clearance may be provided between the fingers 33 and the concave zones 32, this clearance being greater than the manufacturing tolerances, for example less than 2 mm.
  • the game must be relatively weak so as not to desynchronize the pendulum masses 26.
  • Figures 8 and 9 describe an alternative embodiment in which the pendular masses 26 and the synchronizing members 28 are mounted axially between two supports, for example between two guide rings 7a, 7b.
  • the synchronizing members 28 are pivotally mounted around cylindrical pivots 30, the ends of which are mounted in holes of the synchronizing washers 7a, 7b and are immobilized axially by means of circlips 36 engaged in grooves in said ends.
  • the pendulum masses 26 are mounted axially between the two guide washers 7a, 7b, by means of rollers 37 whose ends are engaged in oblong holes of the guide washers 7a, 7b.
  • spacers 38 located radially inside the synchronizing members 28 and pendular masses 26, axially connect the two guide rings 7a, 7b.
  • the spacers 38 are for example in the form of a rivet.
  • Such pendulum damping means 25 make it possible to filter the vibrations effectively, for a rotational speed of the motor for example between 1000 and 7000 revolutions per minute, while generating little noise in operation.
  • the delays between the displacement of the pendulum masses 26 and the explosions of the internal combustion engine are very small.
  • Such pendular damping means 25 may also be applied to a torque transmission device of the double damping flywheel type, for example, without this modifying the operating principle.
  • the pendular masses 26 and the synchronizing members 28 may be mounted on a guide ring, on an annular web or on a phasing washer of the double damping flywheel.
  • the pendular masses 26 and the synchronizing members 28 can be mounted on any type of mobile support associated directly or indirectly with a crankshaft, such as a sail and / or a secondary flywheel of a double damping flywheel (DVA), a clutch cover double or single, or be associated with an element linked to the crankshaft.
  • a crankshaft such as a sail and / or a secondary flywheel of a double damping flywheel (DVA), a clutch cover double or single, or be associated with an element linked to the crankshaft.
  • DVA double damping flywheel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

L'invention concerne un dispositif de transmission de couple pour véhicule automobile comportant un support mobile (24), - des moyens d'amortissement pendulaire (25) comportant au moins deux masses pendulaires (26), montées circonférentiellement et de façon mobile sur ledit support mobile (24), caractérisé en ce qu'il comporte - au moins un organe de synchronisation (28) qui est monté pivotant autour d'un pivot (30) sur le support mobile (24) et qui est disposé circonférentiellement entre les deux masses pendulaires (26), des extrémités circonférentielles (29) desdites masses comportant des zones (33) aptes à venir en appui sur l'organe de synchronisation (28) de part et d'autre de celui-ci lors du déplacement desdites masses (26) par rapport au support (24), en entraînant le pivotement de l'organe de synchronisation (28) autour du pivot correspondant (30), de façon à synchroniser les déplacements desdites masses (26).

Description

Dispositif de transmission de couple pour véhicule automobile
La présente invention concerne un dispositif de transmission de couple pour véhicule automobile.
Le document US 2010/0269497 décrit un convertisseur de couple hydraulique destiné à coupler un arbre de sortie d'un moteur à combustion interne, tel qu'un vilebrequin, à un arbre d'entrée d'une boîte de vitesses.
Le convertisseur de couple comporte classiquement une roue à aubes d'impulseur, apte à entraîner hydrocinétiquement une roue à aubes de turbine, par l'intermédiaire d'un réacteur.
La roue d'impulseur est couplée en rotation au vilebrequin et la roue de turbine est couplée en rotation à deux rondelles de guidage. Ces dernières sont montées de façon mobile autour d'un moyeu central couplé extérieurement en rotation à un voile annulaire et destiné à être couplé intérieurement à l'arbre d'entrée de la boîte de vitesses.
Un embrayage permet de transmettre un couple du vilebrequin aux rondelles de guidage, sans faire intervenir la roue d'impulseur et la roue de turbine. Cet embrayage comporte un élément d'entrée couplé au vilebrequin et un élément de sortie, prenant la forme d'un moyeu cannelé, fixé aux rondelles de guidage.
Des organes élastiques sont montés circonférentiellement entre le voile annulaire et les rondelles de guidage. Ces organes élastiques sont groupés par paires, les organes élastiques d'une même paire étant agencés en série par l'intermédiaire d'un organe de phasage commun, de façon à ce que les organes élastiques se déforment en phase les uns par rapport aux autres.
Des moyens d'amortissement pendulaire sont montés sur l'organe de phasage et comportent des masses pendulaires montées de façon mobile sur la périphérie radialement externe de l'organe de phasage. Les moyens d'amortissement pendulaire et les organes élastiques permettent d'absorber et d'amortir les vibrations et les acyclismes de rotation, dues notamment aux explosions du moteur à combustion interne.
De tels moyens d'amortissement pendulaire peuvent être utilisés sur d'autres dispositifs de transmission de couple, tels notamment que les doubles volants amortisseurs.
On rappelle qu'un double volant amortisseur comporte classiquement un volant d'inertie primaire, destiné à être couplé à un vilebrequin, et un volant d'inertie secondaire, destiné à être couplé à un arbre d'entrée d'une boîte de vitesses par l'intermédiaire d'un embrayage.
Les deux volants sont mobiles en rotation l'un par rapport à l'autre et sont couplés par l'intermédiaire notamment d'organes élastiques.
Des masses pendulaires peuvent être montées sur un support formé par un élément mobile du double volant amortisseur, tel par exemple qu'une rondelle de guidage, un voile annulaire ou un organe de phasage.
Les masses sont alors montées sur le support, en général par l'intermédiaire de rouleaux de guidage engagés dans des trous oblongs en arc de cercle des masses et du support. Les concavités des trous des masses sont opposées aux concavités des trous du support. Le mouvement des masses obtenu est du type pendulaire et est fonction de la forme des trous oblongs précités.
En fonctionnement, lors de la rotation de l'élément mobile sur lequel sont montées les masses, ces dernières se déplacent entre deux positions extrêmes.
Afin d'éviter que les masses s'entrechoquent à leurs extrémités circonférentielles ou que les rouleaux viennent en butée contre le fond des trous oblongs précités, le document DE 10 2009 042 836 propose de disposer des butées en matériau élastomère circonférentiellement entre les masses pendulaires. De cette manière, les masses pendulaires prennent appui, dans leurs positions extrêmes, contre les butées en élastomère, ce qui permet de réduire les bruits. Dans ce cas toutefois, un comportement aléatoire des masses pendulaires a été détecté, pour certaines conditions particulières de fonctionnement, notamment dans une plage de rotation du support mobile comprise par exemple entre 2500 et 3000 tours par minute. Les masses peuvent en effet se déplacer de façon asynchrone les unes par rapport aux autres, ce qui réduit les performances de l'amortissement pendulaire.
Le document FR 2 781 029 propose de relier les masses pendulaires par des maillons au niveau de leurs extrémités circonférentielles. Chaque maillon est articulé sur les extrémités circonférentielles de deux masses adjacentes, par l'intermédiaire de deux rivets, de façon à ce que les masses soient déplacées de façon synchrone les unes par rapport aux autres.
Le nombre important de liaisons articulées entre les maillons et les masses pendulaires génère du frottement, et donc un hystérésis et un retard de fonctionnement. Le déplacement des masses pendulaires se fait ainsi avec un certain retard par rapport aux explosions du moteur, ce retard pouvant aller jusqu'à générer une opposition de phase par rapport aux vibrations engendrées par les explosions. L'efficacité des moyens d'amortissement pendulaires est ainsi limitée, les vibrations pouvant même être amplifiées dans le cas d'une opposition de phase.
Le document CH 163 965 divulgue également des moyens de synchronisation des masses pendulaires, comportant une partie centrale pivotante, et des parties périphériques disposées circonférentiellement entre les masses pendulaires. Les parties périphériques sont montées pivotantes sur la partie centrale et au niveau de chacune des extrémités circonférentielles des masses pendulaires adjacentes correspondantes.
Cette solution comporte un grand nombre de liaisons articulées et présente les mêmes inconvénients que précédemment.
Le document WO 201 1/1 10153 propose des moyens de synchronisation des masses pendulaires comportant des entretoises en arc de cercle montées de façon mobile dans des ouvertures en arc de cercle ménagées dans le support des masses pendulaires. Les extrémités circonférentielles des masses comportent des plots s'étendant axialement à l'intérieur des ouvertures en arc de cercle et destinées à venir en appui de part et d'autre des entretoises. Les entretoises et les ouvertures correspondantes présentent des dimensions relativement importantes.
En fonctionnement, lors du déplacement des masses pendulaires par rapport au support, les plots poussent ou sont poussés par les entretoises, ces dernières se déplaçant également à l'intérieur des ouvertures en arc de cercle.
Dans cette solution, le glissement des entretoises et des plots à l'intérieur des ouvertures en arc de cercle génère des frottements importants et donc des retards de déplacement des masses par rapport aux vibrations générées par les explosions du moteur à combustion interne.
En outre, les ouvertures ménagées dans le support fragilisent ce dernier.
L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ce problème.
A cet effet, elle propose un dispositif de transmission de couple , comportant
- un support mobile, et
- des moyens d'amortissement pendulaire comportant au moins deux masses pendulaires, montées circonférentiellement et de façon mobile sur ledit support mobile, caractérisé en ce qu'il comporte
- au moins un organe de synchronisation qui est monté pivotant autour d'un pivot sur le support mobile et qui est disposé circonférentiellement entre les deux masses pendulaires, des extrémités circonférentielles desdites masses comportant des zones aptes à venir en appui sur l'organe de synchronisation de part et d'autre de celui-ci lors du déplacement desdites masses par rapport au support, en entraînant le pivotement de l'organe de synchronisation autour du pivot correspondant, de façon à synchroniser les déplacements desdites masses (26), caractérisé en ce que l'organe de synchronisation comporte
- une partie de synchronisation écartée radialement d'un axe de pivotement (X) de l'organe de synchronisation, et
- une partie de butée située au niveau de l'axe de pivotement (X), les extrémités des masses pendulaires tournées vers l'organe de synchronisation comportant chacune une première zone apte venir en appui sur la partie de synchronisation de l'organe de synchronisation lors du déplacement de la masse pendulaire correspondante par rapport au support, et une seconde zone apte à venir en appui contre la partie de butée de l'organe de synchronisation, dans une position extrême de la masse pendulaire et en ce que
- la partie de synchronisation de l'organe de synchronisation comporte deux zones concaves opposées, tournées en direction de chacune des masses pendulaires, les premières zones des extrémités circonférentielles des masses pendulaires comportant des doigts aptes à venir en appui sur les zones concaves.
L'organe de synchronisation pivote ainsi autour d'un seul pivot sur le support mobile, ce qui limite les frottements en fonctionnement et augmente l'efficacité des moyens d'amortissement pendulaire.
En outre, les extrémités circonférentielles des masses pendulaires viennent simplement en appui sur l'élément de synchronisation et peuvent donc être décollées légèrement de l'élément de synchronisation dans certaines positions, afin de respecter la trajectoire complexe des masses pendulaires en fonctionnement.
On rappelle que, dans l'art antérieur, les trajectoires des extrémités circonférentielles des masses sont imposées par leurs liaisons avec les moyens de synchronisation.
L'organe de synchronisation assure ainsi à la fois la fonction de synchronisation et la fonction de butée, en cas de saturation des moyens d'amortissement pendulaire. La partie de butée de l'organe de synchronisation et les secondes zones des masses pendulaires peuvent être conçues de façon à ce que leurs zones de contact soient situées au droit de l'axe de pivotement de l'organe de synchronisation.
De cette manière, la venue en butée de la masse pendulaire sur la partie de butée de l'organe de synchronisation ne provoque aucune rotation parasite de l'organe de synchronisation autour de son axe de rotation.
De préférence, la partie de synchronisation de l'organe de synchronisation comporte deux zones concaves opposées tournées en direction de chacune des masses pendulaires, les premières zones des extrémités circonférentielles des masses pendulaires comportant des doigts aptes à venir en appui sur les zones concaves.
Selon une autre caractéristique de l'invention, chacune des zones concaves de l'organe de synchronisation forme une zone de retenue intérieure proche de l'axe de pivotement et une zone de retenue extérieure éloignée de l'axe de pivotement, ladite zone de retenue intérieure et ladite zone de retenue extérieure étant conçues de façon à retenir les doigts à l'intérieur des zones concaves lorsque les masses pendulaires sont déplacées radialement vers l'intérieur et/ou vers l'extérieur.
L'organe de synchronisation assure ainsi également la fonction de maintien radial des masses pendulaires, au moins partiellement. Un tel maintien est nécessaire, en fonctionnement, lorsque les masses sont centrifugées radialement vers l'extérieur, ou en phase d'arrêt, lorsque certaines des masses peuvent tomber vers le bas, radialement vers l'intérieur.
Avantageusement, les doigts des masses pendulaires s'étendent circonférentiellement vers l'organe de synchronisation, au-delà des secondes zones des masses pendulaires.
En outre, les doigts des masses pendulaires peuvent avoir une forme arrondie complémentaire à une forme d'une surface de l'organe de synchronisation. Les doigts peuvent alors pivoter plus facilement autour de leur zone de contact avec l'organe de synchronisation.
L'organe de synchronisation peut être réalisé en matériau plastique, ce qui permet de réduire les bruits lors d'éventuels chocs avec les masses pendulaires.
Selon une possibilité de l'invention, le dispositif de transmission de couple comporte
- un élément d'entrée de couple,
- un élément de sortie de couple, l'élément d'entrée et l'élément de sortie étant mobiles en rotation l'un par rapport à l'autre,
- des organes élastiques montés entre les éléments d'entrée et de sortie de couple,
- un organe de phasage, les organes élastiques étant agencés en série par l'intermédiaire dudit organe de phasage, de façon à ce que les organes élastiques de chaque groupe se déforment en phase les uns avec les autres, les masses pendulaires étant montées de façon mobile sur l'organe de phasage, de part et d'autre de l'organe de synchronisation.
De plus, le dispositif de transmission de couple peut comporter au moins deux masses pendulaires montées d'un côté de l'organe de phasage et au moins deux masses pendulaires montées de l'autre côté de l'organe de phasage, un organe de synchronisation étant monté de chaque côté de l'organe de phasage, circonférentiellement entre les masses pendulaires correspondantes.
Cette caractéristique permet d'équilibrer l'ensemble, en proposant une structure symétrique.
Enfin, les masses pendulaires sont montées sur et entre deux supports mobiles, l'organe de synchronisation étant monté entre ces deux supports tout en étant monté pivotant sur au moins l'un des deux supports.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique d'un dispositif de transmission de couple selon l'invention, se présentant sous la forme d'un convertisseur de couple hydrodynamique,
- la figure 2 est une vue de face d'une partie du convertisseur de couple,
- la figure 3 est une vue de section selon la ligne A-A de la figure 2,
- la figure 4 est une vue de section selon la ligne B-B de la figure
2,
- les figures 5 à 7 sont des vues de détail en perspective, illustrant les extrémités circonférentielles de deux masses et l'organe de synchronisation, dans diverses positions de fonctionnement,
- les figures 8 et 9 sont des vues en coupe transversale, selon deux plans de coupe différents, illustrant une variante de réalisation de l'invention.
Un convertisseur de couple hydrodynamique selon l'invention est représenté schématiquement et de façon partielle à la figure 1 . Ce convertisseur permet de transmettre un couple d'un arbre de sortie d'un moteur à combustion interne d'un véhicule automobile, tel par exemple qu'un vilebrequin 1 , à un arbre d'entrée 2 d'une boîte de vitesses.
Le convertisseur de couple comporte classiquement une roue à aubes d'impulseur 3, apte à entraîner hydrocinétiquement une roue à aubes de turbine 4, par l'intermédiaire d'un réacteur 5.
La roue d'impulseur 3 est couplée au vilebrequin 1 et la roue de turbine 4 est couplée à un moyeu de turbine 6, lui-même couplé à deux rondelles de guidage 7, dites respectivement ci-après rondelle de guidage arrière 7a et rondelle de guidage avant 7b, en référence à leur position sur les figures 3 et 4. La rondelle de guidage avant 7b et le moyeu de turbine 6 sont montés pivotants autour d'un moyeu central cannelé 8, destiné à être couplé à l'arbre d'entrée 2 de la boîte de vitesses.
Le moyeu central 8 comporte notamment, de l'arrière vers l'avant, une première portion cylindrique 9, une seconde position cylindrique 10 autour de laquelle la rondelle de guidage arrière 7a est montée pivotante, une paroi radiale 1 1 tournée vers l'avant, et une troisième portion cylindrique 12 autour de laquelle le moyeu de turbine 6 est monté pivotant.
La rondelle de guidage avant 7b est montée autour du moyeu de turbine 6 et fixée à celui-ci. Les deux rondelles de guidage 7a, 7b s'étendent radialement et délimitent entre elles un espace interne 13 logeant des organes élastiques 14.
La rondelle de guidage arrière 7a comporte un rebord cylindrique 15 à sa périphérie radialement externe, s'étendant en direction de la rondelle de guidage avant 7b et fixé à celle-ci.
Un moyeu cannelé 16 est également fixé sur la face arrière de la rondelle de guidage arrière 7a. Ce moyeu cannelé 16 comporte une partie radiale 17 fixée sur ladite face arrière de la rondelle de guidage arrière 7a, et un rebord cylindrique cannelé 18 s'étendant vers l'arrière depuis la périphérie radialement externe de la partie radiale 17. La périphérie radialement interne 19 du moyeu cannelé 16 entoure la partie cylindrique 9 du moyeu central 8.
Un embrayage 20 (figure 1 ) permet de transmettre un couple du vilebrequin 1 aux rondelles de guidage 7a, 7b, dans une phase de fonctionnement déterminée, sans faire intervenir la roue d'impulseur 3 et la roue de turbine 4. Cet embrayage 20 comporte un élément d'entrée 21 couplé au vilebrequin et un élément de sortie, comprenant le moyeu cannelé 16.
Un voile annulaire 22 s'étendant radialement est monté dans l'espace interne 13 et est fixé sur le moyeu central 8, au niveau de sa face radiale 1 1 , par l'intermédiaire de rivets. Le voile annulaire 22 et les rondelles de guidage 7a, 7b comportent classiquement des fenêtres 23 servant à loger les organes élastiques 14.
Les organes élastiques 14 sont montés circonférentiellement entre le voile annulaire 22 et les rondelles de guidage 7a, 7b. Plus particulièrement, les organes élastiques 14 sont agencés par paires. Les organes élastiques 14a, 14b (figure 1 ) d'une même paire sont agencés en série par l'intermédiaire d'un organe de phasage commun 24, de façon à ce que les organes élastiques 14a, 14b se déforment en phase les uns avec les autres.
Des moyens d'amortissement pendulaire 25 sont montés sur l'organe de phasage 24.
Les moyens d'amortissement pendulaire 25 comportent des masses pendulaires 26 montées de façon mobile au niveau de la périphérie radialement externe de l'organe de phasage 24.
Plus particulièrement, les moyens d'amortissement pendulaires comportent douze masses pendulaires 26, six masses 26 étant disposées de chaque côté de la périphérie externe de l'organe de phasage 24. Les masses 26 sont agencées en regard les unes des autres et sont reliées deux à deux par des entretoises 27 (figures 5 à 7) traversant des trous oblongs ménagés dans l'organe de phasage 24. Ces entretoises 27 sont également aptes à rouler sur les bords des trous oblongs de l'organe de phasage 24, de façon à guider les masses pendulaires 26 lors de leur déplacement.
Les moyens d'amortissement pendulaire 25 et les organes élastiques 14 permettent d'absorber et d'amortir les vibrations et les acyclismes de rotation, dues notamment aux explosions du moteur à combustion interne. L'invention peut également s'appliquer à des dispositifs de transmission de couple dépourvus d'organes élastiques.
Des organes de synchronisation 28 en matériau plastique sont montés entre les extrémités circonférentielles 29 des masses pendulaires 26, de part et d'autre de l'organe de phasage 24. Les organes de synchronisation 28 comportent une partie de synchronisation 28a, radialement externe, et une partie de butée 28b, radialement interne. Les organes de synchronisation 28 sont montés pivotants autour de pivots cylindriques 30 portés par l'organe de phasage 24, au niveau de leur partie de butée 28b. Chaque pivot 30 traverse un trou de l'organe de phasage 24 et sert au montage de deux organes de synchronisation 28, disposés en regard l'un de l'autre.
Les extrémités des pivots 30 comportent des anneaux élastiques 31 ou circlips, montés dans des gorges des pivots 30, de façon à immobiliser axialement les organes de synchronisation 28.
Les parties de butée 28b ont une forme globalement cylindrique et sont traversées par les pivots 30. Les parties de synchronisation 28a s'étendent depuis les parties de butées 28b et comportent chacune deux zones latérales opposées de forme concave 32, agencées de façon symétrique par rapport à un plan passant par l'axe X de rotation de l'organe de synchronisation 28 correspondant.
Les extrémités circonférentielles 29 des masses pendulaires comportent chacune une première zone située radialement à l'extérieur, formant un doigt 33 dont l'extrémité arrondie est destinée à venir en appui dans la zone concave 32 correspondante de l'organe de synchronisation 28 correspondant.
Les extrémités circonférentielles 29 des masses pendulaires comportent en outre des secondes zones 34 présentant des surfaces planes et s'étendant radialement, destinées à venir en appui sur les parties de butée 28b des organes de synchronisation 28. L'effort appliqué d'une masse 26 sur l'organe de synchronisation 28 est sensiblement perpendiculaire à la surface formée par une seconde zone 34 et passe par l'axe X de l'organe de synchronisation 28.
Les doigts arrondis 33, situés à la périphérie radialement externe des masses pendulaires 26, sont reliés à la seconde zone 34 par une paroi 35 sensiblement plane et s'étendant de façon oblique par rapport à la direction radiale. Les doigts 33 des masses pendulaires 26 s'étendent ainsi circonférentiellement vers l'organe de synchronisation 28, au-delà des secondes zones 34 des masses pendulaires 26.
Les formes et les dimensions des masses pendulaires 26 et des organes de synchronisation 28 sont telles que, après montage, les doigts 33 des masses pendulaires 26 sont retenus à l'intérieur des zones concaves 32 des organes de synchronisation 28, quelle que soit la position desdites masses pendulaires 26 et desdits organes de synchronisation 28.
En effet, les doigts 33 sont aptes à venir en butée contre les parties périphériques externes et internes des zones concaves 32, de façon à empêcher le retrait accidentel des doigts 33 hors de ces zones concaves 32 et assurer ainsi le maintien radial des masses pendulaires 26.
En fonctionnement, la rondelle de phasage 24 est entraînée en rotation, entraînant le déplacement des masses pendulaires 26 par rapport à la rondelle de phasage 24, de façon synchrone, par l'intermédiaire des organes de synchronisation 28 qui pivotent autour des pivots 30 (figures 5 et 6). Le déplacement synchrone signifie que les masses 26 sont déplacées en même temps, et dans le même sens.
Lors du déplacement des masses pendulaires 26, les doigts 33 pivotent et glissent légèrement sur les faces concaves 32 correspondantes. Comme représenté à la figure 7, lorsque le déplacement des masses 26 est important, celui-ci est limité par appui des secondes zones 34 sur la partie cylindrique de butée 28b. Les zones de contact entre les secondes zones 34 et les parties de butée 28b sont des lignes situées au droit de l'axe X de pivotement de l'organe de synchronisation 28.
Dans cette position extrême, la face oblique 35 ne prend pas appui sur l'organe de synchronisation 28. En effet, les formes des organes de synchronisation 28 et des extrémités circonférentielles 29 des masses pendulaires 26 sont telles que les zones d'appui entre ces différents éléments sont strictement limitées aux doigts 33 et aux secondes zones 34, pour ce qui concerne les masses pendulaires 26, ainsi qu'aux zones concaves 32 et aux zones cylindriques de butée 28b, pour ce qui concerne les organes de synchronisation 28.
A titre d'exemple, le débattement angulaire des organes de synchronisation 28 est compris entre - 50° et + 50°.
En cas d'arrêt, les masses pendulaires 26 qui ne sont plus centrifugées peuvent retomber sous l'effet de leur propre poids. Dans ce cas, la chute de certaines des masses 26 est limitée par appui des doigts 33 sur les bords internes 35 (figures 5 à 7) des zones concaves 32.
Un jeu de fonctionnement peut être prévu entre les doigts 33 et les zones concaves 32, ce jeu étant supérieur aux tolérances de fabrication, par exemple inférieur à 2 mm. Le jeu doit être relativement faible afin de ne pas désynchroniser les masses pendulaires 26.
Les figures 8 et 9 décrivent une variante de réalisation dans laquelle les masses pendulaires 26 et les organes de synchronisation 28 sont montés axialement entre deux supports, par exemple entre deux rondelles de guidage 7a, 7b.
Dans ce cas, les organes de synchronisation 28 sont montés pivotants autour de pivots cylindriques 30, dont les extrémités sont montées dans des trous des rondelles de synchronisation 7a, 7b et sont immobilisées axialement à l'aide de circlips 36 engagés dans des gorges ménagées dans lesdites extrémités.
De même, les masses pendulaires 26 sont montées axialement entre les deux rondelles de guidage 7a, 7b, par l'intermédiaire de rouleaux 37 dont les extrémités sont engagées dans des trous oblongs des rondelles de guidage 7a, 7b.
Enfin, des entretoises 38, situées radialement à l'intérieur des organes de synchronisation 28 et des masses pendulaires 26, relient axialement les deux rondelles de guidage 7a, 7b. Les entretoises 38 se présentent par exemple sous la forme d'un rivet.
De tels moyens d'amortissement pendulaire 25 permettent de filtrer efficacement les vibrations, pour une vitesse de rotation du moteur comprise par exemple entre 1000 et 7000 tours par minute, tout en générant peu de bruits en fonctionnement. En outre, compte tenu des faibles frottements en jeu, les retards entre le déplacement des masses pendulaires 26 et les explosions du moteur à combustion interne sont très faibles.
De tels moyens d'amortissement pendulaire 25 peuvent également être appliqués à un dispositif de transmission de couple du type double volant amortisseur, par exemple, sans que cela ne modifie le principe de fonctionnement. Dans ce cas, les masses pendulaires 26 et les organes de synchronisation 28 peuvent être montés sur une rondelle de guidage, sur un voile annulaire ou encore sur une rondelle de phasage du double volant amortisseur.
D'une manière générale, les masses pendulaires 26 et les organes de synchronisation 28 peuvent être montés sur tout type de support mobile associé directement ou indirectement à un vilebrequin, tel qu'un voile et/ou un volant secondaire d'un double volant amortisseur (DVA), qu'un couvercle d'embrayage double ou simple, ou encore être associés à un élément lié au vilebrequin.

Claims

REVENDICATIONS
1 . Dispositif de transmission de couple, comportant
- un support mobile (24), et
- des moyens d'amortissement pendulaire (25) comportant au moins deux masses pendulaires (26), montées circonférentiellement et de façon mobile sur ledit support mobile (24), caractérisé en ce qu'il comporte
- au moins un organe de synchronisation (28) qui est monté pivotant autour d'un pivot (30) sur le support mobile (24) et qui est disposé circonférentiellement entre les deux masses pendulaires (26), des extrémités circonférentielles (29) desdites masses comportant des zones (33) aptes à venir en appui sur l'organe de synchronisation (28) de part et d'autre de celui-ci lors du déplacement desdites masses (26) par rapport au support (24), en entraînant le pivotement de l'organe de synchronisation (28) autour du pivot correspondant (30), de façon à synchroniser les déplacements desdites masses (26), caractérisé en ce que l'organe de synchronisation comporte
- une partie de synchronisation (28a) écartée radialement d'un axe de pivotement (X) de l'organe de synchronisation, et
- une partie de butée (28b) située au niveau de l'axe de pivotement
(X), les extrémités (29) des masses pendulaires (26) tournées vers l'organe de synchronisation (28) comportant chacune une première zone (33) apte venir en appui sur la partie de synchronisation (28a) de l'organe de synchronisation (28) lors du déplacement de la masse pendulaire (26) correspondante par rapport au support (24), et une seconde zone (34) apte à venir en appui contre la partie de butée (28b) de l'organe de synchronisation (28), dans une position extrême de la masse pendulaire (26), et en ce que
- la partie de synchronisation (28a) de l'organe de synchronisation (28) comporte deux zones concaves (32) opposées, tournées en direction de chacune des masses pendulaires (26), les premières zones des extrémités circonférentielles (29) des masses pendulaires (26) comportant des doigts (33) aptes à venir en appui sur les zones concaves (31 ).
2. Dispositif de transmission de couple selon la revendication 1 , caractérisé en ce que la partie de butée (28b) de l'organe de synchronisation (28) et les secondes zones (34) des masses pendulaires (26) sont conçues de façon à ce que leurs zones de contact soient situées au droit de l'axe de pivotement (X) de l'organe de synchronisation (28).
3. Dispositif de transmission de couple selon la revendication 2, caractérisé en ce que la partie de synchronisation (28a) de l'organe de synchronisation (28) comporte deux zones concaves (32) opposées, tournées en direction de chacune des masses pendulaires (26), les premières zones des extrémités circonférentielles (29) des masses pendulaires (26) comportant des doigts (33) aptes à venir en appui sur les zones concaves (31 ).
4. Dispositif de transmission de couple selon la revendication 3, caractérisé en ce que chacune des zones concaves (32) de l'organe de synchronisation (28) forme une zone de retenue intérieure proche de l'axe de pivotement (X) et une zone de retenue extérieure éloignée de l'axe de pivotement, ladite zone de retenue intérieure et ladite zone de retenue extérieure étant conçues de façon à retenir les doigts (33) à l'intérieur des zones concaves (32) lorsque les masses pendulaires (26) sont déplacées radialement vers l'intérieur et/ou vers l'extérieur.
5. Dispositif de transmission de couple selon l'une des revendications 3 à 4, caractérisé en ce que les doigts (33) des masses pendulaires (26) s'étendent circonférentiellement vers l'organe de synchronisation (28), au-delà des secondes zones (34) des masses pendulaires (26).
6. Dispositif de transmission de couple selon l'une des revendications 3 à 5, caractérisé en ce que les doigts (33) des masses pendulaires (26) ont une forme arrondie complémentaire à une forme d'une surface (32) de l'organe de synchronisation (28).
7. Dispositif de transmission de couple selon l'une des revendications 1 à 6, caractérisé en ce que l'organe de synchronisation (28) est réalisé en matériau plastique.
8. Dispositif de transmission de couple selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte :
- un élément d'entrée de couple (7),
- un élément de sortie de couple (22, 8), l'élément d'entrée (7) et l'élément de sortie (22, 8) étant mobiles en rotation l'un par rapport à l'autre,
- des organes élastiques (14) montés entre les éléments d'entrée et de sortie de couple (7, 22, 8),
- un organe de phasage (24), les organes élastiques (14a, 14b) étant agencés en série par l'intermédiaire dudit organe de phasage (24), de façon à ce que les organes élastiques (14a, 14b) de chaque groupe se déforment en phase les uns avec les autres, les masses pendulaires (26) étant montées de façon mobile sur l'organe de phasage (24), de part et d'autre de l'organe de synchronisation (28).
9. Dispositif de transmission de couple selon la revendication 8, caractérisé en ce qu'il comporte au moins deux masses pendulaires (26) montées d'un côté de l'organe de phasage (24) et au moins deux masses pendulaires (26) montées de l'autre côté de l'organe de phasage (24), un organe de synchronisation (28) étant monté de chaque côté de l'organe de phasage, circonférentiellement entre les masses pendulaires (26) correspondantes.
10. Dispositif de transmission de couple selon l'une des revendications 1 à 7, caractérisé en ce que les masses pendulaires (26) sont montées sur et entre deux supports mobiles (7a, 7b), l'organe de synchronisation (28) étant monté entre ces deux supports (7a, 7b) tout en étant monté pivotant sur au moins l'un des deux supports.
PCT/FR2013/050162 2012-01-26 2013-01-25 Dispositif de transmission de couple pour vehicule automobile WO2013121123A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250778 2012-01-26
FR1250778A FR2986296B1 (fr) 2012-01-26 2012-01-26 Dispositif de transmission de couple pour vehicule automobile

Publications (1)

Publication Number Publication Date
WO2013121123A1 true WO2013121123A1 (fr) 2013-08-22

Family

ID=47714448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050162 WO2013121123A1 (fr) 2012-01-26 2013-01-25 Dispositif de transmission de couple pour vehicule automobile

Country Status (2)

Country Link
FR (1) FR2986296B1 (fr)
WO (1) WO2013121123A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186777A1 (fr) * 2014-06-05 2015-12-10 ヴァレオユニシアトランスミッション株式会社 Amortisseur muni d'un dispositif d'absorption de vibrations de type à pendule centrifuge intégré

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204711A1 (de) * 2013-03-18 2014-09-18 Zf Friedrichshafen Ag Tilgerschwingungsdämpfer
FR3010475B1 (fr) * 2013-09-10 2015-08-21 Valeo Embrayages Dispositif d'amortissement pendulaire
FR3032251B1 (fr) * 2015-01-30 2019-11-15 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
US11396923B2 (en) * 2020-09-15 2022-07-26 Schaeffler Technologies AG & Co. KG Centrifugal pendulum absorber with radial travel stop

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH163965A (de) 1932-03-14 1933-09-15 Sulzer Ag Vorrichtung auf Wellen zur Verminderung von torsionsschwingungen mittelst pendelnder Massen.
FR2781029A1 (fr) 1998-07-11 2000-01-14 Freudenberg Carl Fa Amortisseur de vibrations s'adaptant a la vitesse de rotation
DE102004011830A1 (de) * 2003-03-14 2004-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer
EP1744074A2 (fr) * 2005-07-11 2007-01-17 LuK Lamellen und Kupplungsbau Beteiligungs KG Dispositif de transmission de couple
DE102009042836A1 (de) 2008-11-24 2010-05-27 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fliehkraftpendel
US20100269497A1 (en) 2009-04-27 2010-10-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamic torque converter
WO2011110153A1 (fr) 2010-03-11 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Dispositif d'amortissement d'oscillation de torsion
DE102011102812A1 (de) * 2010-06-14 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Fliehkraftpendeleinrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH163965A (de) 1932-03-14 1933-09-15 Sulzer Ag Vorrichtung auf Wellen zur Verminderung von torsionsschwingungen mittelst pendelnder Massen.
FR2781029A1 (fr) 1998-07-11 2000-01-14 Freudenberg Carl Fa Amortisseur de vibrations s'adaptant a la vitesse de rotation
DE102004011830A1 (de) * 2003-03-14 2004-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer
EP1744074A2 (fr) * 2005-07-11 2007-01-17 LuK Lamellen und Kupplungsbau Beteiligungs KG Dispositif de transmission de couple
DE102009042836A1 (de) 2008-11-24 2010-05-27 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fliehkraftpendel
US20100269497A1 (en) 2009-04-27 2010-10-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamic torque converter
WO2011110153A1 (fr) 2010-03-11 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Dispositif d'amortissement d'oscillation de torsion
DE102011102812A1 (de) * 2010-06-14 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Fliehkraftpendeleinrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186777A1 (fr) * 2014-06-05 2015-12-10 ヴァレオユニシアトランスミッション株式会社 Amortisseur muni d'un dispositif d'absorption de vibrations de type à pendule centrifuge intégré
JPWO2015186777A1 (ja) * 2014-06-05 2017-04-20 ヴァレオユニシアトランスミッション株式会社 遠心振子式振動吸収装置一体型ダンパ
US10323714B2 (en) 2014-06-05 2019-06-18 Valeo Unisia Transmissions K. K. Damper with integrated centrifugal pendulum-type vibration absorbing device

Also Published As

Publication number Publication date
FR2986296A1 (fr) 2013-08-02
FR2986296B1 (fr) 2017-03-03

Similar Documents

Publication Publication Date Title
EP2839181B1 (fr) Dispositif d'amortissement pendulaire, en particulier pour une transmission de véhicule automobile
EP2667050B1 (fr) Dispositif de transmission de couple pour un véhicule automobile
EP3380750B1 (fr) Dispositif d'amortissement pendulaire
EP2721317B1 (fr) Dispositif d'amortissement de torsion comportant des masselottes pendulaires decalees axialement par rapport a des rondelles de guidage
FR2990736A1 (fr) Dispositif de transmission de couple pour vehicule automobile
EP2711576A1 (fr) Dispositif de transmission de couple pour un véhicule automobile
WO2013121123A1 (fr) Dispositif de transmission de couple pour vehicule automobile
FR3011603A1 (fr) Double volant amortisseur equipe d'un amortisseur pendulaire
FR3011602A1 (fr) Double volant amortisseur equipe d'un amortisseur pendulaire
WO2015049477A1 (fr) Double volant amortisseur equipe d'un amortisseur pendulaire
FR2754034A1 (fr) Double volant amortisseur, notamment pour vehicule automobile, comportant des moyens perfectionnes d'amortissement par friction des vibrations
EP3044474B1 (fr) Dispositif d'amortissement pendulaire
WO2014188106A1 (fr) Dispositif de transmission de couple pour un vehicule automobile
EP3212959B1 (fr) Dispositif d'amortissement d'oscillations de torsion
FR3020425A1 (fr) Dispositif de transmission de couple pour un vehicule automobile
FR3033187A1 (fr) Dispositif d'amortissement pendulaire
FR3011604A1 (fr) Double volant amortisseur equipe d'un amortisseur pendulaire
WO2018037180A1 (fr) Dispositif de transmission de couple
FR3027643A1 (fr) Dispositif d'amortissement des vibrations
FR3018883A1 (fr) Dispositif d'amortissement pendulaire
FR3010163A1 (fr) Dispositif d'amortissement pendulaire
WO2017174583A1 (fr) Ensemble pour dispositif de transmission de couple, dispositif de transmission de couple, et leurs procedes de montage
FR3075288B1 (fr) Dispositif de transmission avec moyen d'equilibrage
FR3034155A1 (fr) Dispositif d'amortissement d'oscillations de torsion
EP3205901B1 (fr) Amortisseur de torsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13704210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13704210

Country of ref document: EP

Kind code of ref document: A1