WO2013120923A1 - Installation photovoltaïque adaptée à l'altitude - Google Patents

Installation photovoltaïque adaptée à l'altitude Download PDF

Info

Publication number
WO2013120923A1
WO2013120923A1 PCT/EP2013/052920 EP2013052920W WO2013120923A1 WO 2013120923 A1 WO2013120923 A1 WO 2013120923A1 EP 2013052920 W EP2013052920 W EP 2013052920W WO 2013120923 A1 WO2013120923 A1 WO 2013120923A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
duct
roof
building
installation according
Prior art date
Application number
PCT/EP2013/052920
Other languages
English (en)
Inventor
Ernest BRACCO
Original Assignee
Radiosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radiosa filed Critical Radiosa
Priority to EP13707572.7A priority Critical patent/EP2815188A1/fr
Publication of WO2013120923A1 publication Critical patent/WO2013120923A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/16Arrangement of interconnected standing structures; Standing structures having separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/55Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/70Preventing freezing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic installation suitable for use in the mountains.
  • the invention will find its application in high-altitude areas where sunshine allows the use of photovoltaic panels but where snow is an obstacle to the use of this technology.
  • the choice of the location of the photovoltaic panels must be studied to obtain satisfactory performance.
  • the performance of photovoltaic panels is a function of sunlight and radiation. Sunlight, the number of hours of sunlight, and radiation in joules per cm 2 , increases with altitude.
  • the present invention relates to an installation of photovoltaic panels where the panels are arranged in dihedron.
  • the dihedron more precisely the salient angle of the dihedron, faces a roof or a base where the installation is mounted.
  • the panels thus form, with the roof or the base, a duct where an air inlet opens.
  • the air is preferentially derived from a building on which the installation is mounted.
  • the air comes from inside the building.
  • the duct formed by the photovoltaic panels positioned in dihedral is configured to allow air circulation under the panels and limit the accumulation of snow and / or frost on the photovoltaic panels.
  • the shape of the dihedral favors the fall of the snow and advantageously the air circulating there brings a general warming of the photovoltaic panels causing the melting of snow and / or frost.
  • This configuration is interesting because it limits the accumulation of snow on the panels. It is indeed preferred to limit the laying and accumulation of snow and / or frost rather than trying to melt what has accumulated.
  • the air comes from a controlled mechanical ventilation, or VMC, or frost heating of a building, preferably the building on which the photovoltaic installation is placed.
  • VMC controlled mechanical ventilation
  • frost heating of a building, preferably the building on which the photovoltaic installation is placed.
  • the air resulting from the ventilation is advantageously at a temperature higher than the winter outdoor ambient temperature.
  • the present invention relates to a photovoltaic installation characterized in that it comprises a plurality of photovoltaic panels arranged in dihedron, intended to be positioned on a building roof so that the dihedral angle is intended to form a salient angle disposed to the eye roof and form with the roof, an air duct configured to receive and allow a flow of air from the building.
  • the invention is such that: the duct comprises means for evacuating the air out of the duct;
  • the evacuation means is disposed at a first open end of the duct
  • the duct comprises an air intake from the building, located near the second obstructed end of the duct; the duct is inclined so that the first emergent end is disposed at a level of height greater than the height level of the second obstructed end of the duct;
  • the duct comprises at its first open end an upper outlet portion and a lower obstructed portion and the discharge means comprises a part configured to direct the air flowing to the lower portion and then to the upper portion;
  • the photovoltaic panels are assembled together by the top of the dihedron;
  • the photovoltaic panels are not thermally insulated
  • the duct extends in a main direction and has in cross section to this main direction, a triangle shape whose two adjacent sides are formed by the photovoltaic panels and the other side is formed by the roof;
  • the triangle is an isosceles triangle
  • the photovoltaic panels are assembled together and on the roof so as to form an airtight conduit with the exception of an air inlet and an air evacuation means;
  • the photovoltaic panels are assembled together and on the roof so as to form an airtight air duct;
  • the invention also relates to a method of mounting a photovoltaic installation as described above, characterized in that it comprises laying on the roof of a building a plurality of photovoltaic panels arranged in a dihedron whose salient angle dihedral is arranged facing the roof to form with the roof a duct receiving air from the building.
  • the roof is sealed before the installation of the photovoltaic panels
  • FIG. 1 represents a view from above of a photovoltaic installation according to the invention.
  • Figure 2 shows a side view of a photovoltaic installation according to the invention placed at the roof of a building.
  • Figure 3 is a view according to section AA of Figure 1.
  • FIG. 4 is a view according to section BB of FIG.
  • FIGS 5 to 8 illustrate several non-limiting examples of the dihedron formed by the photovoltaic panels according to the invention.
  • the photovoltaic installation according to the invention comprises at least two photovoltaic panels 1 advantageously arranged in dihedron 4.
  • the installation comprises a plurality of photovoltaic panels 1 arranged with respect to one another to form a duct 2 with a base.
  • the panels 1 are positioned in a dihedral 4 advantageously on a base.
  • the dihedron 4 is oriented so that the projecting angle of the dihedron 3 is facing the base.
  • the duct 2 thus takes a triangular shape in which two sides consist of photovoltaic panels 1, the third side being formed by the base.
  • the duct 2 extends in a main direction and has, in a section transverse to this main direction, a triangle shape, for example an isosceles triangle, whose sides of the same length are formed by at least two photovoltaic panels 1 joined to their top and whose other side is formed by the base.
  • a triangle shape for example an isosceles triangle
  • This dihedral configuration of photovoltaic panels facilitates the flow of water and snow that can settle there.
  • this dihedral shape increases the area of photovoltaic panels 1 for a given base area.
  • the efficiency of the photovoltaic installation according to the invention is thus improved.
  • the photovoltaic installation 1 is mounted on a base 18 preferably placed above a plenum 16.
  • This base 18, or plenum 16 can be disposed on a roof 7 of a building whether for residential use, industrial , a cabin ...
  • the conduit 2 comprises a first end 9 and a second end 10.
  • One of the two ends 9, 10 is at least partially obstructed, preferably completely obstructed and the other end is open.
  • the duct 2 comprises an air inlet 8.
  • the air 5 opens and circulates in the duct 2 through the air inlet 8.
  • the air inlet 8 be arranged near the obstructed end 10 so that the air injected into the conduit 2 travels as far as possible to an evacuation means.
  • the air evacuation means is preferably arranged at the first end 9 which is advantageously open.
  • the air 5 is preferably from the building adjacent to the installation or on which it is directly mounted.
  • the building defines an interior volume from which air 5 is preferentially derived. The air 5 coming from the building, more precisely from inside the building, is warmed up.
  • the air 5 is preferably used to control the temperature of the photovoltaic panels 1, ca ren altitude during the winter period, the photovoltaic panels 1 may commonly be covered with frost and / or snow greatly limiting the use of the installation photovoltaic.
  • the air 5 is advantageously at a temperature different from the ambient temperature outside the pipe 2. For example, during the winter, from the first night frosts, the air 5 is at a temperature above the temperature outdoor ambient. Preferably, the air 5 is at a temperature above a threshold temperature where snow and ice can accumulate on the photovoltaic panels 1.
  • the air 5 controls the temperature of the photovoltaic panels 1, this time being at a temperature below the ambient temperature outside the duct 2.
  • the installation according to the invention is particularly effective when the photovoltaic panels 1 do not have insulation on their faces turned towards the inside of the duct 2, also called internal faces of the photovoltaic panels 1. In this way, the heat exchange between the air 5 and the photovoltaic panels 4 is rather optimal.
  • the photovoltaic panels 1 are configured to transmit their heating due to their operation to the air flowing in the circuit 2. This allows to heat the air duct 2.
  • the air coming from the building is brought into the duct 2 by means of ventilation.
  • the ventilation expelling the air 5 in the duct 2 can be a conventional ventilation with control of the air temperature 5 or advantageously it is a mechanically controlled ventilation (or VMC) of the building on which the photovoltaic installation is installed.
  • VMC is a set of devices intended to ensure the renewal of the air inside a building. Ventilation is also linked to the frost-free heating system, which keeps a building's pipes at a temperature above the freezing temperature. Air 5 from a building and injected into the duct 2 of an installation according to the invention has therefore previously circulated in the building. The air 5 is therefore at a relatively constant temperature throughout the year, for example 20 ° C ⁇ 5 ° C.
  • the air 5 in this temperature range will be hotter than the outside air, and advantageously the temperature of the photovoltaic panels 1, for heating the photovoltaic panels 1, preventing or limiting the accumulation of frost and / or of snow.
  • the air 5 is advantageously cooler than the outside air, and advantageously the temperature of the photovoltaic panels 1, for cooling the photovoltaic panels 1 to limit or reduce their heating and also improving the performance of the installation.
  • the base 18, placed for example on the roof 7 and forming the base of the conduit 2 is an insulator, for example a multi-ply wood and / or polyurethane.
  • the base 18 is advantageously airtight or watertight.
  • the plenum 16 space in which air is present, is advantageously thermally insulated to limit the heat exchange with the building more particularly when the building is for residential use.
  • the duct 2 is configured to be watertight and air-free except the outlet end 9 and the air inlet 8.
  • the photovoltaic panels 1 are assembled to each other by the top of the dihedron 4 by fixing means 15 creating a seal to air and water. Sealing must be done vis-à-vis the external water duct 2 to limit any entry of water into the duct 2 while the airtightness is vis-à-vis the air circulating 5 in the conduit 2 so that it evacuated only by the evacuation means.
  • Each corner of the dihedron 4 may be formed of one or more photovoltaic panels 1 also preferably assembled to each other by airtight and water-proof fastening means.
  • the dihedron 4 is fixed on the base 18, more generally on the roof 7. Each section of the dihedron 4 is fixed in the lower part by an airtight and watertight fastening means.
  • the installation comprises thermal insulation means 1 4 between the fixing means 15 and the photovoltaic panels 1.
  • the insulation means 14 advantageously placed in the corners of the dihedron 4 is preferably made of polyurethane.
  • the conduit 2 of the installation is inclined.
  • the obstructed end 10 is placed at a level of height lower than that of the open end 9.
  • the inclination of the duct 2 promotes the circulation of the air 5 in the duct 2 since the hottest air 5 tends to rise in altitude.
  • the air 5 thus acts on the entire length of the duct 2.
  • the open end 9 comprises a lower portion 12 obstructed, closer to the base, the roof 7, the plenum 16 and an upper portion 1 1 opening.
  • the upper portion 1 1 is located at the top of the dihedron 4 while the lower portion 12 is located at the base of the dihedron 4.
  • the discharge means disposed at the open end 9 of the duct 2 comprises a piece obstructing the upper portion 1 1 of the open end 9 and leaving the lower portion 12 open.
  • the evacuation means orients the air flow so that the air first passes through the lower portion 12 and then remains towards the upper portion 1 January.
  • the obstructing piece is polyurethane.
  • the obstructed end 10 is obstructed by a polyurethane part.
  • This arrangement of the part partially obstructing the open end 9 in the upper portion 1 1 makes it possible to maintain the air 5 in the duct 2 as long as its temperature has not fallen and is therefore used in heat the photovoltaic areas 1.
  • the air 5 arriving at the outlet end 9 is blocked by the obstructing part in the upper portion 1 1 of the duct 2.
  • the air 5 cools gradually and tends to lower in altitude in the duct 2, it can then escape through the lower portion 1 1 of the open end 9.
  • the temperature variation between the air 5 located in the upper portion 12 and the air 5 escaping through the lower portion 11 is of the order of 2 to 4 ° C.
  • the obstructing piece preferably has a shape complementary to the top of the dihedron 4 and comprises an inclined face towards the top of the dihedron 4 and the top of the duct 2 at the bottom part so as to accompany the evacuation of the air 5. It is preferred in this case to place a protective plate 17 at the open end 9 of the duct 2 to limit the intrusions of air and water
  • the highest outlet end 9 is oriented towards the north while the obstructed end 10, the lower end of the two ends, is oriented towards the south. This orientation increases the exposure of the installation and therefore its performance.
  • the inclination of the duct 2 is advantageously between 10 ° and 45 ° relative to the horizontal.
  • the inclination and the orientation of the duct 2 can be distinct from those of the roof 7 on which the installation is placed.
  • the third year is based on the con fl icting and geographic con ditions of the facility.
  • the base angles of the duct 2, the other two angles of the duct 2 complementary to the dihedral angle 3 salient, may or may not be identical.
  • the angles are advantageously between 20 ° and 60 °. They are preferably determined according to the inclination of the duct 2.
  • the dimensions of the photovoltaic panels may be different between the ducts 2 and between the two sides of a dihedron.
  • the installation may comprise several ducts 2 which may each have an inclination and a form of dihedron adapted.
  • the installation advantageously comprises gutters 13 placed between the cond u icts 2 to r smooth the flow of water and / or slush.
  • the gutters 13 are for example formed by a metal plate joining a section of each dihedron 4 so as to recover the water flowing on each of the sides.
  • the gutters 13 are formed by the fastening means of the dihedral sections.
  • the means for fixing two adjacent sections of two consecutive dihedrums simultaneously allows the assembly of the roof panels and the formation of a gut 13.
  • the fastening means is then formed by a piece having a flared "U" shape.
  • the plenum 16 is disposed on carrier beams 6 preferably extending substantially perpendicular and in a plane parallel to the duct 2.
  • the photovoltaic panels 1 are themselves subjected to strong temperature variations ranging from + 50 ° C to -50 ° C. It is therefore preferred to use monocrystalline photovoltaic panels 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

La présente invention concerne une installation photovoltaïque caractérisée par le fait qu'elle comprend une pluralité de panneaux photovoltaïques disposés en dièdre, chaque dièdre (4) étant destiné à être positionné sur un toit de bâtiment de sorte que l'angle dièdre soit destiné à former un angle saillant disposé au regard dut toit (7) et forme avec le toit (7), un conduit d'air configuré pour recevoir et permettre la circulation de l'air issu du bâtiment ou bien autre, dont la température sera: l'hiver supérieure à celle de la fonte de la neige ou du givre et glace; l'été inférieure à celle de l'air extérieur au dièdre. L'invention trouvera son application dans les régions d'altitude où l'ensoleillement et le rayonnement sont les plus élevés et où le rendement des panneaux photovoltaïques est le plus fort en éliminant les inconvénients et les aléas de l'enneigement qui y fait obstacle.

Description

« Installation photovoltaïque adaptée à l'altitude »
La présente invention concerne une installation photovoltaïque adaptée à une utilisation en montagne.
L'invention trouvera son application dans les régions d'altitude où l'ensoleillement permet l'utilisation de panneaux photovoltaïques mais où l'enneigement fait obstacle à l'utilisation de cette technologie.
L'exploitation de l'énergie photovoltaïque se développe de manière croissante pour tenter de trouver des énergies renouvelables alternatives à l'énergie fossile.
Le choix de l'emplacement des panneaux photovoltaïques doit être étudié pour obtenir un rendement satisfaisant. Le rendement des panneaux photovoltaïques est fonction de l'ensoleillement et du rayonnement. Or l'ensoleillement, soit le nombre d'heures de soleil, et le rayonnement en joules par cm2, augmentent avec l'altitude.
Il est donc très intéressant d'envisager la mise en place de panneaux photovoltaïques en altitude.
A ce jour, ce type d'exploitation n'est cependant pas envisagé car la neige et le givre présents en altitude tendent à recouvrir les panneaux photovoltaïques une large période de l'année engendrant une perte nette de rendement qui empêche ce type d'installation d'être rentable. Il existe donc le besoin de proposer une installation photovoltaïque adaptée aux conditions climatiques d'altitude.
A cet effet, la présente invention concerne une installation de panneaux photovoltaïques où les panneaux sont disposés en dièdre. Le dièdre, plus précisément l'angle saillant du dièdre, fait face à un toit ou à une base où l'installation est montée. Les panneaux forment ainsi, avec le toit ou la base, un conduit où débouche une arrivée d'air. L'air est issu préférentiellement d'un bâtiment sur lequel l'installation est montée. Avantageusement, l'air est issu de l'intérieur du bâtiment. Le conduit formé par les panneaux photovoltaïques positionnés en dièdre est configuré pour permettre une circulation d'air sous les panneaux et limiter l'accumulation de neige et/ou de givre sur les panneaux photovoltaïques. La forme du dièdre favorise la chute de la neige et avantageusement l'air y circulant amène un réchauffement général des panneaux photovoltaïques entraînant la fonte de la neige et/ou du givre. Cette configuration est intéressante car elle permet de limiter l'accumulation de neige sur les panneaux. Il est en effet préféré de limiter la pose et l'accumulation de la neige et/ou du givre plutôt que de tenter de faire fondre ce qui s'est accumulé.
Selon un mode de réalisation préféré, l'air est issu d'une ventilation mécanique contrôlée, ou VMC, ou du chauffage hors-gel d'un bâtiment, préférentiellement du bâtiment sur lequel est placée l'installation photovoltaïque. L'air issu de la ventilation est avantageusement à une température supérieure à la température ambiante extérieure hivernale.
D'autres buts et avantages apparaîtront au cours de la description qui suit qui présente un mode de réalisation de l'invention illustratif mais non limitatif.
La présente invention concerne une installation photovoltaïque caractérisée par le fait qu'elle comprend une pluralité de panneaux photovoltaïques disposés en dièdre, destinée à être positionnée sur un toit de bâtiment de sorte que l'angle dièdre soit destiné à former un angle saillant disposé au regard du toit et forme avec le toit, un conduit d'air configuré pour recevoir et permettre une circulation d'air issu du bâtiment.
Suivant des variantes préférées mais non limitatives, l'invention est telle que : - le conduit comprend un moyen d'évacuation de l'air hors du conduit ;
- le moyen d'évacuation est disposé au niveau d'une première extrémité débouchante du conduit ;
- la deuxième extrémité du conduit est obstruée ;
- le conduit comprend une arrivée d'air issue du bâtiment, située à proximité de la deuxième extrémité obstruée du conduit ; - le conduit est incliné de sorte que la première extrémité débouchante est disposée à un niveau de hauteur supérieur au niveau de hauteur de la deuxième extrémité obstruée du conduit ;
- le conduit comprend à sa première extrémité débouchante une portion supérieure débouchante et une portion inférieure obstruée et le moyen d'évacuation comprend une pièce configurée pour orienter l'air circulant vers la portion inférieure puis vers la portion supérieure ;
- les panneaux photovoltaïques sont assemblés entre eux par le sommet du dièdre ;
- l'air issu du bâtiment est issu d'une ventilation mécanique contrôlée du bâtiment ;
- l'air issu du bâtiment est issu d'un chauffage hors-gel du bâtiment ;
- les panneaux photovoltaïques ne sont pas isolés thermiquement ;
- le conduit s'étend selon une direction principale et présente selon une coupe transversale à cette direction principale, une forme de triangle dont deux côtés adjacents sont formés par les panneaux photovoltaïques et l'autre côté est formé par le toit ;
- le triangle est un triangle isocèle ;
- les panneaux photovoltaïques sont assemblés entre eux et sur le toit de sorte à former un conduit étanche à l'air à l'exception d'une arrivée d'air et d'un moyen d'évacuation d'air ;
- les panneaux photovoltaïques sont assemblés entre eux et sur le toit de sorte à former un conduit d'air étanche à l'eau extérieure ;
L'invention concerne également un procédé de montage d'une installation photovoltaïque telle que décrite précédemment caractérisé en ce qu'il comprend la pose sur le toit d'un bâtiment d'une pluralité de panneaux photovoltaïques disposés en dièdre dont l'angle dièdre saillant est disposé au regard du toit pour former avec le toit un conduit recevant de l'air issu du bâtiment.
Avantageusement dans le procédé de montage, le toit est rendu étanche avant la pose des panneaux photovoltaïques
Les figures ci-jointes sont données à titre d'exemples et ne sont pas limitatives de l'invention. Elles représentent seulement un mode de réalisation de l'invention et permettront de la comprendre aisément.
La figure 1 représente une vue du dessus d'une installation photovoltaïque selon l'invention. La figure 2 représente une vue de côté d'une installation photovoltaïque selon l'invention placée au niveau du toit d'un bâtiment.
La figure 3 est une vue selon la coupe AA de la figure 1.
La figure 4 est une vue selon la coupe BB de la figure 2.
Les figures 5 à 8 illustrent plusieurs exemples non limitatifs du dièdre formé par les panneaux photovoltaïques selon l'invention.
L'installation photovoltaïque selon l'invention comprend au moins deux panneaux photovoltaïques 1 avantageusement disposés en dièdre 4.
Préférentiellement, l'installation comprend une pluralité de panneaux photovoltaïques 1 agencés les uns par rapport aux autres pour former avec une base un conduit 2. Les panneaux 1 sont positionnés en dièdre 4 avantageusement sur une base. Le dièdre 4 est orienté de sorte que l'angle saillant du dièdre 3 soit face à la base. Le conduit 2 prend ainsi une forme triangulaire dans laquelle deux côtés sont constitués de panneaux photovoltaïquesl , le troisième côté étant formé par la base.
Le conduit 2 s'étend selon une direction principale et présente selon une coupe transversale à cette direction principale, une forme de triangle, par exemple de triangle isocèle, dont les côtés de même longueur sont formés par au moins deux panneaux photovoltaïques 1 réunis à leur sommet et dont l'autre côté est formé par la base.
Cette configuration en dièdre des panneaux photovoltaïques facilite l'écoulement de l'eau et de la neige pouvant s'y poser.
Avantageusement, cette forme de dièdre augmente la surface de panneaux photovoltaïques 1 pour une surface de base donnée. Le rendement de l'installation photovoltaïque selon l'invention est ainsi amélioré.
L'installation photovoltaïque 1 est montée sur une base 18 préférentiellement placée au dessus d'un plénum 16. Cette base 18, ou plénum 16, peut être disposée sur un toit 7 d'un bâtiment que ce soit à usage d'habitation, industriel, d'une cabane...
Le conduit 2 comprend une première extrémité 9 et une deuxième extrémité 10. Une des deux extrémités 9, 10 est au moins partiellement obstruée, préférentiellement totalement obstruée et l'autre extrémité est débouchante.
Avantageusement, le conduit 2 comprend une arrivée d'air 8. Préférentiellement, l'air 5 débouche et circule dans le conduit 2 par l'arrivée d'air 8.
Il est préféré que l'arrivée d'air 8 soit agencée à proximité de l'extrémité obstruée 10 de manière que l'air 5 injecté dans le conduit 2 parcourt la plus grande longueur possible jusqu'à un moyen d'évacuation. Le moyen d'évacuation d'air est agencé préférentiellement au niveau de la première extrémité 9 qui est avantageusement débouchante. L'air 5 est préférentiellement issu du bâtiment adjacent à l'installation ou sur lequel elle est directement montée. Le bâtiment définit un volume intérieur dont l'air 5 est préférentiellement issu. L'air 5 issu du bâtiment, plus précisément de l'intérieur du bâtiment, est réchauffé.
L'air 5 est préférentiellement utilisé pour contrôler la température des panneaux photovoltaïques 1 , ca r e n altitude pendant la période hivernale, les panneaux photovoltaïques 1 risquent couramment d'être recouverts de givre et/ou de neige limitant fortement l'utilisation de l'installation photovoltaïque.
Il est donc primordial de limiter l'accumulation de givre et/ou de neige. A cet effet, l'air 5 est avantageusement à une température différente de la température ambiante extérieure au conduit 2. Par exemple, pendant l'hiver, dès les premières gelées nocturnes, l'air 5 est à une température supérieu re à la température ambiante extérieure. Préférentiellement, l'air 5 est à une température au-dessus d'une température-seuil où la neige et le givre risquent de s'accumuler sur les panneaux photovoltaïques 1 .
Selon un mode de réalisation préféré, en été également, l'air 5 contrôle la température des panneaux photovoltaïques 1 cette fois ci en étant à une température inférieure à la température ambiante extérieure au conduit 2.
L'installation selon l'invention est particulièrement efficace lorsque les panneaux photovoltaïques 1 ne présentent pas d'isolation sur leurs faces tournées vers l'intérieur du conduit 2, aussi dénommées faces internes des panneaux photovoltaïques 1 . De cette manière, l'échange thermique entre l'air 5 et les panneaux photovoltaïques 4 est plutôt optimal.
Les pan neaux photovoltaïques 1 sont configu rés pou r transmettre leu r échauffement dû à leur fonctionnement à l'air 5 circulant dans le circuit 2. Ceci permet de réchauffer l'air du conduit 2.
Selon une possibilité, l'air issu du bâtiment est amené dans le conduit 2 au moyen d'une ventilation.
La ventilation expulsant l'air 5 dans le conduit 2 peut être une ventilation classique avec contrôle de la température de l'air 5 ou avantageusement c'est une ventilation mécaniquement contrôlée (ou VMC) du bâtiment sur lequel est installée l'installation photovoltaïque. Une VMC est un ensemble de dispositifs destinés à assurer le renouvellement de l'air à l'intérieur d'un bâtiment. La ventilation est également liée au système de chauffage hors-gel qui permet de maintenir les canalisations d'un bâtiment à une température supérieure à la température de gel. L'air 5 issu d'un bâtiment et injecté dans le conduit 2 d'une installation selon l'invention a donc au préalable circulé dans le bâtiment. L'air 5 est donc à une température relativement constante tout au long de l'année par exemple 20°C ± 5°C. En hiver, l'air 5 dans cette gamme de températures sera plus chaud que l'air extérieur, et avantageusement que la température des panneaux photovoltaïques 1 , permettant de chauffer les panneaux photovoltaïques 1 , empêchant ou limitant l'accumulation de givre et/ou de neige. A contrario en été, l'air 5 est avantageusement plus frais que l'air extérieur, et avantageusement que la température des panneaux photovoltaïques 1 , permettant de refroidir les panneaux photovoltaïques 1 pour limiter ou réduire leur échauffement et améliorant également le rendement de l'installation.
La base 18, placée par exemple sur le toit 7 et formant la base du conduit 2 est un isolant, par exemple un multi-plis en bois et/ou polyuréthane. La base 18 est avantageusement étanche à l'air ou à l'eau.
Le plénum 16, espace dans lequel de l'air est présent, est avantageusement isolé thermiquement pour limiter les échanges thermiques avec le bâtiment plus particulièrement lorsque le bâtiment est à usage d'habitation.
De préférence, le conduit 2 est configuré pour être étanche à l'eau et l'air hormis l'extrémité débouchante 9 et l'arrivée d'air 8. Pour cela, les panneaux photovoltaïques 1 sont assemblés les uns aux autres par le sommet du dièdre 4 par des moyens de fixation 15 créant une étanchéité à l'air et à l'eau. L'étanchéité doit se faire vis-à-vis de l'eau extérieure au conduit 2 pour limiter toute entrée d'eau dans le conduit 2 tandis que l'étanchéité à l'air se fait vis-à-vis de l'air circulant 5 dans le conduit 2 pour que celui-ci s'évacue uniquement par le moyen d'évacuation. Chaque pan du dièdre 4 peut être formé d'un ou plusieurs panneaux photovoltaïques 1 également préférentiellement assemblés les uns aux autres par des moyens de fixation étanches à l'air et à l'eau.
Le dièdre 4 est fixé sur la base 18, plus généralement sur le toit 7. Chaque pan du dièdre 4 est fixé en partie inférieure par un moyen de fixation 15 étanche à l'air et à l'eau.
Selon une possibilité avantageuse, l'installation comprend des moyens d'isolation thermique 1 4 d isposés entre les moyens de fixation 15 et les panneaux photovoltaïques 1 . Le moyen d'isolation 14 avantageusement placé dans les angles du dièdre 4 est préférentiellement en polyuréthane.
Selon un mode de réalisation préféré, le conduit 2 de l'installation est incliné. Préférentiellement, l'extrémité obstruée 10 est placée à un niveau de hauteur inférieur à celui de l'extrémité débouchante 9. L'inclinaison du conduit 2 favorise la circulation de l'air 5 dans le conduit 2 puisque l'air 5 le plus chaud a tendance à s'élever en altitude. L'air 5 qui arrive de l'arrivée d'air 8, disposée avantageusement au plus proche de l'extrémité obstruée 10, chemine naturellement en direction de l'extrémité débouchante 9 qui est à un niveau de hauteur supérieur. L'air 5 agit ainsi sur l'ensemble de la longueur du conduit 2.
Selon une possibilité préférée, l'extrémité débouchante 9 comprend une portion inférieure 12 obstruée, au plus près de la base, du toit 7, du plénum 16 et une portion supérieure 1 1 débouchante. La portion supérieure 1 1 est située au niveau du sommet du dièdre 4 tandis que la portion inférieure 12 est située à la base du dièdre 4.
A titre préféré, le moyen d'évacuation disposé au niveau de l'extrémité débouchante 9 du conduit 2 comprend une pièce obstruant la portion supérieure 1 1 de l'extrémité débouchante 9 et laissant la portion inférieure 12 débouchante. Le moyen d'évacuation oriente la circulation d'air de sorte que l'air passe d'abord par la portion inférieure 12 puis reste vers la portion supérieure 1 1 .
A titre d'exemple, la pièce obstruante est en polyuréthane. De même, l'extrémité obstruée 10 est obstruée par une pièce en polyuréthane.
Cette disposition de la pièce obstruant partiellement l'extrémité débouchante 9 dans la portion supérieure 1 1 permet de maintenir l'air 5 dans le conduit 2 tant que sa tem pératu re n 'a pas ch uté et q u 'i l est donc uti le à réchauffer les pa n neaux photovoltaïques 1 .
En effet, l'air 5 arrivant au niveau de l'extrémité débouchante 9 est bloqué par la pièce obstruante dans la portion supérieure 1 1 du conduit 2. L'air 5 se refroidit progressivement et tend à s'abaisser en altitude dans le conduit 2, il peut alors s'échapper par la portion inférieure 1 1 de l'extrémité débouchante 9.
La variation de température entre l'air 5 situé en portion supérieure 12 et l'air 5 s'échappant par la portion inférieure 1 1 est de l'ordre de 2 à 4° C.
Comme illustré en figure 3, la pièce obstruante a préférentiellement une forme complémentaire au sommet du dièdre 4 et comprend un pan incliné en direction du sommet du dièdre 4 et du sommet du conduit 2 en partie inférieure de sorte à accompagner l'évacuation de l'air 5. Il est préféré dans ce cas de placer une plaque de protection 17 à l'extrémité débouchante 9 du conduit 2 pour limiter les intrusions d'air et d'eau
En ce qui concerne l'inclinaison du conduit 2, il est préféré que l'extrémité débouchante 9 la plus haute soit orientée vers le nord tandis que l'extrémité obstruée 10, la plus basse des deux extrémités, soit orientée vers le sud. Cette orientation augment l'exposition de l'installation et donc son rendement. L'inclinaison du conduit 2 est avantageusement comprise entre 10° et 45° par rapport à l'horizontale.
Selon l'invention, l'inclinaison et l'orientation du conduit 2 peuvent être distinctes de celles du toit 7 sur lequel l'installation est placée.
L'an gl e d i èd re 3 est étu d ié en fonction d es con d ition s cl i matiq u es et géographiques de l'installation. Les angles de base du conduit 2, soit les deux autres angles du conduit 2 complémentaire à l'angle dièdre 3 saillant, peuvent être ou non identiques. Les angles sont avantageusement compris entre 20° et 60° . I ls sont préférentiellement déterminés selon l'inclinaison du conduit 2.
Les dimensions des panneaux photovoltaïques peuvent être différentes entre les conduits 2 ainsi qu'entre les deux pans d'un dièdre.
L'installation peut comprendre plusieurs conduits 2 qui peuvent chacun avoir une inclinaison et une forme de dièdre adaptée.
Lorsque plusieurs conduits 2 sont disposés sur un toit, l'installation comprend avantageusement des chéneaux 13 placés entre les cond u its 2 pou r faci liter l'écoulement de l'eau et/ou de la neige fondue. Les chéneaux 13 sont par exemple formés par une plaque métallique faisant la jonction entre un pan de chaque dièdre 4 de sorte à récupérer l'eau s'écoulant sur chacun des pans.
Préférentiellement, les chéneaux 13 sont formés par le moyen de fixation des pans du dièdre. Le moyen de fixation de deux pans adjacents de deux dièdres consécutifs permet simultanément l'assemblage des pans au toit et la formation d'un chéneau 13. Le moyen de fixation est alors formé par une pièce présentant une forme en « U » évasée.
Selon une possibilité, le plénum 16 est disposé sur des poutres porteuses 6 préférentiellement s'étendant sensiblement perpendiculaire et dans un plan parallèle au conduit 2.
Les panneaux photovoltaïques 1 sont eux-mêmes soumis à de fortes variations de température allant de +50°C à -50°C. Il est donc préféré d'utiliser des panneaux photovoltaïques 1 monocristallins. REFERENCES
1 . Panneau photovoltaïque
2. Conduit
3. Angle dièdre
4. Dièdre
5. Circulation d'air
6. Poutre porteuse
7. Toit
8. Arrivée d'air
9. Extrémité débouchante
10. Extrémité obstruée
1 1 . Portion supérieure
12. Portion inférieure
13. Chéneau
14. Moyen d'isolation
15. Moyen de fixation
16. Plénum
17. Plaque de protection
18. Base

Claims

REVENDICATIONS
1 . Installation photovoltaïque caractérisée par le fait qu'elle comprend une pluralité de panneaux photovoltaïques (1 ) disposés en dièdre (4), destiné à être positionné sur un toit de bâtiment de sorte que l'angle dièdre (3) soit destiné à former un angle saillant disposé au regard du toit (7) et forme avec le toit (7), un conduit (2) d'air configuré pour recevoir et permettre une circulation d'air (5) issu du bâtiment.
2. Installation selon la revendication 1 dans laquelle le conduit (2) comprend un moyen d'évacuation de l'air hors du conduit (2).
3. Installation selon la revendication précédente dans laquelle le moyen d'évacuation est disposé au niveau d'une première extrémité débouchante (9) du conduit (2).
4. Installation selon la revendication précédente dans laquelle la deuxième extrémité du conduit (2) est obstruée.
5. Installation selon la revendication précédente dans laquelle le conduit (2) comprend une arrivée d'air (8) issue du bâtiment, située à proximité de la deuxième extrémité obstruée (10) du conduit (2).
6. Installation selon l'une quelconque des deux revendications précédentes dans laquelle le conduit (2) est incliné de sorte que la première extrémité débouchante (9) est disposée à un niveau de hauteur supérieur au niveau de hauteur de la deuxième extrémité obstruée (10) du conduit (2).
7. Installation selon l'une quelconque des revendications 3 à 6 dans laquelle le conduit (2) comprend à sa première extrémité débouchante (9) une portion supérieure (1 1 ) débouchante et une portion inférieure (12) obstruée et le moyen d'évacuation comprend une pièce configurée pour orienter l'air circulant vers la portion inférieure (12) puis vers la portion supérieure (1 1 ).
8. Installation selon l'une quelconque des revendications précédentes dans laquelle les panneaux photovoltaïques (1 ) sont assemblés entre eux par le sommet du dièdre (4).
9. Installation selon l'une quelconque des revendications précédentes dans laquelle l'air issu du bâtiment est issu d'une ventilation mécanique contrôlée du bâtiment.
10. Installation selon l'une quelconque des revendications précédentes dans laquelle l'air issu du bâtiment est issu d'un chauffage hors-gel du bâtiment.
1 1 . Installation selon l'une quelconque des revendications précédentes dans laquelle les panneaux photovoltaïques (1 ) ne sont pas isolés thermiquement.
12. Installation selon l'une quelconque des revendications précédentes dans laquelle le conduit (2) s'étend selon une direction principale et présente selon une coupe transversale à cette direction principale, une forme de triangle dont deux côtés adjacents sont formés par les panneaux photovoltaïques (1 ) et l'autre côté est formé par le toit (7).
13. Installation selon la revendication précédente dans laquelle le triangle est un triangle isocèle.
14. Installation selon l'une quelconque des revendications précédentes dans laquelle les panneaux photovoltaïques (1 ) sont assemblés entre eux et sur le toit (7) de sorte à former un conduit (2) étanche à l'air à l'exception d'une arrivée d'air (8) et d'un moyen d'évacuation d'air.
15. Installation selon l'une quelconque des revendications précédentes dans laquelle les panneaux photovoltaïques (1 ) sont assemblés entre eux et sur le toit (7) de sorte à former un conduit (2) d'air étanche à l'eau extérieure.
16. Procédé de montage d'une installation photovoltaïque selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend la pose sur le toit (7) d'un bâtiment d'une pluralité de panneaux photovoltaïques (1 ) disposés en dièdre dont l'angle dièdre (3) saillant est disposé au regard du toit (7) pour former avec le toit (7) un conduit (2) recevant de l'air issu du bâtiment.
17. Procédé selon la revendication précédente dans lequel le toit (7) est rendu étanche avant la pose des panneaux photovoltaïques (1 ).
PCT/EP2013/052920 2012-02-14 2013-02-14 Installation photovoltaïque adaptée à l'altitude WO2013120923A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13707572.7A EP2815188A1 (fr) 2012-02-14 2013-02-14 Installation photovoltaïque adaptée à l'altitude

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1251365A FR2986862B1 (fr) 2012-02-14 2012-02-14 Installation photovoltaique adaptee a l'altitude
FR1251365 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013120923A1 true WO2013120923A1 (fr) 2013-08-22

Family

ID=47827147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052920 WO2013120923A1 (fr) 2012-02-14 2013-02-14 Installation photovoltaïque adaptée à l'altitude

Country Status (3)

Country Link
EP (1) EP2815188A1 (fr)
FR (1) FR2986862B1 (fr)
WO (1) WO2013120923A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547270B2 (en) 2016-02-12 2020-01-28 Solarcity Corporation Building integrated photovoltaic roofing assemblies and associated systems and methods
NL2018791B1 (nl) * 2017-04-26 2018-11-05 Dursol B V Samenstel, montagesysteem en werkwijze voor het op een ondergrond plaatsen van zonnepanelen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031453A1 (de) * 2008-07-05 2010-01-07 Bernhard Dipl.-Ing. Heming Sandwich-Fertigdachmodul für ein großflächiges Dach eines Bauwerks
DE202010008691U1 (de) * 2010-10-01 2011-11-02 Franz Marschall Montagesystem zur Befestigung von Photovoltaik-Anlagen auf insbesondere flachen Dächern
DE102010023259A1 (de) * 2010-06-09 2011-11-03 Gudrun Arau Überdachung, insbesondere Dachabdeckung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031453A1 (de) * 2008-07-05 2010-01-07 Bernhard Dipl.-Ing. Heming Sandwich-Fertigdachmodul für ein großflächiges Dach eines Bauwerks
DE102010023259A1 (de) * 2010-06-09 2011-11-03 Gudrun Arau Überdachung, insbesondere Dachabdeckung
DE202010008691U1 (de) * 2010-10-01 2011-11-02 Franz Marschall Montagesystem zur Befestigung von Photovoltaik-Anlagen auf insbesondere flachen Dächern

Also Published As

Publication number Publication date
FR2986862B1 (fr) 2014-09-05
EP2815188A1 (fr) 2014-12-24
FR2986862A1 (fr) 2013-08-16

Similar Documents

Publication Publication Date Title
FR2926098A1 (fr) Element modulaire avec module photovoltaique.
EP2366196A1 (fr) Dispositif de support de panneaux de cellules photovoltaïques, système de support et ensemble installé
EP2718635B1 (fr) Systeme de fixation et d'etancheite pour la realisation d'une toiture solaire, et toiture solaire obtenue
FR2943369A1 (fr) Profile et systeme de fixation et d'etancheite pour la realisation d'une toiture solaire, et toiture solaire obtenue
WO2013120923A1 (fr) Installation photovoltaïque adaptée à l'altitude
EP2486601A2 (fr) Couverture photovoltaïque prefabriquee integrable
EP2775062B1 (fr) Dispositif d'isolation thermique par l'extérieur d'une paroi de bâtiment et procédé de mise en oeuvre d'un tel dispositif
WO2010063944A1 (fr) Toiture solaire
FR2999830B1 (fr) Element de traitement d'un rayonnement solaire ameliore ainsi qu'un suiveur solaire et une centrale solaire equipee d'un tel element
FR2999362A1 (fr) Systeme de fixation et d'etancheite pour la realisation d'une toiture solaire comprenant des collecteurs solaires, et toiture solaire obtenue
FR2944818A1 (fr) Installation de panneaux photovoltaiques
FR3098572A1 (fr) Capteur solaire thermique, système d’assemblage, panneau solaire thermique et bâtiment équipé de ces éléments
FR3004741A1 (fr) Systeme de generation d'electricite pour toiture
FR2945561A1 (fr) Systeme de fixation de modules photovoltaiques sur une surface de couverture et surface de couverture correspondante
FR3099504A1 (fr) Toiture-terrasse végétalisée, ventilée, sans acrotère, sur structure béton.
FR2988116A1 (fr) Systeme de revetement de toiture ou de facade a transfert thermique
EP2775064B1 (fr) Dispositif de ventilation et charpente de toit comprenant un tel dispositif
FR2491978A1 (fr) Toiture perfectionnee
FR2611112A1 (fr) Serre chaude de culture
FR2963412A1 (fr) Dispositif d'installation pour panneaux solaires sur une structure de batiment
FR2973576A1 (fr) Panneau photovoltaïque avec récupération
EP2529415A2 (fr) Module de production d'énergie mixte photovoltaïque et thermique à partir du rayonnement solaire, et installation équipée de tels modules
JP5004911B2 (ja) 屋根材型太陽電池パネル装置
FR2948136A1 (fr) Charpente pour modules photovoltaiques integres a une toiture
FR2990971A1 (fr) Agencement d'un panneau solaire sur un toit plat et toit plat avec un tel agencement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13707572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013707572

Country of ref document: EP