WO2013120706A1 - Fahrerassistenzeinrichtung mit einem ultraschallsensor, kraftfahrzeug und verfahren zum betreiben eines ultraschallsensors - Google Patents

Fahrerassistenzeinrichtung mit einem ultraschallsensor, kraftfahrzeug und verfahren zum betreiben eines ultraschallsensors Download PDF

Info

Publication number
WO2013120706A1
WO2013120706A1 PCT/EP2013/052024 EP2013052024W WO2013120706A1 WO 2013120706 A1 WO2013120706 A1 WO 2013120706A1 EP 2013052024 W EP2013052024 W EP 2013052024W WO 2013120706 A1 WO2013120706 A1 WO 2013120706A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
ambient temperature
ultrasonic sensor
signal
oscillator
Prior art date
Application number
PCT/EP2013/052024
Other languages
English (en)
French (fr)
Inventor
Anton Lill
Sebastian ZUTHER
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Priority to EP13702450.1A priority Critical patent/EP2815250A1/de
Priority to BR112014018840A priority patent/BR112014018840A8/pt
Priority to CN201380009670.3A priority patent/CN104115026B/zh
Publication of WO2013120706A1 publication Critical patent/WO2013120706A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations

Definitions

  • the invention relates to a driver assistance device for a motor vehicle, which has an ultrasound sensor and a control device for activating the ultrasound sensor.
  • the ultrasonic sensor includes a membrane for emitting
  • Ultrasonic waves as well as an oscillator, which is designed to generate an oscillator signal or clock signal for exciting the membrane.
  • the invention also relates to a motor vehicle having such a driver assistance device, as well as to a method for operating an ultrasonic sensor in a motor vehicle.
  • the ultrasonic sensors are usually part of the so-called parking aid system, by means of which the driver is supported when maneuvering the motor vehicle, namely in particular when parking in a parking space.
  • measured distances are determined by the parking aid system or the
  • Driver assistance device issued to the driver, for example by means of a display or by means of a speaker.
  • the ultrasonic sensor sends
  • the ultrasonic sensor thus receives the reflected ultrasonic waves and checks whether the amplitude of the received ultrasonic waves is higher than a predetermined threshold or not. If this is the case, then the duration of these ultrasonic waves is determined, and from the running time is deduced the distance to the obstacle. As you know, this running time also varies with the ambient temperature, because the speed of sound depends on the temperature. The measured running time must therefore depend on the current one
  • Accuracy can be measured.
  • the Ambient temperature detected by one or more temperature sensors, which then transmit the measured temperature values to the control device.
  • the control device compensates the measured transit times taking into account the ambient temperature. In other words, the measured distance is compensated.
  • the ultrasonic sensor has a membrane for emitting ultrasonic waves and an oscillator, which provides an oscillator signal for exciting the membrane.
  • the oscillator signal is thus a clock signal which is used to excite the membrane.
  • the oscillator is a temperature-dependent oscillator, in which the frequency of the oscillator signal depends on the
  • Ambient temperature of the ultrasonic sensor is or with the
  • the control device can determine the ambient temperature based on a sensor signal of the ultrasonic sensor generated on the basis of the oscillator signal. According to the invention is thus provided that - in particular, waiving the measurement of the ambient temperature by means of a temperature sensor - the
  • Ambient temperature is derived from the temperature-dependent oscillator signal or clock signal.
  • the invention takes advantage of the fact that the membrane of the ultrasonic sensor is usually temperature-dependent, so that the resonant frequency of the membrane depends on the ambient temperature, and that a
  • Temperature-dependent oscillator can be used to first adjust the frequency of the oscillator signal to the resonance frequency of the membrane. In order to always reach the maximum transmission sound level, so the transmission frequency is tracked depending on the ambient temperature of the respective resonant frequency of the membrane. This can also be used to the effect that in response to a generated on the basis of the oscillator signal and the ultrasonic sensor to the
  • Control device transmitted sensor signal the ambient temperature is determined.
  • the frequency of this sensor signal which on the clock signal or the
  • Oscillator signal of the oscillator is based, namely changes with the
  • Ambient temperature This can be detected by the control device and used to determine the ambient temperature.
  • the invention thus enables the determination of the ambient temperature with minimal technical effort, namely in particular without a separate temperature sensor.
  • the ambient temperature can only be determined by calculation.
  • the determination of the temperature is also particularly precise here, so that the transit time of the ultrasonic waves also with high accuracy as a function of the
  • the sensor signal is a message signal or a so-called telegram, which is transmitted from the ultrasonic sensor to the control device.
  • a message signal includes sensor-related information stored in the
  • Ultrasonic sensor are stored. Such information can be
  • the sensor signal may in principle be any signal of the ultrasonic sensor which is generated from the oscillator signal and transmitted to the control device.
  • control device compensates the measured transit time of the ultrasonic waves as a function of the determined ambient temperature.
  • the propagation velocity of the ultrasound changes with the ambient temperature.
  • the ultrasonic sensor does not transmit the sensor signal on its own, but only after a request from the control device.
  • the control device can transmit to the ultrasonic sensor a command, on the basis of which the ultrasonic sensor sends the sensor signal to the control device.
  • the sensor signal is transmitted only if this from the
  • Control device is needed, namely, for example, when the controller is to determine the current ambient temperature.
  • control device can send the request to the ultrasonic sensor at predetermined time intervals, in particular also periodically.
  • the ambient temperature is determined as a function of the duration of at least one bit of the sensor signal. This is a particularly low-effort approach; it only takes the duration of a bit to be measured, and the
  • Ambient temperature can be determined based on this time, for example using a stored table or a mathematical formula.
  • the controller may select from the respective durations of a plurality of bits of the
  • Sensor signal - in particular all bits of the sensor signal - calculate a time duration average. Then, the controller may determine the ambient temperature as a function of the time duration average.
  • the ambient temperature is here with highest precision, because it is not a single bit, but a variety of bits used to determine the ambient temperature.
  • the ambient temperature is determined as a function of the duration of the entire sensor signal. If, for example, the number of bits of a specific message signal is known, the measurement of the duration of the entire sensor signal represents the simplest possibility for determining the ambient temperature. It is only necessary to determine the duration of the sensor signal, and the ambient temperature can be directly dependent on this Duration can be determined.
  • Control means from the respective periods of time of a plurality of successive sensor signals of the ultrasonic sensor calculates an average value and determines the ambient temperature depending on this average value.
  • Ambient temperature determined based on respective sensor signals of at least two ultrasonic sensors of the driver assistance device. As a rule, four to eight, sometimes even twelve ultrasonic sensors are installed in a motor vehicle. If the mean value is formed over all built-in ultrasonic sensors, then the accuracy can be increased to a maximum. This may, for example, be such that first of all an average value is calculated from the time durations of the respective sensor signals of the plurality of ultrasonic sensors, and then the ambient temperature is determined as a function of this common time duration mean value.
  • determination of the ambient temperature can also be carried out such that first of all a temperature value is determined on the basis of the sensor signals of the respective ultrasonic sensors, and the ambient temperature is determined as an average value from the individual
  • An inventive motor vehicle includes an inventive
  • the invention also relates to a method for operating an ultrasonic sensor of a motor vehicle, in which by means of an oscillator of the ultrasonic sensor
  • Oscillator signal is provided, with which a membrane of the ultrasonic sensor is excited to emit ultrasonic waves. It becomes a temperature dependent Oscillator used in which the frequency of the oscillator signal is dependent on the ambient temperature of the ultrasonic sensor. Based on the oscillator signal, the ambient temperature is determined.
  • FIG. 1 is a schematic representation of a motor vehicle with a
  • Fig. 2 shows a schematic representation of an ultrasonic sensor of
  • FIG. 1 motor vehicle 1 An illustrated in Fig. 1 motor vehicle 1 is in the embodiment a
  • the motor vehicle 1 has a driver assistance device 2, which is designed as a parking assistance system.
  • the driver assistance device 2 serves to assist the driver when maneuvering the motor vehicle 1.
  • It has a multiplicity of ultrasonic sensors 3, which are arranged distributed both on the front bumper and on the rear bumper of the motor vehicle 1.
  • the number and arrangement of the ultrasonic sensors 3 on the motor vehicle 1 are shown in FIG. 1 by way of example only; the number and arrangement may vary depending on the embodiment.
  • ultrasonic sensors 3 are used as shown in Fig. 1.
  • the driver assistance device 2 includes a control device 4.
  • ultrasonic sensors 3 are provided. It is electrically connected to the ultrasonic sensors 3 via individual signal lines or else a communication bus 5 of the motor vehicle 1, so that data communication between the control device 4 and the individual ultrasonic sensors 3 is made possible.
  • the ultrasonic sensors 3 can emit and reflect ultrasonic waves
  • the basic structure of a used ultrasonic sensor 3 is shown in a schematic and highly abstract representation in FIG.
  • the ultrasonic sensor 3 has a membrane 7, which serves for emitting the ultrasonic waves.
  • the membrane 7 may be formed, for example, of aluminum.
  • the resonant frequency of the diaphragm 7 is dependent on the ambient temperature of the ultrasonic sensor 3 and thus varies with the ambient temperature.
  • the ultrasonic sensor 3 includes a control unit 8 - such as a microcontroller - which communicates with the central control device 4 via the
  • Communication bus 5 is electrically coupled.
  • the control unit 8 is clocked by means of a clock signal or oscillator signal 9, which is generated by means of an oscillator 10.
  • the oscillator signal 9 is also used to excite the membrane 7, as shown schematically in Fig. 2 with the arrow 1 1.
  • the oscillator 10 is likewise a temperature-dependent oscillator whose oscillator signal 9 has a frequency which is dependent on the temperature.
  • the oscillator 10 is adapted to the membrane 7 such that the frequency of the oscillator signal 9 always equal to the resonant frequency the membrane 7 is. Because the frequency of the oscillator signal 9 depends on the
  • output sensor signal 12 is temperature-dependent. Based on this sensor signal 12, the central control device 4 then determines the ambient temperature. With the respective current ambient temperature then the measured distance or the measured transit time of the ultrasonic waves is compensated.
  • Oscillator signal 9 This means that in particular the transmitted from the control unit 8 to the control device 4 messages the same frequency as the
  • the control unit 8 can thus transmit a sensor signal 12 to the central control device 4, which is generated on the basis of the oscillator signal 9.
  • This sensor signal 12 may be a binary coded signal including a plurality of bits.
  • the sensor signal 12 is, in particular, a message signal which contains sensor-related information and is transmitted to the control device 4 by the ultrasound sensor 3.
  • a telegram may contain, for example, the information about the threshold value currently stored in the ultrasound sensor 3, with which the amplitude of the received ultrasound waves is compared.
  • Such a message signal is usually at a request of the
  • a message signal has, for example, a length of 64 bits.
  • the control device 4 can thus transmit a request signal or a command to the ultrasonic sensor 3, so that the ultrasonic sensor 3 then transmits the sensor signal 12 to the control device 4 on the basis of this command.
  • an arbitrary sensor signal 12 or a sensor signal 12 with any information is sufficient for the control device 4. It is only necessary that the
  • Ultrasonic sensor 3 transmits a signal generated on the basis of the oscillator signal 9 to the control device 4.
  • the controller 4 determines the current ambient temperature in
  • the time duration or the length of a single bit of the sensor signal 12 can be measured, and the
  • Ambient temperature can be determined as a function of this time duration. Becomes the average of several bits transmitted, the accuracy of the temperature measurement can be increased.
  • the duration of the entire sensor signal 12 can be used to determine the ambient temperature.
  • the number of bits of the sensor signal 12 can also be measured in the control device 4.
  • Ultrasonic sensors 3 - taken into account in determining the ambient temperature.
  • the oscillator 10 can be designed so that the frequency of the oscillator signal 9 changes as a function of the temperature. Then, this frequency corresponds to the resonance frequency of the diaphragm 7.

Abstract

Die Erfindung betrifft eine Fahrerassistenzeinrichtung (2) für ein Kraftfahrzeug (1), mit einem Ultraschallsensor (3), welcher eine Membran (7) zum Aussenden von Ultraschallwellen und einen Oszillator (10) zum Erzeugen eines Oszillatorsignals (9) zum Anregen der Membran (7) aufweist, und mit einer Steuereinrichtung (4) zum Ansteuern des Ultraschallsensors (3), wobei der Oszillator (10) ein temperaturabhängiger Oszillator (10) ist, so dass die Frequenz des Oszillatorsignals (9) abhängig von der Umgebungstemperatur des Ultraschallsensors (3) ist, und die Steuereinrichtung (4) dazu ausgelegt ist, anhand eines auf der Basis des Oszillatorsignals (9) erzeugten Sensorsignals (12) des Ultraschallsensors (3) die Umgebungstemperatur zu bestimmen.

Description

Fahrerassistenzeinrichtung mit einem Ultraschallsensor, Kraftfahrzeug und Verfahren zum Betreiben eines Ultraschallsensors
Die Erfindung betrifft eine Fahrerassistenzeinrichtung für ein Kraftfahrzeug, welche einen Ultraschallsensor sowie eine Steuereinrichtung zum Ansteuern des Ultraschallsensors aufweist. Der Ultraschallsensor beinhaltet eine Membran zum Aussenden von
Ultraschallwellen, wie auch einen Oszillator, der zur Erzeugung eines Oszillatorsignals bzw. Taktsignals zum Anregen der Membran ausgebildet ist. Die Erfindung bezieht sich au ßerdem auf ein Kraftfahrzeug mit einer derartigen Fahrerassistenzeinrichtung, wie auch auf ein Verfahren zum Betreiben eines Ultraschallsensors in einem Kraftfahrzeug.
Es ist bereits Stand der Technik, Ultraschallsensoren in Kraftfahrzeugen einzusetzen. Die Ultraschallsensoren dienen zum Messen von Abständen zwischen dem
Kraftfahrzeug einerseits und den in seiner Umgebung befindlichen Hindernissen andererseits. Die Ultraschallsensoren sind in der Regel Bestandteil des so genannten Parkhilfesystems, mittels welchem der Fahrer beim Rangieren des Kraftfahrzeugs unterstützt wird, nämlich insbesondere beim Einparken in eine Parklücke. Die
gemessenen Abstände werden durch das Parkhilfesystem bzw. die
Fahrerassistenzeinrichtung dem Fahrer ausgegeben, etwa mithilfe eines Displays oder aber mittels eines Lautsprechers.
Zur Messung des Abstands zwischen dem Kraftfahrzeug und einem Hindernis wird dabei die Laufzeit der Ultraschallwellen gemessen. Der Ultraschallsensor sendet
Ultraschallwellen aus, die dann an dem Hindernis reflektieren und wieder zum
Ultraschallsensor gelangen. Der Ultraschallsensor empfängt also die reflektierten Ultraschallwellen und überprüft, ob die Amplitude der empfangenen Ultraschallwellen höher als ein vorgegebener Schwellwert ist oder nicht. Ist dies der Fall, so wird die Laufzeit dieser Ultraschallwellen bestimmt, und aus der Laufzeit wird auf den Abstand zum Hindernis zurückgeschlossen. Bekanntlich variiert diese Laufzeit auch mit der Umgebungstemperatur, weil die Schallgeschwindigkeit von der Temperatur abhängig ist. Die gemessene Laufzeit muss somit in Abhängigkeit von der jeweils aktuellen
Umgebungstemperatur kompensiert werden, damit die Abstände mit höchster
Genauigkeit gemessen werden können. In modernen Fahrzeugen wird die Umgebungstemperatur dabei mittels eines oder mehrerer Temperatursensoren erfasst, welche die gemessenen Temperaturwerte dann an die Steuereinrichtung übermitteln. Die Steuereinrichtung kompensiert die gemessenen Laufzeiten unter Berücksichtigung der Umgebungstemperatur. Mit anderen Worten wird also der gemessene Abstand kompensiert.
Problematisch sind die Situationen, in denen keine Temperatursensoren im
Kraftfahrzeug vorhanden sind oder aber keine Kommunikationsverbindung zwischen dem Temperatursensor und der Steuereinrichtung des Ultraschallsensors bereitgestellt ist. In der Steuereinrichtung steht somit kein gemessener Temperaturwert zur Verfügung, mit welchem die Korrektur der Laufzeit vorgenommen werden könnte. Eine Abhilfe schaffen hier beispielsweise Verfahren, bei denen die Umgebungstemperatur anhand einer erfassten Veränderung des Schwingungsverhaltens der Membran bestimmt wird.
Es ist Aufgabe der Erfindung, eine Lösung aufzuzeigen, wie bei einer
Fahrerassistenzeinrichtung der eingangs genannten Gattung mit geringem technischen Aufwand eine Temperaturkompensation vorgenommen werden kann, insbesondere ohne dass ein Temperatursensor eingesetzt werden muss.
Diese Aufgabe wird erfindungsgemäß durch eine Fahrerassistenzeinrichtung, ein Kraftfahrzeug sowie durch ein Verfahren mit den Merkmalen gemäß den jeweiligen unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung und der Figuren.
Eine erfindungsgemäße Fahrerassistenzeinrichtung für ein Kraftfahrzeug weist einen Ultraschallsensor, wie auch eine Steuereinrichtung auf, welche zum Ansteuern des Ultraschallsensors ausgebildet ist. Der Ultraschallsensor weist eine Membran zum Aussenden von Ultraschallwellen sowie einen Oszillator auf, der ein Oszillatorsignal zum Anregen der Membran bereitstellt. Das Oszillatorsignal ist also ein Taktsignal, welches zum Anregen der Membran verwendet wird. Der Oszillator ist ein temperaturabhängiger Oszillator, bei welchem die Frequenz des Oszillatorsignals abhängig von der
Umgebungstemperatur des Ultraschallsensors ist bzw. sich mit der
Umgebungstemperatur verändert. Die Steuereinrichtung kann anhand eines auf der Grundlage des Oszillatorsignals erzeugten Sensorsignals des Ultraschallsensors die Umgebungstemperatur ermitteln. Erfindungsgemäß ist somit vorgesehen, dass - insbesondere unter Verzicht auf die Messung der Umgebungstemperatur mittels eines Temperatursensors - die
Umgebungstemperatur aus dem temperaturabhängigen Oszillatorsignal bzw. Taktsignal abgeleitet wird. Die Erfindung macht sich die Tatsache zunutze, dass die Membran des Ultraschallsensors in der Regel temperaturabhängig ist, sodass die Resonanzfrequenz der Membran von der Umgebungstemperatur abhängt, und dass ein
temperaturabhängiger Oszillator eingesetzt werden kann, um zunächst die Frequenz des Oszillatorsignals an die Resonanzfrequenz der Membran anzupassen. Um immer den maximalen Sendeschallpegel zu erreichen, wird also die Sendefrequenz abhängig von der Umgebungstemperatur der jeweiligen Resonanzfrequenz der Membran nachgeführt. Dies kann auch dahingehend genutzt werden, dass in Abhängigkeit von einem auf der Basis des Oszillatorsignals erzeugten und vom Ultraschallsensor an die
Steuereinrichtung übertragenen Sensorsignals die Umgebungstemperatur ermittelt wird. Die Frequenz dieses Sensorsignals, welches auf dem Taktsignal bzw. dem
Oszillatorsignal des Oszillators beruht, verändert sich nämlich mit der
Umgebungstemperatur. Dies kann durch die Steuereinrichtung detektiert und zur Bestimmung der Umgebungstemperatur herangezogen werden. Die Erfindung ermöglicht somit die Bestimmung der Umgebungstemperatur mit geringstem technischen Aufwand, nämlich insbesondere ohne einen separaten Temperatursensor. Die
Umgebungstemperatur kann nämlich ausschließlich rechentechnisch bestimmt werden. Die Bestimmung der Temperatur ist hier auch besonders präzise, sodass die Laufzeit der Ultraschallwellen auch mit hoher Genauigkeit in Abhängigkeit von der
Umgebungstemperatur kompensiert werden kann.
Bevorzugt ist das Sensorsignal ein Nachrichtensignal bzw. ein so genanntes Telegramm, welches von dem Ultraschallsensor an die Steuereinrichtung übertragen wird. Ein solches Nachrichtensignal beinhaltet sensorbezogene Informationen, die in dem
Ultraschallsensor abgelegt sind. Bei einer solchen Information kann es sich
beispielsweise um den aktuell eingestellten Schwellwert handeln, mit welchem die Amplitude der vom Ultraschallsensor empfangenen Ultraschallwellen verglichen wird. Ein solches Nachrichtensignal wird in Kraftfahrzeugen ohnehin von dem Ultraschallsensor an die Steuereinrichtung übermittelt. Dies bedeutet, dass die Steuereinrichtung die Umgebungstemperatur anhand eines in der Regel ohnehin vorhandenen
Nachrichtensignals bestimmen kann, sodass insbesondere die Bandbreite des
Kommunikationskanals zwischen dem Ultraschallsensor und der Steuereinrichtung nicht negativ durch zusätzliche Signale beeinflusst wird. Bei dem Sensorsignal kann es sich jedoch grundsätzlich um ein beliebiges Signal des Ultraschallsensors handeln, welches aus dem Oszillatorsignal erzeugt und an die Steuereinrichtung übermittelt wird.
Wie bereits ausgeführt, ist es besonders bevorzugt, wenn die Steuereinrichtung abhängig von der ermittelten Umgebungstemperatur die gemessene Laufzeit der Ultraschallwellen kompensiert. Die Ausbreitungsgeschwindigkeit des Ultraschalls ändert sich nämlich mit der Umgebungstemperatur. Durch diese Kompensation können also höchst genaue Messungen des Abstands zwischen dem Kraftfahrzeug einerseits und dem Hindernis andererseits erzielt werden.
Vorzugsweise sendet der Ultraschallsensor das Sensorsignal nicht von sich aus, sondern erst auf eine Aufforderung seitens der Steuereinrichtung hin. Dies bedeutet, dass die Steuereinrichtung an den Ultraschallsensor einen Befehl übertragen kann, aufgrund dessen der Ultraschallsensor das Sensorsignal an die Steuereinrichtung sendet. Somit wird das Sensorsignal nur dann übermittelt, wenn dies von der
Steuereinrichtung benötigt wird, nämlich beispielsweise wenn die Steuereinrichtung die aktuelle Umgebungstemperatur ermitteln soll.
Zum Beispiel kann die Steuereinrichtung die Aufforderung an den Ultraschallsensor in vorbestimmten Zeitabständen, insbesondere auch periodisch, senden.
Wenn die Frequenz des Oszillatorsignals abhängig von der Umgebungstemperatur ist, so ändert sich auch die Zeitdauer der Bits des Sensorsignals mit der
Umgebungstemperatur. In einer Ausführungsform ist somit vorgesehen, dass die Umgebungstemperatur in Abhängigkeit von der Zeitdauer zumindest eines Bits des Sensorsignals bestimmt wird. Dies ist eine besonders aufwandsarme Vorgehensweise; es braucht lediglich die Zeitdauer eines Bits gemessen zu werden, und die
Umgebungstemperatur kann anhand dieser Zeitdauer - etwa mithilfe einer abgelegten Tabelle oder aber einer mathematischen Formel - ermittelt werden.
Um die Genauigkeit der Bestimmung der Umgebungstemperatur zu verbessern, kann die Steuereinrichtung aus den jeweiligen Zeitdauern einer Vielzahl von Bits des
Sensorsignals - insbesondere aller Bits des Sensorsignals - einen Zeitdauer-Mittelwert berechnen. Dann kann die Steuereinrichtung die Umgebungstemperatur in Abhängigkeit von dem Zeitdauer-Mittelwert bestimmen. Die Umgebungstemperatur wird hier mit höchster Präzision ermittelt, denn es wird nicht ein einziges Bit, sondern eine Vielzahl von Bits zur Bestimmung der Umgebungstemperatur herangezogen.
Alternativ kann auch vorgesehen sein, dass die Umgebungstemperatur in Abhängigkeit von der Zeitdauer des gesamten Sensorsignals bestimmt wird. Ist beispielsweise die Anzahl der Bits eines konkreten Nachrichtensignals bekannt, so stellt die Messung der Zeitdauer des gesamten Sensorsignals die einfachste Möglichkeit für die Bestimmung der Umgebungstemperatur dar. Es braucht lediglich die Zeitdauer des Sensorsignals bestimmt zu werden, und die Umgebungstemperatur kann direkt in Abhängigkeit von dieser Zeitdauer ermittelt werden.
Und wiederum kann zur Erhöhung der Genauigkeit vorgesehen sein, dass die
Steuereinrichtung aus den jeweiligen Zeitdauern einer Vielzahl von aufeinander folgenden Sensorsignalen des Ultraschallsensors einen Mittelwert berechnet und die Umgebungstemperatur abhängig von diesem Mittelwert bestimmt.
Es erweist sich als besonders vorteilhaft, wenn die Steuereinrichtung die
Umgebungstemperatur anhand von jeweiligen Sensorsignalen zumindest zweier Ultraschallsensoren der Fahrerassistenzeinrichtung bestimmt. In der Regel sind in einem Kraftfahrzeug nämlich vier bis acht, manchmal sogar zwölf Ultraschallsensoren verbaut. Wird nun der Mittelwert über alle verbauten Ultraschallsensoren gebildet, so lässt sich die Genauigkeit auf einen Maximum steigern. Dies kann beispielsweise so aussehen, dass zunächst ein Mittelwert aus den Zeitdauern der jeweiligen Sensorsignale der Vielzahl von Ultraschallsensoren berechnet und dann die Umgebungstemperatur in Abhängigkeit von diesem gemeinsamen Zeitdauer-Mittelwert bestimmt wird. Die
Bestimmung der Umgebungstemperatur kann jedoch auch so erfolgen, dass zunächst anhand der Sensorsignale der jeweiligen Ultraschallsensoren jeweils ein Temperaturwert bestimmt wird und die Umgebungstemperatur als Mittelwert aus den einzelnen
Temperaturwerten ermittelt wird.
Ein erfindungsgemäßes Kraftfahrzeug beinhaltet eine erfindungsgemäße
Fahrerassistenzeinrichtung.
Die Erfindung betrifft auch ein Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, bei welchem mittels eines Oszillators des Ultraschallsensors ein
Oszillatorsignal bereitgestellt wird, mit welchem eine Membran des Ultraschallsensors zum Aussenden von Ultraschallwellen angeregt wird. Es wird ein temperaturabhängiger Oszillator verwendet, bei welchem die Frequenz des Oszillatorsignals abhängig von der Umgebungstemperatur des Ultraschallsensors ist. Anhand des Oszillatorsignals wird die Umgebungstemperatur bestimmt.
Die mit Bezug auf die erfindungsgemäße Fahrerassistenzeinrichtung vorgestellten bevorzugten Ausführungsformen und deren Vorteile gelten entsprechend für das erfindungsgemäße Kraftfahrzeug sowie für das erfindungsgemäße Verfahren.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Figurenbeschreibung. Alle vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder aber in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels, wie auch unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 in schematischer Darstellung ein Kraftfahrzeug mit einer
Fahrerassistenzeinrichtung gemäß einer Ausführungsform der Erfindung; und
Fig. 2 in schematischer Darstellung einen Ultraschallsensor der
Fahrerassistenzeinrichtung.
Ein in Fig. 1 dargestelltes Kraftfahrzeug 1 ist im Ausführungsbeispiel ein
Personenkraftwagen. Das Kraftfahrzeug 1 weist eine Fahrerassistenzeinrichtung 2 auf, welche als ein Parkhilfesystem ausgebildet ist. Die Fahrerassistenzeinrichtung 2 dient zum Unterstützen des Fahrers beim Rangieren des Kraftfahrzeugs 1 . Sie weist eine Vielzahl von Ultraschallsensoren 3 auf, die sowohl am vorderen Stoßfänger als auch am hinteren Stoßfänger des Kraftfahrzeugs 1 verteilt angeordnet sind. Die Anzahl sowie die Anordnung der Ultraschallsensoren 3 am Kraftfahrzeug 1 sind in Fig. 1 lediglich beispielhaft dargestellt; die Anzahl sowie die Anordnung kann je nach Ausführungsform variieren. So können die Ultraschallsensoren 3 beispielsweise lediglich am vorderen oder aber ausschließlich am hinteren Stoßfänger angeordnet sein oder es können
beispielsweise mehrere oder weniger Ultraschallsensoren 3 als in Fig. 1 dargestellt eingesetzt werden.
Zur Ansteuerung der Ultraschallsensoren 3 beinhaltet die Fahrerassistenzeinrichtung 2 eine Steuereinrichtung 4. Alternativ kann auch jeweils eine separate Steuereinrichtung 4 für die vorderen Ultraschallsensoren 3 einerseits sowie für die hinteren
Ultraschallsensoren 3 andererseits bereitgestellt werden. Die Steuereinrichtung 4 ist ein Steuergerät und dient zum Ansteuern der Ultraschallsensoren 3. Sie ist über einzelne Signalleitungen oder aber einen Kommunikationsbus 5 des Kraftfahrzeugs 1 mit den Ultraschallsensoren 3 elektrisch verbunden, sodass eine Datenkommunikation zwischen der Steuereinrichtung 4 und den einzelnen Ultraschallsensoren 3 ermöglicht ist.
Die Ultraschallsensoren 3 können Ultraschallwellen aussenden und reflektierte
Ultraschallwellen wieder empfangen. In Abhängigkeit von einer Laufzeit der
Ultraschallwellen berechnet die Steuereinrichtung 4 die Abstände zwischen dem
Kraftfahrzeug 1 einerseits und den in seiner Umgebung befindlichen Hindernissen andererseits. Diese Abstände können mittels einer Ausgabeeinrichtung 6 ausgegeben werden, etwa mittels eines Lautsprechers und/oder mittels eines Displays.
Der grundsätzliche Aufbau eines verwendeten Ultraschallsensors 3 ist in schematischer und höchst abstrakter Darstellung in Fig. 2 gezeigt. Der Ultraschallsensor 3 weist eine Membran 7 auf, welche zum Aussenden der Ultraschallwellen dient. Die Membran 7 kann beispielsweise aus Aluminium gebildet sein. Bekanntlich ist die Resonanzfrequenz der Membran 7 von der Umgebungstemperatur des Ultraschallsensors 3 abhängig und variiert somit mit der Umgebungstemperatur. Zur Kommunikation mit der zentralen Steuereinrichtung 4 beinhaltet der Ultraschallsensor 3 eine Steuereinheit 8 - etwa einen MikroController -, welche mit der zentralen Steuereinrichtung 4 über den
Kommunikationsbus 5 elektrisch gekoppelt ist. Die Steuereinheit 8 wird mittels eines Taktsignals bzw. Oszillatorsignals 9 getaktet, welches mithilfe eines Oszillators 10 erzeugt wird. Das Oszillatorsignal 9 wird auch zur Anregung der Membran 7 genutzt, wie in Fig. 2 mit der Pfeildarstellung 1 1 schematisch dargestellt ist.
Um die Membran 7 jeweils bei ihrer Resonanzfrequenz anzuregen, ist der Oszillator 10 ebenfalls ein temperaturabhängiger Oszillator, dessen Oszillatorsignal 9 eine von der Temperatur abhängige Frequenz aufweist. Der Oszillator 10 ist derart an die Membran 7 angepasst, dass die Frequenz des Oszillatorsignals 9 stets gleich der Resonanzfrequenz der Membran 7 ist. Weil die Frequenz des Oszillatorsignals 9 abhängig von der
Umgebungstemperatur ist, ist auch die Frequenz des von der Steuereinheit 8
ausgegebenen Sensorsignals 12 temperaturabhängig. Anhand dieses Sensorsignals 12 bestimmt die zentrale Steuereinrichtung 4 dann die Umgebungstemperatur. Mit der jeweils aktuellen Umgebungstemperatur wird dann der gemessene Abstand bzw. die gemessene Laufzeit der Ultraschallwellen kompensiert.
Wie bereits ausgeführt, erfolgt die Taktung der Steuereinheit 8 mithilfe des
Oszillatorsignals 9. Dies bedeutet, dass insbesondere auch die von der Steuereinheit 8 an die Steuereinrichtung 4 übertragenen Nachrichten dieselbe Frequenz wie das
Oszillatorsignal 9 besitzen bzw. auf der Basis dieses Oszillatorsignals 9 erzeugt werden. Die Steuereinheit 8 kann also ein Sensorsignal 12 an die zentrale Steuereinrichtung 4 übermitteln, welches auf der Grundlage des Oszillatorsignals 9 erzeugt wird. Dieses Sensorsignal 12 kann ein binär codiertes Signal sein, welches eine Vielzahl von Bits beinhaltet.
Bei dem Sensorsignal 12 handelt es sich insbesondere um ein Nachrichtensignal, welches sensorbezogene Informationen beinhaltet und vom Ultraschallsensor 3 an die Steuereinrichtung 4 übertragen wird. Ein derartiges Telegramm kann zum Beispiel die Information über den im Ultraschallsensor 3 aktuell abgelegten Schwellwert beinhalten, mit welchem die Amplitude der empfangenen Ultraschallwellen verglichen wird. Ein derartiges Nachrichtensignal wird in der Regel auf eine Aufforderung der
Steuereinrichtung 4 vom Ultraschallsensor 3 übermittelt. Ein derartiges Nachrichtensignal weist beispielsweise eine Länge von 64 Bits auf. Die Steuereinrichtung 4 kann also ein Anforderungssignal bzw. einen Befehl an den Ultraschallsensor 3 übermitteln, sodass der Ultraschallsensor 3 aufgrund dieses Befehls dann das Sensorsignal 12 an die Steuereinrichtung 4 übermittelt. Zur Bestimmung der Umgebungstemperatur ist jedoch für die Steuereinrichtung 4 ein beliebiges Sensorsignal 12 bzw. ein Sensorsignal 12 mit einer beliebigen Information ausreichend. Erforderlich ist lediglich, dass der
Ultraschallsensor 3 ein auf der Basis des Oszillatorsignals 9 erzeugtes Signal an die Steuereinrichtung 4 übermittelt.
Also bestimmt die Steuereinrichtung 4 die aktuelle Umgebungstemperatur in
Abhängigkeit von dem Sensorsignal 12. Dazu kann beispielsweise die Zeitdauer bzw. die Länge eines einzelnen Bits des Sensorsignals 12 gemessen werden, und die
Umgebungstemperatur kann in Abhängigkeit von dieser Zeitdauer ermittelt werden. Wird der Mittelwert aus mehreren übertragenen Bits gebildet, so kann die Genauigkeit der Temperaturmessung erhöht werden.
Ist die Anzahl der Bits des Sensorsignals 12 in der Steuereinrichtung 4 bekannt, so kann die Zeitdauer des gesamten Sensorsignals 12 zur Ermittlung der Umgebungstemperatur herangezogen werden. Die Anzahl der Bits des Sensorsignals 12 kann auch in der Steuereinrichtung 4 gemessen werden.
Um die Genauigkeit auf ein Maximum zu bringen, werden die jeweiligen Sensorsignale 12 von zumindest zwei Ultraschallsensoren 3 - insbesondere von allen
Ultraschallsensoren 3 - bei der Bestimmung der Umgebungstemperatur berücksichtigt.
Der Oszillator 10 kann so gestaltet werden, dass sich die Frequenz des Oszillatorsignals 9 in Abhängigkeit von der Temperatur ändert. Dann entspricht diese Frequenz der Resonanzfrequenz der Membran 7.

Claims

Patentansprüche
Fahrerassistenzeinrichtung (2) für ein Kraftfahrzeug (1 ), mit einem
Ultraschallsensor (3), welcher eine Membran (7) zum Aussenden von
Ultraschallwellen und einen Oszillator (10) zum Erzeugen eines Oszillatorsignals (9) zum Anregen der Membran (7) aufweist, und mit einer Steuereinrichtung (4) zum Ansteuern des Ultraschallsensors (3),
dadurch gekennzeichnet, dass
der Oszillator (10) ein temperaturabhängiger Oszillator (10) ist, so dass die
Frequenz des Oszillatorsignals (9) abhängig von der Umgebungstemperatur des Ultraschallsensors (3) ist, und die Steuereinrichtung (4) dazu ausgelegt ist, anhand eines auf der Basis des Oszillatorsignals (9) erzeugten Sensorsignals (12) des Ultraschallsensors (3) die Umgebungstemperatur zu bestimmen.
Fahrerassistenzeinrichtung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
das Sensorsignal (12) ein Nachrichtensignal mit sensorbezogenen Informationen ist, welches von dem Ultraschallsensor (3) an die Steuereinrichtung (4) übertragbar ist.
Fahrerassistenzeinrichtung (2) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Steuereinrichtung (4) dazu ausgelegt ist, abhängig von der ermittelten
Umgebungstemperatur eine gemessene Laufzeit der Ultraschallwellen zu kompensieren.
Fahrerassistenzeinrichtung
(2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Steuereinrichtung (4) dazu ausgelegt ist, an den Ultraschallsensor (3) einen Befehl zu übertragen, aufgrund dessen der Ultraschallsensor
(3) das Sensorsignal (12) an die Steuereinrichtung
(4) sendet.
5. Fahrerassistenzeinrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Umgebungstemperatur in Abhängigkeit von der Zeitdauer zumindest eines Bits des Sensorsignals (12) bestimmbar ist.
6. Fahrerassistenzeinrichtung (2) nach Anspruch 5,
dadurch gekennzeichnet, dass
die Steuereinrichtung (4) dazu ausgelegt ist, aus den jeweiligen Zeitdauern einer Vielzahl von Bits, insbesondere aller Bits, des Sensorsignals (12) einen Zeitdauer- Mittelwert zu berechnen und die Umgebungstemperatur in Abhängigkeit von dem Zeitdauer-Mittelwert zu bestimmen.
7. Fahrerassistenzeinrichtung (2) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Umgebungstemperatur in Abhängigkeit von der Zeitdauer des gesamten Sensorsignals (12) bestimmbar ist.
8. Fahrerassistenzeinrichtung (2) nach Anspruch 7,
dadurch gekennzeichnet, dass
die Steuereinrichtung (4) dazu ausgelegt ist, aus den jeweiligen Zeitdauern einer Vielzahl von aufeinander folgenden Sensorsignalen des Ultraschallsensors (3) einen Mittelwert zu berechnen und die Umgebungstemperatur in Abhängigkeit von diesem Mittelwert zu bestimmen.
9. Fahrerassistenzeinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Steuereinrichtung (4) dazu ausgelegt ist, die Umgebungstemperatur anhand von jeweiligen Sensorsignalen zumindest zweier Ultraschallsensoren (3) zu bestimmen.
10. Kraftfahrzeug (1 ) mit einer Fahrerassistenzeinrichtung (2) nach einem der
vorhergehenden Ansprüche. Verfahren zum Betreiben eines Ultraschallsensors (3) eines Kraftfahrzeugs (1 ), bei welchem mittels eines Oszillators (10) des Ultraschallsensors (3) ein
Oszillatorsignal (9) erzeugt wird, mit dem eine Membran (7) des Ultraschallsensors (3) zum Aussenden von Ultraschallwellen angeregt wird,
dadurch gekennzeichnet, dass
als Oszillator (10) ein temperaturabhängiger Oszillator (10) verwendet wird, bei welchem die Frequenz des Oszillatorsignals (9) abhängig von der
Umgebungstemperatur des Ultraschallsensors (3) ist, und anhand des
Oszillatorsignals (9) die Umgebungstemperatur mittels einer Steuereinrichtung (4) bestimmt wird.
PCT/EP2013/052024 2012-02-15 2013-02-01 Fahrerassistenzeinrichtung mit einem ultraschallsensor, kraftfahrzeug und verfahren zum betreiben eines ultraschallsensors WO2013120706A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13702450.1A EP2815250A1 (de) 2012-02-15 2013-02-01 Fahrerassistenzeinrichtung mit einem ultraschallsensor, kraftfahrzeug und verfahren zum betreiben eines ultraschallsensors
BR112014018840A BR112014018840A8 (pt) 2012-02-15 2013-02-01 Dispositivo de assistência ao motorista para um veículo motorizado e método para operar um sensor ultrassônico de um veículo motorizado
CN201380009670.3A CN104115026B (zh) 2012-02-15 2013-02-01 具有超声波传感器的驾驶员辅助装置、机动车辆和用于操作超声波传感器的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012002979.9 2012-02-15
DE102012002979A DE102012002979A1 (de) 2012-02-15 2012-02-15 Fahrerassistenzeinrichtung mit einem Ultraschallsensor, Kraftfahrzeug und Verfahren zum Betreiben eines Ultraschallsensors

Publications (1)

Publication Number Publication Date
WO2013120706A1 true WO2013120706A1 (de) 2013-08-22

Family

ID=47633070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052024 WO2013120706A1 (de) 2012-02-15 2013-02-01 Fahrerassistenzeinrichtung mit einem ultraschallsensor, kraftfahrzeug und verfahren zum betreiben eines ultraschallsensors

Country Status (5)

Country Link
EP (1) EP2815250A1 (de)
CN (1) CN104115026B (de)
BR (1) BR112014018840A8 (de)
DE (1) DE102012002979A1 (de)
WO (1) WO2013120706A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505570A (en) * 2012-08-31 2014-03-05 Bosch Gmbh Robert An ultrasonic distance measuring device with sensor temperature measurement
WO2016173847A1 (de) * 2015-04-27 2016-11-03 Valeo Schalter Und Sensoren Gmbh Sensoranordnung zum erkennen eines zustands einer fahrbahn mit einem ultraschallsensor, fahrerassistenzsystem, kraftfahrzeug sowie dazugehöriges verfahren

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013015410A1 (de) 2013-09-17 2015-03-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors Ultraschallsensorvorrichtung und Kraftfahrzeug
KR20200138816A (ko) 2018-04-04 2020-12-10 조디 지 로빈스 비중에 의한 미네랄의 분리
DE102018124024A1 (de) 2018-09-28 2020-04-02 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors eines Fahrzeugs mit reduzierter Diagnose in einem Messbetrieb des Ultraschallsensors sowie Ultraschallsensorvorrichtung
DE102021114988A1 (de) 2021-06-10 2022-12-15 Valeo Schalter Und Sensoren Gmbh Verfahren zum betreiben eines ultraschallsensors, computerprogrammprodukt, ultraschallsensorsystem und fahrzeug
DE102021114989A1 (de) 2021-06-10 2022-12-15 Valeo Schalter Und Sensoren Gmbh Verfahren zum bestimmen einer temperatur einer membran eines ultraschallsensors, computerprogrammprodukt, ultraschallsensor und fahrzeug
DE102021214175A1 (de) 2021-12-13 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Ultraschallbasierte Messung von Umgebungstemperaturen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1904853A1 (de) * 1968-01-31 1969-09-11 Anvar Vorrichtung zur Messung von Temperaturen aus der Entfernung
EP1150135A1 (de) * 2000-04-28 2001-10-31 Valeo Schalter und Sensoren GmbH Einparkhilfe mit Temperaturkompensation
EP2290343A2 (de) * 2009-08-27 2011-03-02 Valeo Schalter und Sensoren GmbH Verfahren und Anordnung zur Bestimmung der Umgebungstemperatur eines Ultraschallsensors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333681A (ja) * 1986-07-29 1988-02-13 Fuji Electric Co Ltd 温度特性補償方法
JPH1054872A (ja) * 1996-08-08 1998-02-24 Tokico Ltd 超音波距離計
JP2007183185A (ja) * 2006-01-06 2007-07-19 Denso Corp 超音波センサ
DE102008001648A1 (de) * 2008-05-08 2009-11-12 Robert Bosch Gmbh Fahrerassistenzverfahren zum Bewegen eines Kraftfahrzeugs und Fahrerassistenzvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1904853A1 (de) * 1968-01-31 1969-09-11 Anvar Vorrichtung zur Messung von Temperaturen aus der Entfernung
EP1150135A1 (de) * 2000-04-28 2001-10-31 Valeo Schalter und Sensoren GmbH Einparkhilfe mit Temperaturkompensation
EP2290343A2 (de) * 2009-08-27 2011-03-02 Valeo Schalter und Sensoren GmbH Verfahren und Anordnung zur Bestimmung der Umgebungstemperatur eines Ultraschallsensors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505570A (en) * 2012-08-31 2014-03-05 Bosch Gmbh Robert An ultrasonic distance measuring device with sensor temperature measurement
GB2505570B (en) * 2012-08-31 2018-07-18 Bosch Gmbh Robert Increasing the robustness of ultrasound systems
WO2016173847A1 (de) * 2015-04-27 2016-11-03 Valeo Schalter Und Sensoren Gmbh Sensoranordnung zum erkennen eines zustands einer fahrbahn mit einem ultraschallsensor, fahrerassistenzsystem, kraftfahrzeug sowie dazugehöriges verfahren
US10549734B2 (en) 2015-04-27 2020-02-04 Valeo Schalter Und Sensoren Gmbh Sensor arrangement for detecting a state of a roadway using an ultrasonic sensor, a driver assistance system, a motor vehicle, and an associated method

Also Published As

Publication number Publication date
CN104115026A (zh) 2014-10-22
DE102012002979A1 (de) 2013-08-22
BR112014018840A2 (de) 2017-06-20
CN104115026B (zh) 2017-10-31
EP2815250A1 (de) 2014-12-24
BR112014018840A8 (pt) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2013120706A1 (de) Fahrerassistenzeinrichtung mit einem ultraschallsensor, kraftfahrzeug und verfahren zum betreiben eines ultraschallsensors
EP2601540B1 (de) Verfahren zum betreiben eines ultraschallsensors eines fahrerassistenzsystems in einem kraftfahrzeug, fahrerassistenzsystem und kraftfahrzeug
DE102010021960B4 (de) Verrfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP3047300B1 (de) Verfahren zum erkennen eines blockierten zustands eines ultraschallsensors, ultraschallsensorvorrichtung und kraftfahrzeug
EP2917761B1 (de) Verfahren zur detektion der sensordegradation bei abstandssensoren
EP2646846A1 (de) Fahrerassistenzsystem zur detektion eines objekts in einer fahrzeugumgebung
DE102012017368A1 (de) Verfahren zur Kommunikation zwischen einem Sensor und einem Steuergerät in einem Kraftfahrzeug und entsprechende Fahrerassistenzeinrichtung
EP2293102B1 (de) Verfahren und Vorrichtung zur Bestimmung der Position eines Hindernisses relativ zu einem Fahrzeug, insbesondere einem Kraftfahrzeug, zur Verwendung in einem Fahrerassistenzsystem des Fahrzeuges
DE112016002984T5 (de) Fahrunterstützungsvorrichtung und Fahrunterstützungsverfahren
DE102010044031A1 (de) Ultraschallbasierte Richtungsbestimmung von Objekten in einer Fahrzeugumgebung
EP2936199B1 (de) Verfahren zum feststellen der authentizität eines ultraschallsensors eines kraftfahrzeugs, steuereinheit, ultraschallsensor, ultraschallsensorvorrichtung und kraftfahrzeug
EP2618177A1 (de) Verfahren zum Erkennen eines vereisten und/oder verschmutzten Zustands eines Ultraschallsensors in enem Kraftfahrzeug, Sensoreinrichtung und Kraftfahrzeug
EP2870034B1 (de) Erhöhung der verfügbarkeit ultraschallbasierter fahrerassistenzsysteme bei auftreten von unterspannung im fahrzeug
EP2780737B1 (de) Fahrerassistenzeinrichtung für ein kraftfahrzeug, kraftfahrzeug und verfahren zum betreiben einer fahrerassistenzeinrichtung in einem kraftfahrzeug
DE102014115000A1 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP2895880B1 (de) Verfahren zur funktionsüberwachung von ultraschallsensoren
DE102016122427A1 (de) Verfahren zum Betreiben einer Ultraschallwandlervorrichtung eines Kraftfahrzeugs unter Berücksichtigung von akustischen Eigenschaften der Luft, Ultraschallwandlervorrichtung sowie Kraftfahrzeug
EP3857262A1 (de) Verfahren zum betreiben eines ultraschallsensors eines fahrzeugs mit reduzierter diagnose in einem messbetrieb des ultraschallsensors sowie ultraschallsensorvorrichtung
DE102010051486A1 (de) Verfahren zur ultraschallbasierten Vermessung zumindest eines Teils des Umfelds eines Kraftfahrzeugs, Ultraschallmessvorrichtung und Kraftfahrzeug
EP2101190A1 (de) Adressierung von Sende- und Empfangseinheiten einer Ultraschallabstandsmesseinrichtung
DE102014208393B4 (de) Ultraschall-Abstandsmessung mit Eigenbewegungskompensation
DE102017122477B4 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Objekterkennung im Nahbereich und im Fernbereich, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP2788785B1 (de) Sensorsystem zum betreiben eines sensorsystems
EP2936200A1 (de) Verfahren zur detektion eines störsignalanteils in einem elektrischen empfangssignal eines ultraschallsensors, ultraschallsensorvorrichtung und kraftfahrzeug
DE102011121463A1 (de) Verfahren zur Kommunikation zwischen einem Sensor und einem Steuergerät in einem Kraftfahrzeug, Fahrerassistenzeinrichtung und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13702450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013702450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014018840

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014018840

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140730