WO2013118409A1 - 無線通信システム、基地局、通信方法 - Google Patents
無線通信システム、基地局、通信方法 Download PDFInfo
- Publication number
- WO2013118409A1 WO2013118409A1 PCT/JP2012/083233 JP2012083233W WO2013118409A1 WO 2013118409 A1 WO2013118409 A1 WO 2013118409A1 JP 2012083233 W JP2012083233 W JP 2012083233W WO 2013118409 A1 WO2013118409 A1 WO 2013118409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subframe
- cqi
- subframes
- station
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
- H04W52/244—Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
Definitions
- the present invention relates to a wireless communication system, a base station, and a communication method.
- LTE Long Term Evolution
- Pico Cell Pico base station
- Non-Patent Document 1 LTE-Advanced (3GPP LTE Rel-10)
- ABS is almost blank Subframe, and Macro eNB10 replaces some Normal Subframes with ABS and transmits. In ABS, at least PDSCH (Pysical Downlink Shared Channel) is not transmitted.
- PDSCH Physical Downlink Shared Channel
- UE User Equipment: mobile station
- CQI Channel Quality Indicator
- UE30-1,30-2 located in Macro Cell calculates CQI in Macro Cell, and reports the calculated CQI value to Macro eNB10.
- Macro eNB10 and Pico eNB20 allocate downlink signal radio resources such as PDSCH to the UE based on the CQI value reported from the UE.
- UE30-1 can specify two types of subframes for CQI measurement corresponding to ABS of Rel-10 (hereinafter referred to as Rel-10 UE), Pico eNB20 to Rel-10 UE30-1 Specify two types of subframes for CQI measurement. As a result, UE 30-1 of Rel-10 calculates two types of CQIs, a subframe with a small interference from a macro cell and a subframe with a large interference, as CQIs of the subframes transmitted by Pico eNB20 to Pico Cell.
- the subframes # 1, # 3, # 5, and # 9 sent from Macro eNB10 to Macro Cell are ABS, and the interference from Macro Cell to Pico Cell is small.
- Subframes 0, # 2, # 4, # 6, # 7, and # 8 are normal subframes, and there is a large amount of interference from the macro cell to the pico cell.
- Subframe for CQI measurement for UE30-1 of Rel-10 from Pico eNB20 is part of # 1, # 3, # 5, # 9 Subframe, and # 0, # 2, # 4 , # 6, # 7, and # 8 subframes are also allowed.
- the UE 30-1 of Rel-10 calculates two types of CQI from the two types of designated subframes.
- Pico eNB20 is the subframe of # 1, # 3, # 5, # 9 with small interference from Macro Cell, or one of the two CQI values reported from UE30-1 of Rel-10.
- the radio resources of the downlink signals of the Macro Cell ABS that is, the subframes of # 1, # 3, # 5, and # 9, to UE30-1 of Rel-10 Can be assigned.
- Pico eNB20 can specify only one type of Subframe for CQI measurement for Rel-8 / 9 UE30-1.
- the UE 30-1 of Rel-8 / 9 calculates one type of CQI as the CQI of the Subframe transmitted by Pico eNB20 to the Pico Cell.
- the subframes # 1, # 3, # 5, and # 9 sent by Macro eNB10 to Macro Cell are ABS, and interference from Macro Cell to Pico Cell is small.
- Subframes 0, # 2, # 4, # 6, # 7, and # 8 are normal subframes, and there is a large amount of interference from the macro cell to the pico cell. Nevertheless, Rel-8 / 9 UE30-1 calculates one CQI for all subframes # 0 to # 9 without considering interference from different macro cells in two types of subframes. Do.
- Pico eNB20 allocates downlink signal radio resources to UE30-1 of Rel-8 / 9
- interference from Macro Cell cannot be taken into account and reported from UE30-1 of Rel-8 / 9
- Radio resources for downlink signals are allocated to all Subframes using one type of CQI value.
- one type of CQI value generally reported from UE30-1 of Rel-8 / 9 is a subframe with a large interference from Macro Cell to Pico Cell and a subframe with a small interference from Macro Cell to Pico Cell. And both. Therefore, the Rel-10 UE in the same position is calculated from only the subframe with small interference from the Macro Cell to the Pico Cell, and is smaller than the reported CQI value.
- the Pico eNB20 has degraded the CQI of the Rel-8 / 9 UE30-1 in the subframe with low interference from the Macro Cell to the Pico Cell, compared to the CQI of the Rel-10 UE in the same position.
- a low-order Modulation Scheme for example, QPSK is assigned instead of 16QAM
- a low-order Coding Rate is assigned to the UE 30-1 of Rel-8 / 9. Therefore, the Rel-8 / 9 UE 30-1 consumes more radio resources of the Pico Cell downlink signal than the Rel-10 UE in the same position, causing a reduction in the capacity of the radio communication system.
- UE30-3 located in Pico Cell calculates CQI in Pico Cell and reports the calculated CQI value to Pico eNB20.
- UE30-4 located in Macro Cell calculates CQI in Macro Cell, and reports the calculated CQI value to Macro eNB10.
- Pico eNB20 specifies two types of Subframes for CQI measurement for Rel-10 UE30-3.
- UE 30-3 of Rel-10 calculates two types of CQIs, a subframe with a small interference from a macro cell and a subframe with a large interference, as CQIs of the subframe transmitted by Pico eNB20 to Pico Cell.
- the subframes of # 1, # 3, # 5, and # 9 sent by Macro eNB10 to Macro Cell are ABS, and interference from Macro Cell to Pico Cell is small.
- Subframes 0, # 2, # 4, # 6, # 7, and # 8 are normal subframes, and there is a large amount of interference from the macro cell to the pico cell.
- subframes for CQI measurement from Pico eNB20 to Rel-10 UE30-3 are part of subframes # 1, # 3, # 5, and # 9, and # 0, # 2, # 4 , # 6, # 7, and # 8 subframes are also allowed.
- UE 30-3 of Rel-10 calculates two types of CQIs from the two types of designated subframes.
- Pico eNB20 is the subframe of # 1, # 3, # 5, # 9 with small interference from Macro Cell, or one of the two CQI values reported from UE30-3 of Rel-10.
- the radio resources of the downlink signals of the ABS of the Macro Cell that is, the subframes of # 1, # 3, # 5, and # 9, to UE30-3 of Rel-10 Can be assigned.
- the Pico eNB 20 can allocate the optimal downlink signal radio resource based on the CQI value of the subframe to the Rel-10 UE30-3 to the subframe with small interference from the Macro Cell.
- Rel-10 can be specified by specifying two types of subframes for CQI measurement from Macro eNB10 to Rel-10 UE30-4.
- UE30-4 calculates two types of CQIs, a subframe with small interference and a subframe with large interference from the Pico Cell, as CQIs of the subframes sent by Macro eNB10 to the Macro Cell.
- the case where the interference from the Pico Cell to the Macro Cell is large may be a case where the UE 30-4 located in the Macro Cell is in the vicinity of the Pico Cell or a case where the transmission power of the Pico eNB 20 is large.
- the subframes of # 0, # 2, # 4, # 6, # 7, and # 8 sent by Pico eNB20 to Pico Cell are ABS, and from Pico Cell to Macro Cell
- the # 1, # 3, # 5, and # 9 subframes are normal subframes, and the interference from the Pico Cell to the Macro Cell is large.
- Subframes for CQI measurement from Macro eNB10 to Rel-10 UE30-4 are specified as part of # 1, # 3, # 5, # 9 subframes, and # 0, # 2, # 4 , # 6, # 7, and # 8 subframes are also allowed.
- the UE 30-4 of Rel-10 calculates two types of CQI from the two types of designated subframes.
- Macro eNB10 has # 0, # 2, # 4, # 6, # 7, # 8 with small interference from Pico Cell among the two types of CQI values reported from UE30-4 of Rel-10.
- Pico Cell ABS using only the CQI value calculated using the subframe of the subframe or a part of the subframe, that is, the downstream signal of the subframe of # 0, # 2, # 4, # 6, # 7, # 8 Can be allocated to UE 30-4 of Rel-10.
- the Macro eNB 10 can allocate radio resources of the optimal downlink signal based on the CQI value of the subframe to the Rel-10 UE30-4 to the subframe with a small interference from the Pico Cell.
- Macro eNB10 specifies only one type of Subframe for CQI measurement for Rel-8 / 9 UE30-4 Can not do it.
- the UE 30-4 of Rel-8 / 9 calculates one type of CQI as the CQI of the subframe transmitted from the Macro eNB 10 to the Macro Cell.
- the subframes of # 0, # 2, # 4, # 6, # 7, and # 8 sent by Pico eNB20 to Pico Cell are ABS, and from Pico Cell to Macro Cell
- the # 1, # 3, # 5, and # 9 subframes are normal subframes, and the interference from the Pico Cell to the Macro Cell is large.
- Rel-8 / 9 UE30-4 does not take into account interference from different macro cells in two types of subframes, and calculates one type of CQI for all subframes # 0 to # 9. Do.
- Macro eNB10 was unable to consider interference from Pico Cell when allocating downlink signal radio resources to Rel-8 / 9 UE30-4, and reported from Rel-8 / 9 UE30-4 Radio resources for downlink signals are allocated to all Subframes using one type of CQI value.
- one type of CQI value generally reported from UE30-4 of Rel-8 / 9 is a subframe with a large interference from Pico Cell to Macro Cell and a subframe with a small interference from Pico Cell to Macro Cell. Therefore, the Rel-10 UE in the same position is calculated from only the subframe with small interference from the Pico Cell to the Macro Cell, and is smaller than the CQI value to be reported.
- the Macro eNB10 has degraded the CQI of the Rel-8 / 9 UE30-4 in the subframe with small interference from the Pico Cell to the Macro Cell, compared to the CQI of the Rel-10 UE in the same position.
- a low-order Modulation Scheme or a low-order Coding Rate is assigned to Rel-8 / 9 UE30-4. Therefore, UE 30-4 of Rel-8 / 9 consumes more radio resources of the downlink signal of Macro Cell than UE of Rel-10 in the same position, causing a reduction in the capacity of the radio communication system.
- an object of the present invention is to provide a wireless communication system, a base station, and a communication method that can solve the above-described problems.
- the wireless communication system of the present invention includes: A wireless communication system comprising a mobile station and a plurality of base stations that communicate with the mobile station in subframe units, When each of the plurality of base stations reduces downlink transmission power by limiting downlink transmission signals in a specific subframe, The mobile station It is a mobile station that cannot specify two types of subframes for CQI measurement, Without recognizing the specific subframe transmitted by the base station, calculate one type of CQI in the cell formed by the base station, and transmit the calculated CQI value to the base station, Each of the plurality of base stations is When a CQI value is received from the mobile station, if the mobile station cannot specify two types of subframes for performing CQI measurement, the CQI value is corrected to two types.
- the base station of the present invention A base station that communicates with a mobile station in subframe units, When the downlink transmission power is reduced by limiting the downlink transmission signal in a specific subframe, when a CQI value is received from the mobile station, the mobile station cannot specify two types of subframes for performing CQI measurement. If there is, a control unit for correcting the CQI value into two types is provided.
- the communication method of the present invention includes: A communication method by a base station that communicates with a mobile station in subframe units, When the downlink transmission power is reduced by limiting the downlink transmission signal in a specific subframe, when a CQI value is received from the mobile station, the mobile station cannot specify two types of subframes for performing CQI measurement. If there is, the CQI value is corrected into two types.
- FIG. 1 is a diagram illustrating an example of an LTE / LTE-Advanced wireless communication system. It is a figure explaining the condition of the interference between Macro Cell and Pico Cell in the radio
- FIG. 3 is a diagram illustrating another example of an LTE / LTE-Advanced wireless communication system. It is a figure explaining the interference condition between Macro Cell and Pico Cell in the radio
- FIG. It is a figure explaining the interference condition between Macro Cell and Pico Cell in the radio
- the wireless communication system of the present embodiment has the same overall configuration as that shown in FIG. 1 or FIG. 4, but adds a new function to Pico eNB 20 and Macro eNB 10.
- Pico eNB20 and Macro eNB10 will be described below.
- the Pico eNB 20 is arranged as shown in FIG.
- the Pico eNB 20 includes a communication unit 21, a storage unit 22, and a control unit 23.
- the communication unit 21 performs radio communication in units of subframes with the UE 30-1 located in the Pico Cell formed by the Pico eNB20.
- CQI is downlink channel quality information calculated from CRS (Cell-specific Reference Signal), which is a downlink reference signal known to the UE, or CSI-RS (Channel State Information Reference Signal).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- the control unit 23 When the control unit 23 receives a CQI value from the UE 30-1, if the UE 30-1 is a Rel-8 / 9 UE that does not support ABS (a UE that cannot specify two types of subframes for CQI measurement), the CQI Correct the value.
- UE30-1 can be notified to Pico eNB20 by a well-known method from UE30-1 which UE is Rel-8 / 9 or Rel-10.
- the control unit 23 determines and changes the correction parameter used for correcting the CQI value.
- This correction parameter is, for example, ⁇ , which will be described later, and is an ABS rate.
- the storage unit 22 stores correction parameters determined and changed by the control unit 23.
- This correction parameter is, for example, ⁇ , which will be described later, and is an ABS rate.
- the Macro eNB 10 includes a communication unit 11, a storage unit 12, and a control unit 13.
- the communication unit 11 performs radio communication in units of Subframes with UE30-2 located in the Macro Cell formed by the Macro eNB10.
- UE 30-2 calculates and reports CQI using the Subframe transmitted by communication unit 11, communication unit 11 receives the CQI value.
- the control unit 13 When the control unit 13 receives a CQI value from the UE 30-2, if the UE 30-2 is a Rel-8 / 9 UE that does not support ABS (a UE that cannot specify two types of subframes for performing CQI measurement), the CQI Correct the value. Note that UE 30-1, 30-2 can be notified to Macro eNB 10 by a well-known method from UE 30-2, which UE is Rel-8 / 9 or Rel-10.
- the control unit 13 determines and changes the correction parameter used for correcting the CQI value.
- This correction parameter is, for example, ⁇ , which will be described later, and is an ABS rate.
- the storage unit 12 stores correction parameters determined and changed by the control unit 13.
- This correction parameter is, for example, ⁇ , which will be described later, and is an ABS rate.
- FIG. 10 illustrates the configuration of Rel-8 / 9 UEs 30-1 and 30-2 that do not support ABS.
- the UEs 30-1 and 30-2 have a reception unit 40, a control unit 41, and a transmission unit 42.
- the receiving unit 40 receives a downlink reference signal (RS).
- RS downlink reference signal
- the control unit 41 calculates CQI based on the received reference signal.
- the transmission unit 42 reports CQI to Macro eNB10 or Pico eNB20 using an uplink control channel (PUCCH) or an uplink shared channel (PUSCH) (CQI report).
- PUCCH uplink control channel
- PUSCH uplink shared channel
- the receiving unit 40 receives resource allocation information related to downlink resources allocated using the CQI value corrected by the Macro eNB 10 or the Pico eNB 20 based on the CQI value reported by the transmitting unit 42. In addition, the receiving unit 40 receives downlink data from the Macro eNB 10 or the Pico eNB 20 using the allocated downlink resource.
- the transmission unit 42 reports success / failure of data reception (retransmission request) to the Macro eNB10 or Pico eNB20 using the uplink control channel (PUCCH) or the uplink shared channel (PUSCH) (ACK (Acknowledgment)). / NACK (Negative Acknowledgment)).
- PUCCH uplink control channel
- PUSCH uplink shared channel
- ACK Acknowledgment
- NACK Negative Acknowledgment
- A Calculation method of SINR in UE (A-1)
- UE30-1 located in Pico cell is UE of Rel-10
- UE30-1 of Rel-10 Subframe transmitted by Pico eNB20 to Pico Cell
- Subframe with large interference from Macro Cell Subframe corresponding to Normal Subframe part of Macro Cell, hereinafter referred to as Subframe Normal
- Two types of SINR are calculated: a subframe with low interference (subframe corresponding to the ABS portion of the macro cell; hereinafter referred to as subframe ABS ).
- UE 30-1 of Rel-10 calculates SINR Normal of Subframe Normal as follows.
- RSSI Normal i
- RSSI in Subframe Normal i is (Received signal strength indicator: desired wave received power)
- ISSI Normal i
- the average of the Subframe Normal up to Subframe Normal i ISSI Interference signal strength indicator: Interference wave received power.
- the method for calculating the average ISSI is not particularly limited, and examples include a method of performing moving average using a forgetting factor.
- UE30-1 of Rel-10 calculates SINR ABS of Subframe ABS as follows.
- i is a Subframe number
- RSSI ABS (i) is RSSI in Subframe ABS i
- ISSI ABS (i) is an average ISSI of Subframe ABS up to Subframe ABS i.
- UE 30-1 of Rel-10 reports the two values of SINR Normal (i) and SINR ABS (i) calculated above to Pico eNB 20 as CQI values.
- Pico eNB20 uses the value of SINR ABS (i), and it is optimal for Rel-10 UE30-1, including subframe (Subframe ABS ) with small interference from Macro Cell, including Modulation Scheme and Coding Rate. Allocate radio resources for the downstream signal.
- Rel-8 / 9 UE 30-1 calculates one type of SINR as follows.
- RSSI (i) is the RSSI in Subframe i
- ISSI (i) is the average ISSI of the Subframe up to Subframe i.
- Rel-8 / 9 UE30-1 reports one value of SINR (i) calculated above to Pico eNB20 as a CQI value.
- r represents the ABS rate (0 ⁇ r ⁇ 1), which is the ratio of ABS to the total subframes sent by Macro eNB10 to Macro cell.
- the ABS rate can be notified to Pico eNB20 and Macro eNB10 by a known method.
- ⁇ is a value (0 ⁇ ⁇ 1) indicating the ratio of ISSI of Subframe ABS to ISSI of Subframe Normal .
- ⁇ is small.
- the position of Pico eNB20 is close to Macro eNB10, since the ratio of ISSI of Subframe ABS to ISSI of Subframe Normal is small, ⁇ is small.
- the position of Pico eNB20 is far from Macro eNB10, since the ISSI of Subframe ABS with respect to the ISSI of Subframe Normal approaches 1, the value of ⁇ increases.
- B-2 An example of a method for determining ⁇ will be described later (B-2).
- the ABS rate r in the Macro cell is stored in the storage unit 22 and managed.
- Pico eNB20 after the ⁇ , that is, if the ratio of Subframe ABS to ISSI of Subframe Normal is known, the CQI value reported from UE30-1 is converted to SINR value, and then the above correction is performed.
- Rel-10 UE Rel-8 / 9 UE30-1 has subframe (Subframe ABS ) with little interference from Macro Cell, Modulation Scheme and Coding It is possible to perform optimal downlink signal radio resource allocation including Rate.
- control unit 23 is notified of the transmission power information of Normal Subframe and ABS from the Macro eNB 10 using the X2 interface.
- control unit 23 measures the received power of the Normal subframe and ABS from Macro eNB10 by itself. For example, the control unit 23 prepares a time domain (radio frame) in which uplink transmission is not assigned to UEs in the Pico cell, and measures the received power of the Normal Subframe and ABS from the Macro eNB 10 in that time domain.
- time domain radio frame
- control unit 23 causes any UE located in the Pico Cell to measure the normal Subframe and ABS received power from the Macro Cell, or the measurement value including the received power, and report it to the Pico eNB 20
- the normal subframe and ABS CQI measured by Rel-10 UEs located in Pico eNB20 contain information on the received power from Macro eNB10. Therefore, the Rel-10 UE located in the Pico eNB20 can report the Normal Subframe and ABS received power from the Macro Cell by reporting the Normal Subframe and ABS CQI values.
- the control unit 23 obtains ⁇ based on the transmission information of the Normal subframe and ABS of the Macro eNB 10 or the reception power of the Normal Subframe and ABS from the Macro eNB 10 and stores the ⁇ in the storage unit 22. Specifically, the control unit 23 causes the storage unit 22 to store the ratio of the ABS power to the normal subframe power as ⁇ based on the information on the normal subframe and ABS power of the Macro eNB10.
- ⁇ is updated regularly or irregularly and stored in the storage unit 22 each time. There is no restriction on the update cycle.
- ⁇ it is also possible to apply after multiplying ⁇ by a fixed or variable coefficient. Alternatively, it is also possible to apply after performing rounding on ⁇ . As an example, there is a method of performing rounding processing with the minimum value of ⁇ being 0.1.
- the CQI value reported from the UE which is generally known, is corrected in the outer loop according to the reception success / failure of the downlink signal
- the CQI value of the Normal subframe is ( Applying Equation 10 of B-1)
- the Normal Subframe CQI value is corrected in an Outer Loop according to the successful / unsuccessful reception of the Normal Subframe downstream signal.
- the ABS CQI value after applying Equation 11 of (B-1), the ABS CQI value is corrected in an outer loop according to the success or failure of the ABS downlink signal reception.
- the UE 30-1, 30-2 of Rel-8 / 9 that does not support ABS receives a downlink reference signal (RS: Reference Signal) (step S1).
- RS Reference Signal
- UE30-1, 30-2 calculates CQI based on the received reference signal (step S2).
- UE30-1 and 30-2 report the calculated CQI value to Macro eNB10 or Pico eNB20 using the uplink control channel (PUCCH) or uplink shared channel (PUSCH) (CQI report) (step S3 ).
- PUCCH uplink control channel
- PUSCH uplink shared channel
- UE30-1 and 30-2 are Rel-8 / 9 UEs that do not support ABS (subframes for CQI measurement are 2 If the type cannot be specified (UE), the CQI value is corrected to two types (step S4).
- the correction method described in the above-described embodiment is performed.
- Macro eNB10 or Pico eNB20 allocates downlink resources to the UE in resource block (RB) units based on the received CQI.
- Control information for allocating resources is transmitted on the downlink shared channel (PDSCH) as downlink L1 / l2 control information (step S5).
- Macro eNB10 or Pico eNB20 transmits downlink data to UEs 30-1 and 30-2 using the allocated downlink resource (step S6).
- UE30-1 and 30-2 report the success / failure of data reception (retransmission request) to Macro eNB10 or Pico eNB20 using uplink control channel (PUCCH) or uplink shared channel (PUSCH) ( (ACK / NACK) (step S7).
- PUCCH uplink control channel
- PUSCH uplink shared channel
- the Pico eNB 20 when the Pico eNB 20 receives a CQI value from a Rel-8 / 9 UE that cannot specify two types of subframes for CQI measurement, the Pico eNB 20 corrects the CQI value, and 2 One CQI value.
- optimal downlink signal radio resources including Modulation Scheme and Coding Rate are allocated to subframes with low interference from Macro Cell. It becomes possible to do.
- Macroe eNB10 when Macroe eNB10 receives a CQI value from a Rel-8 / 9 UE that cannot specify two types of subframes for CQI measurement, it corrects the CQI value to obtain two CQI values.
- optimal downlink signal radio resources including Modulation Scheme and Coding Rate are allocated to subframes with low interference from Pico Cell. It becomes possible to do.
- Rel-8 It can be avoided that the / 9 UE consumes more radio resources of the Pico Cell and Macro Cell downlink signals than the UE of Rel-10 or later, and the capacity of the radio communication system is reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
移動局と、前記移動局とサブフレーム単位で通信する複数の基地局と、を有してなる無線通信システムであって、
前記複数の基地局の各々が、特定のサブフレームにおいて下り送信信号を制限することで下り送信電力を低減する場合、
前記移動局は、
CQI測定を行うサブフレームを2種類指定できない移動局であり、
前記基地局が送信した前記特定のサブフレームを認識せずに、該基地局が形成するセルにおける1種類のCQIを算出し、算出したCQI値を該基地局に送信し、
前記複数の基地局の各々は、
前記移動局からCQI値を受信した場合、該移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する。
移動局とサブフレーム単位で通信する基地局であって、
特定のサブフレームにおいて下り送信信号を制限することで下り送信電力を低減する場合、前記移動局からCQI値を受信した場合、該移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する制御部を有する。
移動局とサブフレーム単位で通信する基地局による通信方法であって、
特定のサブフレームにおいて下り送信信号を制限することで下り送信電力を低減する場合、前記移動局からCQI値を受信した場合、該移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する。
(A-1)CQI測定を行うSubframeを2種類指定可能なRel-10のUEの場合
Pico cellに在圏するUE30-1がRel-10のUEである場合、Rel-10のUE30-1は、Pico eNB20がPico Cellに送信したSubframeを、Macro Cellからの干渉の大きなSubframe(Macro CellのNormal Subframe部分に対応するSubframe。以下、SubframeNormalと称す)と、干渉の小さなSubframe(Macro CellのABS部分に対応するSubframe。以下、SubframeABSと称す)と、の2種類のSINRを算出する。
Pico cellに在圏するUE30-1がRel-8/9のUEである場合、Rel-8/9のUE30-1は、次のように、1種類のSINRを算出する。
(B-1)SINR値の補正方法
上述のように、Rel-8/9のUE30-1は、SINR(i)の1つの値を送信する。
まず、Pico eNB20の制御部23は、Macro eNB10のNormal SubframeとABSの送信電力、または、Macro eNB10からのNormal SubframeとABSの受信電力の情報を取得する。
制御部23は、定数としてのαを予め算出、あるいは設定し、記憶部22に記憶させておく。具体的には、例えば、一般的な下り信号の1Subframe内の全無線リソースとPDSCHの無線リソースとの比をβとすると、
α = 1-β
と近似することができる。
制御部23は、(B-2-1)、または(B-2-2)で決定したαをCQI値の補正に用いる。具体的には(B-1)の数式10、数式11に適用する。
Claims (9)
- 移動局と、前記移動局とサブフレーム単位で通信する複数の基地局と、を有してなる無線通信システムであって、
前記複数の基地局の各々が、特定のサブフレームにおいて下り送信信号を制限することで下り送信電力を低減する場合、
前記移動局は、
CQI測定を行うサブフレームを2種類指定できない移動局であり、
前記基地局が送信した前記特定のサブフレームを認識せずに、該基地局が形成するセルにおける1種類のCQIを算出し、算出したCQI値を該基地局に送信し、
前記複数の基地局の各々は、
前記移動局からCQI値を受信した場合、該移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する、無線通信システム。 - 前記複数の基地局の各々は、
前記CQI測定を行うサブフレームを2種類指定できない移動局からCQI値を受信した場合、
自局に隣接する隣接基地局から送信される通常のサブフレームの干渉と、隣接基地局から送信される特定のサブフレームの干渉と、の比、および通常のサブフレームと特定のサブフレームのサブフレーム数の比に基づいて、前記CQI値の補正に用いるパラメータを決定する、請求項1に記載の無線通信システム。 - 前記複数の基地局の各々は、
自局に隣接する隣接基地局から送信される通常のサブフレームの干渉と、隣接基地局から送信される特定のサブフレームの干渉と、の比を算出する際に、
隣接基地局から、隣接基地局の通常のサブフレームの送信電力情報、および隣接基地局の特定のサブフレームの送信電力情報を、基地局間通信インターフェースを用いて通知してもらう、請求項2に記載の無線通信システム。 - 前記複数の基地局の各々は、
自局に隣接する隣接基地局から送信される通常のサブフレームの干渉と、隣接基地局から送信される特定のサブフレームの干渉と、の比を算出する際に、
自局にて隣接基地局の通常のサブフレームの送信電力、および隣接基地局の特定のサブフレームの送信電力を測定する、請求項2に記載の無線通信システム。 - 前記複数の基地局の各々は、
自局に隣接する隣接基地局から送信される通常のサブフレームの干渉と、隣接基地局から送信される特定のサブフレームの干渉と、の比を算出する際に、
自局と通信している1つ、あるいは複数の移動局に対して、隣接基地局の通常のサブフレームの送信電力、および隣接基地局の特定のサブフレームの送信電力、あるいは送信電力の含まれる測定値を測定させ、自局に報告させる、請求項2に記載の無線通信システム。 - 前記複数の基地局の各々は、
自局に隣接する隣接基地局から送信される通常のサブフレームの干渉と、隣接基地局から送信される特定のサブフレームの干渉と、の比を、定数として予め算出、あるいは設定しておく、請求項2に記載の無線通信システム。 - 前記複数の基地局の各々は、
前記移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する際に、
前記CQI値を当該移動局に対する下り信号の受信成功・不成功に応じてさらに補正する場合、
通常のサブフレームに対しては、通常のサブフレームのCQI相当に補正されたCQI値を当該移動局に対する通常のサブフレームの下り信号の受信成功・不成功に応じてさらに補正し、
特定のサブフレームに対しては、特定のサブフレームのCQI相当に補正されたCQI値を当該移動局に対する特定のサブフレームの下り信号の受信成功・不成功に応じてさらに補正する、請求項1に記載の無線通信システム。 - 移動局とサブフレーム単位で通信する基地局であって、
特定のサブフレームにおいて下り送信信号を制限することで下り送信電力を低減する場合、前記移動局からCQI値を受信した場合、該移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する制御部を有する、基地局。 - 移動局とサブフレーム単位で通信する基地局による通信方法であって、
特定のサブフレームにおいて下り送信信号を制限することで下り送信電力を低減する場合、前記移動局からCQI値を受信した場合、該移動局がCQI測定を行うサブフレームを2種類指定できない移動局であれば、該CQI値を2種類に補正する、通信方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013557386A JP5783271B2 (ja) | 2012-02-10 | 2012-12-21 | 無線通信システム、基地局、通信方法 |
CN201280069346.6A CN104106279B (zh) | 2012-02-10 | 2012-12-21 | 无线电通信系统、基站和通信方法 |
US14/378,028 US9497013B2 (en) | 2012-02-10 | 2012-12-21 | Radio communication system, base station, and communication method |
EP12867918.0A EP2814280B1 (en) | 2012-02-10 | 2012-12-21 | Wireless communication system, base station, and communication method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-027157 | 2012-02-10 | ||
JP2012027157 | 2012-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118409A1 true WO2013118409A1 (ja) | 2013-08-15 |
Family
ID=48947193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/083233 WO2013118409A1 (ja) | 2012-02-10 | 2012-12-21 | 無線通信システム、基地局、通信方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9497013B2 (ja) |
EP (1) | EP2814280B1 (ja) |
JP (1) | JP5783271B2 (ja) |
CN (1) | CN104106279B (ja) |
WO (1) | WO2013118409A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015001797A1 (ja) * | 2013-07-05 | 2015-01-08 | 日本電気株式会社 | 基地局装置、無線通信システム、セル間干渉制御方法、及び記録媒体 |
WO2020161872A1 (ja) * | 2019-02-07 | 2020-08-13 | ソフトバンク株式会社 | 基地局装置、電力制御方法、及び電力制御プログラム |
US10924206B2 (en) | 2016-09-13 | 2021-02-16 | Huawei Technologies Co., Ltd. | Adaptive modulation and coding method and base station |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196295A1 (ja) * | 2013-06-05 | 2014-12-11 | ソニー株式会社 | 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置 |
US10952241B2 (en) * | 2017-02-14 | 2021-03-16 | Qualcomm Incorporated | Resource index determination for bundled channel transmission in special subframes |
JP7024290B2 (ja) * | 2017-09-29 | 2022-02-24 | 日本電気株式会社 | 無線通信システム、基地局、無線通信方法、およびプログラム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4218387B2 (ja) * | 2003-03-26 | 2009-02-04 | 日本電気株式会社 | 無線通信システム、基地局及びそれらに用いる無線リンク品質情報補正方法並びにそのプログラム |
CN100505733C (zh) * | 2005-01-14 | 2009-06-24 | 华为技术有限公司 | 高速下行分组数据包接入中校正信道质量指示的方法 |
JP4923848B2 (ja) | 2006-08-21 | 2012-04-25 | 日本電気株式会社 | 通信システム及び通信方法並びにそれに用いる移動局及び基地局 |
JP5222517B2 (ja) * | 2007-10-01 | 2013-06-26 | 株式会社エヌ・ティ・ティ・ドコモ | 補正テーブルを作成する方法及び装置 |
US8260206B2 (en) | 2008-04-16 | 2012-09-04 | Qualcomm Incorporated | Methods and apparatus for uplink and downlink inter-cell interference coordination |
US8824384B2 (en) * | 2009-12-14 | 2014-09-02 | Samsung Electronics Co., Ltd. | Systems and methods for transmitting channel quality information in wireless communication systems |
JP5340995B2 (ja) | 2010-02-26 | 2013-11-13 | 株式会社日立製作所 | 基地局、無線通信システム及び干渉基準のハンドオーバ制御方法 |
US9031010B2 (en) * | 2010-04-08 | 2015-05-12 | Qualcomm Incorporated | Separate resource partitioning management for uplink control and uplink data signals |
US9363038B2 (en) * | 2010-04-13 | 2016-06-07 | Qualcomm Incorporated | Evolved node B channel quality indicator (CQI) processing for heterogeneous networks |
US8886250B2 (en) * | 2010-06-18 | 2014-11-11 | Qualcomm Incorporated | Channel quality reporting for different types of subframes |
-
2012
- 2012-12-21 EP EP12867918.0A patent/EP2814280B1/en active Active
- 2012-12-21 JP JP2013557386A patent/JP5783271B2/ja active Active
- 2012-12-21 US US14/378,028 patent/US9497013B2/en active Active
- 2012-12-21 WO PCT/JP2012/083233 patent/WO2013118409A1/ja active Application Filing
- 2012-12-21 CN CN201280069346.6A patent/CN104106279B/zh active Active
Non-Patent Citations (6)
Title |
---|
3GPP TS 36.300, December 2011 (2011-12-01) |
CATT: "Considerations on RSRP/RSRQ Definition", 3GPP TSG-RAN WG1#63B R1-110058, 17 January 2011 (2011-01-17), XP050490036 * |
CATT: "Discussion on the Design of ABS Pattern and its Impact on the Measurement", 3GPP TSG-RAN WG1#63 R1-105935, 15 November 2010 (2010-11-15), XP050466749 * |
HITACHI LTD.: "Specification Impact of Non-Zero Power ABS", 3GPP TSG-RAN WG1#68, 6 February 2012 (2012-02-06), XP050562796 * |
INTEL CORPORATION (UK) LTD: "Impacts of non- regular subframes in eICIC time-domain solution", 3GPP TSG-RAN WG2#71BIS R2-105753, 11 October 2010 (2010-10-11), XP050452708 * |
MOTOROLA SOLUTIONS: "RSRQ measurement restriction configurations for eICIC", 3GPP TSG-RAN WG2#72BIS R2-110476, 17 January 2011 (2011-01-17), XP050493073 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015001797A1 (ja) * | 2013-07-05 | 2015-01-08 | 日本電気株式会社 | 基地局装置、無線通信システム、セル間干渉制御方法、及び記録媒体 |
US10924206B2 (en) | 2016-09-13 | 2021-02-16 | Huawei Technologies Co., Ltd. | Adaptive modulation and coding method and base station |
WO2020161872A1 (ja) * | 2019-02-07 | 2020-08-13 | ソフトバンク株式会社 | 基地局装置、電力制御方法、及び電力制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN104106279A (zh) | 2014-10-15 |
JPWO2013118409A1 (ja) | 2015-05-11 |
EP2814280B1 (en) | 2017-09-20 |
EP2814280A1 (en) | 2014-12-17 |
CN104106279B (zh) | 2018-01-02 |
US9497013B2 (en) | 2016-11-15 |
JP5783271B2 (ja) | 2015-09-24 |
US20150036522A1 (en) | 2015-02-05 |
EP2814280A4 (en) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11425697B2 (en) | Dynamic management of uplink control signaling resources in wireless network | |
US9736830B2 (en) | Systems and methods utilizing an efficient TBS table design for 256QAM in a cellular communications network | |
KR102284453B1 (ko) | 셀룰러 이동 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 | |
US20180309608A1 (en) | Interference parameter signaling for efficient interference cancellation and suppression | |
US9185733B2 (en) | Method of device-to-device communication in wireless mobile communication system | |
US10862655B2 (en) | User terminal and radio communication method | |
EP3047586B1 (en) | Network node, user equipment and methods for obtaining a modulation and coding scheme | |
US9532371B2 (en) | Method and apparatus for scheduling user equipment | |
US20190037502A1 (en) | Power control method and device | |
JP5783271B2 (ja) | 無線通信システム、基地局、通信方法 | |
US9668275B2 (en) | Method and apparatus for reporting channel state by reflecting interference cancellation performance | |
US10230489B2 (en) | Adaptive modulation and coding method and apparatus | |
KR20100113561A (ko) | 이동통신시스템에서 사용되는 기지국장치 및 방법 | |
CN108886463B (zh) | 用于使网络节点能够在电信网络中执行无线电操作任务的方法、系统和装置 | |
CN109644477A (zh) | 自适应调制编码的方法和基站 | |
CN112825592B (zh) | 载波调度方法、装置、基站及存储介质 | |
US9813194B2 (en) | Feedback in a communication system | |
US11240826B2 (en) | Control apparatus, method, program, and recording medium | |
US20220167369A1 (en) | Inter-modulation avoidance for transmission on different frequencies | |
US10856233B2 (en) | Coverage extension for wireless devices | |
US20230239026A1 (en) | Fast outerloop link adaptation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867918 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013557386 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14378028 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012867918 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012867918 Country of ref document: EP |