WO2020161872A1 - 基地局装置、電力制御方法、及び電力制御プログラム - Google Patents

基地局装置、電力制御方法、及び電力制御プログラム Download PDF

Info

Publication number
WO2020161872A1
WO2020161872A1 PCT/JP2019/004510 JP2019004510W WO2020161872A1 WO 2020161872 A1 WO2020161872 A1 WO 2020161872A1 JP 2019004510 W JP2019004510 W JP 2019004510W WO 2020161872 A1 WO2020161872 A1 WO 2020161872A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
small cell
transmission signal
field strength
electric field
Prior art date
Application number
PCT/JP2019/004510
Other languages
English (en)
French (fr)
Inventor
淳一 大河原
隆之 吉村
尚之 酒井
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2019/004510 priority Critical patent/WO2020161872A1/ja
Publication of WO2020161872A1 publication Critical patent/WO2020161872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a base station device that controls the power of a transmission signal of a base station, a power control method, and a power control program.
  • a base station device provided in a small cell base station, information acquisition means for acquiring information on the electric field strength of the transmission signal transmitted from the macrocell base station located in the vicinity of the own station, and the downlink transmission power
  • the electric field strength of the transmission signal from the macrocell base station in a state of being set to the maximum power exceeds a preset electric field upper limit threshold or becomes equal to or more than the electric field upper limit threshold
  • the downlink transmission power is A transmission power control unit that changes to the minimum power or stops the transmission of the downlink transmission signal (for example, refer to Patent Document 1).
  • This base station device secures a sufficiently large coverage area for the small cells while suppressing the power of the downlink signal from the small cell base station to the maximum allowable power or less.
  • This type of base station device has a TPM (Transmit Power Management) function that controls the power of the transmission signal of its own base station, that is, the size of the cell.
  • TPM Transmit Power Management
  • a conventional base station device measures the electric field strength of a transmission signal of another base station in a neighboring cell using a radio of its own base station, and based on the measured electric field strength. It adopted a method of determining the power of the transmission signal of its own base station.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a power control method, and a power control program capable of suppressing interference at the end of a cell.
  • a base station device is a base station device for a small cell base station, and at least one of electric field strength information regarding electric field strength in a transmission signal of another base station and radio quality information regarding radio quality.
  • An acquisition unit for acquiring from a mobile communication terminal located in a cell of a small cell base station, and power control for controlling the power of a transmission signal of the small cell base station based on at least one of electric field strength information and radio quality information. And a section.
  • a power control method is a power control method for controlling the power of a transmission signal of a small cell base station, the radio field strength information relating to the field strength in the transmission signal of another base station, and radio relating to radio quality. At least one of the quality information, a step of acquiring from the mobile communication terminal located in the cell of the small cell base station, the power of the transmission signal of the small cell base station based on at least one of the electric field strength information and wireless quality information Controlling step.
  • a power control program is a power control program executed by a computer for controlling the power of a transmission signal of a small cell base station, and electric field strength information relating to the electric field strength of a transmission signal of another base station. And, at least one of the wireless quality information about the wireless quality, a step of acquiring from the mobile communication terminal located in the cell of the small cell base station, and based on at least one of the electric field strength information and wireless quality information of the small cell base station Controlling the power of the transmitted signal.
  • FIG. 1 is a configuration diagram illustrating an example of a schematic configuration of a communication system according to an embodiment.
  • FIG. 2 is a configuration diagram illustrating another example of the schematic configuration of the communication system according to the embodiment.
  • FIG. 3 is a block diagram schematically showing the configuration of the small cell base station shown in FIGS. 1 and 2.
  • FIG. 4 is a configuration diagram illustrating a schematic configuration of the communication system after interference is canceled by the base station device.
  • FIG. 5 is a flowchart for explaining an example of the operation of controlling the power of the transmission signal of the small cell base station.
  • FIG. 6 is a time chart for explaining an example of the operation of controlling the power of the transmission signal of the small cell base station.
  • FIG. 1 is a configuration diagram illustrating an example of a schematic configuration of a communication system 100 according to an embodiment.
  • the communication system 100 includes a macro cell base station 11 and a small cell base station 30.
  • the macrocell base station 11 is a base station installed outdoors in a mobile communication network, and is generally a relatively wide area base station that covers an area with a radius of several hundred meters to several kilometers.
  • the macrocell base station 11 is connected to another base station (not shown) via, for example, a wired communication line, and can communicate with a predetermined communication interface.
  • the macro cell base station 11 is connected to a core network of a mobile communication network (not shown) via a line terminating device and a dedicated line, and is connected to various nodes in the mobile communication network by a predetermined communication interface. Communication is possible.
  • the small cell base station 30 is a base station with a wireless communicable distance of several meters to several hundred meters, and may be installed mainly indoors in a building BL (BuiLding) such as a general home, a store, or an office. It is a mobile base station that can be installed.
  • the small cell base station 30 is configured to cover an area relatively smaller than the area covered by the macro cell base station 11. Therefore, the small cell base station 30 may be called a “femto cell base station”, a “femto cell base station”, or the like.
  • the small cell base station 30 uses a line terminating device and an ADSL (Asymmetric Digital Subscriber Line) line or a broadband public communication line such as a dedicated line or an optical line to connect to a mobile communication network (not shown). It is connected to the core network and can communicate with various nodes in the core network through a predetermined communication interface.
  • the small cell base station 30 includes a base station device 40 described later.
  • the mobile communication terminals 21 and 22 are mobile stations owned by the user. Specifically, the mobile communication terminals 21 and 22 are portable information communication devices such as smartphones, mobile phones, personal information terminals (PDAs), tablet terminals, portable game machines, portable music players, wearable terminals, and the like. .. When the mobile communication terminals 21 and 22 are located in a macro cell or a small cell, respectively, the mobile communication terminals 21 and 22 establish a predetermined communication method and resources with the macro cell base station or the small cell base station corresponding to the cell in which they are located. It is configured to be capable of wireless communication.
  • PDAs personal information terminals
  • the mobile communication terminals 21 and 22 establish a predetermined communication method and resources with the macro cell base station or the small cell base station corresponding to the cell in which they are located. It is configured to be capable of wireless communication.
  • the macro cell base station 11 has three macro cells 11a, 11b, and 11c, and different frequency bands are assigned to each.
  • a macro cell 11a shown by a solid line in FIG. 1 indicates a range in which wireless communication is possible in a first band, for example, 1.7 GHz band, and a macro cell 11b shown by a broken line in FIG. 1 is wireless communication in a second band, for example, 2.1 GHz band.
  • the macro cell 11c which shows the possible range and is shown by the one-dot chain line in FIG. 1 shows the range where wireless communication is possible in the third band, for example, the 900 MHz band.
  • the mobile communication terminal 21 is located in the macro cell 11a. Therefore, the mobile communication terminal 21 is in a state capable of wireless communication with the macrocell base station 11 for a call, data communication, or the like using the first band.
  • the small cell base station 30 has one small cell 30a.
  • a small cell 30a indicated by a solid line in FIG. 1 indicates a range in which wireless communication is possible in the same first band as the macro cell 11a, for example, the 1.7 GHz band.
  • the mobile communication terminal 22 is located in the small cell 30a. Therefore, the mobile communication terminal 22 is in a state capable of wireless communication with the small cell base station 30 for the telephone call, the data communication, and the like in the first band.
  • the mobile communication terminal 21 located in the macro cell 11a is located outside the small cell 30a having the same frequency band as the macro cell 11a.
  • the mobile communication terminal 22 located in the small cell 30a is located outside the macro cell 11a having the same frequency band as the small cell 30a.
  • a radio signal between the macro cell base station 11 and the mobile communication terminal 21 interferes with a radio signal between the small cell base station 30 and the mobile communication terminal 22, or vice versa.
  • the radio signal between the mobile communication terminal 22 and the mobile communication terminal 22 rarely interferes with the radio signal between the macrocell base station 11 and the mobile communication terminal 21.
  • the small cell 30a has a band different from that of the macro cells 11b and 11c, that is, a different frequency band. Therefore, the radio signal between the small cell base station 30 and the mobile communication terminal 22 interferes with the radio signal between the mobile communication terminal (not shown) located in the macrocell base station 11 and the macrocell 11b or the macrocell 11c. There is little to do.
  • one mobile communication terminal 21 is located in the macro cell 11a and one mobile communication terminal 22 is located in the small cell 30a.
  • the present invention is not limited to this. ..
  • each of the macro cell 11a and the small cell 30a may have two or more mobile communication devices.
  • a plurality of mobile communication terminals may be collectively referred to as mobile communication terminal 20.
  • FIG. 2 is a configuration diagram illustrating another example of the schematic configuration of the communication system 100 according to the embodiment.
  • the communication system 100 includes a macrocell base station 11 and a small cell base station 30, and a macrocell base station 12. Since the macro cell base station 12 has the same configuration as the macro cell base station 11 described above, the description of the common parts will be omitted.
  • the macrocell base station 12 has two macrocells 12a and 12b, and different frequency bands are assigned to each.
  • a macro cell 12a shown by a solid line in FIG. 2 indicates a range in which wireless communication is possible in the first band, for example, 1.7 GHz band
  • a macro cell 12b shown by a broken line in FIG. 2 is a wireless communication in the second band, for example, 2.1 GHz band. Indicates the possible range.
  • the mobile communication terminal 23 is located in the macro cell 12a. Therefore, the mobile communication terminal 23 is in a state capable of wireless communication with the macrocell base station 12 for a call, data communication, or the like using the first band. Since the mobile communication terminal 23 has the same configuration as the mobile communication terminals 21 and 22 described above, the description thereof will be omitted.
  • the macrocell base station 11 stops the wireless communication in the first band and the second band by adding the macrocell base station 12, and has only the macrocell 11c in the third band.
  • the mobile communication terminal 22 located at the outer edge of the small cell 30a is also located at the boundary with the macro cell 12a.
  • the radio signal emitted from the terminal 22 reaches the macrocell base station 12, and conversely, the radio signal emitted from the macrocell base station 12 reaches the mobile communication terminal 22.
  • the radio signal emitted from the mobile communication terminal 23 reaches the small cell base station 30.
  • a radio signal emitted from the small cell base station 30 reaches the mobile communication terminal 23.
  • FIG. 3 is a block diagram schematically showing the configuration of the small cell base station 30 shown in FIGS. 1 and 2.
  • FIG. 4 is a configuration diagram illustrating a schematic configuration of the communication system 100 after interference is canceled by the base station device 40.
  • the small cell base station 30 includes a base station device 40. Note that, in FIG. 3, the configuration of the small cell base station 30 other than the base station device 40 is not displayed, and the description of the configuration other than the base station device 40 is omitted.
  • the base station device 40 includes, for example, an antenna 41, a communication unit 42, a storage unit 43, an operation unit 44, an output unit 45, and a control unit 50. Moreover, the base station device 40 further includes a bus 49 configured to transmit signals and data between the respective units of the base station device 40.
  • the antenna 41 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands such as the above-mentioned 1.7 GHz band.
  • the antenna 41 preferably has no directivity, that is, has no directivity.
  • the omnidirectional antenna 41 has approximately the same gain from all directions of 360 degrees in the horizontal plane, the vertical plane, or both in the non-horizontal plane and in the vertical plane. As a result, radio waves can be evenly transmitted and received in all directions, which facilitates installation and adjustment of the base station device 40.
  • the base station device 40 including the omnidirectional antenna 41 radiates. It is difficult to solve the above-mentioned problem of interference by changing the direction of radio waves.
  • the number of antennas 41 included in the base station device 40 is not limited to one.
  • the base station device 40 may include a plurality of antennas.
  • the communication unit 42 is connected to the antenna 41.
  • the communication unit 42 uses the antenna 41 to perform communication based on a mobile communication method such as 3G (3rd Generation), LTE (Long Term Evolution), 4G (4th Generation), 5G (5th Generation), or the like. Is configured.
  • the base station device 40 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in a frequency band such as the 5 [GHz] band and the 2.4 [GHz] band, for example.
  • the communication unit 42 uses, in addition to the above-described communication of the mobile communication system, a wireless LAN (Local Area Network) or the like that conforms to a standard such as Wi-Fi (Wireless Fidelity) using the antenna. Communication may be performed based on the communication method.
  • the storage unit 43 is configured to store programs and data.
  • the storage unit 43 includes, for example, a hard disk drive, a solid state drive, and the like.
  • the storage unit 43 stores in advance various programs executed by the control unit 50, data necessary for executing the programs, and the like.
  • the operation unit 44 is configured so that information can be input by a user operation.
  • the operation unit 44 can be configured to include, for example, a touch panel, buttons, a keypad, a microphone, and the like.
  • the control unit 50 when the user operates a touch panel, a button, a keypad, a microphone, etc. (including a voice operation using the microphone), for example, the control unit 50 generates data corresponding to the operation. It becomes possible to input information to the base station device 40.
  • the output unit 45 is configured to output information.
  • the output unit 45 is configured to include lamps such as a power lamp and an indicator lamp, for example. In the case of this example, the output unit 45 can output information by turning on or off the lamp or changing the lighting or blinking color based on the control signal from the control unit 50. ..
  • the output unit 45 may be configured to include a display device such as a liquid crystal display, an EL (Electro Luminescence) display, a plasma display, or the like, instead of or together with the lamp. In the case of this example, the output unit 45 can output information by displaying text data such as characters, numbers and symbols, image data, video data and the like on the display device.
  • the control unit 50 is configured to control the operation of each unit of the base station device 40 such as the antenna 41, the communication unit 42, the storage unit 43, the operation unit 44, and the output unit 45. Further, the control unit 50 is configured to realize each function described below by executing a program stored in the storage unit 43 or the like.
  • the control unit 50 includes, for example, a processor such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a buffer storage device such as a buffer.
  • control unit 50 includes, for example, an acquisition unit 51, a calculation unit 52, and a power control unit 53 as its functional configuration.
  • the acquisition unit 51 obtains at least one of the electric field strength information regarding the electric field strength in the transmission signal of the other base station and the radio quality information regarding the radio quality from the mobile communication terminal 20 located in the small cell 30a of the small cell base station 30. Is configured to get.
  • the mobile communication terminal 22 located in the small cell 30a and located outside the macro cell 11a cannot receive the transmission signal in the macro cell 11a. Or, even if received, the reception level is very low.
  • a cell of another base station located at the end of the small cell 30a and adjacent to the small cell 30a, for example, in the macro cell 12a in the same frequency band as the small cell 30a.
  • the mobile communication terminal 22 that receives the transmission signal can measure at least one of the electric field strength and the wireless quality of the transmission signal. Therefore, at least one of the electric field strength information indicating the electric field strength of the transmission signal of the adjacent macrocell base station 12 and the wireless quality information indicating the wireless quality is acquired from the mobile communication terminal 22 located at the end of the small cell 30a. It becomes possible.
  • the electric field strength information and the wireless quality information acquired by the acquisition unit 51 are, for example, RSRP (Reference Signal Received Power) and RSSI (Received Signal Strength Indication), and the wireless quality information is RSRQ (ReferenceSignalQualReceive). , SINR (Signal to Noise Interference), or a combination thereof.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indication
  • RSRQ ReferenceSignalQualReceive
  • SINR Signal to Noise Interference
  • the acquisition unit 51 acquires, from the mobile communication terminal 20, electric field strength information indicating that the electric field strength of the transmission signal of another base station is equal to or higher than a predetermined threshold value, for example, RSRP is ⁇ 125 dBm or higher.
  • the calculation unit 52 is configured to calculate at least one of an average value of electric field strengths in a plurality of electric field strength information and an average value of wireless qualitys in a plurality of wireless quality information acquired over a predetermined time.
  • the calculating unit 52 preferably calculates at least one of a moving average value of a plurality of electric field strength information and a moving average value of wireless qualities of a plurality of wireless quality information using a predetermined forgetting factor. As a result, the electric field strengths and the radio qualities of the transmission signals of other base stations acquired in time series are smoothed.
  • the forgetting factor used by the calculating unit 52 is, for example, a value larger than 0 and smaller than 1 (0 ⁇ the forgetting factor ⁇ 1).
  • the power control unit 53 is configured to control the power of the transmission signal of the small cell base station 30 based on at least one of the electric field strength information and the wireless quality information acquired by the acquisition unit 51.
  • a mobile communication terminal that receives a transmission signal of another base station that is generated at the end of the small cell 30a, or a transmission signal of the small cell base station 30 is located in a cell of another base station. It is possible to detect the situation in which the signals are received by the T.20, that is, the interference of mutual transmission signals. Therefore, by controlling the power of the transmission signal of the small cell base station 30 based on at least one of the electric field strength information and the wireless quality information, it is possible to suppress the interference at the end of the small cell 30a.
  • the power control unit 53 For controlling the power of the transmission signal of the small cell base station 30, for example, the power control unit 53 generates a control signal, outputs the control signal to the small cell base station 30, and the small cell base station 30 outputs the control signal. Based on this, the power of the transmission signal of the own station can be changed.
  • the transmission signal of the small cell base station 30 whose power is controlled by the power control unit 53 is a downlink transmission signal.
  • the power of the transmission signal radiated from the small cell base station 30 is controlled. Therefore, for example, to the mobile communication terminal 23 located in the macro cell 12a of another macro cell base station 12 as shown in FIG. Can be suppressed.
  • the power control unit 53 controls the power of the transmission signal of the small cell base station 30 based on at least one of the average value of electric field strength and the average value of radio quality calculated by the calculation unit 52. Is configured. As a result, it is possible to prevent the power of the transmission signal of the small cell base station 30 from abruptly changing.
  • the power control unit 53 controls the power of the transmission signal of the small cell base station 30 based on at least one of the moving average value of the electric field strength and the moving average value of the wireless quality calculated by the calculating unit 52. May be configured. By this means, it is possible to further suppress a sudden change in the power of the transmission signal of the small cell base station 30.
  • the power control unit 53 specifically reduces the power of the transmission signal of the small cell base station 30. As shown in FIG. 4, the power control unit 53 reduces the power of the transmission signal of the small cell base station 30, so that the small cell 30a becomes smaller than in the example shown in FIG. By this means, it is possible to easily suppress interference with other base stations.
  • a predetermined lower limit is set for the control of the power of the transmission signal.
  • the predetermined lower limit value for example, a value that forms the minimum small cell 30a as the power of the transmission signal of the small cell base station 30 is set.
  • the power control unit 53 reduces the power of the transmission signal of the small cell base station 30 within the range of the lower limit value or more. By this means, it is possible to secure the small cell 30a having a desired coverage area while reducing the power of the transmission signal of the small cell base station 30 to suppress interference.
  • the small cell base station 30 may radiate a transmission signal in two or more frequency bands, and may form a small cell in each frequency band.
  • the power control unit 53 is configured to control the power of the transmission signal of the small cell base station 30 based on at least one of the acquired electric field strength information and radio quality information for each frequency band.
  • Each function of the control unit 50 can be realized by a program executed by a computer (microprocessor). Therefore, each function of the control unit 50 can be realized by hardware, software, or a combination of hardware and software, and is not limited to either case.
  • control unit 50 When each function of the control unit 50 is realized by software, or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading. It is not limited to such a case.
  • the base station device 40 that controls the power of the transmission signal is preferably for the small cell base station 30. Accordingly, for example, the coverage area of the macro cell 12a of the macro cell base station 12 that potentially has a large number of users and the number of users can be prioritized, and interference with the mobile communication terminal 20 in the macro cell 12a is suppressed. be able to.
  • the small cell base station 30 includes the base station device 40
  • the base station device 40 may not be integrated with the small cell base station 30 but may be a separate body.
  • the small cell base station 30 and the base station device 40 are not limited to being installed in the same place, and may be connected via a network.
  • the base station device 40 may include the control unit 50, or an acquisition unit 51, a calculation unit 52, and a power control unit 53 realized by the control unit 50. That is, a configuration other than the control unit 50 in the base station device 40, for example, at least one of the antenna 41, the communication unit 42, the storage unit 43, the operation unit 44, and the output unit 45 is a part of the small cell base station 30, Alternatively, it may be part of another device.
  • FIG. 5 is a flowchart for explaining an example of the operation of controlling the power of the transmission signal of the small cell base station 30.
  • FIG. 6 is a time chart for explaining an example of the operation of controlling the power of the transmission signal of the small cell base station 30.
  • the control unit 50 first performs an initial process (S201).
  • the control unit 50 sets an initial value “0” to a counter, an average electric field strength, an average wireless quality, an average value of the average electric field strength, and an average value of the average wireless quality, which will be described later, for example.
  • the acquisition unit 51 uses the electric field strength information indicating the electric field strength in the transmission signal of another base station and the wireless quality information indicating the wireless quality, and the electric field strength information and the wireless quality information in the transmission signal of its own station, It is acquired from the mobile communication terminal 20 located in the small cell 30a of the station (S202).
  • the control unit 50 activates a timer and starts measuring a time for a measurement cycle MT1 and a time for a control cycle CT2, which will be described later.
  • the acquisition unit 51 includes all the acquisition units 51.
  • the electric field strength information and the wireless quality information may be acquired from each of the mobile communication terminals 20, and the electric field strength information and the radio quality information may be acquired from a part of all the mobile communication terminals 20, for example, each of the upper limit number of 10 terminals.
  • the wireless quality information may be acquired.
  • the acquisition unit 51 adds "1" to the counter (S203) and counts up.
  • the count-up value is not limited to "1" and may be another value.
  • an example in which the acquisition unit 51 counts up the counter is shown in FIG. 5, but the present invention is not limited to this.
  • the acquisition unit 51 may count down the counter, for example.
  • the acquisition unit 51 uses the timer described above to determine whether or not the measurement cycle MT1 has elapsed (S204), and repeats step S204 until the measurement cycle MT1 has elapsed.
  • the acquisition unit 51 determines that the electric field strength information and the wireless quality information of the transmission signal of another base station and the electric field strength information and the wireless quality information of the transmission signal of the own station. And are acquired from the mobile communication terminal 20 located in the small cell 30a of the own station (S205).
  • the control unit 50 resets the timer for the measurement cycle MT1 and restarts the measurement of the time for the measurement cycle MT1.
  • step S202 there are a plurality of mobile communication terminals 20 that are located in the small cell 30a and that can measure the electric field strength and wireless quality of other base stations.
  • the acquisition unit 51 may acquire the electric field intensity information and the wireless quality information from each of all the mobile communication terminals 20, or a part of all the mobile communication terminals 20, for example, the upper limit number of 10 devices. Field strength information and wireless quality information may be acquired from each of the above.
  • the acquisition unit 51 adds "1" to the counter (S206) and counts up.
  • the count-up value in step S203 is other than "1"
  • the count-up value in step S206 is also the same as the count-up value in step S203.
  • the calculation unit 52 compares the value of the counter with a predetermined value and determines whether the counter is equal to or larger than the predetermined value (S207).
  • the predetermined value is set to a value of "2" or more, for example, "4".
  • step S207 If the result of determination in step S207 is that the counter is not greater than or equal to the predetermined value, that is, the counter is less than the predetermined value, the control unit 50 repeats steps S204 to S207 until the counter reaches or exceeds the predetermined value.
  • step S207 the calculation unit 52 indicates the average value of the electric field strengths indicated by the electric field strength information acquired in step S202 and step S205, and the wireless quality information.
  • An average value in wireless quality is calculated (S208).
  • the calculated average value of the electric field strength is referred to as “average electric field strength”
  • the calculated average value of the wireless quality is referred to as “average wireless quality”.
  • the calculation unit 52 calculates the average electric field strength and the average wireless quality of the own station in addition to the average electric field strength and the average wireless quality of the other base stations.
  • the calculation unit 52 sets an initial value in the counter (S209), and uses the timer described above to determine whether or not the control cycle CT2 has elapsed (S210).
  • the control cycle CT2 is set to a relatively long time as compared with the measurement cycle MT1. For example, when the measurement cycle MT1 is 5 seconds, the control cycle CT2 is 10 minutes, 30 minutes, or 60 minutes.
  • the electric field strength information and the radio quality information can be acquired from several times to several tens to several hundreds of times, and a temporary or sudden change in the electric field strength of another base station is affected. Instead, it becomes possible to control the power of the transmission signal of the own station.
  • control unit 50 repeats steps S204 to S210 until the measurement cycle MT1 elapses.
  • the calculation unit 52 calculates the average value in the average electric field strength calculated in step S208 and the average value in the average wireless quality (S211).
  • the calculation unit 52 calculates the average value of the average electric field strength and the average value of the average radio quality of the other base station, in addition to the average value of the average electric field strength of the other base station. To do.
  • the power control unit 53 controls the power of the transmission signal of the small cell base station 30 based on the average value in the average electric field strength calculated in step S211 and the average value in the average radio quality (S212).
  • the power control method in step S212 is performed by the following procedure as an example.
  • the power control unit 53 obtains a difference by subtracting the electric field strength and wireless quality of another base station from the electric field strength and wireless quality of its own station. For example, when the average value of RSRP of the own station is ⁇ 100 dBm and the average value of RSRP of other base stations is ⁇ 92 dBm, the power control unit 53 calculates ⁇ 8 dB as the difference.
  • the power control unit 53 calculates 10 dB as the controllable amount.
  • the power control unit 53 adds the above-described difference to the controllable amount to obtain the improvement prediction value.
  • the controllable amount is 10 dB and the difference is ⁇ 8 dB, so the improvement prediction value is 2 dB.
  • the calculated improvement prediction value exceeds the predetermined threshold value, the electric field strength and the wireless quality of the transmission signal of the small cell base station 30 can be improved by increasing the power of the transmission signal.
  • the calculated improvement prediction value is lower than the threshold value, even if the power of the transmission signal is increased, it is lost by the radio waves of another base station, for example, the macro base station. It is not possible to improve the electric field strength and radio quality in the signal.
  • the power control unit 53 gradually increases the power of the transmission signal of the small cell base station 30 by the increase control amount. For example, when the improvement prediction value is 2 dB and the threshold value is 1 dB (improvement prediction value>threshold value), the power control unit 53 controls the power of the transmission signal to increase from the current power of 10 dBm. The amount, for example 0.1 dB, is raised to 10.1 dBm. On the other hand, when the improvement prediction value is smaller than the threshold value, the power control unit 53 gradually lowers the power of the transmission signal of the small cell base station 30 by the reduction control amount.
  • the power control unit 53 decreases the power of the transmission signal from 10 dBm, which is the current power, by a control amount for reduction. For example, it is increased by 0.1 dB to 9.9 dBm.
  • the maximum power, threshold value, increase control amount, and decrease control amount of the transmission signal described above can be changed by setting from predetermined values.
  • step S212 the control unit 50 returns to step S201 and repeats steps S201 to S212.
  • At least one of the field strength information regarding the field strength in the transmission signal of another base station and the wireless quality information regarding the wireless quality is a small cell. It is acquired from the mobile communication terminal 20 located in the small cell 30a of the base station 30.
  • the mobile communication terminal 22 located in the small cell 30a and located outside the macro cell 11a cannot receive the transmission signal in the macro cell 11a. Or, even if received, the reception level is very low.
  • FIG. 1 the mobile communication terminal 22 located in the small cell 30a and located outside the macro cell 11a cannot receive the transmission signal in the macro cell 11a. Or, even if received, the reception level is very low.
  • a cell of another base station located at the end of the small cell 30a and adjacent to the small cell 30a, for example, in the macro cell 12a in the same frequency band as the small cell 30a.
  • the mobile communication terminal 22 that receives the transmission signal can measure at least one of the electric field strength and the wireless quality of the transmission signal. Therefore, at least one of the electric field strength information indicating the electric field strength in the transmission signal of the adjacent macrocell base station 12 and the wireless quality information about the wireless quality is acquired from the mobile communication terminal 22 located at the end of the small cell 30a. Is possible. Further, the power of the transmission signal of the small cell base station 30 is controlled based on at least one of the acquired electric field strength information and wireless quality information.
  • a mobile communication terminal that receives a transmission signal of another base station that is generated at the end of the small cell 30a or that the transmission signal of the small cell base station 30 is located in a cell of another base station. It is possible to detect the situation in which the signals are received by the T.20, that is, the interference of mutual transmission signals. Therefore, by controlling the power of the transmission signal of the small cell base station 30 based on at least one of the electric field strength information and the radio quality information, it is possible to suppress the interference at the end of the small cell 30a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

セルの端部における干渉を抑制することのできる基地局装置、電力制御方法、及び電力制御プログラムを提供する。 基地局装置40は、スモールセル基地局30のための基地局装置40であって、他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、スモールセル基地局30のセルに在圏する移動体通信端末から取得する取得部51と、電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局30の送信信号の電力を制御する電力制御部53と、を備える。

Description

基地局装置、電力制御方法、及び電力制御プログラム
 本発明は、基地局の送信信号の電力を制御する基地局装置、電力制御方法、及び電力制御プログラムに関する。
 従来、スモールセル基地局に設けられる基地局装置として、自局の周辺に位置するマクロセル基地局から送信されている送信信号の電界強度の情報を取得する情報取得手段と、下りリンクの送信電力が最大電力に設定されている状態で前記マクロセル基地局からの送信信号の電界強度が予め設定した電界上限閾値を超えたとき又は該電界上限閾値以上になったとき、前記下りリンクの送信電力を前記最小電力に変更し又は前記下りリンクの送信信号の送信を停止する送信電力制御手段と、を備えるものが知られている(例えば、特許文献1参照)。この基地局装置は、スモールセル基地局からの下り信号の電力を許容最大電力以下に抑えつつ、スモールセルの十分に大きなカバレッジエリアを確保している。
特開2016-111715号公報
 この種の基地局装置は、自分の基地局の送信信号の電力、つまり、セルの大きさを制御するTPM(Transmit Power Management)機能を備えている。
 周辺セルとの干渉を避けるために、従来の基地局装置は、自分の基地局の無線機を用いて周辺セルにおける他の基地局の送信信号の電界強度を測定し、測定した電界強度に基づいて自分の基地局の送信信号の電力を決定する方法を採用していた。
 しかしながら、自分の基地局が備える無線機は、セルの中心に位置しているため、セルの端部における周辺基地局の送信信号の電界強度を検出することができなかった。そのため、前述した方法では、セルの端部において周辺セルとの間に発生する干渉を回避することが困難であった。
 本発明はこのような事情に鑑みてなされたものであり、セルの端部における干渉を抑制することのできる基地局装置、電力制御方法、及び電力制御プログラムを提供することを目的とする。
 本発明の一側面に係る基地局装置は、スモールセル基地局のための基地局装置であって、他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、スモールセル基地局のセルに在圏する移動体通信端末から取得する取得部と、電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局の送信信号の電力を制御する電力制御部と、を備える。
 本発明の一側面に係る電力制御方法は、スモールセル基地局の送信信号の電力を制御する電力制御方法であって、他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、スモールセル基地局のセルに在圏する移動体通信端末から取得するステップと、電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局の送信信号の電力を制御するステップと、を含む。
 本発明の一側面に係る電力制御プログラムは、コンピュータに実行させる、スモールセル基地局の送信信号の電力を制御する電力制御プログラムであって、他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、スモールセル基地局のセルに在圏する移動体通信端末から取得するステップと、電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局の送信信号の電力を制御するステップと、を含む。
 本発明によれば、セルの端部における干渉を抑制することができる。
図1は、一実施形態における通信システムの概略構成の一例を説明する構成図である。 図2は、一実施形態における通信システムの概略構成の他の例を説明する構成図である。 図3は、図1及び図2に示したスモールセル基地局の構成を概略的に示すブロック図である。 図4は、基地局装置によって干渉を解消した後の通信システムの概略構成を説明する構成図である。 図5は、スモールセル基地局の送信信号の電力を制御する動作の一例を説明するためのフローチャートである。 図6は、スモールセル基地局の送信信号の電力を制御する動作の一例を説明するためのタイムチャートである。
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本発明の技術的範囲を当該実施形態に限定して解するべきではない。
 まず、図1を参照しつつ、一実施形態に従う基地局装置を含む通信システムの概略構成について説明する。図1は、一実施形態における通信システム100の概略構成の一例を説明する構成図である。
 図1に示すように、通信システム100は、マクロセル基地局11と、スモールセル基地局30と、を備える。
 マクロセル基地局11は、移動体通信網において屋外に設置される基地局であり、通常、半径数百mから数km程度のエリアをカバーする相対的に広域の基地局である。マクロセル基地局11は、例えば有線の通信回線を介して、図示しない他の基地局と接続されており、所定の通信インターフェースで通信可能になっている。また、マクロセル基地局11は、回線終端装置及び専用回線を介して、図示しない移動体通信網のコアネットワークに接続されており、移動体通信網内の各種ノードとの間で所定の通信インターフェースにより通信可能になっている。
 スモールセル基地局30は、無線通信可能な距離が数mから数百m程度の基地局であり、主に屋内で、一般家庭、店舗、オフィス等の建物BL(BuiLding)内に設置することができる移動設置可能な基地局である。スモールセル基地局30は、マクロセル基地局11がカバーするエリアよりも相対的に小さなエリアをカバーするように構成されている。そのため、スモールセル基地局30は、「フェムト基地局」、「フェムトセル基地局」等と呼ばれる場合がある。スモールセル基地局30は、マクロセル基地局11と同様に、回線終端装置及びADSL(Asymmetric Digital Subscriber Line)回線若しくは専用回線や光回線等のブロードバンド公衆通信回線を介して、図示しない移動体通信網のコアネットワークに接続されており、コアネットワークにおける各種ノードとの間で所定の通信インターフェースにより通信可能になっている。また、スモールセル基地局30は、後述する基地局装置40を備えている。
 移動体通信端末21,22は、ユーザが所持する移動局である。具体的には、移動体通信端末21,22は、例えば、スマートフォン、携帯電話機、個人情報端末(PDA)、タブレット端末、携帯ゲーム機、携帯音楽プレーヤ、ウェアラブル端末等の携帯型情報通信機器である。移動体通信端末21,22は、それぞれ、マクロセルやスモールセルに在圏するときに、その在圏するセルに対応するマクロセル基地局やスモールセル基地局との間で、所定の通信方式及びリソースを用いて無線通信可能に構成されている。
 マクロセル基地局11は、3つのマクロセル11a,11b,11cを有しており、それぞれ、異なる周波数帯が割り当てられている。図1において実線で示すマクロセル11aは、第1バンド、例えば1.7GHz帯で無線通信可能な範囲を示し、図1において破線で示すマクロセル11bは、第2バンド、例えば2.1GHz帯で無線通信可能な範囲を示し、図1において一点鎖線で示すマクロセル11cは、第3バンド、例えば900MHz帯で無線通信可能な範囲を示す。図1に示す例では、移動体通信端末21がマクロセル11aに在圏している。そのため、移動体通信端末21は、マクロセル基地局11と間で第1バンドにより通話やデータ通信等のための無線通信が可能な状態にある。
 スモールセル基地局30は、1つのスモールセル30aを有している。図1において実線で示すスモールセル30aは、マクロセル11aと同じ第1バンド、例えば1.7GHz帯で無線通信可能な範囲を示す。図1に示す例では、移動体通信端末22がスモールセル30aに在圏している。そのため、移動体通信端末22は、スモールセル基地局30と間で第1バンドにより通話やデータ通信等のための無線通信が可能な状態にある。
 マクロセル11aに在圏する移動体通信端末21は、マクロセル11aと周波数帯が同じスモールセル30aの外側に位置している。また、スモールセル30aに在圏する移動体通信端末22は、スモールセル30aと周波数帯が同じマクロセル11aの外側に位置している。マクロセル基地局11と移動体通信端末21との間の無線信号が、スモールセル基地局30と移動体通信端末22との間の無線信号に干渉したり、またその逆に、スモールセル基地局30と移動体通信端末22との間の無線信号がマクロセル基地局11と移動体通信端末21との間の無線信号に干渉したりすることは非常に少ない。
 また、スモールセル30aは、マクロセル11b,11cと異なるバンド、つまり、異なる周波数帯を有している。よって、スモールセル基地局30と移動体通信端末22との間の無線信号が、マクロセル基地局11とマクロセル11b又はマクロセル11cに在圏する、図示しない移動体通信端末との間の無線信号に干渉することはほとんどない。
 なお、図1では、マクロセル11aに1つの移動体通信端末21が在圏し、スモールセル30aに1つの移動体通信端末22が在圏する例を示したが、これに限定されるものではない。例えば、マクロセル11a及びスモールセル30aは、それぞれ、2つ以上の移動体通信装置が在圏していてもよい。なお、以下の説明において、複数の移動体通信端末をまとめて移動体通信端末20という場合がある。
 次に、図2を参照しつつ、通信システムにおいて発生し得る無線信号の干渉について説明する。図2は、一実施形態における通信システム100の概略構成の他の例を説明する構成図である。
 図2に示すように、通信システム100は、マクロセル基地局11及びスモールセル基地局30に加え、マクロセル基地局12を備える。なお、マクロセル基地局12は、前述したマクロセル基地局11と同様の構成であるため、共通する部分の説明を省略する。
 マクロセル基地局12は、2つのマクロセル12a,12bを有しており、それぞれ、異なる周波数帯が割り当てられている。図2において実線で示すマクロセル12aは、第1バンド、例えば1.7GHz帯で無線通信可能な範囲を示し、図2において破線で示すマクロセル12bは、第2バンド、例えば2.1GHz帯で無線通信可能な範囲を示す。図2に示す例では、移動体通信端末23がマクロセル12aに在圏している。そのため、移動体通信端末23は、マクロセル基地局12と間で第1バンドにより通話やデータ通信等のための無線通信が可能な状態にある。なお、移動体通信端末23は、前述した移動体通信端末21,22と同様の構成であるため、その説明を省略する。
 一方、マクロセル基地局11は、マクロセル基地局12を追加したことにより、第1バンド及び第2バンドによる無線通信を停止し、第3バンドのマクロセル11cのみを有している。
 図2に示すように、マクロセル基地局12が設けられた結果、スモールセル30aの外縁部に位置する移動体通信端末22は、マクロセル12aとの境界部にも位置するため、例えば、移動体通信端末22から発した無線信号がマクロセル基地局12に到達したり、逆に、マクロセル基地局12から発した無線信号が移動体通信端末22に到達したりする状況にある。
 また、マクロセル12aの外縁部に位置する移動体通信端末23は、スモールセル30aとの境界部にも位置するため、例えば、移動体通信端末23から発した無線信号がスモールセル基地局30に到達したり、逆に、スモールセル基地局30から発した無線信号が移動体通信端末23に到達したりする状況にある。
 このように、スモールセル基地局30のスモールセル30aに隣接して同じ周波数帯のマクロセル12aを有するマクロセル基地局12が設置されると、図2において黒矢印で示すように、スモールセルとマクロセルのそれぞれの境界が接する端部において互いに干渉しやすくなるという問題があった。しかし、スモールセル基地局30が備える無線機は、スモールセル30aの中心又は略中心に位置するため、スモールセル30aの端部における干渉を検出することは困難である。
 次に、図3及び図4を参照しつつ、基地局装置を備えるスモールセル基地局の構成について説明する。図3は、図1及び図2に示したスモールセル基地局30の構成を概略的に示すブロック図である。図4は、基地局装置40によって干渉を解消した後の通信システム100の概略構成を説明する構成図である。
 図3に示すように、スモールセル基地局30は、基地局装置40を含んでいる。なお、図3ではスモールセル基地局30における基地局装置40以外の構成は表示せず、基地局装置40以外の構成の説明を省略する。
 基地局装置40は、例えば、アンテナ41と、通信部42と、記憶部43と、操作部44と、出力部45と、制御部50と、を備える。また、基地局装置40は、基地局装置40の各部の間で信号やデータを伝送するように構成されたバス49をさらに備える。
 アンテナ41は、例えば前述した1.7GHz帯等、1つ又は複数の所定の周波数帯で、電波(電磁波)を放射(輻射)及び受波できるように構成されている。アンテナ41は、指向性のない、つまり、無指向性を有するものが好ましい。無指向性のアンテナ41は、水平面内、垂直面内、又は水平面ない及び垂直面内の両方において、360度全ての方向からの利得がほぼ同等である。これにより、電波をあらゆる方向にまんべんなく送信及び受信することができるので、基地局装置40の設置や調整が容易になる。
 一方、電波の放射を特定の方向に集中させたり、特定の方向の受信感度を高めたりすることのできる指向性アンテナとは異なり、無指向性のアンテナ41を備える基地局装置40は、放射する電波の方向を変化させることで前述した干渉の問題を解消することは困難である。
 なお、基地局装置40が備えるアンテナ41は、1本である場合に限定されるものではない。基地局装置40は複数本のアンテナを備えていてもよい。
 通信部42は、アンテナ41に接続されている。通信部42は、アンテナ41を用いて、例えば、3G(3rd Generation)、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の移動体通信方式に基づいて、通信を行うように構成されている。
 また、基地局装置40がアンテナ41以外に、例えば5[GHz]帯、2.4[GHz]帯等の周波数帯で、電波(電磁波)を放射(輻射)及び受波できるように構成されたアンテナを備える場合、通信部42は、前述した移動体通信方式の通信に加えて、当該アンテナを用いて、例えばWi-Fi(Wireless Fidelity)等の規格に従う無線LAN(Local Area Network)等の無線通信方式に基づいて、通信を行うように構成されていてもよい。
 記憶部43は、プログラムやデータ等を記憶するように構成されている。記憶部43は、例えば、ハードディスクドライブ、ソリッドステートドライブ等を含んで構成される。記憶部43は、制御部50が実行する各種プログラムやプログラムの実行に必要なデータ等をあらかじめ記憶している。
 操作部44は、利用者の操作により情報を入力できるように構成されている。操作部44は、例えば、タッチパネル、ボタン、キーパッド、マイク等を含んで構成することが可能である。この例の場合、利用者が、タッチパネル、ボタン、キーパッド、マイク等を操作(マイクを用いた音声操作を含む)したときに、例えば制御部50が、操作に対応するデータを生成することで、基地局装置40に情報を入力することが可能になる。
 出力部45は、情報を出力するように構成されている。出力部45は、例えば、パワーランプ、インジケータランプ等のランプを含んで構成される。この例の場合、出力部45は、制御部50からの制御信号に基づいて、ランプが点灯し、点滅し、あるいは点灯又は点滅の色を変化させることで、情報を出力することが可能になる。また、出力部45は、ランプに代えて、又はランプとともに、液晶ディスプレイ、EL(Electro Luminescence)ディスプレイ、プラズマディスプレイ等の表示装置を含んで構成することも可能である。この例の場合、出力部45は、文字、数字、記号等のテキストデータ、画像データ、映像データ等を表示装置に表示することで、情報を出力することが可能になる。
 制御部50は、アンテナ41、通信部42、記憶部43、操作部44、及び出力部45等、基地局装置40の各部の動作を制御するように構成されている。また、制御部50は、記憶部43に記憶されたプログラムを実行する等によって、後述する各機能を実現するように構成されている。制御部50は、例えば、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリ、及びバッファ等の緩衝記憶装置を含んで構成される。
 また、制御部50は、その機能構成として、例えば、取得部51と、算出部52と、電力制御部53と、を備える。
 取得部51は、他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、スモールセル基地局30のスモールセル30aに在圏する移動体通信端末20から取得するように構成されている。ここで、図1に示したように、スモールセル30aに在圏する移動体通信端末22であって、マクロセル11aの外側に位置する移動体通信端末22は、マクロセル11a内の送信信号を受信できないか、あるいは、受信してもその受信レベルが非常に低い。これに対し、図2に示したように、スモールセル30aの端部に在圏し、スモールセル30aに隣接する他の基地局のセル、例えば、スモールセル30aと同一周波数帯であるマクロセル12aにおける送信信号を受信する移動体通信端末22は、当該送信信号の電界強度及び無線品質の少なくとも一方を測定することが可能である。よって、スモールセル30aの端部に在圏する移動体通信端末22から、隣接するマクロセル基地局12の送信信号における電界強度を示す電界強度情報及び無線品質を示す無線品質情報の少なくとも一方を取得することが可能となる。
 取得部51が取得する電界強度情報及び無線品質情報は、例えば、電界強度情報はRSRP(Reference Signal Received Power)、RSSI(Received Signal Strength Indication)であり、無線品質情報はRSRQ(Reference Signal Received Quality)、SINR(Signal to Noise Interference)であり、又はこれらの組合せ等である。
 具体的には、取得部51は、他の基地局の送信信号の電界強度が所定のしきい値以上、例えばRSRPが-125dBm以上を示す電界強度情報を、移動体通信端末20から取得する。
 算出部52は、所定時間にわたって取得された、複数の電界強度情報における電界強度の平均値及び複数の無線品質情報における無線品質の平均値の少なくとも一方を算出するように構成されている。
 算出部52は、所定の忘却係数を用いて、複数の電界強度情報における移動平均値及び複数の無線品質情報における無線品質の移動平均値の少なくとも一方を算出することが好ましい。これにより、時系列で取得される他の基地局の送信信号における各電界強度及び各無線品質が平滑化される。
 算出部52が用いる忘却係数は、例えば、0より大きく1より小さい値である(0<忘却係数<1)。
 電力制御部53は、取得部51によって取得された電界強度情報及び無線品質情報の少なくとも一方に基づいて、スモールセル基地局30の送信信号の電力を制御するように構成されている。これにより、スモールセル30aの端部において発生する、他の基地局の送信信号を受信されたり、また、スモールセル基地局30の送信信号が他の基地局のセルに在圏する移動体通信端末20に受信されたりする状況、すなわち、互いの送信信号の干渉を検出することが可能となる。従って、電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局30の送信信号の電力を制御することにより、スモールセル30aの端部における干渉を抑制することができる。
 スモールセル基地局30の送信信号の電力の制御は、例えば、電力制御部53が制御信号を生成して当該制御信号をスモールセル基地局30に出力し、スモールセル基地局30が当該制御信号に基づいて、自局の送信信号の電力を変化させることができる。
 電力制御部53が電力を制御するスモールセル基地局30の送信信号は、下りリンクの送信信号である。これにより、スモールセル基地局30から放射される送信信号の電力が制御されるので、例えば、図2に示したような他のマクロセル基地局12のマクロセル12aに在圏する移動体通信端末23への干渉を抑制することができる。
 より詳細には、電力制御部53は、算出部52によって算出された、電界強度の平均値及び無線品質の平均値の少なくとも一方に基づいて、スモールセル基地局30の送信信号の電力を制御するように構成されている。これにより、スモールセル基地局30の送信信号の電力が急激に変化するのを抑制することができる。
 また、電力制御部53は、算出部52によって算出された、電界強度の移動平均値及び無線品質の移動平均値の少なくとも一方に基づいて、スモールセル基地局30の送信信号の電力を制御するように構成されていてもよい。これにより、スモールセル基地局30の送信信号の電力が急激に変化するのをさらに抑制することができる。
 電力制御部53は、具体的には、スモールセル基地局30の送信信号の電力を低減する。図4に示すように、電力制御部53がスモールセル基地局30の送信信号の電力を低減することで、図2に示した例と比較して、スモールセル30aが小さくなる。これにより、他の基地局への干渉を容易に抑制することができる。
 さらに具体的には、送信信号の電力の制御に関して、所定の下限値が設定されている。所定の下限値は、例えば、スモールセル基地局30の送信信号の電力として最低限度のスモールセル30aを形成する値が設定される。電力制御部53は、この下限値以上の範囲で、スモールセル基地局30の送信信号の電力を低減する。これにより、スモールセル基地局30の送信信号の電力を低減して干渉を抑制しつつ、所望のカバレッジエリアを有するスモールセル30aを確保することができる。
 本実施形態では、スモールセル基地局30が1つの周波数帯で送信信号を放射する例を示したが、これに限定されるものではない。スモールセル基地局30は、例えば、2以上の周波数帯で送信信号を放射し、それぞれの周波数帯でスモールセルを形成してもよい。この場合、電力制御部53は、周波数帯ごとに、取得された電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局30の送信信号の電力を制御するように構成される。これにより、周波数帯ごとに異なるカバレッジエリアのスモールセルを形成することができ、各スモールセル30aの端部における干渉を抑制することができる。
 制御部50の各機能は、コンピュータ(マイクロプロセッサ)で実行されるプログラムによって実現することが可能である。したがって、制御部50が備える各機能は、ハードウェア、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現可能であり、いずれかの場合に限定されるものではない。
 また、制御部50の各機能が、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現される場合、その処理は、マルチタスク、マルチスレッド、若しくはマルチタスク及びマルチスレッドの両方で実行可能であり、いずれかの場合に限定されるものではない。
 送信信号の電力を制御する基地局装置40は、スモールセル基地局30のためのものであることが好ましい。これにより、例えば、潜在的に、在圏数及び利用者数の多いマクロセル基地局12のマクロセル12aのカバレッジエリアを優先させることができ、マクロセル12a内の移動体通信端末20への干渉を抑制することができる。
 本実施形態では、スモールセル基地局30が基地局装置40を含む例を示したが、これに限定されるものではない。例えば、基地局装置40は、スモールセル基地局30と一体ではなく、別体であってもよい。また、スモールセル基地局30及び基地局装置40は、同じ場所に設置される場合に限定されず、ネットワークを介して接続されていてもよい。
 また、基地局装置40は、制御部50、若しくは制御部50によって実現される取得部51、算出部52、及び電力制御部53を備えていればよい。すなわち、基地局装置40における制御部50以外の構成、例えば、アンテナ41、通信部42、記憶部43、操作部44、及び出力部45の少なくとも1つは、スモールセル基地局30の一部、又は他の装置の一部であってもよい。
 次に、図5及び図6を参照しつつ、本実施形態に従う基地局装置40の概略動作について説明する。図5は、スモールセル基地局30の送信信号の電力を制御する動作の一例を説明するためのフローチャートである。図6は、スモールセル基地局30の送信信号の電力を制御する動作の一例を説明するためのタイムチャートである。
 図5に示す電力制御処理S200において、最初に、制御部50は、初期処理を行う(S201)。初期処理S201では、制御部50は、例えば、後述するカウンタ、平均電界強度、平均無線品質、平均電界強度の平均値、及び平均無線品質の平均値に、初期値「0」を設定する。
 次に、取得部51は、他の基地局の送信信号における電界強度を示す電界強度情報及び無線品質を示す無線品質情報と、自局の送信信号における電界強度情報及び無線品質情報とを、自局のスモールセル30aに在圏する移動体通信端末20から取得する(S202)。ステップS202において、制御部50は、タイマーを起動し、後述する測定周期MT1のための時間及び制御周期CT2のための時間のそれぞれの計測を開始する。
 なお、スモールセル30aに在圏する移動体通信端末20であって、他の基地局の電界強度及び無線品質を測定可能な移動体通信端末20が、複数存在する場合、取得部51は、全ての移動体通信端末20のそれぞれから電界強度情報及び無線品質情報を取得してもよいし、全ての移動体通信端末20のうちの一部、例えば上限台数10台のそれぞれから、電界強度情報及び無線品質情報を取得してもよい。
 次に、取得部51は、カウンタに「1」を加算し(S203)、カウントアップする。なお、カウントアップの値は「1」である場合に限定されず、他の値であってもよい。本実施形態では、図5において、取得部51がカウンタをカウントアップする例を示したが、これに限定されるものではない。取得部51は、例えば、カウンタをカウントダウンするようにしてもよい。
 次に、取得部51は、前述したタイマーを用い、測定周期MT1を経過したか否かを判定し(S204)、測定周期MT1を経過するまでステップS204を繰り返す。
 ステップS204の判定の結果、測定周期MT1を経過した場合、取得部51は、他の基地局の送信信号における電界強度情報及び無線品質情報と、自局の送信信号における電界強度情報及び無線品質情報とを、自局のスモールセル30aに在圏する移動体通信端末20から取得する(S205)。ステップS205において、制御部50は、測定周期MT1のためのタイマーをリセットし、測定周期MT1のための時間の計測を再び開始する。
 ステップS202に関して前述した場合と同様に、スモールセル30aに在圏する移動体通信端末20であって、他の基地局の電界強度及び無線品質を測定可能な移動体通信端末20が、複数存在する場合、取得部51は、全ての移動体通信端末20のそれぞれから電界強度情報及び無線品質情報を取得してもよいし、全ての移動体通信端末20のうちの一部、例えば上限台数10台のそれぞれから電界強度情報及び無線品質情報を取得してもよい。
 次に、取得部51は、カウンタに「1」を加算し(S206)、カウントアップする。なお、ステップS203におけるカウントアップの値が「1」以外である場合、ステップS206におけるカウントアップの値も、ステップS203におけるカウントアップの値と同一にする。
 次に、算出部52は、カウンタの値と所定値とを比較し、カウンタが所定値以上であるか否かを判定する(S207)。本実施形態において、所定値は、「2」以上の値、例えば「4」が設定されている。
 ステップS207の判定の結果、カウンタが所定値以上でない、つまり、カウンタが所定値未満である場合、制御部50は、カウンタが所定値以上になるまで、ステップS204からステップS207を繰り返す。
 一方、ステップS207の判定の結果、カウンタが所定値以上である場合、算出部52は、ステップS202及びステップS205で取得した各電界強度情報が示す電界強度における平均値と各無線品質情報が示すむ無線品質における平均値とを算出する(S208)。本実施形態では、所定値として「4」が設定されているので、図6に示すように、電界強度情報及び無線品質情報を4回取得した後、ステップS208において4回分の電界強度における平均値と、4回分の無線品質における平均値とが算出される。以下の説明において、算出した電界強度の平均値を「平均電界強度」といい、算出した無線品質の平均値を「平均無線品質」という。ステップS208において、算出部52は、他の基地局の平均電界強度及び平均無線品質に加えて、自局についても平均電界強度及び平均無線品質を算出する。
 次に、算出部52は、カウンタに初期値を設定し(S209)、前述したタイマーを用い、制御周期CT2を経過したか否かを判定する(S210)。ここで、制御周期CT2は、測定周期MT1と比較して、相対的に長い時間が設定される。例えば、測定周期MT1が5秒である場合、制御周期CT2は、10分、30分、又は60分である。これにより、制御周期CT2において、例えば数回から数十、数百回の電界強度情報及び無線品質情報を取得することができ、一時的、突発的な他の基地局の電界強度の変化に影響されずに、自局の送信信号の電力を制御することが可能となる。
 ステップS210の判定の結果、制御周期CT2を経過していない場合、制御部50は、測定周期MT1を経過するまで、ステップS204からステップS210を繰り返す。
 一方、ステップS210の判定の結果、制御周期CT2を経過した場合、算出部52は、ステップS208で算出した平均電界強度における平均値と平均無線品質における平均値とを算出する(S211)。図6に示すように、測定周期MT1に対して十分長い時間を制御周期CT2に設定することで、ステップS211の時点では、ステップS208で算出した平均電界強度及び平均無線品質が少なくとも複数存在している。ステップS211において、算出部52は、他の基地局の平均電界強度における平均値及び平均無線品質における平均値に加えて、自局についても平均電界強度における平均値及び平均無線品質における平均値を算出する。
 次に、電力制御部53は、ステップS211で算出した平均電界強度における平均値と平均無線品質における平均値とに基づいて、スモールセル基地局30の送信信号の電力を制御する(S212)。
 ステップS212における電力制御方法は、一例として以下の手順で行われる。まず、電力制御部53は、自局の電界強度及び無線品質から他の基地局の電界強度及び無線品質を減算して差を求める。例えば、自局のRSRPの平均値が-100dBmであり、他の基地局のRSRPの平均値が-92dBmである場合、電力制御部53は、差として-8dBを算出する。
 次いで、自局の送信信号の電力を上げることでスモールセル30aに在圏する移動体通信端末20の電界強度及び無線品質が向上するか否かを判定するために、電力制御部53は、スモールセル基地局30の送信信号における最大電力と現在の電力とから、制御可能量を算出する。例えば、送信信号の最大電力が20dBで現在の送信信号の電力が10dBである場合、電力制御部53は、制御可能量として10dBを算出する。
 次いで、電力制御部53は、制御可能量に前述した差を加えて改善予測値を求める。前述した例では、制御可能量が10dBであり、差が-8dBであるから、改善予測値は2dBとなる。
 ここで、算出した改善予測値があらかじめ定めたしきい値を上回っていれば、送信信号の電力を上げることでスモールセル基地局30の送信信号における電界強度及び無線品質を向上させることができる。一方、算出した改善予測値がしきい値を下回っていれば、送信信号の電力を上げても、他の基地局、例えばマクロ基地局の電波に負けているため、スモールセル基地局30の送信信号における電界強度及び無線品質を向上させることができない。
 よって、電力制御部53は、改善予測値がしきい値より大きいとき、スモールセル基地局30の送信信号の電力を増加制御量だけ徐々に上げる。例えば、改善予測値が前述した2dBであり、しきい値が1dBである場合(改善予測値>しきい値)、電力制御部53は、送信信号の電力を現在の電力である10dBmから増加制御量、例えば0.1dB、上げて10.1dBmにする。一方、電力制御部53は、改善予測値がしきい値より小さいとき、スモールセル基地局30の送信信号の電力を減少制御量だけ徐々に下げる。例えば、改善予測値が0dBであり、しきい値が1dBである場合(改善予測値<しきい値)、電力制御部53は、送信信号の電力を現在の電力である10dBmから減少制御量、例えば0.1dB、上げて9.9dBmにする。
 なお、前述した送信信号の最大電力、しきい値、増加制御量、及び減少制御量は、あらかじめ定めた値から、設定により変更することが可能である。
 ステップS212の後、制御部50は、ステップS201に戻り、ステップS201からステップS212を繰り返す。
 以上、本発明の例示的な実施形態について説明した。本実施形態に係る基地局装置40、電力制御方法、及び電力制御プログラムによれば、他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方が、スモールセル基地局30のスモールセル30aに在圏する移動体通信端末20から取得される。ここで、図1に示したように、スモールセル30aに在圏する移動体通信端末22であって、マクロセル11aの外側に位置する移動体通信端末22は、マクロセル11a内の送信信号を受信できないか、あるいは、受信してもその受信レベルが非常に低い。これに対し、図2に示したように、スモールセル30aの端部に在圏し、スモールセル30aに隣接する他の基地局のセル、例えば、スモールセル30aと同一周波数帯であるマクロセル12aにおける送信信号を受信する移動体通信端末22は、当該送信信号の電界強度及び無線品質の少なくとも一方を測定することが可能である。よって、スモールセル30aの端部に在圏する移動体通信端末22から、隣接するマクロセル基地局12の送信信号における電界強度を示す電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を取得することが可能となる。また、取得された電界強度情報及び無線品質情報の少なくとも一方に基づいて、スモールセル基地局30の送信信号の電力が制御される。これにより、スモールセル30aの端部において発生する、他の基地局の送信信号を受信されたり、また、スモールセル基地局30の送信信号が他の基地局のセルに在圏する移動体通信端末20に受信されたりする状況、すなわち、互いの送信信号の干渉を検出することが可能となる。従って、電界強度情報及び無線品質情報の少なくとも一方に基づいてスモールセル基地局30の送信信号の電力を制御することにより、スモールセル30aの端部における干渉を抑制することができる。
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
 11…マクロセル基地局、11a,11b,11c…マクロセル、12…マクロセル基地局、12a,12b…マクロセル、20,21,22,23…移動体通信端末、30…スモールセル基地局、30a…スモールセル、40…基地局装置、41…アンテナ、42…通信部、43…記憶部、44…操作部、45…出力部、49…バス、50…制御部、51…取得部、52…算出部、53…電力制御部、100…通信システム、BL…建物、CT2…制御周期、MT1…測定周期、S200…電力制御処理。

Claims (10)

  1.  スモールセル基地局のための基地局装置であって、
     他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、前記スモールセル基地局のセルに在圏する移動体通信端末から取得する取得部と、
     前記電界強度情報及び前記無線品質情報の少なくとも一方に基づいて前記スモールセル基地局の送信信号の電力を制御する電力制御部と、を備える、
     基地局装置。
  2.  所定時間にわたって取得された、複数の前記電界強度情報における電界強度の平均値及び複数の前記無線品質情報における無線品質の平均値の少なくとも一方を算出する算出部をさらに備え、
     前記電力制御部は、前記電界強度の平均値及び前記無線品質の平均値の少なくとも一方に基づいて前記スモールセル基地局の送信信号の電力を制御する、
     請求項1に記載の基地局装置。
  3.  前記算出部は、所定の忘却係数を用い、前記複数の前記電界強度情報における電界強度の移動平均値及び前記複数の前記無線品質情報における無線品質の移動平均値の少なくとも一方を算出し、
    前記電力制御部は、前記電界強度の移動平均値及び前記無線品質の平均値の少なくとも一方に基づいて前記スモールセル基地局の送信信号の電力を制御する、
     請求項2に記載の基地局装置。
  4.  前記電力制御部は、前記スモールセル基地局の送信信号の電力を低減する、
     請求項1から3のいずれか一項に記載の基地局装置。
  5.  前記電力制御部は、所定の下限値以上の範囲で前記スモールセル基地局の送信信号の電力を低減する、
     請求項4に記載の基地局装置。
  6.  前記スモールセル基地局は、複数の周波数帯で前記送信信号を放射し、
     前記電力制御部は、前記周波数帯ごとに、前記電界強度情報及び前記無線品質情報の少なくとも一方に基づいて前記スモールセル基地局の送信信号の電力を制御する、
     請求項1から5のいずれか一項に記載の基地局装置。
  7.  無指向性のアンテナをさらに備える、
     請求項1から6のいずれか一項に記載の基地局装置。
  8.  前記スモールセル基地局の送信信号は、下りリンクの送信信号である、
     請求項1から7のいずれか一項に記載の基地局装置。
  9.  スモールセル基地局の送信信号の電力を制御する電力制御方法であって、
     他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、前記スモールセル基地局のセルに在圏する移動体通信端末から取得するステップと、
     前記電界強度情報及び前記無線品質情報の少なくとも一方に基づいて前記スモールセル基地局の送信信号の電力を制御するステップと、を含む、
     電力制御方法。
  10.  コンピュータに実行させる、スモールセル基地局の送信信号の電力を制御する電力制御プログラムであって、
     他の基地局の送信信号における電界強度に関する電界強度情報及び無線品質に関する無線品質情報の少なくとも一方を、前記スモールセル基地局のセルに在圏する移動体通信端末から取得するステップと、
     前記電界強度情報及び前記無線品質情報の少なくとも一方に基づいて前記スモールセル基地局の送信信号の電力を制御するステップと、を含む、
     電力制御プログラム。
PCT/JP2019/004510 2019-02-07 2019-02-07 基地局装置、電力制御方法、及び電力制御プログラム WO2020161872A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004510 WO2020161872A1 (ja) 2019-02-07 2019-02-07 基地局装置、電力制御方法、及び電力制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004510 WO2020161872A1 (ja) 2019-02-07 2019-02-07 基地局装置、電力制御方法、及び電力制御プログラム

Publications (1)

Publication Number Publication Date
WO2020161872A1 true WO2020161872A1 (ja) 2020-08-13

Family

ID=71947704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004510 WO2020161872A1 (ja) 2019-02-07 2019-02-07 基地局装置、電力制御方法、及び電力制御プログラム

Country Status (1)

Country Link
WO (1) WO2020161872A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070733A1 (ja) * 2009-12-08 2011-06-16 日本電気株式会社 無線通信システム、基地局装置、基地局制御装置、基地局の送信電力制御方法、及びコンピュータ可読媒体
WO2011118212A1 (ja) * 2010-03-25 2011-09-29 パナソニック株式会社 無線通信システム、フェムトセル基地局及び送信電力制御方法
JP2011199827A (ja) * 2010-02-26 2011-10-06 Hitachi Ltd 無線通信システムの送信電力設定方法及び無線基地局装置
WO2013118409A1 (ja) * 2012-02-10 2013-08-15 日本電気株式会社 無線通信システム、基地局、通信方法
JP2016063243A (ja) * 2014-09-12 2016-04-25 日本電気株式会社 測定タイミング調整方法、無線通信システム、基地局装置および基地局制御プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070733A1 (ja) * 2009-12-08 2011-06-16 日本電気株式会社 無線通信システム、基地局装置、基地局制御装置、基地局の送信電力制御方法、及びコンピュータ可読媒体
JP2011199827A (ja) * 2010-02-26 2011-10-06 Hitachi Ltd 無線通信システムの送信電力設定方法及び無線基地局装置
WO2011118212A1 (ja) * 2010-03-25 2011-09-29 パナソニック株式会社 無線通信システム、フェムトセル基地局及び送信電力制御方法
WO2013118409A1 (ja) * 2012-02-10 2013-08-15 日本電気株式会社 無線通信システム、基地局、通信方法
JP2016063243A (ja) * 2014-09-12 2016-04-25 日本電気株式会社 測定タイミング調整方法、無線通信システム、基地局装置および基地局制御プログラム

Similar Documents

Publication Publication Date Title
US10827555B2 (en) Signal indication for 5G/New Radio
EP3132643B1 (en) Channel selection scanning in shared spectrum
US9769723B2 (en) Performing WiFi and cellular handover using device-specific thresholds
EP2892300B1 (en) Communication control apparatus, terminal apparatus, communication control method, program and communication control system
CN102918894B (zh) 无线网络中用于确定上行链路接收功率目标值的方法和装置
JP2018514966A (ja) 特定セル確率負荷分散の装置、システム及び方法
CN111010707A (zh) 干扰协调方法、干扰协调装置以及测量装置
US20150071104A1 (en) Autonomously selecting a communication channel having a co-channel operation constraint
EP2675233A1 (en) Method and device for selecting a cell in a heterogeneous network
US20180192345A1 (en) Backhaul aware cell range optimization of small cells in heterogenous networks
US11985521B2 (en) Dynamic small cell radio frequency (RF) optimization
CN103369610A (zh) 一种小区切换偏置的自适应设置方法和装置
KR20130109702A (ko) 펨토셀 기지국의 제어 방법 및 장치
US20220338108A1 (en) Methods, apparatus and systems for configuring micro service areas in a wireless communication
US20120208525A1 (en) Compact base station and program
JP5855377B2 (ja) 無線通信システム、無線基地局および通信制御方法
WO2020161872A1 (ja) 基地局装置、電力制御方法、及び電力制御プログラム
US20120264433A1 (en) Communication between a user equipment and a base station
JP5647662B2 (ja) フェムトセル基地局、送信出力制御方法、及び送信出力制御プログラム
EP2498547A1 (en) Wireless communication system, high-power base station, low-power base station, wireless terminal, and wireless communication method
US9730234B2 (en) Channel selection at small cell access points based on detection of hidden nodes
KR101687501B1 (ko) 무선 기지국 장치 및 통신 방법
WO2019141103A1 (zh) 小区信号质量确定、小区选择或重选方法、设备及介质
KR20120033161A (ko) 안테나 선택 방법
US20230362987A1 (en) Channel occupancy rate determination in unlicensed spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP