WO2013117116A1 - 压气单元热气机 - Google Patents

压气单元热气机 Download PDF

Info

Publication number
WO2013117116A1
WO2013117116A1 PCT/CN2013/000127 CN2013000127W WO2013117116A1 WO 2013117116 A1 WO2013117116 A1 WO 2013117116A1 CN 2013000127 W CN2013000127 W CN 2013000127W WO 2013117116 A1 WO2013117116 A1 WO 2013117116A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
compressor unit
piston
cylinder
disposed
Prior art date
Application number
PCT/CN2013/000127
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
Jin Beibiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Beibiao filed Critical Jin Beibiao
Publication of WO2013117116A1 publication Critical patent/WO2013117116A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2242/00Ericsson-type engines having open regenerative cycles controlled by valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of thermal energy and power, and in particular to a hot air machine.
  • a compressor unit hot air machine comprising a cylinder piston mechanism, a heater, a cooler and a compressor device, wherein a cylinder of the cylinder piston mechanism communicates with a gas inlet of the compressor device via a communication passage, the heater being disposed at a cylinder of the cylinder piston mechanism and/or disposed on the communication passage, the cooler being disposed on the compressor and/or disposed between a gas inlet of the compressor and the heater A compressed gas inlet is disposed in the communication passage on the communication passage, and a gas outlet of the compressor is in communication with the compressed gas inlet.
  • a filler type regenerator is further disposed on the communication passage between the compressed gas inlet and the heater.
  • a heat exchanger type regenerator is further disposed on the communication passage between the compressed gas inlet and the heater, and the heat exchanger type regenerator is A heated fluid inlet is in communication with the compressed gas inlet, the heated fluid outlet of the heat exchanger type regenerator being in communication with the heater.
  • a hot compressed gas timing control valve is further disposed on the passage of the heated fluid outlet and the heater that communicates with the heat exchanger type regenerator.
  • the compressor unit heat engine further includes a timing control valve, the compressed gas inlet being disposed between the cooler and the heater
  • the communication passage is disposed on the communication passage between the compressed gas inlet and the cooler, or at a gas inlet of the cooler and the compressor On the communication channel between.
  • a gas compressor unit comprising a cylinder piston mechanism, an internal combustion combustion chamber, a cooler and a compressor, wherein a cylinder of the cylinder piston mechanism communicates with a gas inlet of the compressor device via a communication passage, the internal combustion chamber Provided in a cylinder of the cylinder piston mechanism and/or disposed in the communication passage, the cooler being disposed on the compressor device and/or disposed at a gas inlet of the compressor device and the internal combustion chamber
  • a compressed gas inlet is disposed in the communication passage between the communication passages, and a gas outlet of the compressor is connected to the compressed gas inlet, and a working fluid outlet is disposed on the working medium passage wall.
  • the working fluid outlet is disposed on the communication passage between the cooler and the internal combustion chamber.
  • a regenerative regenerator is disposed on the communication passage between the internal combustion combustion chamber and the cooler.
  • a heat exchanger type regenerator is disposed on the track, the heated fluid inlet of the heat exchanger type regenerator is in communication with the compressed gas inlet, the heated fluid outlet of the heat exchanger type regenerator and the internal combustion The combustion chamber is connected.
  • a hot compressed gas timing control valve is provided on the passage connecting the heated fluid outlet of the heat exchanger type regenerator and the internal combustion chamber.
  • the compressor device is set as a piston compressor based on the solution 9; the working fluid outlet is disposed on a cylinder of the piston compressor.
  • Option 16 Connect the working fluid outlet to the spent gas storage tank on the basis of Option 9.
  • the compressor unit heat engine further includes a timing control valve, the compressed gas inlet being disposed between the cooler and the internal combustion chamber
  • the communication passage is disposed on the communication passage between the compressed gas inlet and the cooler, or at a gas inlet of the cooler and the compressor On the communication channel between.
  • a compressed gas timing control valve is provided on a passage connecting the gas outlet of the compressor and the inlet of the compressed gas.
  • the compressor unit hot air machine further includes a gas work mechanism, and the gas work mechanism is disposed on the communication passage between the timing control valve and the cooler.
  • the compressor unit hot air machine further includes a gas working mechanism, and the gas working mechanism is disposed on the communication passage between the timing control valve and the cooler.
  • the timing control valve is disposed on the communication passage between the compressed gas inlet and the cooler.
  • a compressed gas timing control valve is provided on a passage connecting the gas outlet of the compressor and the inlet of the compressed gas.
  • the compressor is a multi-stage piston type gas compression mechanism comprising a plurality of piston compressors connected in series.
  • the compressor device is a piston type compressor, and the compressed gas timing control valve is integrally provided with an air supply valve of the piston compressor, The piston compressor is interlocked with the cylinder piston mechanism in a positive timing relationship.
  • the compressor device is set as a Roots compressor on the basis of any of the schemes 1 to 24.
  • Solution 30 The compressor device is set as a screw compressor on the basis of any of the solutions 1 to 24.
  • Solution 31 On the basis of the solution 18 or the solution 22, a gas storage tank is provided on a passage connecting the gas outlet of the compressor and the compressed gas timing control valve.
  • the piston of the cylinder piston mechanism is connected to a connecting rod journal of a crankshaft via a connecting rod, and the piston of the piston compressor is connected to a different connecting rod journal of the same crankshaft via a connecting rod, and the piston mechanism of the cylinder
  • the phase difference between the connecting rod journal of the piston connection and the connecting rod journal of the piston of the piston compressor is 180 degrees.
  • the compressor is configured as a piston compressor, and a piston of the cylinder piston mechanism is connected to a connecting rod journal of a crankshaft via a connecting rod, a piston of the piston compressor is connected to a connecting rod journal of a different crankshaft via a connecting rod, and the crankshaft connected to the piston of the cylinder piston mechanism and the crankshaft connected to the piston of the piston compressor are associated with
  • the phase difference between the connecting rod journal of the piston connection of the cylinder piston mechanism and the connecting rod journal connected to the piston of the piston compressor is 180 degrees.
  • the piston compressor is set to be a plurality of parallels based on the schemes 26, 28, 32 or the scheme 33.
  • the compressor unit heat engine further includes a timing control valve, the compressed gas inlet is provided at the cooler and The communication passage between the gas inlets of the compressor device; the timing control valve being disposed on the communication passage between the compressed gas inlet and the gas inlet of the compressor.
  • the gas compressor unit further comprises a low temperature cold source for providing a low temperature substance, wherein the low temperature substance is used for cooling the pressure gas The working medium in the device and/or about to enter the compressor.
  • the compressor unit further includes an auxiliary turbine power mechanism and an auxiliary impeller compressor, and the working fluid outlet is a working fluid inlet of the auxiliary turbine power mechanism is connected, and a working fluid outlet of the auxiliary turbine power mechanism is connected to a working fluid inlet of the auxiliary impeller compressor via an auxiliary cooler, and the working fluid outlet and the working fluid of the auxiliary impeller compressor a closed circuit communication; an auxiliary working fluid outlet is disposed on a passage between a working fluid outlet of the auxiliary turbine power mechanism and a working fluid inlet of the auxiliary impeller compressor.
  • the solution 38 is configured to set a mass flow rate of the substance discharged from the internal combustion combustion chamber to be larger than a substance introduced into the internal combustion combustion chamber from outside the working closed circuit. Mass Flow.
  • the compressor unit hot air machine further includes four types of door cylinder piston mechanisms, and the air supply ports of the four types of door cylinder piston mechanisms are The cylinder piston mechanism is in communication, and the refilling port of the four types of door cylinder piston mechanism is in communication with the working fluid outlet.
  • the solution 40 includes, according to the technical solution of setting the internal combustion combustion chamber, the compressor unit, the compressor unit further includes an oxidant source, an oxidant sensor and an oxidant control device, wherein the oxidant sensor is disposed in the working fluid closed circuit.
  • the oxidant sensor provides a signal to the oxidant control device, the oxidant source being in communication with the working fluid closed circuit via an oxidant control valve, the oxidant control device controlling the oxidant control valve.
  • the cylinder piston mechanism and/or the gas pressure device is a piston liquid mechanism
  • the piston liquid mechanism comprises a gas liquid cylinder and a gas-liquid isolation structure.
  • the gas-liquid isolation structure is disposed in the gas-liquid cylinder.
  • the compressor device is an impeller type compressor; a turbine power mechanism is disposed on a passage between the compressed gas inlet and the cooler. The turbine power mechanism outputs power to the impeller compressor.
  • the heater is further attached to a passage between the gas outlet of the compressor and the inlet of the compressed gas.
  • Solution 45 On the basis of the solution 44, the heat source of the auxiliary heater is set as the residual heat of the heater.
  • the communication passage is divided into an air supply passage and a refill passage at an end communicating with the cylinder of the cylinder piston mechanism, the air supply passage and The recharging passages are respectively connected to the cylinders of the cylinder piston mechanism, the heaters are disposed on the cylinders of the cylinder piston mechanism and/or disposed on the air supply passages, in the air supply passages and The timing of the backfilling channel is set to be wide.
  • the communication passage is divided into an air supply passage and a refill passage at an end communicating with the cylinder of the cylinder piston mechanism, the air supply passage and the The refilling passages are respectively in communication with the cylinders of the cylinder piston mechanism, the internal combustion combustion chambers being disposed in the cylinders of the cylinder piston mechanism and/or disposed in the air supply passages, in the air supply passages and Timing control valves are respectively arranged on the return charging channel.
  • the compressor unit further includes a timing control valve, and the compressed gas inlet is disposed between the cooler and the heater.
  • the timing control valve is disposed on the communication passage between the compressed gas inlet and the cooler, and communicates with a passage of the gas outlet of the compressor and the inlet of the compressed gas
  • a compressed gas timing control valve is provided, and the cylinder piston mechanism is set to be two or more in parallel.
  • the heater may be specifically set as an external combustion heater in which the external combustion combustion chamber is a heat source, or the heater is specifically set to The residual heat is a waste heat heater of the heat source, or the heater is specifically set as a solar heater using solar energy as a heat source.
  • the principle of the invention is: when the piston of the cylinder piston mechanism is near the top dead center, the compressed air pressurized by the compressor is directly or via the regenerator (filler regenerator or heat exchange) The device is sent to the heater, and after the heat absorption in the heater (the constant temperature heat absorption, the heat absorption pressure increase or the heat absorption temperature increase), the piston of the cylinder piston mechanism is pushed downward to perform work.
  • the regenerator iller regenerator or heat exchange
  • the four-type door cylinder piston mechanism means that an air inlet, an exhaust port, an air supply port and a refill port are provided on the cylinder, and the air inlet, the exhaust port, and the supply port are provided
  • the air port and the refill port are correspondingly arranged with a cylinder piston mechanism of an intake valve, an exhaust valve, a supply valve and a refill door.
  • the mass flow rate of the substance discharged from the internal combustion combustion chamber is controlled by adjusting the working pressure of the working fluid closed circuit and the displacement of the cylinder piston mechanism to control the mass displacement of the cylinder piston mechanism. 2 is greater than the mass flow rate Mi of the substance introduced into the internal combustion combustion chamber from the closed circuit of the working fluid, that is to say, in addition to the substance introduced into the internal combustion combustion chamber from the closed circuit of the working fluid, a part of the substance is Introducing the internal combustion combustion chamber from the working fluid closed circuit, since the internal combustion combustion chamber is disposed in the working fluid closed circuit, that is, at least a part of the substance discharged from the internal combustion combustion chamber Flow back to the internal combustion chamber, i.e., a reciprocating flow of the working medium between the cylinder piston mechanism and the compressor.
  • the substance introduced from the outside of the working fluid closed circuit to the internal combustion combustion chamber may be an oxidant, a reducing agent, a compressed gas or a high temperature gas.
  • the working fluid closed circuit means that the cylinder piston mechanism, the internal combustion combustion chamber (or the heater), the cooler, the compressor device, and the like and a communication passage therebetween Working fluid can be circulated empty Description book -
  • the gas-liquid cylinder refers to a container which can accommodate a gas working medium and/or a liquid and can withstand a certain pressure, and the gas-liquid cylinder is divided into a gas end and a liquid end by the gas-liquid separating structure.
  • the gas end of the gas cylinder is provided with a gas working fluid circulation port for communicating with other devices or mechanisms in the closed circuit of the working fluid;
  • the liquid end of the gas liquid cylinder is provided with a liquid A flow port for communicating with a hydraulic power mechanism and/or a liquid working fluid return system.
  • the gas-liquid insulation structure refers to a structure that can reciprocate in the gas-liquid cylinder, such as a separator, a separator, a piston, etc., and functions to isolate the gas in the gas-liquid cylinder.
  • the gas-liquid insulation structure and the gas-liquid cylinder are sealingly fitted.
  • the gas-liquid cylinder may all be a gas working medium, or may be all liquid, or a gas worker. Both the substance and the liquid are present at the same time.
  • the liquid in the gas-liquid cylinder and the gas-liquid isolation structure are different from the conventional piston linkage mechanism, and the piston in the conventional piston linkage mechanism can be stopped by the thrust or pulling force of the connecting rod, thereby realizing Limiting the stroke of the piston, and in the gas-liquid cylinder, when the gas working fluid in the gas-liquid cylinder is doing positive work, the gas-liquid isolation structure is moved by the pressure to the bottom dead center, and the liquid is pressurized Forming the gas-liquid cylinder and pushing a hydraulic power mechanism (such as a liquid motor) to perform external work.
  • a hydraulic power mechanism such as a liquid motor
  • the liquid When the liquid is about to be exhausted, changing the liquid motor working mode or starting the liquid working fluid returning system, so that the liquid in the gas-liquid cylinder is not Further reducing, at this time, the liquid applies a braking force to the gas-liquid insulation structure in the gas-liquid cylinder to stop it to prevent it from hitting the wall of the bottom of the liquid end of the gas-liquid cylinder;
  • the gas-liquid isolation structure continuously moves toward the upper dead center, and when the vicinity of the top dead center is reached, the liquid is input into the gas cylinder or the liquid in the gas cylinder is stopped.
  • the liquid in the gas-liquid cylinder and the gas-liquid isolation structure still move due to the inertia to the dead center direction, and at this time, if the gas working fluid in the gas-liquid cylinder is not sufficiently pressurized High, the gas-liquid isolation structure continues to move upwards and hits the wall of the top of the gas cylinder.
  • the pressure of the gas working fluid in the gas-liquid cylinder needs to be sufficiently high to make the gas-liquid
  • the pressure of the isolation structure is greater than the sum of the inertial forces of the liquid in the gas cylinder and the gas-liquid isolation structure during reciprocation.
  • the sum of the inertial forces of the liquid in the gas-liquid cylinder and the gas-liquid isolation structure during reciprocation during the operation of the compressor unit is changed, and therefore, it should be ensured in engineering design.
  • the pressure of the gas working fluid in the gas-liquid cylinder is greater than the inertial force when the liquid in the gas-liquid cylinder and the gas-liquid isolation structure reciprocate.
  • adjusting the working pressure in the working fluid closed circuit is achieved by adjusting the volume flow rate of the gaseous working fluid flowing into and/or out of the working fluid closed circuit, for example, by adjusting the working fluid outlet
  • the switching interval, the time of each opening, and/or the size of the opening of the control valve at the working fluid outlet is achieved.
  • the heater refers to a device that does not mix the heating fluid and the working medium and can heat the working medium, and a device that heats the working medium with solar energy; such as a heat exchanger heater, a combustion furnace, etc. .
  • the internal combustion combustion chamber means that the high temperature product formed by the combustion chemical reaction between the oxidant and the reducing agent is directly used as a circulating working medium or mixed with other gases existing in the closed circuit of the working fluid as a circulating working medium.
  • the combustion chamber According to technical common knowledge, it is necessary to provide an inlet of an oxidizing agent and a reducing agent on the working fluid closed circuit, or to deposit an oxidizing agent and a reducing agent in the working fluid closed circuit in advance.
  • the cylinder includes a cylinder liner, a cylinder head, and a volume formed by the cylinder liner and the cylinder head, and the communication port on the cylinder may be disposed on the cylinder head or on the cylinder liner.
  • the gas work mechanism refers to any mechanism that can generate power by gas working fluid expansion and/or flow, such as a screw gas work mechanism, a piston gas work mechanism, an impeller gas work mechanism, and a Roots gas.
  • the work mechanism and the like, the function of which is to perform work by using the gas working medium in the high energy state after the work of the cylinder piston mechanism, and the so-called high energy state means that the gas working medium is at the highest temperature in the cycle of the hot air compressor of the compressor unit of the present invention.
  • the state of maximum pressure is possible to generate power by gas working fluid expansion and/or flow.
  • the spent gas storage tank is used as a source of compressed gas.
  • the gas pressure means means a device capable of compressing a gas, such as a piston type compressor, an impeller type compressor, a Roots type compressor, a screw type compressor, or the like.
  • the heat exchanger type regenerator is disposed before the cooler, and is capable of transferring heat from the heater to the high temperature working medium of the cooler to the heater.
  • the heat exchanger of the working fluid is disposed before the cooler, and is capable of transferring heat from the heater to the high temperature working medium of the cooler to the heater.
  • the filler type regenerator refers to a device that retains its own heat to the filler when the high temperature working fluid flows through the porous filler region, and absorbs the heat stored by the filler when the low temperature working fluid flows backward through the porous filler region.
  • the cooler refers to a device capable of lowering the working fluid, and may be a heat sink or a heat exchanger.
  • the working fluid of the compressor unit is a gas medium that does not undergo a phase change or a phase transition incompletely during the cycle, such as a mixture of air, water and carbon dioxide, helium, argon, hydrogen, or the like.
  • the working fluid passage wall refers to a wall of a space that the working medium can contact, including the cylinder piston mechanism, the heater (or the internal combustion combustion chamber), the cooler, the Units such as compressors and communication channels between them.
  • the working fluid outlet is provided to discharge excess working fluid when the pressure of the working fluid introduced into the system by the compressor is at a certain level.
  • phase difference of 180 degrees means a degree of complete 180 degrees and an angle of 180 degrees plus or minus a slight angle due to an error caused by the characteristics of the mechanism structure and the machining accuracy.
  • the low-temperature cold source refers to a device, a mechanism or a storage tank capable of providing a low-temperature substance having a temperature below 0 ° C, for example, a storage tank stored with a low-temperature substance obtained by a commercially available method, and the low-temperature substance may be It is liquid nitrogen, liquid oxygen, liquid helium or liquefied air.
  • the oxidant in the present invention is liquid oxygen
  • liquid oxygen can directly serve as the low temperature substance.
  • the low-temperature cold source in the structure in which the internal combustion combustion chamber is disposed, is in a manner of directly communicating with the working fluid closed circuit to mix the low-temperature substance with the working medium in the working fluid closed circuit, Or cooling the working medium in the pressure device or about to enter the pressure device by heat exchange means to exchange heat between the low temperature substance and the working medium in the closed circuit of the working medium.
  • the low-temperature cold source in the structure in which the heater is disposed, is in a manner of heat exchange between the low-temperature substance and the working fluid in the closed circuit of the working medium, or is about to enter the gas-pressing device.
  • the working fluid of the compressor is cooled.
  • the hot air machine is a power mechanism with a working cycle close to the Carnot cycle.
  • the low temperature material greatly reduces the temperature of the cold source T 2 , thereby greatly reducing the amount of heat discharged to the cold source and effectively improving the engine efficiency.
  • the lower the temperature of the low temperature material (such as liquid oxygen, liquid nitrogen or liquid helium), the more energy is consumed in the manufacturing process, but in terms of unit mass, the greater the contribution to the thermal efficiency of the engine, the better the energy It is stored in a substance with a very low temperature, which is equivalent to the concept of a new type of battery, which can be manufactured using a low-cost energy source such as garbage electricity, thereby effectively reducing the operating cost of the engine.
  • the low temperature substance in the low temperature cold source may be introduced into the working fluid closed circuit after the cooling effect is applied as the gas pressure unit of the present invention.
  • the circulating working fluid of the hot air machine may also not be introduced into the closed circuit of the working fluid.
  • the so-called two devices are in communication, meaning that the fluid can flow in one or two directions between the two devices.
  • communication is meant direct communication or indirect communication via a control mechanism, control unit or other control component.
  • the oxidant sensor refers to a device that detects the content of the oxidant in the closed circuit of the working fluid.
  • the oxidant sensor provides a signal to the oxidant control device, the oxidant control device according to a signal provided by the oxidant sensor and a preset static or dynamic oxidant content setting value in the working fluid closed circuit
  • the oxidant control valve is controlled to increase or decrease the amount of oxidant supplied to the working fluid closed circuit for the purpose of regulating the content of the oxidant in the closed loop of the working fluid.
  • the set value of the oxidant content may be a numerical value or a numerical interval, for example: the oxidant content in the working fluid closed loop may be set at 5%, 10% or 10% ⁇ 12%, etc. .
  • the oxidant sensor may be disposed on the working fluid closed circuit away from the internal combustion combustion chamber to ensure that the entire working fluid closed circuit operates in an oxygen-rich (oxygen content greater than zero) state, causing the internal combustion combustion chamber to occur Stable combustion chemical reactions while preventing carbon deposits.
  • the liquid oxygen includes commercial liquid oxygen or liquid oxygen prepared in the field.
  • the working fluid in the working fluid closed circuit needs to be subjected to compression, heating, temperature rising and boosting, work and cooling, which requires the working fluid closed circuit to withstand a certain pressure
  • the pressure capacity of the closed loop of the working fluid can be set to be greater than 2 MPa, 2.5 MPa, 3 MPa, 3.5 MPa, 4 MPa, 4.5 MPa, 5 MPa, 5.5 MPa, 6 MPa, 6.5 MPa, 7 MPa, 7.5 MPa, 8 MPa, 8.5 MPa, 9 MPa, 9.5.
  • the fuel may be a hydrocarbon, a carbon oxyhydroxide or a solid carbon. It should be pointed out that: no solid water is used as fuel after combustion, and the concentration of carbon dioxide in the product after combustion is high and easy to liquefy; in the process of implementation, solid carbon can be pre-assembled, powdered, sprayed and powdered. After that, the liquid or gas carbon dioxide is fluidized and then injected into the hot air machine.
  • the invention has the advantages of simple structure, high efficiency, low cost and long service life. Description of the specification
  • FIG. 1 is a schematic structural view of Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural view of Embodiment 3 of the present invention
  • FIG. 5 is a schematic structural view of Embodiment 5 of the present invention
  • FIG. 6 is a schematic structural view of Embodiment 6 of the present invention
  • FIG. 7 is a schematic diagram of the present invention.
  • FIG. 8 is a schematic structural view of Embodiment 8 of the present invention
  • FIG. 9 is a schematic structural view of Embodiment 9 of the present invention
  • FIG. 10 is a schematic structural view of Embodiment 10 of the present invention.
  • 11 is a schematic structural view of Embodiment 11 of the present invention.
  • FIG. 12 is a schematic structural view showing Embodiment 12 of the present invention.
  • FIG. 13 is a schematic structural view showing Embodiment 13 of the present invention.
  • FIG. 15 is a schematic structural view of Embodiment 15 of the present invention.
  • FIG. 16 is a schematic structural view of Embodiment 16 of the present invention.
  • FIG. 17 is a schematic structural view of Embodiment 17 of the present invention. Shown is the structure of Embodiment 18 of the present invention. 19 is a schematic structural view of Embodiment 19 of the present invention.
  • FIG. 20 is a schematic structural view of Embodiment 20 of the present invention.
  • FIG. 21 is a schematic structural view of Embodiment 21 of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 23 is a schematic structural view of Embodiment 23 of the present invention.
  • FIG. 24 is a schematic structural view showing Embodiment 24 of the present invention.
  • FIG. 26 is a schematic structural view of Embodiment 26 of the present invention.
  • FIG. 27 is a schematic structural view showing Embodiment 27 of the present invention.
  • FIG. 28 is a schematic structural view showing Embodiment 28 of the present invention.
  • FIG. 30 is a schematic structural view of Embodiment 30 of the present invention.
  • FIG. 31 is a schematic structural view of Embodiment 31 of the present invention.
  • FIG. 32 is a schematic structural view of Embodiment 32 of the present invention.
  • FIG. 34 is a schematic structural view of Embodiment 34 of the present invention.
  • FIG. 34 is a schematic structural view of Embodiment 34 of the present invention.
  • FIG. 35 is a schematic structural view of Embodiment 35 of the present invention.
  • FIG. 36 is a schematic view showing Embodiment 36 of the present invention.
  • Schematic diagram 37 is shown a schematic view of the structure of Example 38 of the present invention shown in a schematic structural view of an embodiment of the present invention 37 38 Description
  • Figure 39 is a schematic view showing the structure of Embodiment 39 of the present invention.
  • Figure 40 is a schematic view showing the structure of an embodiment 40 of the present invention.
  • Figure 41 is a schematic view showing the structure of Embodiment 41 of the present invention.
  • Figure 42 is a schematic view showing the structure of an embodiment 42 of the present invention.
  • Figure 43 is a schematic view showing the structure of Embodiment 43 of the present invention.
  • Figure 44 is a block diagram showing the structure of an embodiment 44 of the present invention.
  • Figure 45 is a schematic view showing the structure of an embodiment 45 of the present invention.
  • Figure 46 is a schematic structural view of Embodiment 46 of the present invention.
  • Figure 47 is a schematic view showing the structure of an embodiment 47 of the present invention.
  • Figure 48 is a schematic view showing the structure of an embodiment 48 of the present invention.
  • Figure 49 is a schematic view showing the structure of an embodiment 49 of the present invention.
  • Figure 50 is a schematic view showing the structure of an embodiment 50 of the present invention.
  • Figure 51 is a schematic view showing the structure of an embodiment 51 of the present invention.
  • Figure 52 is a schematic structural view of Embodiment 52 of the present invention.
  • Figure 53 is a schematic view showing the structure of Embodiment 53 of the present invention.
  • Figure 54 is a schematic view showing the structure of an embodiment 54 of the present invention.
  • Figure 55 is a schematic view showing the structure of Embodiment 55 of the present invention.
  • Figure 56 is a schematic structural view of Embodiment 56 of the present invention.
  • Figure 57 is a schematic view showing the structure of an embodiment 57 of the present invention.
  • Figure 58 is a schematic view showing the structure of an embodiment 58 of the present invention.
  • the compressor unit hot air machine shown in FIG. 1 includes a cylinder piston mechanism 1, a heater 2, a cooler 5, and a compressor device 6, and the cylinder of the cylinder piston mechanism 1 communicates with the gas inlet of the compressor device 6 via a communication passage.
  • the heater 2 is disposed on the communication passage
  • the cooler 5 is disposed on the communication passage between the gas inlet of the compressor device 6 and the heater 2, on the communication passage a compressed gas inlet 3, specifically, the compression Description
  • a gas inlet 3 is provided in the communication passage between the cooler 5 and the heater 2, and a gas outlet of the compressor 6 communicates with the compressed gas inlet 3.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 2 MPa.
  • the heater 2 may be disposed on a cylinder of the cylinder piston mechanism 1 instead of being disposed on the communication passage or on the cylinder of the cylinder piston mechanism 1 and the communication passage simultaneously Provided; the cooler 5 may be disposed on the compressor device 6 instead of being disposed on the communication passage between the gas inlet of the compressor device 6 and the heater 2 or on the compressor 6 and The gas inlet of the compressor device 6 is disposed simultaneously with the communication passage between the heaters 2; the compressed gas inlet 3 may also be disposed at other locations on the communication passage.
  • the compressor unit heat exchanger shown in Fig. 2 differs from the first embodiment in that a compressed gas timing control valve 31 is provided on a passage connecting the gas outlet of the compressor unit 6 and the compressed gas inlet 3.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 2.5 MPa.
  • the compressed gas timing control valve 31 can also be provided with reference to the present embodiment.
  • the compressor unit hot air machine shown in FIG. 3 differs from the second embodiment in that the compressor unit 6 is provided as a piston type compressor 62, and the cooler unit 5 is disposed on the cylinder of the piston type compressor 62.
  • the heater 2 is disposed on a cylinder of the cylinder piston mechanism 1.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 3 MPa.
  • the compressor unit hot air machine further includes a timing control valve 4; the timing control width 4 is disposed at the compressed gas inlet 3 and the On the communication channel between the coolers 5.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 3.5 MPa.
  • the compressed gas timing control valve 31 and the timing control valve 4 do not have to be disposed at the same time.
  • the present embodiment can also be referred to.
  • the timing control valve 4 is provided; the timing control valve 4 may also be disposed on the communication passage between the cooler 5 and the gas inlet of the compressor device 6.
  • a packing type regenerator 23 is provided on the communication passage between the compressed gas inlet 3 and the heater 2 on the basis of the fourth embodiment.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 4 MPa.
  • the packing type regenerator 23 can also be provided with reference to the present embodiment.
  • FIG. 6 a compressor unit hot air machine as shown in FIG. 6, which differs from Embodiment 4 in that the compressed gas inlet 3 and Description
  • a heat exchanger type regenerator 22 is disposed on the communication passage between the heaters 2, and a heated fluid inlet of the heat exchanger type regenerator 22 communicates with the compressed gas inlet 3, the heat The heated fluid outlet of the exchanger type regenerator 22 is in communication with the heater 2 via the communication passage.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 4.5 MPa.
  • the heat exchanger type regenerator 22 can also be provided with reference to the present embodiment.
  • the compressor unit heat exchanger shown in Fig. 7 differs from the embodiment 4 in that the compressor unit 6 is an impeller type compressor 61.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 5 MPa.
  • the compressor unit heat exchanger shown in Fig. 8 differs from the fourth embodiment in that the compressor unit 6 is a two-stage piston type gas compression mechanism 60 in which two piston type compressors 62 are connected in series.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 5.5 MPa.
  • the compressor unit heat exchanger shown in Fig. 9 differs from the fourth embodiment in that the compressor unit 6 is a three-stage piston type gas compression mechanism 60 in which three piston type compressors 62 are connected in series.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 6 MPa.
  • the compressor 6 may be a multi-stage piston type gas compression mechanism 60 in which four or more piston compressors 62 are connected in series.
  • the compressor unit heat exchanger shown in FIG. 10 differs from the embodiment 4 in that the compressor unit 6 is a piston type compressor 62, and the compressed gas timing control valve 31 and the piston type compressor 62 are provided.
  • the air supply valve is integrally provided, and the piston compressor 62 is interlocked with the cylinder piston mechanism 1 in a positive timing relationship.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 6.5 MPa.
  • the compressor unit heat exchanger shown in Fig. 11 differs from the embodiment 4 in that the compressor unit 6 is a Roots type compressor 63.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 7 MPa.
  • FIG. 12 a compressor unit hot air machine as shown in FIG. 12, which differs from the embodiment 4 in that the compressor unit 6 is a screw compressor 64; the cooler 5 is disposed at the compressed gas inlet 3 and On the communication channel between the heaters 2.
  • the compressor unit 6 is a screw compressor 64; the cooler 5 is disposed at the compressed gas inlet 3 and On the communication channel between the heaters 2.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 8 MPa.
  • the compressor unit heat exchanger shown in FIG. 13 is different from the embodiment 4 in that a gas storage tank 30 is provided on the communication passage between the gas outlet of the compressor unit 6 and the compressed gas timing control width 31. .
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 9 MPa.
  • the gas tank 30 can be provided with reference to the present embodiment.
  • the heated fluid outlet of the heat exchanger type regenerator 22 communicates with the heater 2 via another communication passage, at the communication station.
  • a hot compressed gas timing control valve 32 is provided on the heated fluid outlet of the heat exchanger type regenerator 22 and the communication passage of the heater 2.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 10 MPa.
  • the compressor unit heat exchanger shown in Fig. 15 differs from the fourth embodiment in that the heater 2 is an external combustion heat exchanger 201 in which an external combustion chamber is a heat source.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than l lMPa.
  • the compressor unit heat exchanger shown in Fig. 16 differs from the fourth embodiment in that the heater 2 is provided as a heat recovery heat exchanger 202 having residual heat as a heat source.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 12 MPa.
  • the compressor unit heat exchanger shown in Fig. 17 differs from the embodiment 4 in that the heater 2 is a solar heat exchanger 203 having a solar energy source as a heat source.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 13 MPa.
  • the working fluid of the compressor unit hot air machine may be set as steam or as a gas mixture, or as helium, argon or hydrogen; Examples 4 to 12 and 14
  • the compressed gas timing control valve 31 and the timing control valve 4 may be omitted or alternatively; in the embodiment 7 to the embodiment 13 and the embodiment 15 to the embodiment 17,
  • the heat exchanger type regenerator 22 is provided in the fifth embodiment or the heat exchanger type regenerator 22 is provided in the reference embodiment 5.
  • Embodiment 14 provides the hot compressed gas timing control valve 32; in Embodiments 1 to 12 and Embodiments 14 to 17 and the convertible embodiments in these embodiments, according to Embodiment 13
  • the heaters 2 can be arranged in different forms with reference to Embodiments 15 to 17.
  • the compressor unit hot air machine shown in FIG. 18 includes a cylinder piston mechanism 1, an internal combustion combustion chamber 200, a cooler 5, and a compressor device 6, and a cylinder of the cylinder piston mechanism 1 passes through a communication passage and a gas inlet of the compressor device 6.
  • the internal combustion combustion chamber 200 is disposed in a cylinder of the cylinder piston mechanism 1
  • the cooler 5 is disposed on the communication passage between the gas inlet of the compressor device 6 and the internal combustion combustion chamber 200.
  • a compressed gas inlet 3 is provided in the communication passage.
  • the compressed gas inlet 3 is disposed on the communication passage between the cooler 5 and the heater 2, and the air compressor 6
  • the gas outlet is in communication with the compressed gas inlet 3, and a working fluid outlet 35 is provided in the communication passage between the internal combustion combustion chamber 200 and the compressed gas inlet 3.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 14 MPa.
  • the internal combustion combustion chamber 200 may be disposed in the communication passage instead of being disposed in a cylinder of the cylinder piston mechanism 1 or in a cylinder of the cylinder piston mechanism 1 and in the communication passage.
  • the cooler 5 may be disposed on the compressor 6 instead of on the communication passage between the gas inlet of the compressor 6 and the internal combustion chamber 200 or on the compressor 6 And the communication passage between the gas inlet of the compressor 6 and the internal combustion chamber 200 is disposed at the same time; the working fluid outlet 35 may also be disposed at other positions on the wall of the working fluid; The gas inlet 3 can also be provided at other locations on the communication passage.
  • a compressor unit hot air machine as shown in FIG. 19 differs from the embodiment 18 in that the internal combustion combustion chamber 200 is modified between the compressed gas inlet 3 and the cylinder of the cylinder piston mechanism 1 On the passage, a compressed gas timing control valve 31 is provided on a communication passage between the gas outlet of the compressor 6 and the compressed gas inlet 3.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 14 MPa.
  • the compressed gas timing control valve 31 can also be provided with reference to the present embodiment.
  • the compressor unit heat exchanger shown in Fig. 20 differs from the embodiment 19 in that the compressor unit 6 is a piston type compressor 62, and the cooler unit 5 is provided on the piston type compressor 62.
  • the internal combustion combustion chamber 200 is disposed in a cylinder of the cylinder piston mechanism 1.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 15 MPa.
  • the compressor unit hot air machine shown in FIG. 21 further includes, on the basis of Embodiment 19, a timing control valve 4 disposed between the compressed gas inlet 3 and the cooler 5 On the communication channel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 16 MPa.
  • the compressed gas timing control valve 31 and the timing control valve 4 are not necessarily provided at the same time.
  • the compressed gas timing control valve 31 is not provided, reference may also be made to the present embodiment.
  • the timing control valve 4 is provided; the timing control valve 4 may also be disposed on the communication passage between the gas inlet of the compressor device 6 and the cooler 5.
  • the compressor unit heat exchanger shown in Fig. 22 differs from the embodiment 21 in that a packing type regenerator 23 is provided on the communication passage between the compressed gas inlet 3 and the internal combustion chamber 200.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 17 MPa.
  • the packing type regenerator 23 can also be provided with reference to the present embodiment.
  • a compressor unit hot air machine as shown in FIG. 23 differs from the embodiment 21 in that a heat exchanger type regenerator is disposed on the communication passage between the compressed gas inlet 3 and the internal combustion chamber 200. 22.
  • the heated fluid inlet of the heat exchanger type regenerator 22 is in communication with the compressed gas inlet 3, and the heated fluid outlet of the heat exchanger type regenerator 22 passes through the communication passage and the heating The device 2 is connected.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 17 MPa.
  • control valve 31 and/or the timing control valve are not provided with the compressed gas timing.
  • the compressor unit heat exchanger shown in Fig. 24 differs from the embodiment 21 in that the compressor unit 6 is a vane type compressor 61.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 18 MPa.
  • the compressor unit heat exchanger shown in Fig. 25 differs from the embodiment 21 in that the compressor 6 is a two-stage piston type gas compression mechanism 60 which is formed by a series connection of two piston type compressors 62.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 19 MPa.
  • the compressor unit heat exchanger shown in Fig. 26 differs from the embodiment 21 in that the compressor unit 6 is a three-stage piston type gas compression mechanism 60 which is formed by a series connection of three piston type compressors 62.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 20 MPa.
  • the compressor 6 may be a multi-stage piston type gas compression mechanism 60 in which four or more piston compressors 62 are connected in series.
  • the compressor unit heat exchanger shown in Fig. 27 differs from the embodiment 21 in that the compressor unit 6 is a piston type compressor 62, and the compressed gas timing control valve 31 and the piston type compressor 62 are provided.
  • the air supply valve is integrally provided, and the piston compressor 62 is interlocked with the cylinder piston mechanism 1 in a positive timing relationship.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 21 MPa.
  • the compressor unit heat exchanger shown in Fig. 28 differs from the embodiment 21 in that the compressor unit 6 is provided as a Roots compressor 63.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 22 MPa.
  • the compressor unit heat exchanger shown in Fig. 29 differs from the embodiment 21 in that the compressor unit 6 is provided as a screw type compressor 64.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 23 MPa.
  • the compressor unit hot air machine shown in FIG. 30 differs from the embodiment 21 in that a gas storage tank 30 is provided in a communication passage between the gas outlet of the compressor unit 6 and the compressed gas timing control valve 31. .
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 24 MPa.
  • the gas storage tank 30 can be provided with reference to the present embodiment.
  • the heated fluid outlet of the heat exchanger type regenerator 22 and the heater 2 are connected via another communication passage.
  • a hot compressed gas timing control port 32 is provided on the heated fluid outlet of the heat exchanger type regenerator 22 and the communication passage of the heater 2.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 25 MPa.
  • the compressor unit heat exchanger shown in Fig. 32 differs from the embodiment 21 in that the working fluid outlet 35 communicates with the spent gas storage tank 36.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 26 MPa.
  • the spent gas storage tank 36 can be provided with reference to the present embodiment.
  • the compressor unit heat exchanger shown in Fig. 33 differs from the embodiment 21 in that the working fluid outlet 35 is provided on the cylinder of the piston compressor 62.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 27 MPa.
  • the compressor unit heat exchanger shown in FIG. 34 differs from the embodiment 22 in that the compressor unit 6 is a piston type compressor 62, and the piston of the cylinder piston mechanism 1 passes through a connecting rod shaft of the connecting rod and the crankshaft. a neck connection, the piston of the piston compressor 62 is connected to a different connecting rod journal of the same crankshaft via a connecting rod, the connecting rod journal connected to the piston of the cylinder piston mechanism 1 and the piston type pneumatic
  • the phase difference between the pin journals of the piston of the machine 62 is 180 degrees, and the cylinder piston mechanism 1 and the piston compressor 62 are arranged in line.
  • the cooler 5 is disposed on the communication passage between the compressed gas inlet 3 and the packed regenerator 23; the timing control valve 4 is disposed at the compressed gas inlet 3 and the piston The communication passage between the gas inlets of the compressor 62 is on.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 28 MPa.
  • the packing type regenerator 23, the timing control valve 4, and the compressed gas timing control valve 31 in this embodiment may be omitted, or may be alternatively set, or Choose two settings.
  • the compressor unit of the compressor shown in FIG. 35 differs from the embodiment 34 in that the internal combustion chamber 200 is disposed in a cylinder of the cylinder piston mechanism 1, and the piston of the cylinder piston mechanism 1 is connected to the cylinder.
  • a connecting rod journal of the crankshaft is connected
  • a piston of the piston compressor 62 is connected to a connecting rod journal of a different crankshaft via a connecting rod
  • the crankshaft and the piston type connected to the piston of the cylinder piston mechanism 1
  • the crankshaft linkage of the piston connection of the compressor 62 is between the connecting rod journal connected to the piston of the cylinder piston mechanism 1 and the connecting rod journal connected to the piston of the piston compressor 62
  • the phase difference is 180 degrees.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 29 MPa.
  • the cylinder piston mechanism 1 and the piston compressor 62 may be arranged in line or in parallel.
  • the packing type regenerator 23, the timing control valve 4, and the compressed gas timing control valve 31 in this embodiment may be omitted, or may be alternatively set, or Choose two settings.
  • the compressor unit heat exchanger shown in Fig. 36 differs from the embodiment 34 in that the cylinder piston mechanism 1 and the piston compressor 62 are disposed in parallel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 30 MPa.
  • the cylinder piston mechanism 1 and the piston type compressor 62 may be provided in the manner of the present embodiment.
  • the compressor unit hot air machine shown in FIG. 37 differs from the embodiment 5 in that the compressor unit 6 is a piston type compressor 62, and the piston of the cylinder piston mechanism 1 passes through a connecting rod shaft of the connecting rod and the crankshaft. a neck connection, the piston of the piston compressor 62 is connected to a different connecting rod journal of the same crankshaft via a connecting rod, the connecting rod journal connected to the piston of the cylinder piston mechanism 1 and the piston type pneumatic
  • the phase difference between the connecting rod journals of the piston of the machine 62 is 180 degrees, and the cylinder piston mechanism 1 and the piston compressor 62 are arranged in line; the compressed gas inlet 3 is provided in the The communication passage between the cooler 5 and the gas inlet of the compressor device 6; the timing control valve 4 is disposed between the compressed gas inlet 3 and the gas inlet of the compressor 6 Connected to the channel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 31 MPa.
  • the packing type regenerator 23, the timing control valve 4, and the compressed gas timing control valve 31 in this embodiment may be omitted, or may be alternatively set, or Optionally, two settings; the compressed gas inlet 3 can also be disposed on the communication channel between the cooler 5 and the heater 2 with reference to Embodiment 5, at this time, the timing control valve 4 It may be disposed on a communication passage between the compressed gas inlet 3 and the cooler 5.
  • the compressor unit hot air machine shown in FIG. 38 is different from the embodiment 5 in that the compressor unit 6 is a piston type compressor 62, and the heater 2 is disposed on the cylinder piston mechanism 1, and The cooler 5 is disposed on the communication passage and the piston compressor 62.
  • the piston of the cylinder piston mechanism 1 is connected to the connecting rod journal of the crankshaft via a connecting rod, and the piston of the piston compressor 62 Connected to a connecting rod journal of a different crankshaft via a connecting rod, the crankshaft connected to the piston of the cylinder piston mechanism 1 and the crankshaft connected to the piston of the piston compressor 62, and the cylinder piston a phase difference between the connecting rod journal of the piston of the mechanism 1 and the connecting rod journal connected to the piston of the piston compressor 62 is 180 degrees; the compressed gas inlet 3 is provided in the The communication passage between the cooler 5 and the gas inlet of the compressor device 6; the timing control valve 4 is disposed between the compressed gas inlet 3 and the gas inlet of the compressor 6 Connected to the channel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 32 MPa.
  • the cylinder piston mechanism 1 and the piston compressor 62 may be arranged in line or in parallel.
  • the packing type regenerator 23, the timing control valve 4, and the compressed gas timing control valve 31 in this embodiment may be omitted, or may be alternatively set, or Optionally, two settings; the compressed gas inlet 3 can also be disposed on the communication channel between the cooler 5 and the heater 2 with reference to Embodiment 5, at this time, the timing control valve 4 It may be disposed on the communication passage between the compressed gas inlet 3 and the cooler 5.
  • the compressor unit heat exchanger shown in Fig. 39 differs from the embodiment 37 in that the cylinder piston mechanism 1 and the piston compressor 62 are disposed in parallel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 33 MPa.
  • the compressor unit hot air machine shown in Fig. 40 differs from the embodiment 34 in that the piston type compressor 62 Instruction manual
  • the pistons are respectively connected to the two connecting rods of the same phase on the crankshaft via two connecting rods, and the piston of the cylinder piston mechanism 1 is connected to a connecting rod journal on the same crankshaft via a connecting rod.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 34 MPa.
  • the compressor unit heat exchanger shown in Fig. 41 differs from the embodiment 36 in that the piston type compressor 62 is two in parallel.
  • piston compressor 62 may be a plurality of (three or more) in parallel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 35 MPa.
  • the compressor unit heat exchanger shown in Fig. 42 differs from the embodiment 37 in that the heater 2 is provided as an external combustion heat exchanger 201 in which the external combustion chamber is a heat source, and the piston type compressor 62 is respectively The two connecting rods are connected to the two connecting rod journals of the same phase on the crankshaft.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 36 MPa.
  • the compressor unit hot air machine shown in Fig. 43 differs from the embodiment 39 in that the heater 2 is an external combustion heat exchanger 201 in which an external combustion combustion chamber is a heat source, and the piston type compressor 62 is connected in parallel. The two.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 37 MPa.
  • piston compressor 62 may be a plurality of (three or more) in parallel.
  • the compressor unit hot air machine shown in FIG. 44 differs from the embodiment 4 in that the hot air machine further includes a gas work mechanism 7, the gas work mechanism 7 is provided at the timing control valve 4 and the cooling On the communication channel between the devices 5.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 38 MPa.
  • the compressor unit hot air machine shown in FIG. 45 differs from the embodiment 21 in that: the hot air machine further includes a gas work mechanism 7, the gas work mechanism 7 is disposed at the timing control valve 4 and the cooling On the communication channel between the devices 5.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 39 MPa.
  • the gas working mechanism 7 can be provided with reference to the present embodiment.
  • the compressor unit heat exchanger shown in Fig. 46 differs from the embodiment 31 in that: the working fluid outlet 35 is provided between the heat exchanger type regenerator 22 and the timing control valve 4. Said on the communication channel.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 40 MPa.
  • the gas after the work is heated by the heat exchanger type regenerator 22, and the compressed gas supplied from the piston type compressor 62 is partially discharged through the working fluid outlet 35, thereby reducing heat. Rows, improve the efficiency of the system.
  • the compressor unit hot air machine shown in FIG. 47 is different from the embodiment 35 in that: the working medium outlet 35 is provided at Description
  • the communication passage between the cooler 5 and the timing control valve 4 is provided.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 37 MPa.
  • the compressor unit heat exchanger shown in Fig. 48 differs from the embodiment 34 in that the internal combustion chamber 200 is provided in the cylinder of the cylinder piston mechanism 1.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 25 MPa.
  • the compressor unit hot air machine shown in FIG. 49 differs from the embodiment 21 in that: the compressor unit hot air machine further includes a low temperature cold source 50 for providing a low temperature substance, and the low temperature substance passes The working fluid that is about to enter the compressor 6 is cooled in a manner directly mixed with the working fluid in the working fluid closed circuit.
  • the working medium in the gas pressing device 6 can be cooled by directly mixing with the working medium; or the working medium in the closed circuit of the low temperature material and the working medium can be used by the heat exchange device.
  • the heat exchange mode cools the working fluid that is about to enter the compressor 6 or the working fluid in the compressor 6.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 20 MPa.
  • the low-temperature cold source 50 may also be disposed. At this time, the low-temperature cold source 50 can only be used to close the low-temperature substance and the working medium through a heat exchange device.
  • the working medium heat exchanger cools the working fluid that is about to enter the compressor device 6 or the working fluid in the compressor device 6.
  • cryogenic cold source 50 can be provided with reference to the present embodiment and its alternative embodiment.
  • the compressor unit hot air machine shown in FIG. 50 differs from the embodiment 33 in that: the compressor unit hot air machine further includes an auxiliary turbine power unit 70 and an auxiliary impeller compressor 71, and the working medium outlet 35 is The working fluid inlet of the auxiliary turbine power mechanism 70 is in communication, and the working fluid outlet of the auxiliary turbine power mechanism 70 is connected to the working fluid inlet of the auxiliary impeller compressor 71 via the auxiliary cooler 72, and the auxiliary impeller compressor 71 is The mass outlet is in communication with the working fluid closed circuit; an auxiliary working fluid outlet 75 is disposed on a passage between the working fluid outlet of the auxiliary turbine power mechanism 70 and the working fluid inlet of the auxiliary impeller compressor 71.
  • the auxiliary working fluid outlet 75 shown in the figure is disposed on a passage between the auxiliary cooler 72 and the working fluid inlet of the auxiliary impeller compressor 71; optionally, the auxiliary working fluid outlet 75 may also be provided on the passage between the working fluid outlet of the associated turbine power mechanism 70 and the associated cooler 72 adjacent thereto.
  • the working fluid outlet of the auxiliary impeller compressor 71 is in communication with a communication port provided on the closed circuit of the working fluid, and the communication port and the working fluid outlet 35 are disposed at different positions on the closed circuit of the working fluid.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 20 MPa.
  • auxiliary turbine power unit 70 and the auxiliary impeller compressor 71 may be provided with reference to the present embodiment and its alternative embodiment.
  • the compressor unit hot air machine shown in FIG. 51 differs from the embodiment 33 in that: the compressor unit hot air machine further includes four types of door cylinder piston mechanisms 8, and the air supply ports 83 of the four types of door cylinder piston mechanisms 8 are provided.
  • the cylinder piston mechanism 1 is in communication with the return port 84 of the four types of door cylinder piston mechanism 8 and the working fluid outlet 35.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 30 MPa.
  • the four-type door cylinder piston mechanism 8 can be provided with reference to the present embodiment and its alternative embodiment.
  • the compressor unit hot air machine shown in FIG. 52 differs from the embodiment 21 in that: the compressor unit hot air machine further includes an oxidant source 55, an oxidant sensor 51, and an oxidant control unit 52, and the oxidant sensor 51 is provided in the In the working fluid closed circuit, the oxidant sensor 51 provides a signal to the oxidant control device 52, the oxidant source 55 is in communication with the working fluid closed circuit via an oxidant control valve 53, and the oxidant control device 52 controls the oxidant Control valve 53.
  • the pressure bearing capacity of the working fluid closed circuit can be set to be greater than 40 MPa.
  • the oxidant source 55, the oxidant sensor 51, the oxidant control device 52, etc. may be provided with reference to the embodiment and its alternate embodiment. structure.
  • the compressor unit heat exchanger shown in Fig. 53 differs from the embodiment 21 in that the cylinder piston mechanism 1 and the compressor unit 6 are each provided as a piston liquid mechanism.
  • the piston liquid mechanism 19 of the cylinder piston mechanism 1 includes a gas-liquid cylinder 18 and a gas-liquid isolation structure 17, and the gas-liquid insulation structure 17 is disposed in the gas-liquid cylinder 18.
  • the pressure of the gas working medium in the gas-liquid cylinder 18 to the gas-liquid isolating structure 17 may be set to be greater than the inertia of the liquid in the gas-liquid cylinder 18 and the gas-liquid isolation structure 17 when reciprocating. The sum of power.
  • the liquid end of the gas cylinder 18 is in communication with a hydraulic power mechanism 16 that is in communication with a liquid working fluid return system 15 that is in communication with the liquid end of the gas cylinder 18.
  • the hydraulic power mechanism 16 and the liquid working fluid return system 15 are controlled by the process control mechanism 100.
  • the piston liquid mechanism 69 of the compressor 6 includes a gas cylinder 68 and a gas-liquid isolation structure 67, and the gas-liquid isolation structure 67 is disposed in the gas cylinder 68.
  • the pressure of the gas working medium in the gas-liquid cylinder 68 to the gas-liquid isolating structure 67 may be set to be greater than the inertia of the liquid in the gas-liquid cylinder 68 and the gas-liquid isolation structure 67 when reciprocating. The sum of power.
  • the liquid end of the gas cylinder 68 is in communication with a hydraulic power unit 66.
  • the hydraulic power unit 66 is in communication with a liquid working fluid return system 65.
  • the liquid working medium return system 65 is in communication with the liquid end of the gas cylinder 68.
  • the hydraulic power mechanism 66 and the liquid working fluid return system 65 are controlled by a process control mechanism 600.
  • the pressure bearing capacity of the closed loop of the working fluid can be set to be greater than 10 MPa.
  • one of the cylinder piston mechanism 1 and the gas pressure device 6 may be set as a piston liquid mechanism, and the other may be selected according to the needs of use; in the structure in which the heater 2 is disposed, reference may be made.
  • the cylinder piston mechanism 1 and the compressor device 6 are both set as a piston liquid mechanism or alternatively as a piston liquid mechanism.
  • the working fluid of the compressor unit hot air generator was set to water vapor or to a gas mixture.
  • the mass flow rate of the substance discharged from the internal combustion combustion chamber 200 it is possible to set the mass flow rate of the substance discharged from the internal combustion combustion chamber 200 to be larger than the mass flow rate of the substance introduced into the internal combustion combustion chamber 200 from outside the working circuit.
  • the compressor unit heat exchanger shown in Fig. 54 differs from the embodiment 7 in that a turbine power mechanism 9 is provided on a passage between the compressed gas inlet 3 and the cooler 5, the turbine power mechanism 9 Outputting power to the impeller compressor 61, and providing a packing type heat recovery on the communication passage between the compressed gas inlet 3 and the heater 2 Description
  • the heater 21 is attached to the passage between the gas outlet of the impeller compressor 61 and the compressed gas inlet 3.
  • the heat source of the auxiliary heater 21 is the waste heat of the heater 2; the auxiliary heater 21 may not be provided; the filler type regenerator 23 may not be provided; The heat exchanger type regenerator 22 replaces the packing type regenerator 23.
  • the hot compressed gas timing can also be set with reference to the embodiment 31. Control valve 32.
  • the compressor unit of the compressor shown in Fig. 55 differs from the embodiment 4 in that the compressor unit 6 is a piston type compressor 62, and the gas inlet and the gas outlet of the piston type compressor 62 are integrated.
  • An auxiliary heater 21 is disposed on a passage between the gas outlet of the piston compressor 62 and the compressed gas inlet 3, and a heat source of the auxiliary heater 21 is waste heat of the heater 2;
  • a filler type regenerator 23 is disposed on the communication passage between the gas inlet 3 and the heater 2.
  • the charge regenerator 23 may not be provided; the heat source of the auxiliary heater 21 may take other forms; the heat exchanger type regenerator 22 may be further provided in reference to the embodiment 23 instead of the filler.
  • the hot compressed gas timing control valve 32 can be provided with reference to the embodiment 31.
  • the compressor unit heat exchanger shown in Fig. 56 differs from the embodiment 54 in that the timing control valve 4, the compressed gas timing control valve 31, and the auxiliary heater in the embodiment 54 are eliminated.
  • the communication passage is divided into an air supply passage 12 and a refill passage 11 at one end of communication with the cylinder piston mechanism 1, and the regenerator 23 passes through the air supply passage 12 and the refill passage 11 respectively
  • the cylinder piston mechanism 1 is in communication, and a timing control valve 4 is provided on the air supply passage 12 and the refill passage 11 respectively.
  • the communication passage is divided into an air supply passage 12 and a refill passage 11 at one end of communication with the cylinder piston mechanism 1.
  • a timing control valve 4 is respectively disposed on the air supply passage 12 and the refill passage 11
  • the heater 2 is correspondingly disposed on the air supply passage or the cylinder of the cylinder piston mechanism
  • the internal combustion combustion chamber 200 is disposed in the air supply passage or in a cylinder of the cylinder piston mechanism.
  • the compressor unit heat exchanger shown in Fig. 57 differs from the embodiment 24 in that: a turbine power mechanism 9 is provided on a passage between the compressed gas inlet 3 and the cooler 5, the turbine power mechanism 9 The impeller compressor 61 outputs power.
  • a heat exchanger type regenerator 22 or a packed regenerator 23 is disposed on the communication passage between the compressed gas inlet 3 and the internal combustion combustion chamber 200.
  • the internal combustion combustion chamber 200 may be modified within the cylinder piston mechanism 1.
  • the working fluid of the compressor unit hot air machine may be set as water vapor or as a gas mixture, or as helium gas, argon gas or hydrogen gas;
  • the compressed gas timing control valve 31 and the timing control valve 4 may be omitted or may be alternatively disposed;
  • Embodiment 24 to Embodiment 30 Embodiment 32 to Embodiment 33, Embodiment 44, Embodiment 45, and Example 49 Description 3 ⁇ 4
  • the heat exchanger type regenerator 22 may be provided with reference to the packing type regenerator 23 set in the embodiment 22 or the reference embodiment 23.
  • the structure of the regenerator 22, can also refer to the embodiment 31 to set the hot compressed gas timing control valve 32;
  • all of the embodiments in which the compressor device 6 is set to the piston compressor 62 may be connected to the piston compressor 62 in the manner of any of the embodiments 34 to 43.
  • the compressor unit heat exchanger shown in Fig. 58 differs from the embodiment 5 in that:
  • a cylinder piston mechanism 1 is included, and the two cylinder piston mechanisms 1 are connected in parallel.
  • a bypass port 10 is disposed on the communication passage between the timing control valve 4 and the cooler 5, The bypass port 10 is in communication with the cylinder of the other cylinder piston mechanism 1, and another compressed gas inlet 3 is disposed in a communication passage connecting the bypass port 10 and the cylinder of the other cylinder piston mechanism 1.
  • Another compressed gas inlet 3 is in communication with the gas outlet of the compressor unit 6, and another timing control valve 4 is disposed on the communication passage between the bypass port 10 and the other compressed gas inlet 3, in the other Another compressed gas timing control valve 31 is disposed in a communication passage between a compressed gas inlet 3 and a gas outlet of the compressor device 6, and the other compressed gas inlet 3 and the cylinder of the other cylinder piston mechanism 1
  • Another heater 2 is disposed on the communication passage, and another packing type regenerator 23 is disposed on the communication passage between the other heater 2 and the other compressed gas inlet 3.
  • the cylinder piston mechanism 1 may be three or more in parallel, and when three or more are provided, the other cylinder piston mechanism 1 of the present embodiment may be provided; The heater 23 may not be provided.
  • the cylinder piston mechanism 1 can be set to two or more in the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

一种压气单元热气机,包括气缸活塞机构(1)、加热器(2)、冷却器(5)和压气装置(6),气缸活塞机构(1)的气缸经连通通道与压气装置(6)的气体入口连通,加热器(2)设置在气缸活塞机构(1)的气缸上和/或设置在连通通道上,冷却器(5)设置在压气装置(6)上和/或设置在压气装置(6)和加热器(2)之间的连通通道上,在连通通道上设压缩气体入口(3),压气装置(6)的气体出口与压缩气体入口(3)连通。这种热气机结构简单、效率高、造价低且使用寿命长。

Description

说 明 书
压气单元热气机
技术领域
本发明涉及热能与动力领域, 尤其是一种热气机。
背景技术
传统热气机例如斯特林发动机,其冷缸和热缸的压力基本相同,而且压缩比非常低(目 前世界上最好的斯特林发动机的压缩比仅为 2 左右), 这些都严重影响着斯特林发动机的 效率, 不仅如此, 冷缸和热缸之间必须具有特定的相位差, 这就不可避免的影响其使用范 围。 因此需要发明一种新型热气机。
发明内容
为了解决上述问题, 本发明提出的技术方案如下:
方案 1.一种压气单元热气机, 包括气缸活塞机构、 加热器、 冷却器和压气装置, 所 述气缸活塞机构的气缸经连通通道与所述压气装置的气体入口连通, 所述加热器设置在所 述气缸活塞机构的气缸上和 /或设置在所述连通通道上,所述冷却器设置在所述压气装置上 和 /或设置在所述压气装置的气体入口和所述加热器之间的所述连通通道上,在所述连通通 道上设压缩气体入口, 所述压气装置的气体出口与所述压缩气体入口连通。
方案 2. 在方案 1 的基础上, 进一步在所述压缩气体入口和所述加热器之间的所述连 通通道上设填料式回热器。
方案 3. 在方案 1 的基础上, 进一步在所述压缩气体入口和所述加热器之间的所述连 通通道上设热交换器式回热器, 所述热交换器式回热器的被加热流体入口与所述压缩气体 入口连通, 所述热交换器式回热器的被加热流体出口与所述加热器连通。
方案 4. 在方案 3 的基础上, 进一步在连通所述热交换器式回热器的被加热流体出口 和所述加热器的通道上设热压缩气体正时控制阀。
方案 8. 在方案 1至方案 4中任一方案的基础上, 所述压气单元热气机进一步还包括 正时控制阀, 所述压缩气体入口设在所述冷却器和所述加热器之间的所述连通通道上; 所 述正时控制阀设置在所述压縮气体入口和所述冷却器之间的所述连通通道上, 或设在所述 冷却器和所述压气装置的气体入口之间的所述连通通道上。
方案 9.一种压气单元热气机, 包括气缸活塞机构、 内燃燃烧室、 冷却器和压气装置, 所述气缸活塞机构的气缸经连通通道与所述压气装置的气体入口连通, 所述内燃燃烧室设 置在所述气缸活塞机构的气缸内和 /或设置在所述连通通道内,所述冷却器设置在所述压气 装置上和 /或设置在所述压气装置的气体入口和所述内燃燃烧室之间的所述连通通道上,在 所述连通通道上设压缩气体入口, 所述压气装置的气体出口与所述压缩气体入口连通, 在 工质通道壁上设工质导出口。
方案 10. 在方案 9的基础上进一步将所述工质导出口设置在所述冷却器与所述内燃燃 烧室之间的所述连通通道上。
方案 11. 在方案 9的基础上在所述内燃燃烧室与所述冷却器之间的所述连通通道上设 填料式回热器。
方案 12. 在方案 9的基础上在所述压縮气体入口和所述内燃燃烧室之间的所述连通通 道上设填料式回热器。
方案 13. 在方案 9的基础上在所述压缩气体入口和所述内燃燃烧室之间的所述连通通 说 明 书
道上设热交换器式回热器, 所述热交换器式回热器的被加热流体入口与所述压缩气体入口 连通, 所述热交换器式回热器的被加热流体出口与所述内燃燃烧室连通。
方案 14. 在方案 13 的基础上在连通所述热交换器式回热器的被加热流体出口和所述 内燃燃烧室的通道上设热压缩气体正时控制阀。
方案 15. 在方案 9的基础上将所述压气装置设为活塞式压气机; 所述工质导出口设置 在所述活塞式压气机的气缸上。
方案 16. 在方案 9的基础上将所述工质导出口与乏气储罐连通。
方案 17. 将方案 9至方案 16中任一项的基础上, 所述压气单元热气机还包括正时控 制阀, 所述压缩气体入口设在所述冷却器和所述内燃燃烧室之间的所述连通通道上; 所述 正时控制阀设置在所述压縮气体入口和所述冷却器之间的所述连通通道上, 或设在所述冷 却器和所述压气装置的气体入口之间的所述连通通道上。
方案 18. 在方案 1至方案 17中任一项的基础上, 在连通所述压气装置的气体出口与 所述压缩气体入口的通道上设压缩气体正时控制阀。
方案 19. 在方案 8的基础上, 所述压气单元热气机还包括有气体做功机构, 所述气体 做功机构设在所述正时控制阀和所述冷却器之间的所述连通通道上。
方案 20. 在方案 17的基础上, 所述压气单元热气机还包括有气体做功机构, 所述气 体做功机构设在所述正时控制阀和所述冷却器之间的所述连通通道上。
方案 21. 在方案 19或方案 20的基础上, 将所述正时控制阀设置在所述压缩气体入口 和所述冷却器之间的所述连通通道上。
方案 22. 在方案 19至方案 21中任一项的基础上, 在连通所述压气装置的气体出口与 所述压缩气体入口的通道上设压缩气体正时控制阀。
方案 23. 在方案 1至方案 22中任一方案的基础上, 将所述压气单元热气机的工质设 为水蒸气或设为气体混合物。
方案 24. 在方案 1至方案 22中任一方案的基础上, 将所述压气单元热气机的循环工 质设为氦气、 氩气或氢气。
方案 25. 在方案 1至方案 24中任一方案的基础上, 将所述压气装置设为叶轮式压气 机。
方案 26. 在方案 1至方案 24中任一方案的基础上, 将所述压气装置设为活塞式压气 机。
方案 27. 在方案 1至方案 24中任一方案的基础上, 将所述压气装置设为由多个活塞 式压气机串联构成的多级活塞式气体压缩机构。
方案 28. 在方案 18或方案 22的基础上, 将所述压气装置设为活塞式压气机, 所述压 缩气体正时控制阀与所述活塞式压气机的供气阀一体化设置, 所述活塞式压气机按正时关 系与所述气缸活塞机构联动。
方案 29. 在方案 1至方案 24中任一方案的基础上将所述压气装置设为罗茨式压气机。 方案 30. 在方案 1至方案 24中任一方案的基础上将所述压气装置设为螺杆式压气机。 方案 31. 在方案 18或方案 22的基础上在连通所述压气装置的气体出口和所述压缩气 体正时控制阀的通道上设储气罐。
方案 32. 在方案 1至方案 31中任一方案的基础上, 将所述压气装置设为活塞式压气 说 明 书
机, 所述气缸活塞机构的活塞经连杆与曲轴的连杆轴颈连接, 所述活塞式压气机的活塞经 连杆与同一曲轴的不同连杆轴颈连接, 与所述气缸活塞机构的活塞连接的所述连杆轴颈和 与所述活塞式压气机的活塞连接的所述连杆轴颈之间的相位差为 180度。
方案 33. 在方案 1至方案 31中任一方案的基础上, 将所述压气装置设为活塞式压气 机, 所述气缸活塞机构的活塞经连杆与曲轴的连杆轴颈连接, 所述活塞式压气机的活塞经 连杆与不同曲轴的连杆轴颈连接, 与所述气缸活塞机构的活塞连接的所述曲轴和与所述活 塞式压气机的活塞连接的所述曲轴联动, 与所述气缸活塞机构的活塞连接的所述连杆轴颈 和与所述活塞式压气机的活塞连接的所述连杆轴颈之间的相位差为 180度。
方案 34. 在方案 26、 28、 32或方案 33的基础上将所述活塞式压气机设为并联的多个。 方案 35. 在方案 1至 4中任一方案或方案 9至 16中任一方案的基础上, 所述压气单 元热气机还包括正时控制阀, 所述压缩气体入口设在所述冷却器和所述压气装置的气体入 口之间的所述连通通道上; 所述正时控制阀设置在所述压缩气体入口和所述压气装置的气 体入口之间的所述连通通道上。
方案 36. 在方案 1至方案 35中任一方案的基础上, 所述压气单元热气机还包括低温 冷源, 所述低温冷源用于提供低温物质, 所述低温物质用于冷却所述压气装置中和 /或即将 进入所述压气装置的工质。
方案 37. 在方案 9等所有设置有所述工质导出口的技术方案的基础上, 所述压气单元 热气机还包括附属涡轮动力机构和附属叶轮压气机, 所述工质导出口与所述附属涡轮动力 机构的工质入口连通, 所述附属涡轮动力机构的工质出口经附属冷却器与所述附属叶轮压 气机的工质入口连通, 所述附属叶轮压气机的工质出口与工质闭合回路连通; 在所述附属 涡轮动力机构的工质出口与所述附属叶轮压气机的工质入口之间的通道上设附属工质导 出口。
方案 38. 在方案 9等所有设置所述内燃燃烧室的方案的基础上, 将所述内燃燃烧室排 出的物质的质量流量设为大于从工质闭合回路外导入所述内燃燃烧室的物质的质量流量。
方案 39. 在方案 9等所有设置所述工质导出口的技术方案的基础上, 所述压气单元热 气机还包括四类门气缸活塞机构, 所述四类门气缸活塞机构的供气口与所述气缸活塞机构 连通, 所述四类门气缸活塞机构的回充口与所述工质导出口连通。
方案 40. 在方案 9等所有设置所述内燃燃烧室的技术方案的基础上, 所述压气单元热 气机还包括氧化剂源、 氧化剂传感器和氧化剂控制装置, 所述氧化剂传感器设在工质闭合 回路内, 所述氧化剂传感器对所述氧化剂控制装置提供信号, 所述氧化剂源经氧化剂控制 阀与所述工质闭合回路连通, 所述氧化剂控制装置控制所述氧化剂控制阀。
方案 41. 在方案 1至方案 40中任一方案的基础上, 所述气缸活塞机构和 /或所述压气 装置设为活塞液体机构, 所述活塞液体机构包括气液缸和气液隔离结构, 所述气液隔离结 构设在所述气液缸内。
方案 42. 在方案 41 的基础上, 所述气液缸内的气体工质对所述气液隔离结构的压力 大于所述气液缸内的液体和所述气液隔离结构做往复运动时的惯性力之和。
方案 43. 在方案 1至方案 42中任一方案的基础上, 所述压气装置设为叶轮式压气机; 在所述压缩气体入口与所述冷却器之间的通道上设涡轮动力机构, 所述涡轮动力机构对所 述叶轮压气机输出动力。 说 明 书
方案 44. 在方案 1至方案 43中任一方案的基础上, 进一步在所述压气装置的气体出 口与所述压缩气体入口之间的通道上附属加热器。
方案 45. 在方案 44的基础上, 所述附属加热器的热源设为所述加热器的余热。
方案 46. 在方案 1至方案 8中任一项的基础上, 将所述连通通道在和所述气缸活塞机 构的气缸连通的一端分为供气通道和回充通道, 所述供气通道和所述回充通道分别与所述 气缸活塞机构的气缸连通,所述加热器设置在所述气缸活塞机构的气缸上和 /或设置在所述 供气通道上, 在所述供气通道和所述回充通道上分别设正时控制阔。
方案 47. 在方案 9至方案 17中任一项的基础上将所述连通通道在和所述气缸活塞机 构的气缸连通的一端分为供气通道和回充通道, 所述供气通道和所述回充通道分别与所述 气缸活塞机构的气缸连通,所述内燃燃烧室设置在所述气缸活塞机构的气缸内和 /或设置在 所述供气通道内, 在所述供气通道和所述回充通道上分别设正时控制阀。
方案 48. 在方案 1至方案 47中任一方案的基础上, 所述压气单元热气机还包括正时 控制阀, 所述压缩气体入口设在所述冷却器和所述加热器之间的所述连通通道上; 所述正 时控制阀设置在所述压缩气体入口和所述冷却器之间的所述连通通道上, 在连通所述压气 装置的气体出口与所述压縮气体入口的通道上设压缩气体正时控制阀, 所述气缸活塞机构 设为并联的两个以上。
在所有设有所述加热器的技术方案中, 都可以选择性的将所述加热器具体的设为以外 燃燃烧室为热源的外燃加热器, 或将所述加热器具体的设为以余热为热源的余热加热器, 或将所述加热器具体的设为以太阳能为热源的太阳能加热器。
本发明的原理是: 在所述气缸活塞机构的活塞处于上止点附近时, 将经所述压气装置 增压后的压缩空气直接或经所述回热器 (填料式回热器或热交换器式回热器) 供送到所述 加热器内, 在所述加热器内吸热 (恒温吸热、 吸热升压或吸热升温) 后推动所述气缸活塞 机构的活塞下行对外做功, 当所述气缸活塞机构的活塞下行到一定程度时停止向所述加热 器内供送压缩空气, 当所述气缸活塞机构的活塞趋近下止点时 (或越过下止点时) 打开所 述正时控制阀, 气体工质直接或经所述回热器 (填料式回热器或热交换器式回热器) 进入 所述冷却器并在所述冷却器内被冷却后进入所述压气装置, 如此循环周而复始对外做功。
本发明中, 所述四类门气缸活塞机构是指气缸上设有进气口、排气口、供气口和回充 口, 在所述进气口、 所述排气口、 所述供气口和所述回充口处依次对应设置进气门、 排气 门、 供气门和回充门的气缸活塞机构。
本发明中,通过调整所述工质闭合回路的工作压力以及所述气缸活塞机构的排量, 以 控制所述气缸活塞机构的质量排量, 使所述内燃燃烧室排出的物质的质量流量 M2大于从 所述工质闭合回路外导入所述内燃燃烧室的物质的质量流量 Mi,也就是说除了从所述工质 闭合回路外导入所述内燃燃烧室的物质外, 还有一部分物质是从所述工质闭合回路中导入 所述内燃燃烧室的, 由于所述内燃燃烧室是设置在所述工质闭合回路内的, 所以也就是说 从所述内燃燃烧室排出的物质至少有一部分流回所述内燃燃烧室, 即实现了工质在所述气 缸活塞机构和所述压气装置之间有往复流动。 从所述工质闭合回路外向所述内燃燃烧室导 入的物质可以是氧化剂、 还原剂、 压缩气体或高温燃气等。
本发明中, 所述工质闭合回路是指由所述气缸活塞机构、 所述内燃燃烧室 (或所述加 热器)、 所述冷却器、 所述压气装置等及它们之间的连通通道构成的工质可循环流动的空 说 明 书 ——―
间。
本发明中, 所述气液缸是指可以容纳气体工质和 /或液体, 并能承受一定压力的容器, 所述气液缸被所述气液隔离结构分隔成气体端和液体端, 所述气液缸的气体端设有气体工 质流通口, 所述气体工质流通口用于与所述工质闭合回路中的其他装置或机构连通; 所述 气液缸的液体端设有液体流通口,所述液体流通口用于与液压动力机构和 /或液体工质回送 系统连通。
本发明中, 所述气液隔离结构是指可以在所述气液缸中做往复运动的结构体, 如隔离 板、 隔离膜、 活塞等, 其作用是隔离所述气液缸中的气体工质和液体, 优选地, 所述气液 隔离结构和所述气液缸密封滑动配合。 在所述活塞液体机构工作过程中, 根据所述气液隔 离结构处于所述气液缸内的不同位置, 所述气液缸内可能全部是气体工质, 也可能全部是 液体, 或者气体工质和液体同时存在。
本发明中, 所述气液缸内的液体和所述气液隔离结构与传统的活塞连杆机构不同, 传 统的活塞连杆机构中的活塞可受连杆的推力或拉力停下, 从而实现对活塞行程的限制, 而 在所述气液缸中, 当所述气液缸内的气体工质做正功时, 所述气液隔离结构受压力向下止 点方向移动, 将液体以高压形式排出所述气液缸并推动液压动力机构 (例如液体马达)对 外做功, 当液体即将排尽时, 改变液体马达工作模式或启动液体工质回送系统, 使所述气 液缸内的液体不再减少, 此时液体会对所述气液缸内的所述气液隔离结构施加制动力, 使 其停止, 以防止其撞击气液缸的液体端底部的壁; 当不断向所述气液缸内输入液体时, 所 述气液隔离结构会不断向上止点方向移动, 当到达上止点附近时, 停止向所述气液缸内输 入液体或者使所述气液缸内的液体减少 (流出), 尽管如此, 所述气液缸内的液体和所述 气液隔离结构仍然会由于惯性向上止点方向运动, 此时, 如果所述气液缸内的气体工质的 压力不够高, 则会导致所述气液隔离结构继续向上运动而撞击气液缸顶部的壁, 为了避免 这种撞击, 需要使气液缸内气体工质的压力足够高, 使其对所述气液隔离结构的压力大于 所述气液缸内的液体和所述气液隔离结构做往复运动时的惯性力之和。
本发明中, 在所述压气单元热气机的工作过程中所述气液缸内的液体和所述气液隔离 结构做往复运动时的惯性力之和是变化的, 因此在工程设计中应保证在任何工作时刻都满 足"所述气液缸内的气体工质对所述气液隔离结构的压力大于所述气液缸内的液体和所述 气液隔离结构做往复运动时的惯性力之和 "的条件,例如通过调整所述工质闭合回路中的工 作压力、 调整气液隔离结构的质量、 调整液体密度或调整液体深度等方式来实现, 其中, 所述液体深度是指液体在做往复运动方向上的液体的深度。
所谓的 "调整所述工质闭合回路中的工作压力"是通过调整流入和 /或流出所述工质闭 合回路的气体工质的体积流量来实现的, 例如可以通过调整所述工质导出口的开关间隔、 每次开启的时间和 /或所述工质导出口处控制阀的开口大小来实现。
本发明中, 所述加热器是指加热流体和工质不发生混合且能对工质进行加热的装置, 以及用太阳能对工质进行加热的装置; 如热交换器式加热器、 燃烧炉等。
本发明中, 所述内燃燃烧室是指氧化剂和还原剂发生燃烧化学反应后所形成的高温产 物直接作为循环工质或与所述工质闭合回路内事先存在的其它气体混合后作为循环工质 的燃烧室。 根据技术常识, 需要在所述工质闭合回路上设置氧化剂和还原剂的入口, 或者 将氧化剂和还原剂预先存入所述工质闭合回路中。 说 明 书
本发明中, 所述气缸包括气缸套、 气缸盖以及由气缸套和气缸盖所形成的容积空间, 所述气缸上的连通口可设置在气缸盖上, 也可设置在气缸套上。
本发明中,所述气体做功机构是指一切可以利用气体工质膨胀和 /或流动产生动力的机 构, 例如螺杆式气体做功机构、 活塞式气体做功机构、 叶轮式气体做功机构、 罗茨式气体 做功机构等, 其作用是利用所述气缸活塞机构做功后的处于高能状态下的气体工质进行做 功, 所谓的高能状态是指在本发明压气单元热气机的循环中, 气体工质处于温度最高、 压 力最大的状态。
本发明中, 所述乏气储罐作为压缩气体源使用。
本发明中, 所述压气装置是指能够对气体进行压缩的装置, 例如活塞式压气机、 叶轮 式压气机、 罗茨式压气机、 螺杆式压气机等。
本发明中, 所述热交换器式回热器是指设在所述冷却器之前的, 能够将来自所述加热 器流向所述冷却器的高温工质的热量传递给即将进入所述加热器的工质的热交换器。
本发明中, 所述填料式回热器是指当高温工质流过多孔填料区域时将自身的热量留给 填料, 当低温工质逆行流过多孔填料区域时吸收填料所存储的热量的装置。
本发明中, 所述冷却器是指能够使工质降温的装置, 它可以是散热器, 也可以是热交 换器。
本发明中, 所述压气单元热气机的工质为在循环中不发生相变或不完全发生相变的气 体工质, 例如空气、 水和二氧化碳混合物、 氦气、 氩气、 氢气等。
本发明中,所述工质通道壁是指工质所能接触到的空间的壁,包括所述气缸活塞机构、 所述加热器 (或所述内燃燃烧室)、 所述冷却器、 所述压气装置等单元以及它们之间的连 通通道。
本发明中, 所述工质导出口设置的目的是当由所述压气装置向系统内导入的工质的压 力达到一定程度时, 将多余工质放出。
本发明中, 所谓的 "相位差为 180度"是指完全 180度和由于机构结构的特点以及加工 精度所产生的误差导致 180度加减某一微小角度后的度数。
本发明中, 所述低温冷源是指能提供温度在 0°C以下的低温物质的装置、机构或储罐, 例如采用商业购买方式获得的储存有低温物质的储罐, 所述低温物质可以是液氮、 液氧、 液氦或液化空气等。 在设置所述内燃燃烧室的结构中, 当本发明中氧化剂为液氧时, 液氧 可直接作为所述低温物质。
本发明中, 在设置所述内燃燃烧室的结构中, 所述低温冷源以直接与所述工质闭合回 路连通使所述低温物质与所述工质闭合回路内的工质混合的方式, 或者以经换热装置使所 述低温物质与所述工质闭合回路内的工质换热的方式, 对所述压气装置中或即将进入所述 压气装置的工质进行冷却处理。 在设置所述加热器的结构中, 所述低温冷源以经换热装置 使所述低温物质与所述工质闭合回路内的工质换热的方式对所述压气装置中或即将进入 所述压气装置的工质进行冷却处理。 热气机是一种工作循环接近卡诺循环的动力机构, 其 热效率的计算可以参考卡诺循环热效率计算公式: = ^ = ~^, 从中可知, 当冷源温度 τ2下降时, 热效率 升高, 而且向冷源排放的热量减少, 如果冷源温度 τ2下降幅度很大, 即冷源温度很低, 则热效率^很高, 向冷源排放的热量很小。 由此推断, 可用温度相当低 说 明 书
的低温物质使冷源温度 T2大幅下降,从而大幅减少向冷源排放的热量, 有效提高发动机效 率。
温度越低的低温物质 (例如液氧、 液氮或液氦等), 在制造过程中需要消耗越多的能 量, 但是就单位质量而言, 对发动机热效率 提升的贡献越大, 就好比将能量存储在温度 很低的物质中, 相当于一种新型电池的概念, 所述低温物质可以使用垃圾电等成本很低的 能源来制造, 从而有效降低发动机的使用成本。
本发明中, 在设置所述内燃燃烧室的结构中, 所述低温冷源中的所述低温物质发挥冷 却作用后,既可导入所述工质闭合回路中,作为本发明的所述压气单元热气机的循环工质, 也可不导入所述工质闭合回路中。
本发明中, 所谓的两个装置连通, 是指流体可以在两个装置之间单向或者双向流通。 所谓的连通是指直接连通或经控制机构、 控制单元或其他控制部件间接连通。
本发明中, 所述氧化剂传感器是指对所述工质闭合回路中的氧化剂的含量进行检测的 装置。 所述氧化剂传感器对所述氧化剂控制装置提供信号, 所述氧化剂控制装置根据所述 氧化剂传感器提供的信号以及预先设定的所述工质闭合回路中静态或动态的氧化剂含量 设定值对所述氧化剂控制阀进行控制以增加或减少向所述工质闭合回路中供给氧化剂的 量, 达到调控所述工质闭合回路中氧化剂的含量的目的。
所述氧化剂含量的设定值可以是一个数值, 也可以是一个数值区间, 例如: 所述工质 闭合回路中的氧化剂含量的设定值可以为 5 %、 10%或 10%~12%等。
所述氧化剂传感器可以设在远离所述内燃燃烧室的所述工质闭合回路上, 可保证整个 工质闭合回路是在富氧 (氧含量大于零) 状态下工作, 使所述内燃燃烧室内发生稳定的燃 烧化学反应, 同时还可以防止积碳的发生。
本发明中, 所述液氧包括商业液氧或现场制备的液氧。
本发明中, 所述工质闭合回路内的工质需要经过压缩、 加热升温升压、 做功以及被冷 却的过程, 这就要求所述工质闭合回路能承受一定压力, 选择性地, 所述工质闭合回路的 承压能力可设为大于 2MPa、 2.5MPa、 3MPa、 3.5MPa、 4MPa、 4.5MPa、 5MPa、 5.5MPa、 6MPa、 6.5MPa、 7MPa、 7.5MPa、 8MPa、 8.5MPa、 9MPa、 9.5MPa 10MPa、 10.5MPa、 llMPa、 11.5MPa、 12MPa、 12.5MPa、 13MPa、 13.5MPa、 14MPa、 14.5MPa、 15MPa、 15.5MPa、 16MPa、 16.5MPa、 17MPa、 17.5MPa 18MPa、 18.5MPa、 19MPa、 19.5MPa、 20MPa、 20.5MPa、 21MPa、 22 MPa、 23MPa、 24MPa、 25MPa、 26MPa、 27MPa、 28MPa、 29MPa、 30MPa、 31MPa、 32MPa> 33MPa> 34MPa、 35MPa、 36MPa、 37MPa 38MPa、 39MPa或大于 40MPa。
本发明中, 所述燃料可以是碳氢化合物、 碳氢氧化合物或固体碳。 需要指出的是: 采 用固体碳作为燃料燃烧后没有水生成, 且燃烧后产物中的二氧化碳浓度高, 易液化; 实施 的过程中, 固体碳可采用固体预先装配、 粉末化后喷入、 粉末化后再用液体或气体二氧化 碳流化后喷入的方式输入热气机。
本发明中, 应根据热能与动力领域的公知技术, 在必要的地方设置必要的部件、 单元 或系统等。
本发明的有益效果如下:
本发明结构简单、 效率高、 造价低使用寿命长。 说 明 书 附图说明
图 1所示的是本发明实施例 1的结构示意图; 图 2所示的是本发明实施例 2的结构示意图; 图 3所示的是本发明实施例 3的结构示意图; 图 4所示的是本发明实施例 4的结构示意图; 图 5所示的是本发明实施例 5的结构示意图; 图 6所示的是本发明实施例 6的结构示意图; 图 7所示的是本发明实施例 7的结构示意图; 图 8所示的是本发明实施例 8的结构示意图; 图 9所示的是本发明实施例 9的结构示意图; 图 10所示的是本发明实施例 10的结构示意图 图 11所示的是本发明实施例 11的结构示意图 图 12所示的是本发明实施例 12的结构示意图 图 13所示的是本发明实施例 13的结构示意图 图 14所示的是本发明实施例 14的结构示意图 图 15所示的是本发明实施例 15的结构示意图 图 16所示的是本发明实施例 16的结构示意图 图 17所示的是本发明实施例 17的结构示意图 图 18所示的是本发明实施例 18的结构示意图 图 19所示的是本发明实施例 19的结构示意图 图 20所示的是本发明实施例 20的结构示意图 图 21所示的是本发明实施例 21的结构示意图 图 22所示的是本发明实施例 22的结构示意图 图 23所示的是本发明实施例 23的结构示意图 图 24所示的是本发明实施例 24的结构示意图 图 25所示的是本发明实施例 25的结构示意图 图 26所示的是本发明实施例 26的结构示意图 图 27所示的是本发明实施例 27的结构示意图 图 28所示的是本发明实施例 28的结构示意图 图 29所示的是本发明实施例 29的结构示意图 图 30所示的是本发明实施例 30的结构示意图 图 31所示的是本发明实施例 31的结构示意图 图 32所示的是本发明实施例 32的结构示意图 图 33所示的是本发明实施例 33的结构示意图 图 34所示的是本发明实施例 34的结构示意图 图 35所示的是本发明实施例 35的结构示意图 图 36所示的是本发明实施例 36的结构示意图 图 37所示的是本发明实施例 37的结构示意图 图 38所示的是本发明实施例 38的结构示意图 说 明 书
图 39所示的是本发明实施例 39的结构示意图;
图 40所示的是本发明实施例 40的结构示意图;
图 41所示的是本发明实施例 41的结构示意图;
图 42所示的是本发明实施例 42的结构示意图;
图 43所示的是本发明实施例 43的结构示意图;
图 44所示的是本发明实施例 44的结构示意图;
图 45所示的是本发明实施例 45的结构示意图;
图 46所示的是本发明实施例 46的结构示意图;
图 47所示的是本发明实施例 47的结构示意图;
图 48所示的是本发明实施例 48的结构示意图;
图 49所示的是本发明实施例 49的结构示意图;
图 50所示的是本发明实施例 50的结构示意图;
图 51所示的是本发明实施例 51的结构示意图;
图 52所示的是本发明实施例 52的结构示意图;
图 53所示的是本发明实施例 53的结构示意图;
图 54所示的是本发明实施例 54的结构示意图;
图 55所示的是本发明实施例 55的结构示意图;
图 56所示的是本发明实施例 56的结构示意图;
图 57所示的是本发明实施例 57的结构示意图;
图 58所示的是本发明实施例 58的结构示意图。
图中:
1气缸活塞机构、 12供气通道、 11回充通道、 2加热器、 3压缩气体入口、 4正时控制 阀、 5冷却器、 6压气装置、 60多级活塞式气体压缩机构、 61叶轮式压气机、 62活塞式压 气机、 63罗茨式压气机、 64螺杆式压气机、 23填料式回热器、 22热交换器式回热器、 31 压缩气体正时控制阀、 30储气罐、 32热压缩气体正时控制阀、 35工质导出口、 36乏气储 罐、 200内燃燃烧室、 201外燃热交换器、 202余热热交换器、 203太阳能热交换器、 7气 体做功机构、 50低温冷源、 51氧化剂传感器、 52氧化剂控制装置、 55氧化剂源、 70附属 涡轮动力机构、 71 附属叶轮压气机、 72附属冷却器、 75附属工质导出口、 8四类门气缸 活塞机构、 81进气口、 82排气口、 83供气口、 84回充口、 85进气门、 86排气门、 87供 气门、 88回充门、 15工质回送系统、 16液压动力机构、 17气液隔离机构、 18气液缸、 19 活塞液体机构、 100过程控制机构、 65工质回送系统、 66液压动力机构、 67气液隔离机 构、 68气液缸、 69活塞液体机构、 600过程控制机构、 21附属加热器、 9涡轮动力机构、 10旁通口。
具体实施方式
实施例 1
如图 1所示的压气单元热气机, 包括气缸活塞机构 1、 加热器 2、 冷却器 5和压气装 置 6, 所述气缸活塞机构 1的气缸经连通通道与所述压气装置 6的气体入口连通, 所述加 热器 2设置在所述连通通道上, 所述冷却器 5设置在所述压气装置 6的气体入口和所述加 热器 2之间的所述连通通道上, 在所述连通通道上设压缩气体入口 3, 具体的, 所述压縮 说 明 书
气体入口 3设置在所述冷却器 5和所述加热器 2之间的所述连通通道上, 所述压气装置 6 的气体出口与所述压缩气体入口 3连通。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 2MPa。
作为可变换的实施方式, 所述加热器 2可以设置在所述气缸活塞机构 1的气缸上代替 设置在所述连通通道上或者在所述气缸活塞机构 1的气缸上和所述连通通道上同时设置; 所述冷却器 5可以设置在所述压气装置 6上代替设置在所述压气装置 6的气体入口和所述 加热器 2之间的所述连通通道上或者在所述压气装置 6上和所述压气装置 6的气体入口与 所述加热器 2之间的所述连通通道上同时设置; 所述压缩气体入口 3还可以设置在所述连 通通道上的其他位置。
实施例 2
如图 2所示的压气单元热气机, 其与实施例 1的区别在于- 在连通所述压气装置 6的气体出口与所述压缩气体入口 3的通道上设压缩气体正时控 制阀 31。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 2.5MPa。
实施例 1中的可变换的实施方式中, 也可以参考本实施例设置所述压缩气体正时控制 阀 31。
实施例 3
如图 3所示的压气单元热气机, 其与实施例 2的区别在于, 所述压气装置 6设为活塞 式压气机 62, 所述冷却器 5设置在所述活塞式压气机 62的气缸上, 所述加热器 2设置在 所述气缸活塞机构 1的气缸上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 3MPa。
实施例 4
如图 4所示的压气单元热气机, 在实施例 2的基础上, 所述压气单元热气机还包括正 时控制阀 4; 所述正时控制阔 4设置在所述压缩气体入口 3和所述冷却器 5之间的连通通 道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 3.5MPa。
作为可以变换的实施方式, 所述压缩气体正时控制阀 31和所述正时控制阀 4不必同 时设置, 在不设置所述压缩气体正时控制阔 31 的结构中, 也可以参照本实施例设置所述 正时控制阀 4; 所述正时控制阀 4还可以改为设置在所述冷却器 5和所述压气装置 6的气 体入口之间的所述连通通道上。
实施例 5
如图 5所示的压气单元热气机, 在实施例 4的基础上, 在所述压缩气体入口 3和所述 加热器 2之间的所述连通通道上设填料式回热器 23。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 4MPa。
作为可以变换的实施方式, 在不设所述压缩气体正时控制阀 31和 /或所述正时控制阀 4的结构中, 或者, 在所述正时控制阀 4设置所述冷却器 5和所述压气装置 6的气体入口 之间的所述连通通道上的结构中, 也可以参照本实施例设置所述填料式回热器 23。
实施例 6
如图 6所示的压气单元热气机, 其与实施例 4的区别在于, 在所述压缩气体入口 3和 说 明 书
所述加热器 2之间的所述连通通道上设热交换器式回热器 22, 所述热交换器式回热器 22 的被加热流体入口与所述压缩气体入口 3连通, 所述热交换器式回热器 22的被加热流体 出口经所述连通通道与所述加热器 2连通。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 4.5MPa。
作为可以变换的实施方式, 在不设所述压缩气体正时控制阀 31和 /或所述正时控制阔 4的结构中, 或者, 在所述正时控制阀 4设置所述冷却器 5和所述压气装置 6的气体入口 之间的所述连通通道上的结构中, 也可以参照本实施例设置所述热交换器式回热器 22。
实施例 7
如图 7所示的压气单元热气机, 其与实施例 4的区别在于, 所述压气装置 6设为叶轮 式压气机 61。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 5MPa。
实施例 8
如图 8所示的压气单元热气机, 其与实施例 4的区别在于, 所述压气装置 6设为由两 个活塞式压气机 62串联构成的两级活塞式气体压缩机构 60。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 5.5MPa。
实施例 9
如图 9所示的压气单元热气机, 其与实施例 4的区别在于, 所述压气装置 6设为由三 个活塞式压气机 62串联构成的三级活塞式气体压缩机构 60。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 6MPa。
作为可以变换的实施方式, 所述压气装置 6可以设为由四个或者更多个活塞式压气机 62串联构成的多级活塞式气体压缩机构 60。
实施例 10
如图 10所示的压气单元热气机, 其与实施例 4的区别在于, 所述压气装置 6设为活 塞式压气机 62,所述压缩气体正时控制阀 31与所述活塞式压气机 62的供气阀一体化设置, 所述活塞式压气机 62按正时关系与所述气缸活塞机构 1联动。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 6.5MPa。
实施例 11
如图 11所示的压气单元热气机,其与实施例 4的区别在于,所述压气装置 6设为罗茨 式压气机 63。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 7MPa。
实施例 12
如图 12所示的压气单元热气机, 其与实施例 4的区别在于, 所述压气装置 6设为螺 杆式压气机 64;所述冷却器 5设在所述压縮气体入口 3与所述加热器 2之间的所述连通通 道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 8MPa。
实施例 13
如图 13所示的压气单元热气机, 其与实施例 4的区别在于, 在所述压气装置 6的气 体出口和所述压缩气体正时控制阔 31之间的连通通道上设储气罐 30。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 9MPa。 说 明 书
本发明中的所有设有所述压缩气体正时控制阀 31 的实施方式中, 都可以参照本实施 例设置所述储气罐 30。
实施例 14
如图 14所示的压气单元热气机, 在实施例 6的基础上, 所述热交换器式回热器 22的 被加热流体出口与所述加热器 2经另一条连通通道连通,在连通所述热交换器式回热器 22 的被加热流体出口和所述加热器 2的连通通道上设热压缩气体正时控制阀 32。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 10MPa。
实施例 15
如图 15所示的压气单元热气机, 其与实施例 4的区别在于, 所述加热器 2设为以外 燃燃烧室为热源的外燃热交换器 201。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 l lMPa。
实施例 16
如图 16所示的压气单元热气机, 其与实施例 4的区别在于, 所述加热器 2设为以余 热为热源的余热热交换器 202。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 12MPa。
实施例 17
如图 17所示的压气单元热气机, 其与实施例 4的区别在于, 所述加热器 2设为以太 阳能为热源的太阳能热交换器 203。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 13MPa。
实施例 1-17中, 所述压气单元热气机的工质可以设为水蒸气或设为气体混合物, 或设 为氦气、 氩气或氢气; 实施例 4至实施例 12、 实施例 14至实施例 17中, 所述压缩气体正 时控制阀 31和所述正时控制阀 4可以不设, 也可以择一设置; 实施例 7至实施例 13和实 施例 15至实施例 17中,可以参考实施例 5中设置所述填料式回热器 23或者参考实施例 6 设置所述热交换器式回热器 22, 在设置所述热交换器式回热器 22的结构中, 还可以参照 实施例 14设置所述热压缩气体正时控制阀 32; 在实施例 1至实施例 12和实施例 14至实 施例 17以及这些实施例中的可变换的实施例中, 可以按照实施例 13的方式设置所述储气 罐 30, 实施例 1实施例 14及这些实施例的可变换的实施方式中, 可以参照实施例 15至实 施例 17, 将所述加热器 2设置成不同的形式。
实施例 18
如图 18所示的压气单元热气机, 包括气缸活塞机构 1、 内燃燃烧室 200、 冷却器 5和 压气装置 6, 所述气缸活塞机构 1的气缸经连通通道与所述压气装置 6的气体入口连通, 所述内燃燃烧室 200设置在所述气缸活塞机构 1的气缸内, 所述冷却器 5设置在所述压气 装置 6的气体入口和所述内燃燃烧室 200之间的所述连通通道上, 在所述连通通道上设压 缩气体入口 3 , 具体的, 所述压缩气体入口 3设置在所述冷却器 5和所述加热器 2之间的 所述连通通道上, 所述压气装置 6的气体出口与所述压缩气体入口 3连通, 在所述内燃燃 烧室 200与所述压缩气体入口 3之间的所述连通通道上设工质导出口 35。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 14MPa。
作为可变换的实施方式, 所述内燃燃烧室 200可以设置在所述连通通道内代替设置在 所述气缸活塞机构 1的气缸内或者在所述气缸活塞机构 1的气缸内和所述连通通道内同时 说 明 书
设置; 所述冷却器 5可以设置在所述压气装置 6上代替设置在所述压气装置 6的气体入口 和所述内燃燃烧室 200之间的所述连通通道上或者在所述压气装置 6上和所述压气装置 6 的气体入口与所述内燃燃烧室 200之间的所述连通通道上同时设置; 所述工质导出口 35 还可以设置在工质通道壁的其它位置上; 所述压缩气体入口 3还可以设置在所述连通通道 上的其他位置。
实施例 19
如图 19所示的压气单元热气机, 其与实施例 18的区别在于, 所述内燃燃烧室 200改 设在所述压缩气体入口 3与所述气缸活塞机构 1的气缸之间的所述连通通道上, 所述压气 装置 6的气体出口与所述压缩气体入口 3之间的连通通道上设压缩气体正时控制阀 31。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 14MPa。
实施例 18 中的可变换的实施方式中, 也可以参考本实施例设置所述压缩气体正时控 制阀 31。
实施例 20
如图 20所示的压气单元热气机, 其与实施例 19的区别在于, 所述压气装置 6设为活 塞式压气机 62, 所述冷却器 5设在所述活塞式压气机 62上, 所述内燃燃烧室 200设置在 所述气缸活塞机构 1的气缸内。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 15MPa。
实施例 21
如图 21所示的压气单元热气机, 在实施例 19的基础上, 还包括正时控制阀 4, 所述 正时控制阀 4设置在所述压缩气体入口 3和所述冷却器 5之间的所述连通通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 16MPa。
作为可以变换的实施方式, 所述压缩气体正时控制阀 31和所述正时控制阀 4不必同 时设置, 在不设置所述压缩气体正时控制阀 31 的结构中, 也可以参照本实施例设置所述 正时控制阀 4; 所述正时控制阀 4还可以改为设置在所述压气装置 6的气体入口和所述冷 却器 5之间的所述连通通道上。
实施例 22
如图 22所示的压气单元热气机, 其与实施例 21的区别在于, 在所述压缩气体入口 3 和所述内燃燃烧室 200之间的所述连通通道上设填料式回热器 23。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 17MPa。
作为可以变换的实施方式, 在不设所述压缩气体正时控制阀 31和 /或所述正时控制阀 4的结构中, 或者, 所述正时控制阀 4设置在所述压气装置 6的气体入口和所述冷却器 5 之间的所述连通通道上的结构中, 也可以参照本实施例设置所述填料式回热器 23。
实施例 23
如图 23所示的压气单元热气机, 其与实施例 21的区别在于, 在所述压缩气体入口 3 和所述内燃燃烧室 200之间的所述连通通道上设热交换器式回热器 22,所述热交换器式回 热器 22的被加热流体入口与所述压缩气体入口 3连通, 所述热交换器式回热器 22的被加 热流体出口经所述连通通道与所述加热器 2连通。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 17MPa。
作为可以变换的实施方式, 在不设所述压缩气体正时控制阀 31和 /或所述正时控制阀 说 明 书
4的结构中, 或者, 所述正时控制阀 4设置在所述压气装置 6的气体入口和所述冷却器 5 之间的所述连通通道上的结构中, 也可以参照本实施例设置所述热交换器式回热器 22。
实施例 24
如图 24所示的压气单元热气机, 其与实施例 21的区别在于, 所述压气装置 6设为叶 轮式压气机 61。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 18MPa。
实施例 25
如图 25所示的压气单元热气机, 其与实施例 21的区别在于, 所述压气机 6设为由两 个活塞式压气机 62串联构成的两级活塞式气体压缩机构 60。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 19MPa。
实施例 26
如图 26所示的压气单元热气机, 其与实施例 21的区别在于, 所述压气装置 6设为由 三个活塞式压气机 62串联构成的三级活塞式气体压缩机构 60。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 20MPa。
作为可以变换的实施方式, 所述压气装置 6还可以设为由四个或者更多个活塞式压气 机 62串联构成的多级活塞式气体压缩机构 60。
实施例 27
如图 27所示的压气单元热气机, 其与实施例 21的区别在于, 所述压气装置 6设为活 塞式压气机 62,所述压缩气体正时控制阀 31与所述活塞式压气机 62的供气阀一体化设置, 所述活塞式压气机 62按正时关系与所述气缸活塞机构 1联动。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 21MPa。
实施例 28
如图 28所示的压气单元热气机, 其与实施例 21的区别在于, 所述压气装置 6设为罗 茨式压气机 63。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 22MPa。
实施例 29
如图 29所示的压气单元热气机, 其与实施例 21的区别在于, 所述压气装置 6设为螺 杆式压气机 64。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 23MPa。
实施例 30
如图 30所示的压气单元热气机, 其与实施例 21的区别在于, 在所述压气装置 6的气 体出口和所述压缩气体正时控制阀 31之间的连通通道上设储气罐 30。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 24MPa。
本发明的所有设有所述压缩气体正时控制阀 31 的实施方式中, 都可以参照本实施例 设置所述储气罐 30。
实施例 31
如图 31 所示的压气单元热气机, 在实施例 23 的基础上, 所述热交换器式回热器 22 的被加热流体出口和所述加热器 2经另一条连通通道连通, 在连通所述热交换器式回热器 22的被加热流体出口和所述加热器 2的连通通道上设热压缩气体正时控制闽 32。 说 明 书
本实施例中, 所述工质闭合回路的承压能力可以设为大于 25MPa。
实施例 32
如图 32所示的压气单元热气机, 其与实施例 21 的区别在于, 所述工质导出口 35与 乏气储罐 36连通。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 26MPa。
本发明的所有设置所述工质导出口 35 的实施方式中, 都可以参照本实施例设置所述 乏气储罐 36。
实施例 33
如图 33所示的压气单元热气机, 其与实施例 21的区别在于, 所述工质导出口 35设 置在所述活塞式压气机 62的气缸上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 27MPa。
实施例 34
如图 34所示的压气单元热气机, 其与实施例 22的区别在于, 所述压气装置 6设为活 塞式压气机 62, 所述气缸活塞机构 1的活塞经连杆与曲轴的连杆轴颈连接, 所述活塞式压 气机 62的活塞经连杆与同一曲轴的不同连杆轴颈连接, 与所述气缸活塞机构 1 的活塞连 接的所述连杆轴颈和与所述活塞式压气机 62 的活塞连接的所述连杆轴颈之间的相位差为 180度, 且所述气缸活塞机构 1和所述活塞式压气机 62共线设置。
所述冷却器 5设在所述压缩气体入口 3与所述填料式回热器 23之间的所述连通通道 上; 所述正时控制阀 4设在所述压缩气体入口 3与所述活塞式压气机 62的气体入口之间 的所述连通通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 28MPa。
作为可以变换的实施例方式,本实施例中的所述填料式回热器 23、所述正时控制阀 4、 所述压缩气体正时控制阀 31可以不设, 也可以择一设置, 或任择两个设置。
实施例 35
如图 35所示的压气单元热气机, 其与实施例 34的区别在于, 所述内燃燃烧室 200设 在所述气缸活塞机构 1的气缸内, 所述气缸活塞机构 1的活塞经连杆与曲轴的连杆轴颈连 接, 所述活塞式压气机 62 的活塞经连杆与不同曲轴的连杆轴颈连接, 与所述气缸活塞机 构 1 的活塞连接的所述曲轴和与所述活塞式压气机 62的活塞连接的所述曲轴联动, 与所 述气缸活塞机构 1 的活塞连接的所述连杆轴颈和与所述活塞式压气机 62的活塞连接的所 述连杆轴颈之间的相位差为 180度。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 29MPa。
具体实施时, 所述气缸活塞机构 1和所述活塞式压气机 62可共线设置, 也可平行设 置。
作为可以变换的实施例方式,本实施例中的所述填料式回热器 23、所述正时控制阀 4、 所述压缩气体正时控制阀 31可以不设, 也可以择一设置, 或任择两个设置。
实施例 36
如图 36所示的压气单元热气机, 其与实施例 34的区别在于, 所述气缸活塞机构 1和 所述活塞式压气机 62平行设置。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 30MPa。 说 明 书
实施例 34 中的可变换的实施方式中, 也可以参照本实施例的方式设置所述气缸活塞 机构 1和所述活塞式压气机 62。
实施例 37
如图 37所示的压气单元热气机, 其与实施例 5的区别在于, 所述压气装置 6设为活 塞式压气机 62, 所述气缸活塞机构 1的活塞经连杆与曲轴的连杆轴颈连接, 所述活塞式压 气机 62的活塞经连杆与同一曲轴的不同连杆轴颈连接, 与所述气缸活塞机构 1 的活塞连 接的所述连杆轴颈和与所述活塞式压气机 62 的活塞连接的所述连杆轴颈之间的相位差为 180度, 且所述气缸活塞机构 1和所述活塞式压气机 62共线设置; 所述压缩气体入口 3设 在所述冷却器 5和所述压气装置 6的气体入口之间的所述连通通道上; 所述正时控制阀 4 设置在所述压缩气体入口 3和所述压气装置 6的气体入口之间的所述连通通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 31MPa。
作为可以变换的实施例方式,本实施例中的所述填料式回热器 23、所述正时控制阀 4、 所述压缩气体正时控制阀 31 可以不设, 也可以择一设置, 或任择两个设置; 所述压缩气 体入口 3还可以参照实施例 5设在所述冷却器 5和所述加热器 2之间的所述连通通道上, 此时, 所述正时控制阀 4可以设置在所述压缩气体入口 3和所述冷却器 5之间的连通通道 上。
实施例 38
如图 38所示的压气单元热气机, 其与实施例 5的区别在于, 所述压气装置 6设为活 塞式压气机 62, 所述加热器 2设置在所述气缸活塞机构 1上, 且所述连通通道上和所述活 塞式压气机 62上均设所述冷却器 5,所述气缸活塞机构 1的活塞经连杆与曲轴的连杆轴颈 连接, 所述活塞式压气机 62 的活塞经连杆与不同曲轴的连杆轴颈连接, 与所述气缸活塞 机构 1 的活塞连接的所述曲轴和与所述活塞式压气机 62的活塞连接的所述曲轴联动, 与 所述气缸活塞机构 1 的活塞连接的所述连杆轴颈和与所述活塞式压气机 62的活塞连接的 所述连杆轴颈之间的相位差为 180度; 所述压缩气体入口 3设在所述冷却器 5和所述压气 装置 6的气体入口之间的所述连通通道上; 所述正时控制阀 4设置在所述压缩气体入口 3 和所述压气装置 6的气体入口之间的所述连通通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 32MPa。
选择性地, 所述气缸活塞机构 1和所述活塞式压气机 62可共线设置, 也可平行设置。 作为可以变换的实施例方式,本实施例中的所述填料式回热器 23、所述正时控制阀 4、 所述压缩气体正时控制阀 31 可以不设, 也可以择一设置, 或任择两个设置; 所述压缩气 体入口 3还可以参照实施例 5设在所述冷却器 5和所述加热器 2之间的所述连通通道上, 此时, 所述正时控制阀 4可以设置在所述压缩气体入口 3和所述冷却器 5之间的所述连通 通道上。
实施例 39
如图 39所示的压气单元热气机, 其与实施例 37的区别在于, 所述气缸活塞机构 1和 所述活塞式压气机 62平行设置。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 33MPa。
实施例 40
如图 40所示的压气单元热气机, 其与实施例 34的区别在于, 所述活塞式压气机 62 说 明 书
的活塞分别经两根连杆与曲轴上相位相同的两个连杆轴颈连接, 所述气缸活塞机构 1的活 塞经一根连杆与同一曲轴上的一根连杆轴颈连接。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 34MPa。
实施例 41
如图 41所示的压气单元热气机, 其与实施例 36的区别在于, 所述活塞式压气机 62 为并联的两个。
选择性地, 所述活塞式压气机 62也可以为并联的多个 (三个以上)。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 35MPa。
实施例 42
如图 42所示的压气单元热气机, 其与实施例 37的区别在于, 所述加热器 2设为以外 燃燃烧室为热源的外燃热交换器 201,所述活塞式压气机 62分别经两根连杆与曲轴上相位 相同的两个连杆轴颈连接。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 36MPa。
实施例 43
如图 43所示的压气单元热气机, 其与实施例 39的区别在于, 所述加热器 2设为以外 燃燃烧室为热源的外燃热交换器 201, 所述活塞式压气机 62为并联的两个。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 37MPa。
选择性地, 所述活塞式压气机 62也可以为并联的多个 (三个以上)。
实施例 44
如图 44所示的压气单元热气机, 其与实施例 4的区别在于: 该热气机还包括有气体 做功机构 7, 所述气体做功机构 7设在所述正时控制阀 4和所述冷却器 5之间的所述连通 通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 38MPa。
实施例 45
如图 45所示的压气单元热气机, 其与实施例 21的区别在于: 该热气机还包括有气体 做功机构 7, 所述气体做功机构 7设在所述正时控制阀 4和所述冷却器 5之间的所述连通 通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 39MPa。
本发明中所有在所述压缩气体入口 3与所述冷却器 5之间的所述连通通道上设置所述 正时控制阀 4的结构中, 都可以参照本实施例设置所述气体做功机构 7。
实施例 46
如图 46所示的压气单元热气机, 其与实施例 31区别在于: 所述工质导出口 35设在 所述热交换器式回热器 22与所述正时控制阀 4之间的所述连通通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 40MPa。
本实施例中, 做功后的气体经所述热交换器式回热器 22加热由所述活塞式压气机 62 提供的压缩气体后部分经所述工质导出口 35 导出, 减少了热量的外排, 提高了系统的效 率。
实施例 47
如图 47所示的压气单元热气机, 其与实施例 35区别在于: 所述工质导出口 35设在 说 明 书
所述冷却器 5与所述正时控制阀 4之间的所述连通通道上。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 37MPa。
实施例 48
如图 48所示的压气单元热气机, 其与实施例 34区别在于: 所述内燃燃烧室 200设在 所述气缸活塞机构 1的气缸内。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 25MPa。
实施例 49
如图 49所示的压气单元热气机, 其与实施例 21的区别在于: 所述压气单元热气机还 包括低温冷源 50, 所述低温冷源 50用于提供低温物质, 所述低温物质通过直接与所述工 质闭合回路内的工质混合的方式冷却即将进入所述压气装置 6的工质。
作为可以变换的实施方式, 可以通过直接与工质混合的方式冷却所述压气装置 6中的 工质; 也可以采用经换热装置使所述低温物质与所述工质闭合回路内的工质换热的方式冷 却即将进入所述压气装置 6的工质或所述压气装置 6中的工质。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 20MPa。
在设置所述加热器 2 的结构中, 也可以设置所述低温冷源 50, 此时, 所述低温冷源 50 只能采用经换热装置使所述低温物质与所述工质闭合回路内的工质换热的方式冷却即 将进入所述压气装置 6的工质或所述压气装置 6中的工质。
在所有设有所述内燃燃烧室 200的结构中, 都可以参考本实施例及其可以变换实施方 式设置所述低温冷源 50。
实施例 50
如图 50所示的压气单元热气机, 其与实施例 33的区别在于: 所述压气单元热气机还 包括附属涡轮动力机构 70和附属叶轮压气机 71,所述工质导出口 35与所述附属涡轮动力 机构 70的工质入口连通, 所述附属涡轮动力机构 70的工质出口经附属冷却器 72与所述 附属叶轮压气机 71的工质入口连通, 所述附属叶轮压气机 71的工质出口与所述工质闭合 回路连通; 所述附属涡轮动力机构 70的工质出口与所述附属叶轮压气机 71的工质入口之 间的通道上设附属工质导出口 75。
图中所示的所述附属工质导出口 75设在所述附属冷却器 72与所述附属叶轮压气机 71 的工质入口之间的通道上; 可选择的, 所述附属工质导出口 75 还可以设在所述附属涡轮 动力机构 70的工质出口与其相邻的所述附属冷却器 72之间的通道上。 所述附属叶轮压气 机 71 的工质出口与设在所述工质闭合回路上的连通口连通, 该连通口和所述工质导出口 35设在所述工质闭合回路上的不同位置。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 20MPa。
本发明中所有设有所述工质导出口 35 的实施方式中, 都可以参考本实施例及其可变 换实施方式设置所述附属涡轮动力机构 70、 所述附属叶轮压气机 71的结构。
实施例 51
如图 51所示的压气单元热气机, 其与实施例 33的区别在于: 所述压气单元热气机还 包括四类门气缸活塞机构 8,所述四类门气缸活塞机构 8的供气口 83与所述气缸活塞机构 1连通, 所述四类门气缸活塞机构 8的回充口 84与所述工质导出口 35连通。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 30MPa。 说 明 书
本发明中所有设有所述工质导出口 35 的实施方式中, 都可以参考本实施例及其可变 换实施方式设置所述四类门气缸活塞机构 8。
实施例 52
如图 52所示的压气单元热气机, 其与实施例 21的区别在于: 所述压气单元热气机还 包括氧化剂源 55、 氧化剂传感器 51和氧化剂控制装置 52, 所述氧化剂传感器 51设在所 述工质闭合回路内, 所述氧化剂传感器 51对所述氧化剂控制装置 52提供信号, 所述氧化 剂源 55经氧化剂控制阀 53与所述工质闭合回路连通, 所述氧化剂控制装置 52控制所述 氧化剂控制阀 53。
本实施例中, 所述工质闭合回路的承压能力可以设为大于 40MPa。
本发明中所有设有所述工质导出口 35 的实施方式中, 都可以参考本实施例及其可变 换实施方式设置所述氧化剂源 55、所述氧化剂传感器 51、所述氧化剂控制装置 52等结构。
实施例 53
如图 53所示的压气单元热气机, 其与实施例 21的区别在于: 所述气缸活塞机构 1和 所述压气装置 6均设为活塞液体机构。
所述气缸活塞机构 1的活塞液体机构 19包括气液缸 18和气液隔离结构 17,所述气液 隔离结构 17设在所述气液缸 18内。
可以将所述气液缸 18内的气体工质对所述气液隔离结构 17的压力设定为大于所述气 液缸内 18的液体和所述气液隔离结构 17做往复运动时的惯性力之和。
所述气液缸 18的液体端与液压动力机构 16连通, 所述液压动力机构 16与液体工质 回送系统 15连通, 所述液体工质回送系统 15与所述气液缸 18的液体端连通; 所述液压 动力机构 16和所述液体工质回送系统 15受过程控制机构 100控制。
所述压气装置 6的活塞液体机构 69包括气液缸 68和气液隔离结构 67,所述气液隔离 结构 67设在所述气液缸 68内。
可以将所述气液缸 68内的气体工质对所述气液隔离结构 67的压力设定为大于所述气 液缸内 68的液体和所述气液隔离结构 67做往复运动时的惯性力之和。
所述气液缸 68的液体端与液压动力机构 66连通, 所述液压动力机构 66与液体工质 回送系统 65连通, 所述液体工质回送系统 65与所述气液缸 68的液体端连通; 所述液压 动力机构 66和所述液体工质回送系统 65受过程控制机构 600控制。 本实施例中, 所述工 质闭合回路的承压能力可以设为大于 10MPa。
在实施过程中, 可将所述气缸活塞机构 1和所述压气装置 6中的一个设为活塞液体机 构, 另一个根据使用的需要进行选择; 在设置所述加热器 2的结构中, 可以参考本实施例 将所述气缸活塞机构 1和所述压气装置 6均设为活塞液体机构或择一设为活塞液体机构。
实施例 18-53中, 所述压气单元热气机的工质设为水蒸气或设为气体混合物。
以上实施例中, 可以设定从所述内燃燃烧室 200排出的物质的质量流量大于从所述工 质回路外导入所述内燃燃烧室 200的物质的质量流量。
实施例 54
如图 54所示的压气单元热气机, 其与实施例 7的区别在于: 在所述压缩气体入口 3 与所述冷却器 5之间的通道上设涡轮动力机构 9, 所述涡轮动力机构 9对所述叶轮压气机 61输出动力,在所述压缩气体入口 3和所述加热器 2之间的所述连通通道上设填料式回热 说 明 书
器 23。
同时在所述叶轮压气机 61 的气体出口与所述压缩气体入口 3之间的通道上附属加热 器 21。 可选择地, 所述附属加热器 21的热源为所述加热器 2的余热; 所述附属加热器 21 可以不设; 所述填料式回热器 23可以不设; 还可参考实施例 23设置所述热交换器式回热 器 22代替所述填料式回热器 23, 在设置所述热交换器式回热器 22的结构中, 还可以参照 实施例 31设置所述热压缩气体正时控制阀 32。
实施例 55
如图 55所示的压气单元热气机, 其与实施例 4的区别在于: 所述压气装置 6设为活 塞式压气机 62, 所述活塞式压气机 62的气体入口和气体出口为一体化设置; 所述活塞式 压气机 62的气体出口与所述压缩气体入口 3之间的通道上设附属加热器 21, 所述附属加 热器 21的热源为所述加热器 2的余热; 在所述压缩气体入口 3和所述加热器 2之间的所 述连通通道上设填料式回热器 23。
可选择地, 所述填料式回热器 23可以不设; 所述附属加热器 21的热源可以采用其他 形式; 还可参考实施例 23设置所述热交换器式回热器 22代替所述填料式回热器 23, 在设 置所述热交换器式回热器 22的结构中, 还可以参照实施例 31设置所述热压缩气体正时控 制阀 32。
实施例 56
如图 56所示的压气单元热气机, 其与实施例 54的区别在于: 取消了实施例 54中的 所述正时控制阀 4、 所述压缩气体正时控制阀 31和所述附属加热器 21, 所述连通通道在 和所述气缸活塞机构 1的连通的一端分为供气通道 12和回充通道 11,所述回热器 23分别 经供气通道 12和回充通道 11与所述气缸活塞机构 1连通,在所述供气通道 12和所述回充 通道 11上分别设正时控制阀 4。
本发明的所有实施例及其可变换的实施方式中, 都可以参照本实施例, 将所述连通通 道在与所述气缸活塞机构 1的连通的一端分为供气通道 12和回充通道 11, 并在所述供气 通道 12和所述回充通道 11上分别设正时控制阀 4, 相应的将所述加热器 2设置在所述供 气通道上或所述气缸活塞机构的气缸上或所述内燃燃烧室 200设置在所述供气通道内或所 述气缸活塞机构的气缸内。
实施例 57
如图 57所示的压气单元热气机, 其与实施例 24的区别在于: 在所述压缩气体入口 3 与所述冷却器 5之间的通道上设涡轮动力机构 9, 所述涡轮动力机构 9对所述叶轮压气机 61输出动力。
可选择地, 所述压缩气体入口 3和所述内燃燃烧室 200之间的所述连通通道上设热交 换器式回热器 22或填料式回热器 23。
可选择地, 所述内燃燃烧室 200可以改设在所述气缸活塞机构 1内。
实施例 18-57中, 所述压气单元热气机的工质可以设为水蒸气或设为气体混合物, 或 设为氦气、 氩气或氢气;
实施例 22至实施例 29、 实施例 31至实施例 57中, 所述压缩气体正时控制阀 31和所 述正时控制阀 4可以不设, 也可以择一设置;
实施例 24至实施例 30、 实施例 32至实施例 33、 实施例 44、 实施例 45、 实施例 49 说 明 ¾
至实施例 53、 实施例 57中, 可以参考实施例 22中设置所述填料式回热器 23或者参考实 施例 23设置所述热交换器式回热器 22, 在设置所述热交换器式回热器 22的结构中, 还可 以参照实施例 31设置所述热压缩气体正时控制阀 32;
本发明中, 所有将所述压气装置 6设为活塞式压气机 62的实施方式中, 都可以按照 实施例 34至实施例 43中任一个实施例中的方式连接所述活塞式压气机 62的活塞、 所述 气缸活塞机构 1的活塞与曲轴的连杆轴颈。
实施例 58
如图 58所示的压气单元热气机, 其与实施例 5的区别在于:
还包括另一个气缸活塞机构 1 , 两个所述气缸活塞机构 1并联, 具体的, 在所述正时 控制阀 4与所述冷却器 5之间的所述连通通道上设旁通口 10, 所述旁通口 10与该另一个 气缸活塞机构 1的气缸连通, 在连通所述旁通口 10与该另一个气缸活塞机构 1的气缸的 连通通道上设另一个压縮气体入口 3, 该另一个压缩气体入口 3与所述压气装置 6的气体 出口连通, 在所述旁通口 10与该另一个压缩气体入口 3之间的连通通道上设另一个正时 控制阀 4, 在该另一个压缩气体入口 3与所述压气装置 6的气体出口之间的连通通道上设 另一个压缩气体正时控制阀 31,在该另一个压缩气体入口 3与该另一个气缸活塞机构 1的 气缸的连通通道上设另一个加热器 2, 在该另一个加热器 2与所述该另一个压缩气体入口 3之间的连通通道上设另一个填料式回热器 23。
作为可以变换的实施方式, 所述气缸活塞机构 1还可以设为并联的三个以上, 设置 3 个以上时, 可以参照本实施例的另一个气缸活塞机构 1的方式设置; 所述填料式回热器 23 可以不设。
本发明的所有设有所述正时控制阀 4、所述压缩气体正时控制阀 31的结构中, 都可以 参考本实施例将所述气缸活塞机构 1设为两个或者三个以上。
显然,本发明不限于以上实施例,根据本领域的公知技术和本发明所公开的技术方案, 可以推导出或联想出许多变型方案, 所有这些变型方案, 也应认为是本发明的保护范围。

Claims

权 利 要 求
1. 一种压气单元热气机, 包括气缸活塞机构 (1 )、 加热器 (2)、 冷却器 (5 ) 和压气 装置 (6), 其特征在于: 所述气缸活塞机构 (1 ) 的气缸经连通通道与所述压气装置 (6) 的气体入口连通, 所述加热器(2)设置在所述气缸活塞机构 (1 ) 的气缸上和 /或设置在所 述连通通道上,所述冷却器(5 )设置在所述压气装置(6)上和 /或设置在所述压气装置(6) 的气体入口和所述加热器 (2) 之间的所述连通通道上, 在所述连通通道上设压缩气体入 口 (3 ), 所述压气装置 (6) 的气体出口与所述压缩气体入口 (3 ) 连通。
2. 如权利要求 1所述压气单元热气机, 其特征在于: 在所述压缩气体入口 (3 ) 和所 述加热器 (2) 之间的所述连通通道上设填料式回热器 (23 )。
3. 如权利要求 1所述压气单元热气机, 其特征在于: 在所述压缩气体入口 (3 ) 和所 述加热器 (2) 之间的所述连通通道上设热交换器式回热器 (22), 所述热交换器式回热器
(22) 的被加热流体入口与所述压缩气体入口 (3 ) 连通, 所述热交换器式回热器 (22) 的被加热流体出口与所述加热器 (2) 连通。
4. 如权利要求 3 所述压气单元热气机, 其特征在于: 在连通所述热交换器式回热器 (22) 的被加热流体出口和所述加热器 (2) 的通道上设热压缩气体正时控制阀 (32)。
5. 如权利要求 1所述压气单元热气机, 其特征在于: 所述加热器 (2) 设为以外燃燃 烧室为热源的外燃加热器 (201 )。
6. 如权利要求 1所述压气单元热气机, 其特征在于: 所述加热器 (2) 设为以余热为 热源的余热加热器 (202)。
7. 如权利要求 1所述压气单元热气机, 其特征在于: 所述加热器 (2) 设为以太阳能 为热源的太阳能加热器 (203 )。
8. 如权利要求 1至 7中任一项所述压气单元热气机, 其特征在于: 所述压气单元热气 机还包括正时控制阀(4), 所述压缩气体入口(3 )设在所述冷却器(5 )和所述加热器(2) 之间的所述连通通道上; 所述正时控制阀 (4) 设置在所述压缩气体入口 (3 ) 和所述冷却 器 (5 ) 之间的所述连通通道上, 或设在所述冷却器 (5 ) 和所述压气装置 (6) 的气体入 口之间的所述连通通道上。
9. 一种压气单元热气机, 包括气缸活塞机构 (1 )、 内燃燃烧室 (200)、 冷却器 (5 ) 和压气装置 (6), 其特征在于: 所述气缸活塞机构 (1 ) 的气缸经连通通道与所述压气装 置 (6) 的气体入口连通, 所述内燃燃烧室 (200) 设置在所述气缸活塞机构 (1 ) 的气缸 内和 /或设置在所述连通通道内, 所述冷却器 (5 ) 设置在所述压气装置 (6) 上和 /或设置 在所述压气装置 (6) 的气体入口和所述内燃燃烧室 (200)之间的所述连通通道上, 在所 述连通通道上设压縮气体入口 (3 ), 所述压气装置 (6) 的气体出口与所述压缩气体入口
(3 ) 连通, 在工质通道壁上设工质导出口 (35 )。
10. 如权利要求 9所述压气单元热气机, 其特征在于: 所述工质导出口 (35) 设置在 所述冷却器 (5 ) 与所述内燃燃烧室 (200) 之间的所述连通通道上。
11. 如权利要求 9所述压气单元热气机, 其特征在于: 在所述内燃燃烧室(200)与所 述冷却器 (5 ) 之间的所述连通通道上设填料式回热器 (23 )。
12. 如权利要求 9所述压气单元热气机, 其特征在于: 在所述压缩气体入口 (3 )和所 述内燃燃烧室 (200) 之间的所述连通通道上设填料式回热器 (23 )。
13. 如权利要求 9所述压气单元热气机, 其特征在于: 在所述压缩气体入口 (3 )和所 权 利 要 求
述内燃燃烧室 (200) 之间的所述连通通道上设热交换器式回热器 (22), 所述热交换器式 回热器 (22) 的被加热流体入口与所述压缩气体入口 (3 ) 连通, 所述热交换器式回热器 (22) 的被加热流体出口与所述内燃燃烧室 (200) 连通。
14. 如权利要求 13所述压气单元热气机, 其特征在于: 在连通所述热交换器式回热器 (22)的被加热流体出口和所述内燃燃烧室(200)的通道上设热压缩气体正时控制阀(32)。
15. 如权利要求 9所述压气单元热气机, 其特征在于: 所述压气装置(6)设为活塞式 压气机 (62); 所述工质导出口 (35 ) 设置在所述活塞式压气机 (62) 的气缸上。
16. 如权利要求 9所述压气单元热气机, 其特征在于: 所述工质导出口 (35 ) 与乏气 储罐 (36) 连通。
17. 如权利要求 9至 16中任一项所述压气单元热气机, 其特征在于: 所述压气单元热 气机还包括正时控制阀 (4), 所述压缩气体入口 (3 ) 设在所述冷却器 (5 ) 和所述内燃燃 烧室 (200) 之间的所述连通通道上; 所述正时控制阀 (4) 设置在所述压缩气体入口 (3 ) 和所述冷却器 (5 ) 之间的所述连通通道上, 或设在所述冷却器 (5 ) 和所述压气装置 (6) 的气体入口之间的所述连通通道上。
18. 如权利要求 1至 7中任一项或至 9至 16中任一项所述压气单元热气机,其特征在 于: 在连通所述压气装置 (6) 的气体出口与所述压缩气体入口 (3 ) 的通道上设压缩气体 正时控制阀 (31 )。
19. 如权利要求 8所述压气单元热气机, 其特征在于: 所述压气单元热气机还包括有 气体做功机构 (7), 所述气体做功机构 (7) 设在所述正时控制阀 (4) 和所述冷却器 (5 ) 之间的所述连通通道上。
20. 如权利要求 17所述压气单元热气机, 其特征在于: 所述压气单元热气机还包括有 气体做功机构 (7), 所述气体做功机构 (7) 设在所述正时控制阀 (4) 和所述冷却器 (5) 之间的所述连通通道上。
21. 如权利要求 19或 20所述压气单元热气机, 其特征在于: 所述正时控制阀 (4)设 置在所述压缩气体入口 (3 ) 和所述冷却器 (5 ) 之间的所述连通通道上。
22. 如权利要求 19或 20所述压气单元热气机,其特征在于:在连通所述压气装置(6) 的气体出口与所述压缩气体入口 (3 ) 的通道上设压缩气体正时控制阀 (31 )。
23. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气单元热气机的工 质设为水蒸气或设为气体混合物。
24. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气单元热气机的循 环工质设为氦气、 氩气或氢气。
25 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置 (6) 设为叶 轮式压气机 (61 )。
26. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置(6)设为活 塞式压气机 (62)。
27. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置(6)设为由 多个活塞式压气机 (62) 串联构成的多级活塞式气体压縮机构 (60)。
28. 如权利要求 18所述压气单元热气机, 其特征在于: 所述压气装置 (6) 设为活塞 式压气机 (62), 所述压缩气体正时控制阀 (31 ) 与所述活塞式压气机 (62) 的供气阀一 权 利 要 求
体化设置, 所述活塞式压气机 (62) 按正时关系与所述气缸活塞机构 (1 ) 联动。
29. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置(6)设为罗 茨式压气机 (63 )。
30. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置(6)设为螺 杆式压气机 (64)。
31. 如权利要求 18所述压气单元热气机, 其特征在于: 在连通所述压气装置 (6) 的 气体出口和所述压缩气体正时控制阀 (31 ) 的通道上设储气罐 (30)。
32. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置 (6) 设为 活塞式压气机 (62), 所述气缸活塞机构 (1 ) 的活塞经连杆与曲轴的连杆轴颈连接, 所述 活塞式压气机 (62) 的活塞经连杆与同一曲轴的不同连杆轴颈连接, 与所述气缸活塞机构
( 1 ) 的活塞连接的所述连杆轴颈和与所述活塞式压气机 (62) 的活塞连接的所述连杆轴 颈之间的相位差为 180度。
33. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置 (6) 设为 活塞式压气机 (62), 所述气缸活塞机构 (1 ) 的活塞经连杆与曲轴的连杆轴颈连接, 所述 活塞式压气机 (62) 的活塞经连杆与不同曲轴的连杆轴颈连接, 与所述气缸活塞机构 (1 ) 的活塞连接的所述曲轴和与所述活塞式压气机 (62) 的活塞连接的所述曲轴联动, 与所述 气缸活塞机构 (1 ) 的活塞连接的所述连杆轴颈和与所述活塞式压气机 (62) 的活塞连接 的所述连杆轴颈之间的相位差为 180度。
34. 如权利要求 26所述压气单元热气机, 其特征在于: 所述活塞式压气机(62)设为 并联的多个。
35. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气单元热气机还包 括正时控制阀 (4), 所述压缩气体入口 (3 ) 设在所述冷却器 (5 ) 和所述压气装置 (6) 的气体入口之间的所述连通通道上; 所述正时控制阀 (4) 设置在所述压缩气体入口 (3 ) 和所述压气装置 (6) 的气体入口之间的所述连通通道上。
36. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气单元热气机还包 括低温冷源 (50), 所述低温冷源 (50) 用于提供低温物质, 所述低温物质用于冷却所述 压气装置 (6) 中和 /或即将进入所述压气装置 (6) 的工质。
37. 如权利要求 9所述压气单元热气机, 其特征在于: 所述压气单元热气机还包括附 属涡轮动力机构 (70) 和附属叶轮压气机 (71 ), 所述工质导出口 (35 ) 与所述附属涡轮 动力机构 (70) 的工质入口连通, 所述附属涡轮动力机构 (70) 的工质出口经附属冷却器
(72) 与所述附属叶轮压气机 (71 ) 的工质入口连通, 所述附属叶轮压气机 (71 ) 的工质 出口与工质闭合回路连通; 在所述附属涡轮动力机构 (70) 的工质出口与所述附属叶轮压 气机 (71 ) 的工质入口之间的通道上设附属工质导出口 (75)。
38. 如权利要求 9所述压气单元热气机, 其特征在于: 所述内燃燃烧室(200)排出的 物质的质量流量大于从工质闭合回路外导入所述内燃燃烧室 (200) 的物质的质量流量。
39. 如权利要求 9所述压气单元热气机, 其特征在于: 所述压气单元热气机还包括四 类门气缸活塞机构 (8), 所述四类门气缸活塞机构 (8 ) 的供气口 (83 ) 与所述气缸活塞 机构 (1 ) 连通, 所述四类门气缸活塞机构 (8) 的回充口 (84) 与所述工质导出口 (35 ) 连通。 权 利 要 求
40. 如权利要求 9所述压气单元热气机, 其特征在于: 所述压气单元热气机还包括氧 化剂源 (55 )、 氧化剂传感器 (51 ) 和氧化剂控制装置 (52), 所述氧化剂传感器 (51 ) 设 在工质闭合回路内, 所述氧化剂传感器 (51 ) 对所述氧化剂控制装置 (52) 提供信号, 所 述氧化剂源 (55) 经氧化剂控制阀 (53 ) 与所述工质闭合回路连通, 所述氧化剂控制装置
(52) 控制所述氧化剂控制阔 (53 )。
41. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述气缸活塞机构 (1 )和 /或所述压气装置(6)设为活塞液体机构, 所述活塞液体机构包括气液缸和气液隔离结构, 所述气液隔离结构设在所述气液缸内。
42. 如权利要求 41所述压气单元热气机, 其特征在于: 所述气液缸内的气体工质对所 述气液隔离结构的压力大于所述气液缸内的液体和所述气液隔离结构做往复运动时的惯 性力之和。
43. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气装置(6)设为叶 轮式压气机 (61 ); 在所述压缩气体入口 (3 ) 与所述冷却器 (5 ) 之间的通道上设涡轮动 力机构 (9), 所述涡轮动力机构 (9) 对所述叶轮压气机 (61 ) 输出动力。
44. 如权利要求 43所述压气单元热气机, 其特征在于: 在所述压气装置 (6) 的气体 出口与所述压缩气体入口 (3 ) 之间的通道上附属加热器 (21 )。
45. 如权利要求 44所述压气单元热气机, 其特征在于: 所述附属加热器(21 ) 的热源 为所述加热器 (2) 的余热。
46. 如权利要求 1至 8中任一项所述压气单元热气机, 其特征在于: 所述连通通道在 和所述气缸活塞机构 (1) 的气缸连通的一端分为供气通道 (12) 和回充通道 (11), 所述 供气通道 (12) 和所述回充通道 (11) 分别与所述气缸活塞机构 (1) 的气缸连通, 所述 加热器 (2) 设置在所述气缸活塞机构 (1 ) 的气缸上和 /或设置在所述供气通道 (12) 上, 在所述供气通道 (12)和所述回充通道 (11) 上分别设正时控制阀 (4)。
47. 如权利要求 9至 16中任一项所述压气单元热气机, 其特征在于: 所述连通通道在 和所述气缸活塞机构 (1) 的气缸连通的一端分为供气通道 (12) 和回充通道 (11), 所述 供气通道 (12 ) 和所述回充通道 (11) 分别与所述气缸活塞机构 (1 ) 的气缸连通, 所述 内燃燃烧室(200)设置在所述气缸活塞机构(1 )的气缸内和 /或设置在所述供气通道(12) 内, 在所述供气通道 (12) 和所述回充通道 (11) 上分别设正时控制阀 (4)。
48. 如权利要求 1或 9所述压气单元热气机, 其特征在于: 所述压气单元热气机还包 括正时控制阀 (4), 所述压缩气体入口 (3 ) 设在所述冷却器 (5) 和所述加热器 (2) 之 间的所述连通通道上; 所述正时控制阀 (4) 设置在所述压缩气体入口 (3 ) 和所述冷却器
(5 ) 之间的所述连通通道上, 在连通所述压气装置 (6) 的气体出口与所述压缩气体入口 (3 ) 的通道上设压縮气体正时控制阀 (31 ), 所述气缸活塞机构 (1 ) 设为并联的两个以 上。
PCT/CN2013/000127 2012-02-12 2013-02-07 压气单元热气机 WO2013117116A1 (zh)

Applications Claiming Priority (30)

Application Number Priority Date Filing Date Title
CN201210030633 2012-02-12
CN201210030633.8 2012-02-12
CN201210031931.9 2012-02-13
CN201210031931 2012-02-13
CN201210035525.X 2012-02-16
CN201210035525 2012-02-16
CN201210045602.X 2012-02-24
CN201210045602 2012-02-24
CN201210048958.9 2012-02-28
CN201210048958 2012-02-28
CN201210054337 2012-03-02
CN201210054337.1 2012-03-02
CN201210054398.8 2012-03-03
CN201210054398 2012-03-03
CN201210086921.5 2012-03-28
CN201210086921 2012-03-28
CN201210089544.0 2012-03-29
CN201210089544 2012-03-29
CN201210135082.1 2012-04-28
CN201210135082 2012-04-28
CN201210269751 2012-07-30
CN201210269751.4 2012-07-30
CN201210289653.7 2012-08-14
CN201210289653 2012-08-14
CN201210298153.X 2012-08-20
CN201210298153 2012-08-20
CN201210307177.7 2012-08-24
CN201210307177 2012-08-24
CN201210436684 2012-11-05
CN201210436684.0 2012-11-05

Publications (1)

Publication Number Publication Date
WO2013117116A1 true WO2013117116A1 (zh) 2013-08-15

Family

ID=48946907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000127 WO2013117116A1 (zh) 2012-02-12 2013-02-07 压气单元热气机

Country Status (2)

Country Link
CN (1) CN103089482B (zh)
WO (1) WO2013117116A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444880A (zh) * 2014-12-10 2017-02-22 四川杰特机器有限公司 一种对试压介质可双向流动的压力控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104100369A (zh) * 2013-05-31 2014-10-15 摩尔动力(北京)技术股份有限公司 工质高能状态的生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364233A (en) * 1980-12-31 1982-12-21 Cummins Engine Company, Inc. Fluid engine
JPS5835250A (ja) * 1981-08-27 1983-03-01 Mitsubishi Heavy Ind Ltd スタ−リング機関
JPH0754659A (ja) * 1993-08-10 1995-02-28 Masami Tanemura 吸気圧縮行程別置形熱機関
WO1996006273A1 (de) * 1994-08-20 1996-02-29 Karl Obermoser Synchronkolben-stirlingmaschine
JP2000265853A (ja) * 1999-03-15 2000-09-26 Saichi Kanzaka 圧縮比と膨張比をそれぞれ独自に選べる熱機関
CN101988443A (zh) * 2010-10-27 2011-03-23 靳北彪 非共轭零距高低温热源热气机
CN201818389U (zh) * 2010-10-27 2011-05-04 靳北彪 非共轭零距高低温热源热气机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623541A (en) * 1979-08-01 1981-03-05 Nissan Motor Co Ltd Structure of hot gas machine
CN85104323A (zh) * 1985-06-07 1986-12-03 机械技术有限公司 双活塞v型斯特林发动机
JPH11107856A (ja) * 1997-10-02 1999-04-20 Daiwa Kosan Kk 単段および多段膨張スターリングエンジンエキスパンダ並 びにスターリングクーラ
AU2003217496A1 (en) * 2002-02-15 2003-09-04 Korea Institute Of Machinery And Materials Scroll-type expander having heating structure and scroll-type heat exchange system employing the expander
CN100347422C (zh) * 2005-09-12 2007-11-07 李岳 连续燃烧恒功率发动机
CN101021187A (zh) * 2007-03-26 2007-08-22 韩培洲 中冷等压吸热式热气机
CN101270702A (zh) * 2008-04-13 2008-09-24 赛星嘎 内燃式热气机
CN201246230Y (zh) * 2008-08-18 2009-05-27 占小玲 水制氢多燃料外燃空气发动机
CN101832197A (zh) * 2010-04-22 2010-09-15 上海齐耀动力技术有限公司 一种常压空气热气机用工质自动补气机构
CN102032068A (zh) * 2010-09-25 2011-04-27 靳北彪 高效热气发动机
CN101988442A (zh) * 2010-10-27 2011-03-23 靳北彪 共轭零距高低温热源热气机
CN102155299A (zh) * 2011-03-02 2011-08-17 上海理工大学 利用液化天然气的斯特林发动机和燃气轮机联合系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364233A (en) * 1980-12-31 1982-12-21 Cummins Engine Company, Inc. Fluid engine
JPS5835250A (ja) * 1981-08-27 1983-03-01 Mitsubishi Heavy Ind Ltd スタ−リング機関
JPH0754659A (ja) * 1993-08-10 1995-02-28 Masami Tanemura 吸気圧縮行程別置形熱機関
WO1996006273A1 (de) * 1994-08-20 1996-02-29 Karl Obermoser Synchronkolben-stirlingmaschine
JP2000265853A (ja) * 1999-03-15 2000-09-26 Saichi Kanzaka 圧縮比と膨張比をそれぞれ独自に選べる熱機関
CN101988443A (zh) * 2010-10-27 2011-03-23 靳北彪 非共轭零距高低温热源热气机
CN201818389U (zh) * 2010-10-27 2011-05-04 靳北彪 非共轭零距高低温热源热气机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444880A (zh) * 2014-12-10 2017-02-22 四川杰特机器有限公司 一种对试压介质可双向流动的压力控制方法
CN106444880B (zh) * 2014-12-10 2019-03-22 四川杰特机器有限公司 一种对试压介质可双向流动的压力控制方法

Also Published As

Publication number Publication date
CN103089482A (zh) 2013-05-08
CN103089482B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
CN103133178B (zh) 双通道熵循环发动机
CN202811059U (zh) 高压涡轮活塞复合热动力系统
CN103195607A (zh) 热源做功热气机
CN103174544A (zh) 冷源做功热气机
CN103104374B (zh) 气缸内燃斯特林发动机
WO2013117116A1 (zh) 压气单元热气机
CN102748126B (zh) 门控同缸u流活塞热动力系统及提高其效率的方法
CN103206316A (zh) 做功单元热气机
CN103122805A (zh) 三类门热气发动机
CN103089486A (zh) 三类门热气发动机
CN102926893A (zh) 低熵混燃气体液化物发动机
CN103104370B (zh) 单缸三类门熵循环发动机
CN103133177B (zh) 往复通道熵循环发动机
CN102454419A (zh) 传统活塞单热源开路发动机
CN103216358A (zh) 热缸门控热气机
CN103195606A (zh) 做功单元热气机
CN103104375B (zh) 气缸内燃斯特林发动机
CN105240154A (zh) 往复通道熵循环发动机
CN202746009U (zh) 无撞击自由活塞爆排发动机
CN103089484A (zh) 三类门热气发动机
CN112796980A (zh) 基于高效储热性能的压缩空气储能系统及方法
CN103114936A (zh) 热气缸非共轭热气机
CN103104372A (zh) 三类门热气发动机
CN202442547U (zh) 传统活塞单热源开路制冷系统
US20240044566A1 (en) Synchronized Regenerators and an Improved Bland/Ewing Thermochemical Cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746280

Country of ref document: EP

Kind code of ref document: A1