WO2013117054A1 - Pwm dc pulse circuit and coating circuit - Google Patents

Pwm dc pulse circuit and coating circuit Download PDF

Info

Publication number
WO2013117054A1
WO2013117054A1 PCT/CN2012/074380 CN2012074380W WO2013117054A1 WO 2013117054 A1 WO2013117054 A1 WO 2013117054A1 CN 2012074380 W CN2012074380 W CN 2012074380W WO 2013117054 A1 WO2013117054 A1 WO 2013117054A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
mosfet
switching circuit
switching
igbt
Prior art date
Application number
PCT/CN2012/074380
Other languages
French (fr)
Chinese (zh)
Inventor
张云安
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013117054A1 publication Critical patent/WO2013117054A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided are a PWM DC pulse circuit, a coating circuit and a method for using the coating circuit for coating. The circuit comprises a voltage-dividing capacitor circuit and a switch circuit which are respectively connected to the positive electrode and the negative electrode of a power supply (31) of the PWM DC pulse circuit. The voltage-dividing capacitor circuit comprises a first voltage-dividing capacitor circuit (32) and a second voltage-dividing capacitor circuit (33) which are connected in series. The switch circuit comprises a first switch circuit (35) and a second switch circuit (36) which are connected in series. The circuit also comprises an inductive circuit (34). One end of the inductive circuit (34) is respectively connected to the first voltage-dividing capacitor circuit (32) and the second voltage-dividing capacitor circuit (33). The other end of the inductive circuit (34) is respectively connected to the first switch circuit (35) and the second switch circuit (36). Both the first switch circuit (35) and the second switch circuit (36) are connected to the output end of a control circuit, and are used for being in a zero-voltage soft-switch state at the ON/OFF time. The circuit exerts the high-frequency switch characteristic of a switch circuit so that the output pulse frequency is significantly increased and then the coating quality of a coated workpiece is increased.

Description

PWM直流脉冲电路和镀膜电路  PWM DC pulse circuit and coating circuit
技术领域 Technical field
本发明属于电力电子电路设计制造技术领域, 尤其涉及一种脉冲宽度调 制 (PWM ) 直流脉冲电路、 镀膜电路和应用镀膜电路进行镀膜的方法。  The invention belongs to the technical field of power electronic circuit design and manufacture, and particularly relates to a pulse width modulation (PWM) DC pulse circuit, a coating circuit and a coating method using the coating circuit.
背景技术 Background technique
随着人们对各种 IT产品外观美观性、耐用性提出越来越高的要求,移动 终端 (如手机、 数据卡、 上网本等) 结构件表面处理发展愈来愈多地需要用 到各种化合物薄膜, 隔离膜、 绝缘膜、 介质膜等。 真空镀膜具有膜层牢固、 膜层均勾可控、 纯度高、 不产生废液、 对环境无污染, 既可在金属材料表面 镀膜, 也可在非金属材料表面镀膜等一系列优点。 如图 1所示, 是真空镀膜 系统的原理示意图, 该系统包括脉冲电源 11和工艺炉腔 12两部分。 真空镀 膜系统在阴极靶材的背后放置 100 ~ 1000高斯(Gauss )强力磁铁, 真空室充 入 0.1 ~ 10帕 (pa )压力的惰性气体 ( Ar ) , 作为气体放电的载体。 在高压 作用下, 原子电离成为离子和电子, 产生等离子辉光放电, 电子在加速飞向 基片的过程中, 受到垂直于电场的磁场影响, 使电子产生偏转, 被束缚在靠 近靶表面的等离子体区域内, 电子以摆线的方式沿着靶表面前进, 在运动过 程中不断与原子发生碰撞, 电离出大量的离子, 因此该区域内等离子体密度 很高。 经过多次碰撞后电子的能量逐渐降低, 摆脱磁力线的束缚, 最终落在 基片、真空室内壁及靶源阳极上。 离子在高压电场加速作用下, 与靶材撞击 并释放出能量, 导致靶材表面的原子吸收离子的动能而脱离原晶格束缚, 呈 中性的靶原子逸出靶材的表面飞向基片, 并在基片上沉积形成薄膜。 在真空 镀膜系统工艺研究发现, 电源脉冲输出频率是影响工件镀膜质量的最关键参 数。如果脉冲频率过低,加工过程中容易发生起弧现象,导致生产效率低下; 另外, 脉冲频率越高, 工件表面膜层质量也会得到提高。 20KHz ~ 200KHz 脉冲频率是公认的作为介质材料沉积的优选工作频率, 在沉积中可以提供稳 定无弧的工作状态, 并且可以获得较厚的膜层, 膜层均勾性好, 与基体结合 强度高, 硬度高, 抗热冲击、 电绝缘性及耐蚀性均佳。 目前真空镀膜的直流脉冲电源拓朴研究中, 不管是绝缘栅型场效应管With the increasing demands on the aesthetics and durability of various IT products, the surface treatment of mobile terminals (such as mobile phones, data cards, netbooks, etc.) is increasingly requiring the use of various compounds. Film, separator, insulating film, dielectric film, etc. The vacuum coating has a series of advantages such as strong film layer, controllable film layer, high purity, no waste liquid, no pollution to the environment, coating on the surface of metal materials, and coating on the surface of non-metal materials. As shown in FIG. 1 , it is a schematic diagram of a vacuum coating system, which includes a pulse power source 11 and a process chamber 12 . The vacuum coating system places a 100-1000 Gauss powerful magnet behind the cathode target, and the vacuum chamber is filled with an inert gas (Ar) at a pressure of 0.1 to 10 Pa (pa) as a carrier for gas discharge. Under high pressure, atomic ionization becomes ions and electrons, generating a plasma glow discharge. During acceleration of the electrons into the substrate, the electrons are affected by the magnetic field perpendicular to the electric field, causing the electrons to deflect and be bound to the plasma near the target surface. In the body region, electrons travel along the target surface in a cycloidal manner, constantly colliding with atoms during motion, and ionizing a large amount of ions, so the plasma density in this region is high. After many collisions, the energy of the electrons gradually decreases, getting rid of the binding of the magnetic lines, and finally falls on the substrate, the vacuum chamber wall and the target anode. Under the action of high-voltage electric field, ions collide with the target and release energy, which causes the atoms on the surface of the target to absorb the kinetic energy of the ions and get out of the original lattice. The neutral target atoms escape the surface of the target and fly to the substrate. And depositing a film on the substrate. In the vacuum coating system process research, it is found that the power pulse output frequency is the most critical parameter affecting the quality of the workpiece coating. If the pulse frequency is too low, the arcing phenomenon is likely to occur during the processing, resulting in low production efficiency; in addition, the higher the pulse frequency, the higher the surface quality of the workpiece. 20KHz ~ 200KHz pulse frequency is recognized as the preferred working frequency for dielectric material deposition. It can provide stable arc-free working state during deposition, and can obtain thicker film layer. The film layer has good hooking property and high bonding strength with matrix. , high hardness, good thermal shock resistance, electrical insulation and corrosion resistance. At present, vacuum coating power supply topology research, whether it is insulated gate field effect transistor
( MOSFET )还是绝缘栅双极型晶体管 (IGBT )或 IGBT模块, 其通常工作 在硬开关状态, 使功率管高频开关特性无法发挥, 限制了电源脉冲输出频率 ( 50KHz以下); 如釆用 MOSFET, 现有真空镀膜系统使用的直流脉冲电源 结构如图 2所示,包括依次设置的为 PWM直流脉冲电路供电的直流电源 21、 MOSFET主功率管 22、 緩冲电路 23和负载 24。 MOSFET主功率管 22与緩 冲电路 23并联, 然后与负载 24串联。 直流电源 21的正极分别与 MOSFET 主功率管 22漏极和緩冲电路 23的上端相连, 直流电源 21的负极与负载 24 下端相连。 该直流脉冲电源工作过程以 MOSFET主功率管 22开关分两个过 程: MOSFET主功率管 22开通, 负载 24得到电压为直流电源 21上电压; MOSFET主功率管 22关断, 负载电压为零。 为了防止 MOSFET主功率管 22 硬开关造成电压尖峰, 必须要通过緩冲电路 23进行吸收。 MOSFET主功率 管 22硬开关方式限制了脉冲频率的提高 (不超过 50KHz ) , 造成生产效率 低, 镀膜生产出来移动终端结构件表面膜层质量一般, 容易磨损, 使用寿命 较短。 (MOSFET) is also an insulated gate bipolar transistor (IGBT) or IGBT module, which usually works in a hard-switching state, so that the high-frequency switching characteristics of the power transistor cannot be utilized, limiting the power pulse output frequency (below 50KHz); The DC pulse power supply structure used in the existing vacuum coating system is as shown in FIG. 2, and includes a DC power supply 21, a MOSFET main power tube 22, a buffer circuit 23, and a load 24, which are sequentially provided for the PWM DC pulse circuit. The MOSFET main power transistor 22 is connected in parallel with the buffer circuit 23 and then in series with the load 24. The anode of the DC power source 21 is connected to the drain of the MOSFET main power tube 22 and the upper end of the buffer circuit 23, respectively, and the cathode of the DC power source 21 is connected to the lower end of the load 24. The DC pulse power supply operation is divided into two processes by the MOSFET main power tube 22 switch: the MOSFET main power tube 22 is turned on, the load 24 is obtained as the voltage of the DC power supply 21; the MOSFET main power tube 22 is turned off, and the load voltage is zero. In order to prevent the voltage spike of the MOSFET main power tube 22 from being hard-switched, it must be absorbed by the buffer circuit 23. The MOSFET main power tube 22 hard switching mode limits the increase of the pulse frequency (not exceeding 50KHz), resulting in low production efficiency. The coating film produces a surface layer of mobile terminal structural parts with good quality, easy wear and short service life.
发明内容 Summary of the invention
本发明实施例提供了一种脉冲宽度调制(PWM )直流脉冲电路、 镀膜电 路和应用镀膜电路进行镀膜的方法,以克服真空镀膜电源存在的生产效率低, 镀膜工件膜层质量一般等缺点。  Embodiments of the present invention provide a pulse width modulation (PWM) DC pulse circuit, a coating circuit, and a coating circuit for coating, to overcome the disadvantages of low productivity of the vacuum coating power supply and general quality of the coated film.
为解决上述技术问题, 本发明实施例釆用如下技术方案:  In order to solve the above technical problem, the following technical solutions are used in the embodiment of the present invention:
一种脉冲宽度调制(PWM )直流脉冲电路,该 PWM直流脉冲电路包括: 路和开关电路, 所述分压电容电路包括串联在一起的第一分压电容电路和第 二分压电容电路, 所述开关电路包括串联在一起的第一开关电路和第二开关 电路; 该 PWM直流脉冲电路还包括电感电路, 所述电感电路的一端与所述 第一分压电容电路和所述第二分压电容电路均相连, 所述电感电路的另一端 与所述第一开关电路和所述第二开关电路均相连; 所述第一开关电路和所述 第二开关电路, 均与控制电路的输出端相连, 均设置成: 在开关时刻处于零 电压软开关状态。 A pulse width modulation (PWM) DC pulse circuit, the PWM DC pulse circuit comprising: a circuit and a switching circuit, the voltage dividing capacitor circuit comprises a first voltage dividing capacitor circuit and a second voltage dividing capacitor circuit connected in series, The switching circuit includes a first switching circuit and a second switching circuit connected in series; the PWM DC pulse circuit further includes an inductor circuit, one end of the inductor circuit and the first voltage dividing capacitor circuit and the second voltage dividing The capacitor circuits are all connected, the other end of the inductor circuit is connected to the first switch circuit and the second switch circuit; the first switch circuit and the second switch circuit are both connected to the output of the control circuit Connected, set to: at zero at switch time Voltage soft switching state.
可选地,所述第一开关电路和所述第二开关电路均为具有高频工作特性 的晶体管。  Optionally, the first switching circuit and the second switching circuit are both transistors having high frequency operating characteristics.
可选地,所述晶体管为绝缘栅型场效应管 (MOSFET ) , 所述 MOSFET 包括 N沟通 MOSFET和 P沟道 MOSFET, 其中:  Optionally, the transistor is an insulated gate field effect transistor (MOSFET), and the MOSFET comprises an N communication MOSFET and a P channel MOSFET, wherein:
当所述 MOSFET为所述 N沟道 MOSFET时, 所述第一开关电路中的所 述 MOSFET的漏极与所述供电电源的正极相连,所述第一开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所述 MOSFET 的源极与所述供电电源的负极相连, 所述第二开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连;  When the MOSFET is the N-channel MOSFET, a drain of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, and a gate of the MOSFET in the first switching circuit Connected to an output end of the control circuit, a source of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, and a gate of the MOSFET in the second switch circuit is The output of the control circuit is connected;
当所述 MOSFET为所述 P沟道 MOSFET时, 所述第一开关电路中的所 述 MOSFET的源极与所述供电电源的正极相连,所述第一开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所述 MOSFET 的漏极与所述供电电源的负极相连, 所述第二开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连。  When the MOSFET is the P-channel MOSFET, a source of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, and a gate of the MOSFET in the first switching circuit Connected to an output of the control circuit, a drain of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, and a gate of the MOSFET in the second switch circuit is The outputs of the control circuits are connected.
可选地,所述 MOSFET是独立的 MOSFET晶体管, 或者是 MOSFET晶 体管串联或并联形成的 MOSFET模块电路。  Alternatively, the MOSFET is a separate MOSFET transistor or a MOSFET module circuit formed by connecting MOSFET transistors in series or in parallel.
可选地,所述晶体管为绝缘栅双极型晶体管( IGBT )或 IGBT模块, 所述 第一开关电路中的所述 IGBT或所述 IGBT模块的集电极与所述供电电源的 正极相连, 所述第一开关电路中的所述 IGBT或所述 IGBT模块的栅极与所 述控制电路的输出端相连, 所述第二开关电路中的所述 IGBT或所述 IGBT 模块的发射级与所述供电电源的负极相连,所述第二开关电路中的所述 IGBT 或所述 IGBT模块的栅极与所述控制电路的输出端相连。  Optionally, the transistor is an insulated gate bipolar transistor (IGBT) or an IGBT module, and the collector of the IGBT or the IGBT module in the first switching circuit is connected to an anode of the power supply. a gate of the IGBT or the IGBT module in the first switching circuit is connected to an output end of the control circuit, and an emission level of the IGBT or the IGBT module in the second switching circuit is A negative pole of the power supply is connected, and the IGBT of the second switching circuit or the gate of the IGBT module is connected to an output of the control circuit.
可选地,所述 IGBT或所述 IGBT模块是独立的 IGBT或 IGBT模块, 或 者是多个 IGBT或多个 IGBT模块串联或并联形成的 IGBT模块电路。  Optionally, the IGBT or the IGBT module is a separate IGBT or IGBT module, or an IGBT module circuit formed by connecting multiple IGBTs or multiple IGBT modules in series or in parallel.
可选地,所述电感电路为电感; 所述电感设置成: 在所述第一开关电路由 开通状态变为关断状态时, 与所述第一开关电路和所述第二开关电路产生谐 振, 使所述第二开关电路的电压下降至零; 或者, 在所述第二开关电路由开 通状态变为关断状态时,与所述第一开关电路和所述第二开关电路产生谐振, 使所述第一开关电路的电压下降至零。 Optionally, the inductor circuit is an inductor; the inductor is configured to: resonate with the first switch circuit and the second switch circuit when the first switch circuit changes from an on state to an off state Passing the voltage of the second switching circuit to zero; or, the second switching circuit is turned on When the on state changes to the off state, resonance occurs with the first switching circuit and the second switching circuit to lower the voltage of the first switching circuit to zero.
可选地,所述第一分压电容电路为第一分压电容,所述第二分压电容电路 为第二分压电容, 所述第一分压电容的正极与所述供电电源的正极相连, 所 述第二分压电容的负极与所述供电电源的负极相连。  Optionally, the first voltage dividing capacitor circuit is a first voltage dividing capacitor, the second voltage dividing capacitor circuit is a second voltage dividing capacitor, and a positive pole of the first voltage dividing capacitor and a positive pole of the power supply power source Connected, the negative pole of the second voltage dividing capacitor is connected to the negative pole of the power supply.
一种镀膜电路, 该镀膜电路包括脉冲宽度调制( PWM )直流脉冲电路和 与所述 PWM直流脉冲电路相连的负载, 其中: A coating circuit comprising a pulse width modulation (PWM) DC pulse circuit and a load connected to the PWM DC pulse circuit, wherein:
所述 PWM直流脉冲电路包括: 分别与所述 PWM直流脉冲电路的供电 电源的正负极相连的分压电容电路和开关电路, 所述分压电容电路包括串联 在一起的第一分压电容电路和第二分压电容电路, 所述开关电路包括串联在 一起的第一开关电路和第二开关电路; 该镀膜电路还包括电感电路, 所述电 感电路的一端与所述第一分压电容电路和所述第二分压电容电路均相连, 所 述电感电路的另一端与所述第一开关电路和所述第二开关电路均相连; 所述 第一开关电路和所述第二开关电路,均与控制电路的输出端相连,均设置成: 在开关时刻处于零电压软开关状态; 所述负载与所述第二开关电路并联。  The PWM DC pulse circuit includes: a voltage dividing capacitor circuit and a switching circuit respectively connected to the positive and negative poles of the power supply source of the PWM DC pulse circuit, wherein the voltage dividing capacitor circuit comprises a first voltage dividing capacitor circuit connected in series And a second voltage dividing capacitor circuit, the switching circuit includes a first switching circuit and a second switching circuit connected in series; the coating circuit further includes an inductor circuit, one end of the inductor circuit and the first voltage dividing capacitor circuit And the second voltage dividing capacitor circuit is connected, the other end of the inductor circuit is connected to the first switch circuit and the second switch circuit; the first switch circuit and the second switch circuit, Both are connected to the output of the control circuit, and are both set to be in a zero voltage soft switching state at the time of switching; the load is connected in parallel with the second switching circuit.
可选地,所述第一开关电路和所述第二开关电路均为绝缘栅型场效应管 ( MOSFET ) 时, 所述 MOSFET包括 N沟通 MOSFET和 P沟道 MOSFET; 当所述 MOSFET为所述 N沟道 MOSFET时, 所述第一开关电路中的所述 MOSFET 的漏极与所述供电电源的正极相连, 所述第一开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所述 MOSFET 的源极与所述供电电源的负极相连, 所述第二开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连; 当所述 MOSFET为所述 P 沟道 MOSFET时, 所述第一开关电路中的所述 MOSFET的源极与所述供电 电源的正极相连,所述第一开关电路中的所述 MOSFET的栅极与所述控制电 路的输出端相连,所述第二开关电路中的所述 MOSFET的漏极与所述供电电 源的负极相连,所述第二开关电路中的所述 MOSFET的栅极与所述控制电路 的输出端相连; 或者  Optionally, when the first switching circuit and the second switching circuit are both insulated gate field effect transistors (MOSFETs), the MOSFET includes an N communication MOSFET and a P-channel MOSFET; In the case of an N-channel MOSFET, a drain of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, and a gate of the MOSFET in the first switching circuit and an output of the control circuit Connected to the end, the source of the MOSFET in the second switch circuit is connected to the negative pole of the power supply, and the gate of the MOSFET in the second switch circuit is connected to the output end of the control circuit; When the MOSFET is the P-channel MOSFET, a source of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, and a gate of the MOSFET in the first switching circuit Connected to an output of the control circuit, a drain of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, a gate of the MOSFET in the second switch circuit and the Output of the control circuit Connected; or
所述第一开关电路和所述第二开关电路均为绝缘栅双极型晶体管( IGBT ) 或 IGBT模块时,所述第一开关电路中的所述 IGBT或所述 IGBT模块的集电 极与所述供电电源的正极相连, 所述第一开关电路中的所述 IGBT 或所述 IGBT模块的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所 述 IGBT或所述 IGBT模块的发射级与所述供电电源的负极相连, 所述第二 开关电路中的所述 IGBT或所述 IGBT模块的栅极与所述控制电路的输出端 相连。 The first switching circuit and the second switching circuit are both insulated gate bipolar transistors (IGBTs) Or the IGBT module, the collector of the IGBT or the IGBT module in the first switching circuit is connected to the anode of the power supply, the IGBT of the first switching circuit or the IGBT module a gate is connected to an output end of the control circuit, and an emitter of the IGBT or the IGBT module in the second switch circuit is connected to a negative pole of the power supply, and the second switch circuit is An IGBT or a gate of the IGBT module is connected to an output of the control circuit.
可选地,当所述第二开关电路为所述 N沟道 MOSFET时, 所述负载中的 结构件与所述 MOSFET的漏极相连,所述负载中的镀膜材料与所述 MOSFET 源极相连; 或者  Optionally, when the second switching circuit is the N-channel MOSFET, a structure in the load is connected to a drain of the MOSFET, and a coating material in the load is connected to the MOSFET source. ; or
当所述第二开关电路为所述 IGBT或所述 IGBT模块时, 所述负载中的 结构件与所述 IGBT或所述 IGBT模块的集电极相连, 所述负载中的镀膜材 料与所述 IGBT或所述 IGBT模块的发射极相连。  When the second switching circuit is the IGBT or the IGBT module, a structural member in the load is connected to a collector of the IGBT or the IGBT module, a coating material in the load and the IGBT Or the emitters of the IGBT modules are connected.
一种应用如上所述的任意一种电路进行镀膜的方法, 所述方法包括: 所述 PWM直流脉冲电路对所述负载供电, 使得所述负载中镀膜材料的 离子在电磁感应的作用下镀在所述负载中的结构件上; 其中, 所述 PWM直 流脉冲电路对所述负载供电的过程包括: A method for coating a film using any of the above-described circuits, the method comprising: the PWM DC pulse circuit supplying power to the load such that ions of a coating material in the load are plated under electromagnetic induction The process of powering the load by the PWM DC pulse circuit includes:
处于开通状态的所述第一开关电路接收所述控制电路提供的关断控制信 号时, 所述第一开关电路为零电压关断状态; 所述电感电路、 所述第一开关 电路和所述第二开关电路产生谐振, 使所述第二开关电路的电压下降至零; 处于关断状态的所述第二开关电路接收所述控制电路提供的开通控制信 号时, 所述第二开关电路为零电压开通状态, 且所述第二开关电路的电压仍 为零电压;  The first switch circuit is in a zero voltage off state when the first switch circuit in an open state receives a turn-off control signal provided by the control circuit; the inductor circuit, the first switch circuit, and the The second switching circuit generates resonance to lower the voltage of the second switching circuit to zero; when the second switching circuit in the off state receives the opening control signal provided by the control circuit, the second switching circuit is a zero voltage turn-on state, and the voltage of the second switch circuit is still zero voltage;
处于开通状态的所述第二开关电路接收所述控制电路提供的关断控制信 号时, 所述第二开关电路为零电压关断状态; 所述电感电路、 所述第一开关 电路和所述第二开关电路产生谐振, 使所述第一开关电路的电压下降至零; 处于关断状态的所述第一开关电路接收所述控制电路提供的开通控制信 号时, 所述第一开关电路为零电压开通状态。 上述 PWM直流脉冲电路、 镀膜电路和应用镀膜电路进行镀膜的方法, 通过互补控制逻辑, 使电感与两个开关电路产生谐振, 开关电路工作在零电 压开关状态, 充分发挥了开关电路高频开关特性, 使电源输出脉冲频率达到 200KHz, 保证了工艺过程中的稳定无弧环境, 既提高了生产效率, 又提升了 镀膜加工的移动终端结构件表面膜层质量。 When the second switch circuit in the open state receives the turn-off control signal provided by the control circuit, the second switch circuit is in a zero voltage off state; the inductor circuit, the first switch circuit, and the The second switching circuit generates resonance to lower the voltage of the first switching circuit to zero; when the first switching circuit in the off state receives the opening control signal provided by the control circuit, the first switching circuit is Zero voltage turn-on state. The PWM DC pulse circuit, the coating circuit and the coating circuit are coated by the complementary control logic, so that the inductance and the two switching circuits resonate, and the switching circuit operates in a zero voltage switching state, fully utilizing the high frequency switching characteristics of the switching circuit. The power output pulse frequency reaches 200KHz, which ensures a stable arc-free environment during the process, which not only improves the production efficiency, but also improves the surface film quality of the mobile terminal structural parts of the coating process.
附图概述 BRIEF abstract
图 1是真空镀膜系统的原理示意图;  Figure 1 is a schematic diagram of the principle of a vacuum coating system;
图 2是直流脉冲电路的结构示意图;  2 is a schematic structural view of a DC pulse circuit;
图 3是本发明实施例的零电压 PWM直流脉冲电路的结构示意图。  3 is a schematic structural diagram of a zero voltage PWM DC pulse circuit according to an embodiment of the present invention.
本发明的较佳实施方式 Preferred embodiment of the invention
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。 这些组合均在本发明的 保护范围内。  In order to make the objects, the technical solutions and the advantages of the present invention more clearly, the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be arbitrarily combined with each other. These combinations are all within the scope of the invention.
本发明实施例提供了一种脉冲宽度调制(PWM )直流脉冲电路, 该电路 包括: 分别与所述 PWM直流脉冲电路的供电电源的正负极相连的分压电容 电路和开关电路, 所述分压电容电路包括串联在一起的第一分压电容电路和 第二分压电容电路, 所述开关电路包括串联在一起的第一开关电路和第二开 关电路; 该电路还包括电感电路, 所述电感电路的一端与所述第一分压电容 电路和所述第二分压电容电路均相连, 所述电感电路的另一端与所述第一开 关电路和所述第二开关电路均相连;所述第一开关电路和所述第二开关电路, 均与控制电路的输出端相连, 均用于在开关时刻处于零电压软开关状态。  The embodiment of the invention provides a pulse width modulation (PWM) DC pulse circuit, the circuit comprising: a voltage dividing capacitor circuit and a switching circuit respectively connected to the positive and negative poles of the power supply source of the PWM DC pulse circuit, The piezoelectric capacitor circuit includes a first voltage dividing capacitor circuit and a second voltage dividing capacitor circuit connected in series, the switching circuit includes a first switching circuit and a second switching circuit connected in series; the circuit further includes an inductor circuit, One end of the inductor circuit is connected to the first voltage dividing capacitor circuit and the second voltage dividing capacitor circuit, and the other end of the inductor circuit is connected to the first switch circuit and the second switch circuit; The first switching circuit and the second switching circuit are both connected to the output of the control circuit, and are both used in a zero voltage soft switching state at the time of switching.
其中, 所述第一开关电路和所述第二开关电路均为具有高频工作特性的 晶体管, 可以是绝缘栅型场效应管 (MOSFET ) , 也可以是绝缘栅双极型晶 体管 ( IGBT )或 IGBT模块。 对于 MOSFET, 可以是 N沟通 MOSFET, 也 可以是 P沟道 MOSFET。 当所述 MOSFET为所述 N沟道 MOSFET, 所述第 开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连,所述第二 关电路中的所述 MOSFET 的栅极与所述控制电路的输出端相连; 当所述 MOSFET为所述 P沟道 MOSFET, 所述第一开关电路中的所述 MOSFET的 源极与所述供电电源的正极相连,所述第一开关电路中的所述 MOSFET的栅 极与所述控制电路的输出端相连,所述第二开关电路中的所述 MOSFET的漏 极与所述供电电源的负极相连,所述第二开关电路中的所述 MOSFET的栅极 与所述控制电路的输出端相连。 The first switching circuit and the second switching circuit are all transistors having high frequency operating characteristics, and may be insulated gate field effect transistors (MOSFETs) or insulated gate bipolar transistors (IGBTs) or IGBT module. For MOSFETs, it can be an N-communication MOSFET, too It can be a P-channel MOSFET. When the MOSFET is the N-channel MOSFET, a gate of the MOSFET in the first switching circuit is connected to an output end of the control circuit, and a gate of the MOSFET in the second off circuit An output end of the control circuit is connected; when the MOSFET is the P-channel MOSFET, a source of the MOSFET in the first switch circuit is connected to a positive pole of the power supply, the first switch circuit a gate of the MOSFET is connected to an output end of the control circuit, a drain of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, and the second switch circuit The gate of the MOSFET is connected to the output of the control circuit.
如图 3所示, 是本发明实施例的零电压 PWM直流脉冲电路的结构示意 图, 该电路包括依次设置的 PWM直流脉冲电路的供电电源 31、 第一分压电 容 32、第二分压电容 33、谐振电感 34、第一 MOSFET 35、第二 MOSFET 36。 第一分压电容 32和第二分压电容 33组成的半桥中点与第一 MOSFET35和第 二 MOSFET36组成的半桥中点之间串联了谐振电感 34, 第一 MOSFET35栅 极与 PWM控制电路的第一路 PWM ( PWM1 )输出端相连, 第二 MOSFET36 栅极与 PWM控制电路的第二路 PWM ( PWM2 )输出端相连。 第一分压电容 32的正极分别与供电电源 31正极、 第一 MOSFET35的漏极相连; 第二分压 电容 33负极分别与供电电源 31负极和第二 MOSFET36的源极相连。  As shown in FIG. 3, it is a schematic structural diagram of a zero voltage PWM DC pulse circuit according to an embodiment of the present invention. The circuit includes a power supply 31, a first voltage dividing capacitor 32, and a second voltage dividing capacitor 33 of a PWM DC pulse circuit which are sequentially disposed. The resonant inductor 34, the first MOSFET 35, and the second MOSFET 36. The half bridge midpoint formed by the first voltage dividing capacitor 32 and the second voltage dividing capacitor 33 and the midpoint of the half bridge formed by the first MOSFET 35 and the second MOSFET 36 are connected in series with a resonant inductor 34, the gate of the first MOSFET 35 and the PWM control circuit The first PWM (PWM1) output is connected, and the second MOSFET 36 is connected to the second PWM (PWM2) output of the PWM control circuit. The positive poles of the first voltage dividing capacitor 32 are respectively connected to the positive pole of the power supply source 31 and the drain of the first MOSFET 35; the cathodes of the second voltage dividing capacitor 33 are respectively connected to the anode of the power supply source 31 and the source of the second MOSFET 36.
当然, 图 3 中的 MOSFET主功率管也可以替换为其他的功率管, 例如 Of course, the MOSFET main power tube in Figure 3 can also be replaced with other power tubes, for example
IGBT或 IGBT模块等, 只是 IGBT或 IGBT模块的集电极与 MOSFET主功 率管的漏极相对应, IGBT或 IGBT模块的发射极与 MOSFET主功率管的源 极相对应 , IGBT或 IGBT模块的栅极与 MOSFET主功率管的栅极相对应。 IGBT or IGBT module, etc., except that the collector of the IGBT or IGBT module corresponds to the drain of the MOSFET main power tube, and the emitter of the IGBT or IGBT module corresponds to the source of the MOSFET main power tube, and the gate of the IGBT or IGBT module Corresponds to the gate of the MOSFET main power tube.
另外, 上述电感电路可以为电感; 所述电感设置成: 在所述第一开关电 路由开通状态变为关断状态时, 与所述第一开关电路和所述第二开关电路产 生谐振, 使所述第二开关电路的电压下降至零; 或者, 在所述第二开关电路 由开通状态变为关断状态时, 与所述第一开关电路和所述第二开关电路产生 谐振, 使所述第一开关电路的电压下降至零。  In addition, the inductor circuit may be an inductor; the inductor is configured to: resonate with the first switch circuit and the second switch circuit when the first switch circuit is changed from an on state to an off state; The voltage of the second switching circuit drops to zero; or, when the second switching circuit changes from an on state to an off state, resonates with the first switching circuit and the second switching circuit, The voltage of the first switching circuit drops to zero.
可选地, 本发明实施例还提供了一种镀膜电路, 如图 3所示, 该电路中 增加负载 37 , 该负载与第二开关电路例如第二 MOSFET36并联。 其中, 当 所述第二开关电路为所述 N沟道 MOSFET时, 所述负载中的结构件与所述 MOSFET的漏极相连, 所述负载中的镀膜材料与所述 MOSFET源极相连; 当所述第二开关电路为所述 IGBT或所述 IGBT模块时, 所述负载中的结构 件与所述 IGBT或所述 IGBT模块的集电极相连, 所述负载中的镀膜材料与 所述 IGBT或所述 IGBT模块的发射极相连。 Optionally, the embodiment of the present invention further provides a coating circuit, as shown in FIG. 3, in the circuit. The load 37 is increased, which is in parallel with a second switching circuit, such as the second MOSFET 36. Wherein, when the second switching circuit is the N-channel MOSFET, a structural member in the load is connected to a drain of the MOSFET, and a plating material in the load is connected to a source of the MOSFET; When the second switching circuit is the IGBT or the IGBT module, a structural member in the load is connected to a collector of the IGBT or the IGBT module, and a coating material in the load and the IGBT or The emitters of the IGBT modules are connected.
本发明零电压 PWM直流脉冲电路与现有的直流脉冲电路相比 , 虽然拓 朴结构稍显复杂, 但通过合理选取谐振电感参数值以及控制两个开关电路互 补 PWM逻辑, 可以保证两个开关电路工作在零电压开关状态, 充分发挥了 开关电路高频开关特性, 使输出脉冲频率显著提高, 进而提高了表面工艺处 理效率以及大大增强了被镀膜工件的膜层质量。  Compared with the existing DC pulse circuit, the zero voltage PWM DC pulse circuit of the invention has a slightly complicated topology, but can ensure two switch circuits by reasonably selecting the resonant inductance parameter value and controlling the complementary PWM logic of the two switch circuits. Working in the zero voltage switching state, the high-frequency switching characteristics of the switching circuit are fully utilized, and the output pulse frequency is significantly improved, thereby improving the surface processing efficiency and greatly enhancing the film quality of the coated workpiece.
下面通过详细描述本发明电源工作过程来阐述 MOSFET 35和 MOSFET 36的零电压开关原理。本发明实施例的直流脉冲电源工作过程可以分 6个模 态进行描述:  The zero voltage switching principle of MOSFET 35 and MOSFET 36 will be explained below by describing in detail the power supply operation of the present invention. The working process of the DC pulse power supply in the embodiment of the present invention can be described in six modes:
模态一: PWM1提供开通控制信号, 控制 MOSFET35处于开通状态, Mode 1: PWM1 provides an open control signal to control the MOSFET 35 to be turned on.
PWM2提供关断控制信号, 控制 MOSFET36关断状态。 负载 37上电压为供 电电源 31电压。 分压电容 32上电压作用在谐振电感 34上, 使谐振电感 34 电 i 线' 1"生增力 P。 PWM2 provides a shutdown control signal that controls the MOSFET 36 to turn off. The voltage on the load 37 is the voltage of the power supply 31. The voltage across the voltage dividing capacitor 32 acts on the resonant inductor 34, causing the resonant inductor 34 to '1' to increase the force P.
模态二: PWM1提供关断控制信号, 控制 MOSFET35开始处于关断过 程, PWM2 延续模态一无效状态, MOSFET36 依然处于关断状态。 由于与 MOSFET35并联的结电容电压不能突变原理, MOSFET35电压从零开始上升, 即 MOSFET35为零电压关断。 此时谐振电感 34与 MOSFET35结电容以及 MOSFET36结电容产生谐振, 当 MOSFET35电压上升, MOSFET36电压下 降。 当谐振结束时, MOSFET35电压上升至 PWM直流脉冲电路的供电电源 31电压, MOSFET36电压下降至零。 此模态时间极短, 为 PWM控制的死区 时间。  Mode 2: PWM1 provides a shutdown control signal to control MOSFET 35 to begin the shutdown process. PWM2 continues to be in an inactive state and MOSFET 36 is still in the shutdown state. Since the junction capacitor voltage in parallel with MOSFET 35 cannot be mutated, the MOSFET 35 voltage rises from zero, that is, MOSFET 35 is turned off at zero voltage. At this time, the resonant inductor 34 resonates with the MOSFET 35 junction capacitance and the MOSFET 36 junction capacitance. When the MOSFET 35 voltage rises, the MOSFET 36 voltage drops. When the resonance ends, the voltage of the MOSFET 35 rises to the voltage of the power supply 31 of the PWM DC pulse circuit, and the voltage of the MOSFET 36 drops to zero. This modal time is extremely short and is the dead time of the PWM control.
模态三: 模态二谐振结束后, 谐振电感 34 电流以及负载 37 电流通过 MOSFET36 替二极管续流, MOSFET36 电压始终为零, 为模态四的 MOSFET36零电压开通创造条件。 模态四: 由于模态三已经保证了 MOSFET36电压为零, 此时 PWM2从 模态三的无效变为有效, MOSFET36零电压开通。 PWM1依然维持无效状态, MOSFET35依然为关断状态。由于谐振电感上此时电压为分压电容 33电压, 谐振电感 34电流通过 MOSFET36反向增加。 Modal 3: After the modal two resonance ends, the resonant inductor 34 current and the load 37 current flow through the MOSFET 36 for the diode to continue to flow, the MOSFET36 voltage is always zero, creating conditions for the MOSFET 36 zero voltage turn-on of the modal four. Modal 4: Since modal three has guaranteed that the voltage of MOSFET36 is zero, PWM2 changes from the invalid of modal three to active, and MOSFET36 turns on zero voltage. PWM1 remains inactive and MOSFET 35 is still off. Since the voltage at this time is the voltage of the voltage dividing capacitor 33, the resonant inductor 34 current is reversely increased by the MOSFET 36.
模态五: PWM1提供关断控制信号, MOSFET35处于关断状态, PWM2 从模态三的有效状态变为无效状态, 控制 MOSFET36 开始关断。 由于 MOSFET36上并联的结电容电压不能突变原理, MOSFET36电压从零开始上 升, 即 MOSFET36为零电压关断。 此时谐振电感 34与 MOSFET35结电容和 MOSFET36结电容产生谐振, MOSFET35 电压下降, MOSFET36结电压上 升, 当谐振结束时, MOSFET35 电压为零, MOSFET36电压为供电电源 31 电压。 此模态时间极短, 为 PWM控制死区时间。  Mode 5: PWM1 provides a shutdown control signal, MOSFET 35 is in the off state, PWM2 changes from the active state of modal three to the inactive state, and control MOSFET 36 begins to turn off. Since the junction capacitor voltage connected in parallel on MOSFET 36 cannot be abruptly changed, the voltage of MOSFET 36 rises from zero, that is, MOSFET 36 is turned off at zero voltage. At this time, the resonant inductor 34 resonates with the MOSFET 35 junction capacitance and the MOSFET 36 junction capacitance, the MOSFET 35 voltage drops, and the MOSFET 36 junction voltage rises. When the resonance ends, the MOSFET 35 voltage is zero, and the MOSFET 36 voltage is the power supply 31 voltage. This modal time is extremely short, which is the PWM control dead time.
模态六: 经过模态五谐振, 当 MOSFET35 电压为零时, PWM1从模态 五的无效变为有效, 控制 MOSFET35开通, 此时 MOSFET为零电压开通。 PWM2延续模态五的无效状态, MOSFET36依然为关断状态。 此时分压电容 32电压加在谐振电感 34上, 谐振电感电流正向增加。 此时负载 37上电压为 即供电电源 31电压。  Modal 6: After modal five resonance, when the voltage of MOSFET35 is zero, PWM1 changes from the invalid of modal five to valid, and the control MOSFET 35 is turned on, and the MOSFET is turned on at zero voltage. PWM2 continues the inactive state of modal five, and MOSFET 36 is still in the off state. At this time, the voltage of the voltage dividing capacitor 32 is applied to the resonant inductor 34, and the resonant inductor current is positively increased. At this time, the voltage on the load 37 is the voltage of the power supply 31.
本发明实施例的零电压 PWM直流脉冲电路虽然结构比现有直流脉冲电 源结构稍显复杂,但由于保证了两个 MOSFET主功率管的零电压软开关,充 分发挥了 MOSFET主功率管的高频特性,通过选择谐振电感合适参数,并通 过调节 PWM频率, 使输出的直流脉冲频率可以在 100KHz~200KHz连续可 调。 釆用本发明直流脉冲电源对移动终端相关产品表面进行处理, 可以大大 提高生产效率, 并使被处理工件表面膜层质量更加致密耐磨, 使用寿命得到 显著提高。  Although the structure of the zero-voltage PWM DC pulse circuit of the embodiment of the present invention is slightly more complicated than the existing DC pulse power supply structure, the zero-voltage soft switching of the two MOSFET main power tubes is ensured, and the high frequency of the MOSFET main power tube is fully utilized. Characteristics, by selecting the appropriate parameters of the resonant inductor, and by adjusting the PWM frequency, the output DC pulse frequency can be continuously adjusted from 100KHz to 200KHz. The treatment of the surface of the mobile terminal related product by the DC pulse power supply of the invention can greatly improve the production efficiency, and make the surface quality of the surface of the workpiece to be processed more compact and wearable, and the service life is significantly improved.
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 One of ordinary skill in the art will appreciate that all or a portion of the above steps may be accomplished by a program that instructs the associated hardware, such as a read-only memory, a magnetic disk, or an optical disk. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any What is the combination of specific forms of hardware and software.
以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。  The above embodiments are only intended to illustrate the technical solutions of the present invention and are not to be construed as limiting the invention. It should be understood by those skilled in the art that the present invention may be modified or equivalently substituted without departing from the spirit and scope of the invention.
工业实用性 Industrial applicability
上述 PWM直流脉冲电路、 镀膜电路和应用镀膜电路进行镀膜的方法, 通过互补控制逻辑, 使电感与两个开关电路产生谐振, 开关电路工作在零电 压开关状态, 充分发挥了开关电路高频开关特性, 使电源输出脉冲频率达到 200KHz, 保证了工艺过程中的稳定无弧环境, 既提高了生产效率, 又提升了 镀膜加工的移动终端结构件表面膜层质量。 因此本发明具有很强的工业实用 性。  The PWM DC pulse circuit, the coating circuit and the coating circuit are coated by the complementary control logic, so that the inductance and the two switching circuits resonate, and the switching circuit operates in a zero voltage switching state, fully utilizing the high frequency switching characteristics of the switching circuit. The power output pulse frequency reaches 200KHz, which ensures a stable arc-free environment during the process, which not only improves the production efficiency, but also improves the surface film quality of the mobile terminal structural parts of the coating process. Therefore, the present invention has strong industrial applicability.

Claims

权 利 要 求 书 Claim
1、 一种脉冲宽度调制 (PWM )直流脉冲电路, 该 PWM直流脉冲电路 包括: 路和开关电路, 所述分压电容电路包括串联在一起的第一分压电容电路和第 二分压电容电路, 所述开关电路包括串联在一起的第一开关电路和第二开关 电路; 该 PWM直流脉冲电路还包括电感电路, 所述电感电路的一端与所述 第一分压电容电路和所述第二分压电容电路均相连, 所述电感电路的另一端 与所述第一开关电路和所述第二开关电路均相连; 所述第一开关电路和所述 第二开关电路, 均与控制电路的输出端相连, 均设置成: 在开关时刻处于零 电压软开关状态。 A pulse width modulation (PWM) DC pulse circuit, the PWM DC pulse circuit comprising: a circuit and a switching circuit, the voltage dividing capacitor circuit comprising a first voltage dividing capacitor circuit and a second voltage dividing capacitor circuit connected in series The switching circuit includes a first switching circuit and a second switching circuit connected in series; the PWM DC pulse circuit further includes an inductor circuit, one end of the inductor circuit and the first voltage dividing capacitor circuit and the second The voltage dividing capacitor circuits are all connected, and the other end of the inductor circuit is connected to the first switch circuit and the second switch circuit; the first switch circuit and the second switch circuit are both connected to the control circuit The output terminals are connected, and are all set to: at the time of switching, at a zero voltage soft switching state.
2、 根据权利要求 1所述的 PWM直流脉冲电路, 其中:  2. The PWM DC pulse circuit according to claim 1, wherein:
所述第一开关电路和所述第二开关电路均为具有高频工作特性的晶体管。 The first switching circuit and the second switching circuit are each a transistor having a high frequency operating characteristic.
3、 根据权利要求 2所述的 PWM直流脉冲电路, 其中: 3. The PWM DC pulse circuit according to claim 2, wherein:
所述晶体管为绝缘栅型场效应管 (MOSFET ) , 所述 MOSFET 包括 N 沟通 MOSFET和 P沟道 MOSFET , 其中:  The transistor is an insulated gate field effect transistor (MOSFET), and the MOSFET includes an N communication MOSFET and a P channel MOSFET, wherein:
当所述 MOSFET为所述 N沟道 MOSFET时, 所述第一开关电路中的所 述 MOSFET的漏极与所述供电电源的正极相连,所述第一开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所述 MOSFET 的源极与所述供电电源的负极相连, 所述第二开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连;  When the MOSFET is the N-channel MOSFET, a drain of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, and a gate of the MOSFET in the first switching circuit Connected to an output end of the control circuit, a source of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, and a gate of the MOSFET in the second switch circuit is The output of the control circuit is connected;
当所述 MOSFET为所述 P沟道 MOSFET时, 所述第一开关电路中的所 述 MOSFET的源极与所述供电电源的正极相连,所述第一开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所述 MOSFET 的漏极与所述供电电源的负极相连, 所述第二开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连。  When the MOSFET is the P-channel MOSFET, a source of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, and a gate of the MOSFET in the first switching circuit Connected to an output of the control circuit, a drain of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, and a gate of the MOSFET in the second switch circuit is The outputs of the control circuits are connected.
4、 根据权利要求 3所述的 PWM直流脉冲电路, 其中: 所述 MOSFET是独立的 MOSFET晶体管,或者是 MOSFET晶体管串联 或并联形成的 MOSFET模块电路。 4. The PWM DC pulse circuit according to claim 3, wherein: The MOSFET is a separate MOSFET transistor or a MOSFET module circuit in which MOSFET transistors are formed in series or in parallel.
5、 根据权利要求 2所述的 PWM直流脉冲电路, 其中:  5. The PWM DC pulse circuit of claim 2, wherein:
所述晶体管为绝缘栅双极型晶体管( IGBT )或 IGBT模块, 所述第一开 关电路中的所述 IGBT或所述 IGBT模块的集电极与所述供电电源的正极相 连, 所述第一开关电路中的所述 IGBT或所述 IGBT模块的栅极与所述控制 电路的输出端相连, 所述第二开关电路中的所述 IGBT或所述 IGBT模块的 发射级与所述供电电源的负极相连, 所述第二开关电路中的所述 IGBT或所 述 IGBT模块的栅极与所述控制电路的输出端相连。  The transistor is an insulated gate bipolar transistor (IGBT) or an IGBT module, and the collector of the IGBT or the IGBT module in the first switching circuit is connected to an anode of the power supply, the first switch a gate of the IGBT or the IGBT module in the circuit is connected to an output end of the control circuit, and an emission stage of the IGBT or the IGBT module in the second switch circuit and a negative electrode of the power supply Connected, the IGBT of the second switching circuit or the gate of the IGBT module is connected to an output end of the control circuit.
6、 根据权利要求 5所述的 PWM直流脉冲电路, 其中:  6. The PWM DC pulse circuit of claim 5, wherein:
所述 IGBT或所述 IGBT模块是独立的 IGBT或 IGBT模块,或者是多个 IGBT或多个 IGBT模块串联或并联形成的 IGBT模块电路。  The IGBT or the IGBT module is an independent IGBT or IGBT module, or an IGBT module circuit in which a plurality of IGBTs or a plurality of IGBT modules are formed in series or in parallel.
7、 根据权利要求 1所述的 PWM直流脉冲电路, 其中:  7. The PWM DC pulse circuit according to claim 1, wherein:
所述电感电路为电感; 所述电感设置成: 在所述第一开关电路由开通状 态变为关断状态时, 与所述第一开关电路和所述第二开关电路产生谐振, 使 所述第二开关电路的电压下降至零; 或者, 在所述第二开关电路由开通状态 变为关断状态时, 与所述第一开关电路和所述第二开关电路产生谐振, 使所 述第一开关电路的电压下降至零。  The inductor circuit is an inductor; the inductor is configured to: resonate with the first switch circuit and the second switch circuit when the first switch circuit is changed from an on state to an off state, The voltage of the second switching circuit drops to zero; or, when the second switching circuit changes from the on state to the off state, resonates with the first switching circuit and the second switching circuit, so that the first The voltage of a switching circuit drops to zero.
8、 根据权利要求 1所述的 PWM直流脉冲电路, 其中:  8. The PWM DC pulse circuit according to claim 1, wherein:
所述第一分压电容电路为第一分压电容, 所述第二分压电容电路为第二 分压电容, 所述第一分压电容的正极与所述供电电源的正极相连, 所述第二 分压电容的负极与所述供电电源的负极相连。  The first voltage dividing capacitor circuit is a first voltage dividing capacitor, the second voltage dividing capacitor circuit is a second voltage dividing capacitor, and a positive pole of the first voltage dividing capacitor is connected to an anode of the power supply source, The negative pole of the second voltage dividing capacitor is connected to the negative pole of the power supply.
9、 一种镀膜电路, 该镀膜电路包括脉冲宽度调制 (PWM )直流脉冲电 路和与所述 PWM直流脉冲电路相连的负载, 其中:  9. A coating circuit comprising a pulse width modulation (PWM) DC pulse circuit and a load coupled to the PWM DC pulse circuit, wherein:
所述 PWM直流脉冲电路包括: 分别与所述 PWM直流脉冲电路的供电 电源的正负极相连的分压电容电路和开关电路, 所述分压电容电路包括串联 在一起的第一分压电容电路和第二分压电容电路, 所述开关电路包括串联在 一起的第一开关电路和第二开关电路; 该镀膜电路还包括电感电路, 所述电 感电路的一端与所述第一分压电容电路和所述第二分压电容电路均相连, 所 述电感电路的另一端与所述第一开关电路和所述第二开关电路均相连; 所述 第一开关电路和所述第二开关电路,均与控制电路的输出端相连,均设置成: 在开关时刻处于零电压软开关状态; 所述负载与所述第二开关电路并联。 The PWM DC pulse circuit includes: a voltage dividing capacitor circuit and a switching circuit respectively connected to the positive and negative poles of the power supply source of the PWM DC pulse circuit, wherein the voltage dividing capacitor circuit comprises a first voltage dividing capacitor circuit connected in series And a second voltage dividing capacitor circuit, the switching circuit includes a first switching circuit and a second switching circuit connected in series; the coating circuit further includes an inductor circuit, the electricity One end of the sensing circuit is connected to both the first voltage dividing capacitor circuit and the second voltage dividing capacitor circuit, and the other end of the inductor circuit is connected to the first switching circuit and the second switching circuit; The first switching circuit and the second switching circuit are both connected to the output end of the control circuit, and are both set to be in a zero voltage soft switching state at the time of switching; the load is connected in parallel with the second switching circuit.
10、 根据权利要求 9所述的镀膜电路, 其中:  10. The coating circuit according to claim 9, wherein:
所述第一开关电路和所述第二开关电路均为绝缘栅型场效应管 ( MOSFET ) 时, 所述 MOSFET包括 N沟通 MOSFET和 P沟道 MOSFET; 当所述 MOSFET为所述 N沟道 MOSFET时, 所述第一开关电路中的所述 MOSFET 的漏极与所述供电电源的正极相连, 所述第一开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所述 MOSFET 的源极与所述供电电源的负极相连, 所述第二开关电路中的所述 MOSFET的栅极与所述控制电路的输出端相连; 当所述 MOSFET为所述 P 沟道 MOSFET时, 所述第一开关电路中的所述 MOSFET的源极与所述供电 电源的正极相连,所述第一开关电路中的所述 MOSFET的栅极与所述控制电 路的输出端相连,所述第二开关电路中的所述 MOSFET的漏极与所述供电电 源的负极相连,所述第二开关电路中的所述 MOSFET的栅极与所述控制电路 的输出端相连; 或者  When the first switching circuit and the second switching circuit are both insulated gate field effect transistors (MOSFETs), the MOSFET includes an N communication MOSFET and a P-channel MOSFET; when the MOSFET is the N-channel MOSFET The drain of the MOSFET in the first switching circuit is connected to the anode of the power supply, and the gate of the MOSFET in the first switching circuit is connected to the output of the control circuit. a source of the MOSFET in the second switching circuit is connected to a cathode of the power supply, and a gate of the MOSFET in the second switching circuit is connected to an output of the control circuit; when the MOSFET When the P-channel MOSFET is used, a source of the MOSFET in the first switching circuit is connected to a positive pole of the power supply, a gate of the MOSFET in the first switching circuit, and the control An output of the circuit is connected, a drain of the MOSFET in the second switch circuit is connected to a negative pole of the power supply, and a gate of the MOSFET in the second switch circuit and an output of the control circuit Connected to each other; Or
所述第一开关电路和所述第二开关电路均为绝缘栅双极型晶体管( IGBT ) 或 IGBT模块时,所述第一开关电路中的所述 IGBT或所述 IGBT模块的集电 极与所述供电电源的正极相连, 所述第一开关电路中的所述 IGBT 或所述 IGBT模块的栅极与所述控制电路的输出端相连, 所述第二开关电路中的所 述 IGBT或所述 IGBT模块的发射级与所述供电电源的负极相连, 所述第二 开关电路中的所述 IGBT或所述 IGBT模块的栅极与所述控制电路的输出端 相连。  When the first switching circuit and the second switching circuit are both insulated gate bipolar transistors (IGBTs) or IGBT modules, the IGBT of the first switching circuit or the collector and the IGBT module An anode of the power supply is connected, a gate of the IGBT or the IGBT module in the first switch circuit is connected to an output end of the control circuit, the IGBT or the IGBT in the second switch circuit The emitter stage of the IGBT module is connected to the cathode of the power supply, and the gate of the IGBT or the IGBT module in the second switch circuit is connected to the output of the control circuit.
11、 根据权利要求 9所述的镀膜电路, 其中:  11. The coating circuit according to claim 9, wherein:
当所述第二开关电路为所述 N沟道 MOSFET时, 所述负载中的结构件 与所述 MOSFET的漏极相连, 所述负载中的镀膜材料与所述 MOSFET源极 相连; 或者  When the second switching circuit is the N-channel MOSFET, a structure in the load is connected to a drain of the MOSFET, and a coating material in the load is connected to the MOSFET source; or
当所述第二开关电路为所述 IGBT或所述 IGBT模块时, 所述负载中的 结构件与所述 IGBT或所述 IGBT模块的集电极相连, 所述负载中的镀膜材 料与所述 IGBT或所述 IGBT模块的发射极相连。 When the second switching circuit is the IGBT or the IGBT module, in the load A structural member is coupled to the collector of the IGBT or the IGBT module, and a coating material in the load is coupled to an emitter of the IGBT or the IGBT module.
12、一种应用权利要求 9-11中任一项所述的电路进行镀膜的方法, 所述 方法包括:  12. A method of coating a circuit according to any of claims 9-11, the method comprising:
所述 PWM直流脉冲电路对所述负载供电, 使得所述负载中镀膜材料的 离子在电磁感应的作用下镀在所述负载中的结构件上; 其中, 所述 PWM直 流脉冲电路对所述负载供电的过程包括:  The PWM DC pulse circuit supplies power to the load such that ions of the coating material in the load are plated on the structural member in the load under the action of electromagnetic induction; wherein the PWM DC pulse circuit is applied to the load The process of power supply includes:
处于开通状态的所述第一开关电路接收所述控制电路提供的关断控制信 号时, 所述第一开关电路为零电压关断状态; 所述电感电路、 所述第一开关 电路和所述第二开关电路产生谐振, 使所述第二开关电路的电压下降至零; 处于关断状态的所述第二开关电路接收所述控制电路提供的开通控制信 号时, 所述第二开关电路为零电压开通状态, 且所述第二开关电路的电压仍 为零电压;  The first switch circuit is in a zero voltage off state when the first switch circuit in an open state receives a turn-off control signal provided by the control circuit; the inductor circuit, the first switch circuit, and the The second switching circuit generates resonance to lower the voltage of the second switching circuit to zero; when the second switching circuit in the off state receives the opening control signal provided by the control circuit, the second switching circuit is a zero voltage turn-on state, and the voltage of the second switch circuit is still zero voltage;
处于开通状态的所述第二开关电路接收所述控制电路提供的关断控制信 号时, 所述第二开关电路为零电压关断状态; 所述电感电路、 所述第一开关 电路和所述第二开关电路产生谐振, 使所述第一开关电路的电压下降至零; 处于关断状态的所述第一开关电路接收所述控制电路提供的开通控制信号时, 所述第一开关电路为零电压开通状态。  When the second switch circuit in the open state receives the turn-off control signal provided by the control circuit, the second switch circuit is in a zero voltage off state; the inductor circuit, the first switch circuit, and the The second switching circuit generates resonance to lower the voltage of the first switching circuit to zero; when the first switching circuit in the off state receives the opening control signal provided by the control circuit, the first switching circuit is Zero voltage turn-on state.
PCT/CN2012/074380 2012-02-09 2012-04-19 Pwm dc pulse circuit and coating circuit WO2013117054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210028381.5A CN103248263B (en) 2012-02-09 2012-02-09 PWM DC pulse circuit, coating circuit and film coating method
CN201210028381.5 2012-02-09

Publications (1)

Publication Number Publication Date
WO2013117054A1 true WO2013117054A1 (en) 2013-08-15

Family

ID=48927529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074380 WO2013117054A1 (en) 2012-02-09 2012-04-19 Pwm dc pulse circuit and coating circuit

Country Status (2)

Country Link
CN (1) CN103248263B (en)
WO (1) WO2013117054A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220901B (en) * 2018-02-06 2019-12-10 中国工程物理研究院流体物理研究所 Plasma sputtering coating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233150A (en) * 2001-02-05 2002-08-16 Toshiba Corp Resonance-type dc-to-dc converter
CN2541994Y (en) * 2002-02-07 2003-03-26 浙江大学 Passive soft switching circuit of d.c.-d.c converter
CN1202612C (en) * 2001-08-17 2005-05-18 株式会社三社电机制作所 Electroplating supply unit
CN100361379C (en) * 2005-12-15 2008-01-09 深圳市科陆电源技术有限公司 Resonance type soft switch transducer
CN201570992U (en) * 2009-11-27 2010-09-01 华南理工大学 Plating power supply circuit capable of realizing various output voltage waveforms

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1262320C (en) * 2002-03-21 2006-07-05 傅春农 Device for admitting, asymmetric pulse ions (electrophoresis) with bi-directional equilibrium
DE102006008994A1 (en) * 2006-02-23 2007-08-30 Rolls-Royce Deutschland Ltd & Co Kg Switching arrangement for production of loop current impulse for electro-chemical treatment of metallic materials, has additional voltage source integrated in working loop circuit parallel to current source
CN101003101A (en) * 2007-01-19 2007-07-25 哈尔滨工业大学 Superfine electrolytic machining impulse power supply capable of quick eliminating pulse interval DC voltage
CN201805367U (en) * 2010-08-24 2011-04-20 合肥华耀电子工业有限公司 Inductive energy storage microsecond level high-power pulse current source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233150A (en) * 2001-02-05 2002-08-16 Toshiba Corp Resonance-type dc-to-dc converter
CN1202612C (en) * 2001-08-17 2005-05-18 株式会社三社电机制作所 Electroplating supply unit
CN2541994Y (en) * 2002-02-07 2003-03-26 浙江大学 Passive soft switching circuit of d.c.-d.c converter
CN100361379C (en) * 2005-12-15 2008-01-09 深圳市科陆电源技术有限公司 Resonance type soft switch transducer
CN201570992U (en) * 2009-11-27 2010-09-01 华南理工大学 Plating power supply circuit capable of realizing various output voltage waveforms

Also Published As

Publication number Publication date
CN103248263A (en) 2013-08-14
CN103248263B (en) 2017-02-15

Similar Documents

Publication Publication Date Title
CN201345614Y (en) High-power audio power amplifier switching power supply circuit
CN107546959A (en) A kind of Switching Power Supply, electronic equipment and Switching Power Supply control method
CN103774111B (en) A kind of circuit arrangement and control method realizing high power pulse and big current magnetron sputtering plating function
WO2023116552A1 (en) Electromagnetic resonance control circuit and electromagnetic heating device
Zhang et al. A self-protected single-stage LLC resonant rectifier
CN104393762B (en) High step-up ratio DC-DC converter circuit based on wireless power transmission
CN203096159U (en) Full-digital high-power unipolar pulse magnetron sputtering power source
Jin et al. Novel RDD pulse shaping method for high-power high-voltage pulse current power supply in DBD application
WO2013117054A1 (en) Pwm dc pulse circuit and coating circuit
CN114070114A (en) Method for generating dual-frequency induction heating voltage signal based on full-bridge inverter circuit
CN104674178A (en) Power circuit for realizing multi-mode outputting of magnetron sputtering coating and control method
CN114888373B (en) Three-level BUCK pulse power supply for electric spark machining
WO2021022809A1 (en) Soft-switching circuit and power electronic device
CN208174571U (en) A kind of collection high pressure-burst pulse preionization integration high power bipolar pulse formation circuit
CN203326917U (en) Apparatus increasing output pulse frequency of magnetron sputtering pulse power supply
CN111313660B (en) Hybrid resonant driving circuit and control method thereof
Wang et al. An 8kW LLC resonant converter in plasma power supply based on SiC power devices for efficiency improvement
CN108173450A (en) A kind of collection high pressure-burst pulse preionization integration high power bipolar pulse forms circuit
CN110931312B (en) Contactor power-saving control method and control circuit applying same
CN102801336A (en) Novel inversion type three-phase corona machine
CN113691123A (en) Zero-voltage turn-off zero-current turn-on high-gain Zeta converter
CN112104254A (en) High-voltage pulse power supply for electrostatic dust collector
CN201821265U (en) Non-polar isolation reverse converter
CN204442191U (en) Band arc-initiating device arc power
Bhajana et al. A novel ZCS high step-up DC-DC converter for energy storage systems in DC traction vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867848

Country of ref document: EP

Kind code of ref document: A1