WO2013115400A1 - 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 - Google Patents

磁気共鳴イメージング装置及び磁気共鳴イメージング方法 Download PDF

Info

Publication number
WO2013115400A1
WO2013115400A1 PCT/JP2013/052512 JP2013052512W WO2013115400A1 WO 2013115400 A1 WO2013115400 A1 WO 2013115400A1 JP 2013052512 W JP2013052512 W JP 2013052512W WO 2013115400 A1 WO2013115400 A1 WO 2013115400A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
distribution
unit
magnetic resonance
resonance imaging
Prior art date
Application number
PCT/JP2013/052512
Other languages
English (en)
French (fr)
Inventor
潤一 加地
博司 高井
良照 渡邊
禎也 森田
和也 田之上
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Publication of WO2013115400A1 publication Critical patent/WO2013115400A1/ja
Priority to US14/303,117 priority Critical patent/US10175329B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/246Spatial mapping of the RF magnetic field B1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE

Definitions

  • Embodiments described herein relate generally to a magnetic resonance imaging apparatus and a magnetic resonance imaging method.
  • 3T (tesla) MRI apparatuses have become widespread with the increase in the magnetic field of magnetic resonance imaging apparatuses (hereinafter referred to as “MRI (Magnetic Resonance Imaging) apparatus”).
  • MRI Magnetic Resonance Imaging
  • a 3T MRI apparatus has a higher resonance frequency and a shorter RF (Radio Frequency) pulse wavelength than a 1.5T MRI apparatus.
  • RF Radio Frequency
  • non-uniformity occurs due to, for example, the attenuation of RF pulses having a short wavelength within the subject, and the phenomenon that the echo signal becomes non-uniform due to this non-uniformity has become prominent.
  • This phenomenon is referred to as non-uniformity of a high-frequency magnetic field (hereinafter referred to as “B1 magnetic field” as appropriate).
  • the problem to be solved by the present invention is to provide a magnetic resonance imaging apparatus and a magnetic resonance imaging method capable of appropriately reducing the influence of non-uniformity of a high-frequency magnetic field.
  • the magnetic resonance imaging apparatus includes an acquisition unit, a correction coefficient deriving unit, an amplification degree deriving unit, and a filter processing unit.
  • the acquisition unit acquires the distribution of the high-frequency magnetic field.
  • the correction coefficient deriving unit derives a transmission correction coefficient for correcting transmission unevenness that occurs in the image due to the transmission of the RF pulse from the distribution of the high-frequency magnetic field.
  • the amplification degree deriving unit derives the amplification degree of the noise component amplified in the image along with the correction for each pixel based on the distribution of the high-frequency magnetic field or the transmission correction coefficient.
  • the filter processing unit performs a filter process according to the amplification degree on each pixel of the image to be corrected.
  • FIG. 1 is a block diagram illustrating a configuration of an MRI apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating configurations of a control unit and an image reconstruction unit according to the embodiment.
  • FIG. 3 is a diagram illustrating a head model in the embodiment.
  • FIG. 4 is a diagram illustrating an abdominal model in the embodiment.
  • FIG. 5 is a diagram for explaining correction coefficients in the embodiment.
  • FIG. 6 is a diagram for explaining the noise component amplification degree in the embodiment.
  • FIG. 7 is a flowchart illustrating a processing procedure until the noise component amplification degree is derived in the embodiment.
  • FIG. 8 is a flowchart illustrating a processing procedure up to filter application in the embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of an MRI apparatus 100 according to the embodiment.
  • the static magnetic field magnet 1 is formed in a hollow cylindrical shape and generates a uniform static magnetic field in an internal space.
  • the static magnetic field magnet 1 is, for example, a permanent magnet or a superconducting magnet.
  • the gradient coil 2 is formed in a hollow cylindrical shape and generates a gradient magnetic field in the internal space. Specifically, the gradient magnetic field coil 2 is disposed inside the static magnetic field magnet 1 and receives a gradient magnetic field pulse from the gradient magnetic field power supply 3 to generate a gradient magnetic field.
  • the gradient magnetic field power supply 3 supplies a gradient magnetic field pulse to the gradient magnetic field coil 2 in accordance with a control signal transmitted from the sequence control unit 10.
  • the bed 4 includes a top plate 4a on which the subject P is placed.
  • the top plate 4a is inserted into the cavity of the gradient magnetic field coil 2 serving as an imaging port in a state where the subject P is placed.
  • the bed 4 is installed such that the longitudinal direction is parallel to the central axis of the static magnetic field magnet 1.
  • the couch controller 5 drives the couch 4 to move the couchtop 4a in the longitudinal direction and the vertical direction.
  • the transmission coil 6 generates a B1 magnetic field.
  • the transmission coil 6 is an RF coil disposed inside the gradient magnetic field coil 2 and receives a supply of RF pulses from the transmission unit 7 to generate a B1 magnetic field.
  • the transmission coil 6 is a WBC (Whole Body Coil).
  • the transmission unit 7 supplies an RF pulse corresponding to the Larmor frequency to the transmission coil 6 according to the control signal transmitted from the sequence control unit 10.
  • the receiving coil 8 receives a magnetic resonance signal (hereinafter, MR (Magnetic Resonance) signal).
  • MR Magnetic Resonance
  • the receiving coil 8 is an RF coil disposed inside the gradient magnetic field coil 2 and receives an MR signal radiated from the subject P due to the influence of the magnetic field.
  • the receiving coil 8 outputs the received MR signal to the receiving unit 9.
  • the receiving coil is WBC or AC (Arrayed Coil).
  • the receiving unit 9 generates MR signal data based on the MR signal output from the receiving coil 8 in accordance with the control signal sent from the sequence control unit 10. Specifically, the receiving unit 9 generates MR signal data by digitally converting the MR signal output from the receiving coil 8, and sends the generated MR signal data to the computer system 20 via the sequence control unit 10. Send.
  • the receiving unit 9 may be provided on the gantry device side including the static magnetic field magnet 1 and the gradient magnetic field coil 2.
  • the sequence control unit 10 controls the gradient magnetic field power source 3, the transmission unit 7, and the reception unit 9. Specifically, the sequence control unit 10 transmits a control signal based on the pulse sequence execution data transmitted from the computer system 20 to the gradient magnetic field power source 3, the transmission unit 7, and the reception unit 9.
  • the sequence controller 10 is an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), or an electronic circuit such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit).
  • the computer system 20 includes an interface unit 21, an image reconstruction unit 22, a storage unit 23, an input unit 24, a display unit 25, and a control unit 26.
  • the interface unit 21 is connected to the sequence control unit 10 and controls input / output of data transmitted / received between the sequence control unit 10 and the computer system 20.
  • the image reconstruction unit 22 reconstructs an image from the MR signal data transmitted from the sequence control unit 10 and stores the reconstructed image in the storage unit 23.
  • the image reconstruction unit 22 is an integrated circuit such as an ASIC or FPGA, or an electronic circuit such as a CPU or MPU.
  • the storage unit 23 stores the image stored by the image reconstruction unit 22 and other data used in the MRI apparatus 100.
  • the storage unit 23 is a semiconductor memory device such as a RAM (Random Access Memory) or a flash memory, a hard disk, or an optical disk.
  • the input unit 24 receives various instructions from the operator.
  • the input unit 24 is a mouse, a keyboard, or the like.
  • the display unit 25 displays an image or the like.
  • the display unit 25 is a liquid crystal display or the like.
  • the control unit 26 comprehensively controls the MRI apparatus 100 by controlling each unit described above.
  • the control unit 26 is an integrated circuit such as an ASIC or FPGA, or an electronic circuit such as a CPU or MPU.
  • the MRI apparatus 100 estimates the B1 magnetic field distribution and performs luminance correction using a correction coefficient derived from the estimated B1 magnetic field distribution, so that the luminance non-uniformity of the MR signal is obtained. Reduce. However, when such luminance correction is performed, the luminance of the background noise component is raised together with the image in a region where the B1 magnetic field is weak and the luminance is low. As a result, non-uniformity occurs in the sharpness of the image, resulting in an image that is difficult to observe. Therefore, the MRI apparatus 100 according to the embodiment reduces the non-uniformity of the sharpness by appropriately selecting a filter to be applied to the image based on information obtained from the B1 magnetic field distribution.
  • FIG. 2 is a block diagram illustrating the configuration of the control unit 26 and the image reconstruction unit 22 according to the embodiment.
  • the control unit 26 includes a B1 magnetic field distribution model storage unit 26a and an imaging parameter storage unit 26b.
  • the control unit 26 also includes a sensitivity distribution measurement unit 26c, a B1 magnetic field distribution estimation unit 26d (also referred to as “estimation unit” and “acquisition unit”), a correction coefficient deriving unit 26e, and a noise component amplification degree deriving unit 26f ( Also referred to as “amplification degree deriving unit”.
  • the B1 magnetic field distribution model storage unit 26a stores a B1 magnetic field distribution model used for estimating the B1 magnetic field distribution.
  • the B1 magnetic field distribution model stored in the B1 magnetic field distribution model storage unit 26a is used for processing by the B1 magnetic field distribution estimation unit 26d.
  • the B1 magnetic field distribution model is modeled by assigning the brightness level of the MR signal to a three-dimensional geometric shape.
  • the B1 magnetic field distribution model is defined using a closed logical mathematical function having a spatial dependency that varies smoothly so as to conform to the shape of a Gaussian distribution.
  • the B1 magnetic field distribution can be roughly predicted from the shape and size of the imaging region, the magnetic susceptibility, etc., it is prepared in advance for each region (eg, head, cervical vertebra, abdomen, spine, pelvis). Is done.
  • FIG. 3 is a diagram showing a head model in the embodiment
  • FIG. 4 is a diagram showing an abdominal model in the embodiment.
  • the B1 magnetic field model of the “head” is modeled, for example, in a three-dimensional spherical shape.
  • the “abdominal” B1 magnetic field model is modeled into, for example, a three-dimensional cylindrical shape.
  • the imaging parameter storage unit 26b stores imaging parameters for sensitivity map imaging performed by the sensitivity distribution measuring unit 26c, and other imaging parameters for main imaging for imaging diagnostic images.
  • the imaging parameters stored in the imaging parameter storage unit 26b are used for processing by the B1 magnetic field distribution estimation unit 26d.
  • the imaging parameter storage unit 26b stores imaging parameters such as TR (Repetition Time) and TE (Echo Time), imaging types (for example, T1 enhancement, T2 enhancement, and the like).
  • the sensitivity distribution measuring unit 26c measures the sensitivity distribution of the RF coil, and sends the measured sensitivity distribution to the B1 magnetic field distribution estimating unit 26d and the correction coefficient deriving unit 26e.
  • the sensitivity distribution is a spatial distribution of sensitivity, and is a spatial distribution of the brightness of the MR signal.
  • the sensitivity distribution measurement unit 26c performs sensitivity map imaging as pre-imaging prior to main imaging in a state where the top 4a on which the subject P is placed is inserted into the cavity of the gradient coil 2. And the sensitivity distribution of the RF coil is measured.
  • the sensitivity distribution measurement unit 26c collects a relatively low resolution image using an FE (Field Echo) sequence (eg, TR: 200 milliseconds, TE: 2 to 4 milliseconds, flip angle: 20 to The sensitivity distribution is measured at 40 °, spatial resolution: about 1 cm, and number of slices: 20-45).
  • FE Field Echo
  • the sensitivity distribution measurement by the sensitivity distribution measurement unit 26c is not limited to the above-described example, and may be realized using a known technique.
  • the sensitivity distribution measurement unit 26c performs two patterns of sensitivity map imaging.
  • One pattern is a pattern in which WBC is used as an RF coil (transmission coil 6) during RF pulse transmission and WBC is used as an RF coil (reception coil 8) during MR signal reception.
  • the sensitivity distribution measured by this pattern is appropriately referred to as a “WBC-WBC sensitivity map”.
  • Another pattern is a pattern using WBC as the transmission coil 6 and AC as the reception coil 8.
  • the sensitivity distribution measured by this pattern is hereinafter referred to as “WBC-AC sensitivity map” as appropriate.
  • the sensitivity distribution measurement unit 26c performs sensitivity map imaging in which the former pattern and the latter pattern are repeated for each TR.
  • the sensitivity distribution measured by the sensitivity distribution measuring unit 26c includes unevenness due to nonuniformity of the B1 magnetic field, that is, “transmission unevenness” that occurs in an image due to transmission of an RF pulse, and reception of an MR signal. Both “reception unevenness” generated in the image due to the above are included.
  • the B1 magnetic field distribution estimation unit 26d estimates the B1 magnetic field distribution from the sensitivity distribution measured by the sensitivity distribution measurement unit 26c, and sends the estimated B1 magnetic field distribution to the correction coefficient deriving unit 26e.
  • the B1 magnetic field distribution estimation unit 26d adapts the B1 magnetic field distribution model stored in the B1 magnetic field distribution model storage unit 26a to the sensitivity distribution measured by the sensitivity distribution measurement unit 26c, so that B1 Estimate the magnetic field distribution.
  • the B1 magnetic field distribution estimation unit 26d reads out the B1 magnetic field distribution model of the imaging region from the B1 magnetic field distribution model storage unit 26a, and the BBC-WBC sensitivity measured by the sensitivity distribution measurement unit 26c. By adapting to the map, first, a sensitivity distribution including both “transmission unevenness” and “reception unevenness” is estimated. As described above, by adopting a method for adapting the B1 magnetic field distribution model to the actually measured sensitivity distribution, it is possible to facilitate the calculation processing and the like.
  • the head model shown in FIG. 3 is represented by the following equation (1).
  • the B1 magnetic field distribution estimation unit 26d performs an optimization search of the head model so as to be adapted to the WBC-WBC sensitivity map, and optimizes the parameters (for example, c1, c2, c6, and c7) represented by the equation (1). Do. As a result, the B1 magnetic field distribution estimation unit 26d estimates a sensitivity distribution including both “transmission unevenness” and “reception unevenness”. Note that c3, c4, and c5 are the centroids of the imaging region.
  • the abdominal model shown in FIG. 4 is represented by the following equation (2).
  • the B1 magnetic field distribution estimation unit 26d performs an optimization search of the abdominal model so as to be adapted to the WBC-WBC sensitivity map, and optimizes parameters (for example, c1, c2, c6, and c7) represented by the equation (2). I do. As a result, the B1 magnetic field distribution estimation unit 26d estimates a sensitivity distribution including both “transmission unevenness” and “reception unevenness”.
  • the B1 magnetic field distribution estimation unit 26d divides the estimated sensitivity distribution into a “transmission unevenness” distribution and a “reception unevenness” distribution.
  • the B1 magnetic field distribution estimation unit 26d uses an assumption that WBC “transmission unevenness” and WBC “reception unevenness” have substantially the same distribution.
  • the B1 magnetic field distribution estimation unit 26d adjusts the estimated sensitivity distribution by multiplying the estimated sensitivity distribution by a coefficient for considering the influence of the imaging parameter.
  • the imaging parameters are imaging parameters for sensitivity map imaging performed by the sensitivity distribution measurement unit 26c, and are, for example, TE, TR, flip angle, and the like.
  • the signal value of the MR signal is considered to include the influence of such imaging parameters.
  • a function of a signal value using such an imaging parameter as a variable can be obtained by simulation.
  • a coefficient for removing the influence of the imaging parameter can be obtained. Therefore, in order to improve the accuracy of the sensitivity distribution estimation, the B1 magnetic field distribution estimation unit 26d uses a coefficient for removing the influence of the imaging parameter.
  • the embodiment is not limited to this, and the sensitivity distribution before being multiplied by the coefficient may be used as the estimated B1 magnetic field distribution.
  • the B1 magnetic field distribution estimation unit 26d can estimate the “transmission unevenness” distribution, that is, the B1 magnetic field distribution from the WBC-WBC sensitivity map.
  • the B1 magnetic field distribution estimation unit 26d estimates the B1 magnetic field distribution using the sensitivity distribution measured by the sensitivity distribution measurement unit 26c has been described, but the embodiment is not limited thereto.
  • the B1 magnetic field distribution estimation unit 26d may acquire the B1 magnetic field distribution using an image obtained by an imaging method in which the B1 magnetic field distribution is imaged.
  • the correction coefficient deriving unit 26e corrects a correction coefficient for correcting “transmission unevenness” (hereinafter referred to as “TX correction coefficient” as appropriate) and a correction coefficient for correcting “reception unevenness” (hereinafter referred to as “RX correction coefficient as appropriate”). ]) Is derived, and the derived TX correction coefficient and RX correction coefficient are sent to the luminance correction unit 22b and the noise component amplification degree deriving unit 26f.
  • the correction coefficient deriving unit 26e derives a TX correction coefficient from the B1 magnetic field distribution estimated by the B1 magnetic field distribution estimating unit 26d. At this time, the correction coefficient deriving unit 26e multiplies the estimated B1 magnetic field distribution by a coefficient for considering the influence of the imaging parameter.
  • the imaging parameters are imaging parameters for main imaging, and are, for example, TE, TR, flip angle, and the like. In addition, embodiment is not restricted to this, You may use B1 magnetic field distribution before multiplying a coefficient.
  • FIG. 5 is a diagram for explaining correction coefficients in the embodiment. As shown in FIG.
  • the TX correction coefficient raises the luminance for a spatial position pixel having a weak B1 magnetic field and a low luminance, and is applied to a spatial position pixel having a strong B1 magnetic field and a high luminance. In other words, it is derived so as to perform reciprocal calculation such as lowering the luminance.
  • the correction coefficient deriving unit 26e derives an RX correction coefficient by using the TX correction coefficient, the WBC-WBC sensitivity map, and the WBC-AC sensitivity map.
  • the correction coefficient deriving unit 26e divides this WBC-WBC sensitivity map (including transmission unevenness) by “WBC-AC sensitivity map ⁇ B1 magnetic field distribution estimated by the B1 magnetic field distribution estimating unit 26d” to obtain the reciprocal number thereof.
  • the RX correction coefficient is derived.
  • the RX correction coefficient is derived as a value equal to a value obtained by dividing the WBC-AC sensitivity map by the WBC-WBC sensitivity map that does not include transmission unevenness. It is assumed that the unevenness included in the WBC-AC sensitivity map is negligibly small.
  • the noise component amplification degree deriving unit 26f derives and derives, for each pixel, the amplification degree of the noise component that is amplified in the image due to the luminance correction (hereinafter referred to as “noise component amplification degree” as appropriate) based on the TX correction coefficient.
  • the noise component amplification degree is sent to the filter application unit 22c.
  • the noise component amplification degree deriving unit 26f derives the noise component amplification degree from the TX correction coefficient derived by the correction coefficient deriving unit 26e.
  • FIG. 6 is a diagram for explaining the noise component amplification degree in the embodiment.
  • the noise component amplification degree is high for a pixel at a spatial position where the TX correction coefficient value is high, that is, a large correction is required, and the TX correction coefficient value is low, that is, a relatively small width. This is lower for pixels at spatial locations where correction of is required.
  • FIG. 6 shows an example in which the noise component amplification degree is derived from the TX correction coefficient
  • the embodiment is not limited to this, and the noise is derived from the B1 magnetic field distribution having a reciprocal relationship with the TX correction coefficient.
  • the component amplification degree may be derived.
  • the image reconstruction unit 22 includes a reconstruction unit 22a, a luminance correction unit 22b, and a filter application unit 22c (also referred to as “application unit” or “filter processing unit”).
  • the reconstruction unit 22a reconstructs an image from the MR signal data transmitted from the sequence control unit 10, and sends the reconstructed image to the luminance correction unit 22b. Note that this MR signal data is collected by actual imaging.
  • the luminance correction unit 22b performs luminance correction using the TX correction coefficient and the RX correction coefficient derived by the correction coefficient deriving unit 26e on the image reconstructed by the reconstruction unit 22a, and the image after luminance correction is filtered.
  • the data is sent to the application unit 22c.
  • the luminance correction unit 22b when receiving the reconstructed image from the reconstruction unit 22a, performs luminance correction using the TX correction coefficient on the image, and also uses the RX correction coefficient on the image. Perform brightness correction.
  • the luminance correction unit 22b multiplies both images obtained by the two luminance corrections.
  • the MRI apparatus 100 estimates the B1 magnetic field distribution from the sensitivity distribution, derives the TX correction coefficient from the estimated B1 magnetic field distribution, and removes the influence of transmission unevenness using the TX correction coefficient. By deriving correction coefficients and performing luminance correction using the respective correction coefficients, non-uniformity in the luminance of the MR signal is reduced.
  • the filter application unit 22c selects a filter to be applied to the image after luminance correction for each pixel according to the noise component amplification degree, and applies the selected filter to each pixel of the image after luminance correction. Specifically, when the filter application unit 22c receives an image after luminance correction from the luminance correction unit 22b, the filter application unit 22c selects a filter for each pixel using the noise component amplification degree derived by the noise component amplification degree deriving unit 26f. To do.
  • the filter application unit 22c selects a filter (hereinafter referred to as “low-pass filter” as appropriate) that allows a relatively low frequency band to pass.
  • the filter is selected such that the lower it is, the easier it is to pass a relatively high frequency band (hereinafter referred to as “high-pass filter” as appropriate).
  • the filter application unit 22c applies the selected filter to the target pixel, and when this filter application is completed for all the pixels included in the image, the filter application unit 22c performs weighted addition of the image after the filter application and the image before the filter application. Get the final image.
  • the filter application unit 22c performs weighted addition of the image after the filter application and the image before the filter application. Get the final image.
  • the filter application unit 22c uses a nine-point filter having a coefficient expressed by the following equation (3) as a smoothing (smoothing) filter.
  • the filter application unit 22c uses an adaptive filter V ( ⁇ ) that uses a weighted filter and a smoothing filter whose center component is only 1, as shown in the following equation (4).
  • the filter is selected by changing the weighting accordingly.
  • This adaptive filter V ( ⁇ ) is a filter that continuously changes from smoothing to edge enhancement.
  • Equation (4) the weighting depends on the variable ⁇ . Therefore, the filter application unit 22c derives this variable ⁇ from the noise component amplification degree.
  • the filter application unit 22c defines the variable ⁇ by the following equation (5).
  • the variable ⁇ is an LH coefficient indicating the degree of the low-pass filter or the high-pass filter by a numerical value from “ ⁇ 1” to “1”.
  • the variable NA is the noise component amplification degree.
  • the variable ⁇ takes the logarithm of the noise component amplification degree.
  • the variable% TX is a parameter indicating the degree of luminance correction by the TX correction coefficient, and reflects the user's preference such as how much luminance correction is desired by the TX correction coefficient.
  • the variable C 0 is a parameter that adjusts the characteristics of the adaptive filter V, and is a parameter that indicates the degree to which the non-uniformity of the sharpness in the image is reduced. It reflects user preferences.
  • the variable C 1 is a parameter that adjusts the characteristics of the adaptive filter V, and is a parameter that adjusts the image quality after correction.
  • the variable C 1 has a user preference such as smoothing or edge enhancement. It is reflected.
  • These variables% TX, C 0, C 1 are parameters which can be adjusted by the user. For example, it is possible for the user to change this parameter value in accordance with the adjustment of the window level performed on the image displayed on the display unit 25.
  • variable ⁇ is truncated from “ ⁇ 1” to “1” by the following equation (6).
  • variable ⁇ thus calculated is substituted into the following equation (7) to calculate the variable ⁇ that is a weighting factor of the filter.
  • the effect of applying the filter is adjusted to be the same in the positive and negative directions (smooth or edge enhancement). Specifically, when the variable ⁇ is “ ⁇ 1”, the variable ⁇ is “ ⁇ 2”, when the variable ⁇ is “1”, the variable ⁇ is “1”, and when the variable ⁇ is “0”. The variable ⁇ is “0”.
  • FIG. 7 is a flowchart showing a processing procedure until the noise component amplification degree is derived in the embodiment
  • FIG. 8 is a flowchart showing a processing procedure until the filter application in the embodiment.
  • the sensitivity distribution measuring unit 26c measures the sensitivity distribution (step S101), and collects the WBC-WBC sensitivity map and the WBC-AC sensitivity map.
  • the B1 magnetic field distribution estimation unit 26d adapts the B1 magnetic field distribution model to the WBC-WBC sensitivity map collected in step S101, and estimates the B1 magnetic field distribution (step S102).
  • the correction coefficient deriving unit 26e derives the TX correction coefficient from the B1 magnetic field distribution estimated in step S102 and also derives the RX correction coefficient (step S103). Then, the noise component amplification degree deriving unit 26f derives the noise component amplification degree based on the TX correction coefficient (step S104).
  • the reconstruction unit 22a reconstructs an image (step S201), and then the luminance correction unit 22b performs the TX correction coefficient. Then, brightness correction is performed on the reconstructed image using the RX correction coefficient (step S202).
  • the filter application unit 22c calculates an adaptive filter using the noise component amplification degree for each pixel included in the image after luminance correction. If the noise component amplification degree is high (Yes at Step S203), the adaptive filter becomes a low-pass filter, and the filter application unit 22c applies this adaptive filter to this pixel (Step S204). On the other hand, when the noise component amplification degree is low (No at Step S203), the adaptive filter becomes a high-pass filter, and the filter application unit 22c applies this adaptive filter to this pixel (Step S205).
  • the filter application unit 22c repeats the filter selection and filter application processing for all the pixels included in the image, and when the processing ends (Yes in step S206), the image before the filter application and the image after the filter application are weighted. Add (step S207) to obtain the final image.
  • processing procedure is not limited to the example described above, and other equivalent processing may be performed.
  • the order of processing can be arbitrarily changed, such as performing luminance correction after applying the filter, or performing the above-described filter processing in the luminance correction processing.
  • a plurality of types of filters, a low-pass filter and a high-pass filter may be prepared in advance, and may be appropriately selected and used according to the noise component amplification degree.
  • the MRI apparatus 100 estimates the B1 magnetic field distribution from the sensitivity distribution, derives the TX correction coefficient from the estimated B1 magnetic field distribution, derives the RX correction coefficient, and each correction coefficient.
  • the MRI apparatus 100 applies a low-pass filter to a region where the noise component amplification degree is high to suppress the noise component, and applies a high-pass filter to a region where the noise component amplification degree is low. Therefore, it is possible to improve the image quality and appropriately reduce the influence due to the non-uniformity of the high frequency magnetic field.
  • these two methods that is, the method performed as image processing and the method performed at the MR signal acquisition stage may be implemented by combining both or only one of them.
  • MR signals are collected while adjusting the phase and amplitude of the RF pulse, and thereafter, filter processing is performed in image processing on the MR signals.
  • filter processing is performed in image processing on the MR signals.
  • the influence due to the nonuniformity of the B1 magnetic field is reduced to some extent also in the collection stage, and the influence due to the nonuniformity of the B1 magnetic field is further reduced in the subsequent image processing.
  • another method may be used as the method performed in the MR signal acquisition stage.
  • the sensitivity distribution measurement unit 26c performs sensitivity map imaging and acquires the sensitivity distribution.
  • This sensitivity map imaging may be performed specifically for processing such as estimation of the B1 magnetic field distribution, or may be shared with sensitivity map imaging for other purposes.
  • PI Parallel Imaging
  • sensitivity map imaging is performed at a stage such as a preparation scan, and a sensitivity distribution is acquired. Therefore, in such a case, the emotion distribution measurement unit 26c may share the sensitivity distribution acquired for unfolding processing and the sensitivity distribution acquired for processing such as estimation of the B1 magnetic field distribution.
  • the reconstruction unit 22a performs an unfolding process using the sensitivity distribution acquired by the sensitivity distribution measurement unit 26c, and generates an image.
  • the B1 magnetic field distribution estimation unit 26d estimates the B1 magnetic field distribution using the same sensitivity distribution.
  • the magnetic resonance imaging apparatus and magnetic resonance imaging method of at least one embodiment described above it is possible to appropriately reduce the influence due to the non-uniformity of the high-frequency magnetic field.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 実施形態に係る磁気共鳴イメージング装置(100)は、取得部(26d)と、補正係数導出部(26e)と、増幅度導出部(26f)と、フィルタ処理部(22c)とを備える。取得部(26d)は、高周波磁場の分布を取得する。補正係数導出部(26e)は、前記高周波磁場の分布から、RFパルスの送信に起因して画像に生じる送信ムラを補正するための送信補正係数を導出する。増幅度導出部(26f)は、前記補正に伴い前記画像内で増幅されるノイズ成分の増幅度を、前記高周波磁場の分布又は前記送信補正係数に基づきピクセル毎に導出する。フィルタ処理部(22c)は、前記補正が施される画像の各ピクセルに、前記増幅度に応じたフィルタ処理を行う。

Description

磁気共鳴イメージング装置及び磁気共鳴イメージング方法
 本発明の実施形態は、磁気共鳴イメージング装置及び磁気共鳴イメージング方法に関する。
 近年、磁気共鳴イメージング装置(以下、適宜「MRI(Magnetic Resonance Imaging)装置」)の高磁場化に伴い、例えば3T(tesla)のMRI装置が普及している。3TのMRI装置は、1.5TのMRI装置に比較して、共鳴周波数が高く、送信されるRF(Radio Frequency)パルスの波長が短い。この結果、波長の短いRFパルスが被検体内で減衰することなどによって不均一が生じ、この不均一に伴いエコー信号も不均一になる現象が顕著に発生するようになった。この現象は、高周波磁場(以下、適宜「B1磁場」)の不均一性などと称される。
 従来、B1磁場の不均一性を低減する手法として、振幅や位相を補正したRFパルスを送信するB1シミングの手法などが提案されている。
特開2010-29640号公報
 本発明が解決しようとする課題は、高周波磁場の不均一性による影響を適切に低減することができる磁気共鳴イメージング装置及び磁気共鳴イメージング方法を提供することである。
 実施形態に係る磁気共鳴イメージング装置は、取得部と、補正係数導出部と、増幅度導出部と、フィルタ処理部とを備える。取得部は、高周波磁場の分布を取得する。補正係数導出部は、前記高周波磁場の分布から、RFパルスの送信に起因して画像に生じる送信ムラを補正するための送信補正係数を導出する。増幅度導出部は、前記補正に伴い前記画像内で増幅されるノイズ成分の増幅度を、前記高周波磁場の分布又は前記送信補正係数に基づきピクセル毎に導出する。フィルタ処理部は、前記補正が施される画像の各ピクセルに、前記増幅度に応じたフィルタ処理を行う。
図1は、実施形態に係るMRI装置の構成を示すブロック図である。 図2は、実施形態に係る制御部及び画像再構成部の構成を示すブロック図である。 図3は、実施形態における頭部モデルを示す図である。 図4は、実施形態における腹部モデルを示す図である。 図5は、実施形態における補正係数を説明するための図である。 図6は、実施形態におけるノイズ成分増幅度を説明するための図である。 図7は、実施形態におけるノイズ成分増幅度導出までの処理手順を示すフローチャートである。 図8は、実施形態におけるフィルタ適用までの処理手順を示すフローチャートである。
 以下、実施形態に係る磁気共鳴イメージング装置及び磁気共鳴イメージング方法を図面を参照しながら説明する。
 図1は、実施形態に係るMRI装置100の構成を示すブロック図である。なお、MRI装置100は、被検体Pを含まない。静磁場磁石1は、中空の円筒状に形成され、内部の空間に一様な静磁場を発生する。静磁場磁石1は、例えば、永久磁石、超伝導磁石などである。傾斜磁場コイル2は、中空の円筒状に形成され、内部の空間に傾斜磁場を発生する。具体的には、傾斜磁場コイル2は、静磁場磁石1の内側に配置され、傾斜磁場電源3から傾斜磁場パルスの供給を受けて、傾斜磁場を発生する。傾斜磁場電源3は、シーケンス制御部10から送信される制御信号に従って、傾斜磁場パルスを傾斜磁場コイル2に供給する。
 寝台4は、被検体Pが載置される天板4aを備え、天板4aを、被検体Pが載置された状態で、撮像口である傾斜磁場コイル2の空洞内へ挿入する。通常、寝台4は、長手方向が静磁場磁石1の中心軸と平行になるように設置される。寝台制御部5は、寝台4を駆動して、天板4aを長手方向及び上下方向へ移動する。
 送信コイル6は、B1磁場を発生する。具体的には、送信コイル6は、傾斜磁場コイル2の内側に配置されるRFコイルであり、送信部7からRFパルスの供給を受けて、B1磁場を発生する。例えば、送信コイル6は、WBC(Whole Body Coil)である。送信部7は、シーケンス制御部10から送信される制御信号に従って、ラーモア周波数に対応するRFパルスを送信コイル6に供給する。
 受信コイル8は、磁気共鳴信号(以下、MR(Magnetic Resonance)信号)を受信する。具体的には、受信コイル8は、傾斜磁場コイル2の内側に配置されるRFコイルであり、磁場の影響によって被検体Pから放射されるMR信号を受信する。また、受信コイル8は、受信したMR信号を受信部9に出力する。例えば、受信コイルは、WBCやAC(Arrayed Coil)である。
 受信部9は、シーケンス制御部10から送られる制御信号に従って、受信コイル8から出力されたMR信号に基づきMR信号データを生成する。具体的には、受信部9は、受信コイル8から出力されたMR信号をデジタル変換することによってMR信号データを生成し、生成したMR信号データを、シーケンス制御部10を介して計算機システム20に送信する。なお、受信部9は、静磁場磁石1や傾斜磁場コイル2などを備える架台装置側に備えられていてもよい。
 シーケンス制御部10は、傾斜磁場電源3、送信部7、及び受信部9を制御する。具体的には、シーケンス制御部10は、計算機システム20から送信されたパルスシーケンス実行データに基づく制御信号を、傾斜磁場電源3、送信部7、及び受信部9に送信する。例えば、シーケンス制御部10は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路、CPU(Central Processing Unit)、MPU(Micro Processing Unit)などの電子回路である。
 計算機システム20は、インタフェース部21と、画像再構成部22と、記憶部23と、入力部24と、表示部25と、制御部26とを備える。インタフェース部21は、シーケンス制御部10に接続され、シーケンス制御部10と計算機システム20との間で送受信されるデータの入出力を制御する。
 画像再構成部22は、シーケンス制御部10から送信されたMR信号データから画像を再構成し、再構成した画像を記憶部23に格納する。例えば、画像再構成部22は、ASIC、FPGAなどの集積回路、CPU、MPUなどの電子回路である。
 記憶部23は、画像再構成部22によって格納された画像や、MRI装置100において用いられるその他のデータを記憶する。例えば、記憶部23は、RAM(Random Access Memory)、フラッシュメモリ(flash memory)などの半導体メモリ素子、ハードディスク、光ディスクなどである。
 入力部24は、各種指示を操作者から受け付ける。例えば、入力部24は、マウス、キーボードなどである。表示部25は、画像などを表示する。例えば、表示部25は、液晶ディスプレイなどである。
 制御部26は、上述した各部を制御することによってMRI装置100を総括的に制御する。例えば、制御部26は、ASIC、FPGAなどの集積回路、CPU、MPUなどの電子回路である。
 さて、実施形態に係るMRI装置100は、後述するように、B1磁場分布を推定し、推定したB1磁場分布から導出された補正係数による輝度補正を行うことで、MR信号の輝度の不均一性を低減する。もっとも、このような輝度補正を行った場合、B1磁場が弱く、輝度が低い領域については、画像とともに背景のノイズ成分の輝度も持ち上げられてしまう。結果として、画像の鮮鋭度に不均一性が生じてしまい、観察しづらい画像となる。そこで、実施形態に係るMRI装置100は、画像に適用するフィルタをB1磁場分布から得られる情報に基づき適宜選択することで、鮮鋭度の不均一性を低減する。
 図2は、実施形態に係る制御部26及び画像再構成部22の構成を示すブロック図である。
 制御部26は、B1磁場分布モデル記憶部26aと、撮像パラメータ記憶部26bとを有する。また、制御部26は、感度分布測定部26cと、B1磁場分布推定部26d(「推定部」、「取得部」とも称する)と、補正係数導出部26eと、ノイズ成分増幅度導出部26f(「増幅度導出部」とも称する)とを有する。
 B1磁場分布モデル記憶部26aは、B1磁場分布の推定に用いられるB1磁場分布モデルを記憶する。B1磁場分布モデル記憶部26aが記憶するB1磁場分布モデルは、B1磁場分布推定部26dによる処理に用いられる。
 本実施形態において、B1磁場分布モデルは、MR信号の輝度の高低が3次元の幾何学的形状に割り当てられることで、モデル化されたものである。例えば、B1磁場分布モデルは、ガウス分布の形状に適合するように、平滑に変動する空間的依存性を有する閉論理数学的関数を用いて定義される。また、B1磁場分布は、撮像部位の形状や大きさ、磁化率などから概ね予測することができるので、部位毎(例えば、頭部、頸椎部、腹部、脊椎部、骨盤部など)に予め準備される。
 図3は、実施形態における頭部モデルを示す図であり、図4は、実施形態における腹部モデルを示す図である。図3に示すように、「頭部」のB1磁場モデルは、例えば、3次元の球形状にモデル化される。また、図4に示すように、「腹部」のB1磁場モデルは、例えば、3次元の円筒形状にモデル化される。
 撮像パラメータ記憶部26bは、感度分布測定部26cによって行われる感度マップ撮像の撮像パラメータや、その他、診断用の画像を撮像する本撮像の撮像パラメータなどを記憶する。撮像パラメータ記憶部26bが記憶する撮像パラメータは、B1磁場分布推定部26dによる処理に用いられる。例えば、撮像パラメータ記憶部26bは、TR(Repetition Time)、TE(Echo Time)などの撮像パラメータや、撮像の種類(例えば、T1強調、T2強調など)などを記憶する。
 感度分布測定部26cは、RFコイルの感度分布を測定し、測定した感度分布を、B1磁場分布推定部26d及び補正係数導出部26eに送る。ここで、感度分布とは、感度の空間的分布のことであり、MR信号の輝度の高低の空間的分布のことである。
 本実施形態において、感度分布測定部26cは、被検体Pが載置された天板4aが傾斜磁場コイル2の空洞内へ挿入された状態で、本撮像に先行する事前撮像として感度マップ撮像を行い、RFコイルの感度分布を測定する。例えば、感度分布測定部26cは、FE(Field Echo)シーケンスを用いて比較的低解像度の画像を収集すること(例えば、TR:200ミリ秒、TE:2~4ミリ秒、フリップ角度:20~40°、空間的解像度:約1cm、スライス数:20~45)で、感度分布を測定する。なお、感度分布測定部26cによる感度分布の測定は、上述の例に限られるものではなく、公知の技術を用いて実現すればよい。
 また、本実施形態において、感度分布測定部26cは、2パターンの感度マップ撮像を行う。1つのパターンは、RFパルス送信時のRFコイル(送信コイル6)としてWBCを用い、MR信号受信時のRFコイル(受信コイル8)としてWBCを用いるパターンである。本パターンにより測定された感度分布を、以下では、適宜「WBC-WBC感度マップ」と呼ぶ。また、もう1つのパターンは、送信コイル6としてWBCを用い、受信コイル8としてACを用いるパターンである。本パターンにより測定された感度分布を、以下では、適宜「WBC-AC感度マップ」と呼ぶ。例えば、感度分布測定部26cは、前者のパターンと後者のパターンとをTR毎に繰り返す感度マップ撮像を行う。
 なお、感度分布測定部26cによって測定された感度分布には、B1磁場の不均一性に起因するムラ、すなわち、RFパルスの送信に起因して画像に生じる「送信ムラ」と、MR信号の受信に起因して画像に生じる「受信ムラ」とが双方含まれる。
 かつてMRI装置の高磁場化が進む以前は、WBCによる「送信ムラ」は殆ど生じないとされていた。このため、再構成後の対象画像に対しては、「受信ムラ」対策として、感度マップ撮像によって測定された感度分布による輝度補正が行われていた。この輝度補正は、感度分布において輝度が低い空間的位置のピクセルに対しては輝度を持ち上げ、輝度が高い空間的位置のピクセルに対しては輝度を下げるといった、いわば逆数計算を行うものである。
 しかしながら、高磁場化が進んだ結果、WBCによる「送信ムラ」は無視できないものになり、「送信ムラ」の影響を受けた感度分布による輝度補正では、「受信ムラ」の補正も正しく行われない事態となった。この「送信ムラ」を低減する技術として、従来、振幅や位相を補正したRFパルスを送信するB1シミングの手法などが提案されているが、このような手法によっても必ずしも十分な補正が行われない場合がある。
 B1磁場分布推定部26dは、感度分布測定部26cによって測定された感度分布からB1磁場分布を推定し、推定したB1磁場分布を、補正係数導出部26eに送る。また、本実施形態において、B1磁場分布推定部26dは、B1磁場分布モデル記憶部26aによって記憶されるB1磁場分布モデルを、感度分布測定部26cによって測定された感度分布に適合させることで、B1磁場分布を推定する。
 具体的には、B1磁場分布推定部26dは、B1磁場分布モデル記憶部26aから撮像部位のB1磁場分布モデルを読み出し、このB1磁場分布モデルを感度分布測定部26cによって測定されたWBC-WBC感度マップに適合させることで、まず、「送信ムラ」及び「受信ムラ」の双方を含む感度分布を推定する。このように、B1磁場分布モデルを実測の感度分布に適合させる手法を採ることで、計算処理等を容易にすることができる。
 例えば、図3に示した頭部モデルは、以下の(1)式によって示される。
Figure JPOXMLDOC01-appb-M000001
 B1磁場分布推定部26dは、WBC-WBC感度マップに適合させるべく頭部モデルの最適化探索を行い、この(1)式によって示されるパラメータ(例えば、c1、c2、c6、及びc7)の最適化を行う。この結果、B1磁場分布推定部26dは、「送信ムラ」及び「受信ムラ」の双方を含む感度分布を推定する。なお、c3、c4、及びc5は、撮像領域の重心である。
 また、例えば、図4に示した腹部モデルは、以下の(2)式によって示される。
Figure JPOXMLDOC01-appb-M000002
 B1磁場分布推定部26dは、WBC-WBC感度マップに適合させるべく腹部モデルの最適化探索を行い、この(2)式によって示されるパラメータ(例えば、c1、c2、c6、及びc7)の最適化を行う。この結果、B1磁場分布推定部26dは、「送信ムラ」及び「受信ムラ」の双方を含む感度分布を推定する。
 次に、B1磁場分布推定部26dは、推定した感度分布を、「送信ムラ」の分布と「受信ムラ」の分布とに分割する。ここで、B1磁場分布推定部26dは、WBCの「送信ムラ」とWBCの「受信ムラ」とはほぼ同じ分布となるとの仮定を用いる。また、B1磁場分布推定部26dは、撮像パラメータの影響を考慮するための係数を、推定した感度分布に掛けることで、推定した感度分布の調整を行う。撮像パラメータは、感度分布測定部26cによって行われた感度マップ撮像の撮像パラメータであり、例えば、TE、TR、フリップ角度などである。MR信号の信号値は、このような撮像パラメータの影響を含むと考えられる。シミュレーションによって、このような撮像パラメータを変数とする信号値の関数を求めることができ、例えば、撮像パラメータの影響を取り除くための係数を求めることができる。そこで、感度分布の推定の精度を上げるべく、B1磁場分布推定部26dは、撮像パラメータの影響を取り除くための係数を用いる。なお、実施形態はこれに限られるものではなく、係数を掛ける前の感度分布を、推定されたB1磁場分布として用いてもよい。
 こうして、B1磁場分布推定部26dは、WBC-WBC感度マップから、「送信ムラ」の分布、すなわち、B1磁場分布を推定することができる。なお、実施形態において、B1磁場分布推定部26dは、感度分布測定部26cによって測定された感度分布を用いてB1磁場分布を推定する例を説明したが、実施形態はこれに限られるものではない。B1磁場分布推定部26dは、例えば、B1磁場分布が画像化されるような撮像法により得られた画像を用いてB1磁場分布を取得してもよい。
 補正係数導出部26eは、「送信ムラ」を補正するための補正係数(以下、適宜「TX補正係数」)、及び、「受信ムラ」を補正するための補正係数(以下、適宜「RX補正係数」)を導出し、導出したTX補正係数及びRX補正係数を、輝度補正部22b及びノイズ成分増幅度導出部26fに送る。
 まず、補正係数導出部26eは、B1磁場分布推定部26dによって推定されたB1磁場分布から、TX補正係数を導出する。このとき、補正係数導出部26eは、撮像パラメータの影響を考慮するための係数を、推定したB1磁場分布に掛ける。撮像パラメータは、本撮像の撮像パラメータであり、例えば、TE、TR、フリップ角度などである。なお、実施形態はこれに限られるものではなく、係数を掛ける前のB1磁場分布を用いてもよい。図5は、実施形態における補正係数を説明するための図である。図5に示すように、TX補正係数は、B1磁場分布においてB1磁場が弱く輝度が低い空間的位置のピクセルに対しては輝度を持ち上げ、B1磁場が強く輝度が高い空間的位置のピクセルに対しては輝度を下げるといった、いわば逆数計算を行うように導出される。
 また、補正係数導出部26eは、TX補正係数と、WBC-WBC感度マップと、WBC-AC感度マップとを用いて、RX補正係数を導出する。WBC-WBC感度マップには、WBCの送信ムラが含まれる。このことを、例えば、「WBC-WBC感度マップ(送信ムラを含む)=WBC-WBC感度マップ(送信ムラを含まない)×送信ムラ」と表現する。補正係数導出部26eは、このWBC-WBC感度マップ(送信ムラを含む)を、「WBC-AC感度マップ×B1磁場分布推定部26dによって推定されたB1磁場分布」によって除算し、その逆数を求めることで、RX補正係数を導出する。
 すなわち、この除算の演算において、分子に含まれる「送信ムラ」と、分母に含まれる「B1磁場分布推定部26dによって推定されたB1磁場分布」とが打ち消されるので、送信ムラを含まないWBC-WBC感度マップを、WBC-AC感度マップで除算することと等しくなる。言い換えると、この「B1磁場分布推定部26dによって推定されたB1磁場分布」で除算することによって、送信ムラの影響を除去していることになる。なお、「B1磁場分布推定部26dによって推定されたB1磁場分布」で除算するということは、すなわち、補正係数導出部26eによって導出されたTX補正係数を掛けることと等しい。こうして、RX補正係数は、WBC-AC感度マップを、送信ムラを含まないWBC-WBC感度マップで除算した値に等しい値として導出される。なお、WBC-AC感度マップに含まれるムラは無視できるほどに軽微であると仮定している。
 ノイズ成分増幅度導出部26fは、輝度補正に伴い画像内で増幅されるノイズ成分の増幅度(以下、適宜「ノイズ成分増幅度」)を、TX補正係数に基づきピクセル毎に導出し、導出したノイズ成分増幅度を、フィルタ適用部22cに送る。具体的には、ノイズ成分増幅度導出部26fは、補正係数導出部26eによって導出されたTX補正係数からノイズ成分増幅度を導出する。
 図6は、実施形態におけるノイズ成分増幅度を説明するための図である。図6に示すように、ノイズ成分増幅度は、TX補正係数の値が高い、すなわち大幅な補正が求められる空間的位置のピクセルについては高く、TX補正係数の値が低い、すなわち比較的小さい幅の補正が求められる空間的位置のピクセルについては低くなる。
 なお、図6においては、TX補正係数からノイズ成分増幅度を導出する例を示したが、実施形態はこれに限られるものではなく、TX補正係数とは逆数の関係にあるB1磁場分布からノイズ成分増幅度を導出してもよい。
 図2に戻り、画像再構成部22は、再構成部22aと、輝度補正部22bと、フィルタ適用部22c(「適用部」、「フィルタ処理部」とも称する)とを有する。
 再構成部22aは、シーケンス制御部10から送信されたMR信号データから画像を再構成し、再構成後の画像を、輝度補正部22bに送る。なお、このMR信号データは、本撮像により収集されたものである。
 輝度補正部22bは、再構成部22aによる再構成後の画像に対して、補正係数導出部26eによって導出されたTX補正係数及びRX補正係数による輝度補正を行い、輝度補正後の画像を、フィルタ適用部22cに送る。
 具体的には、輝度補正部22bは、再構成部22aから再構成後の画像を受け取ると、この画像に対してTX補正係数による輝度補正を行い、また、この画像に対してRX補正係数による輝度補正を行う。そして、輝度補正部22bは、2つの輝度補正により得られた両画像を乗算する。
 上述したように、近年、高磁場化が進んだ結果、WBCによる「送信ムラ」は無視できないものになり、「送信ムラ」の影響を受けた感度分布による輝度補正では、「受信ムラ」の補正も正しく行われない事態となった。この点、実施形態に係るMRI装置100は、感度分布からB1磁場分布を推定し、推定したB1磁場分布からTX補正係数を導出するとともに、TX補正係数を用いて送信ムラの影響を除去したRX補正係数を導出し、それぞれの補正係数による輝度補正を行うことで、MR信号の輝度の不均一性を低減する。
 フィルタ適用部22cは、輝度補正後の画像に適用するフィルタをノイズ成分増幅度に応じてピクセル毎に選択し、選択したフィルタを、輝度補正後の画像の各ピクセルに適用する。具体的には、フィルタ適用部22cは、輝度補正部22bから輝度補正後の画像を受け取ると、ノイズ成分増幅度導出部26fによって導出されたノイズ成分増幅度を用いて、ピクセル毎にフィルタを選択する。
 例えば、フィルタ適用部22cは、対象ピクセルのノイズ成分増幅度が高いほど、相対的に低い周波数帯域を通過させ易いフィルタ(以下、適宜「ローパスフィルタ」)を選択し、対象ピクセルのノイズ成分増幅度が低いほど、相対的に高い周波数帯域を通過させ易いフィルタ(以下、適宜「ハイパスフィルタ」)を選択する。
 そして、フィルタ適用部22cは、対象ピクセルに選択したフィルタを適用し、画像に含まれる全ピクセルについてこのフィルタ適用を完了すると、フィルタ適用後の画像と、フィルタ適用前の画像との重み付け加算を行い、最終画像を得る。こうして、ノイズ成分増幅度が高い領域についてはローパスフィルタが適用される結果、ノイズ成分が抑制され、一方、ノイズ成分増幅度が低い領域についてはハイパスフィルタが適用される結果、鮮鋭度が向上する。
 フィルタ適用部22cによるフィルタの選択を詳細に説明する。なお、フィルタとして任意のフィルタを用いることが可能であり、以下の具体例は一例に過ぎない。
 例えば、フィルタ適用部22cは、平滑化(スムージング)フィルタとして、以下(3)式に示す係数を有する9点フィルタを用いる。
Figure JPOXMLDOC01-appb-M000003
 そして、フィルタ適用部22cは、以下(4)式に示すように、中心成分のみが1であるフィルタと平滑化フィルタとを重み付けて用いる適応型フィルタV(β)を用い、ノイズ成分増幅度に応じて重み付けを変更することで、フィルタを選択する。この適応型フィルタV(β)は、スムージングからエッジ強調まで連続的に変化するフィルタである。
Figure JPOXMLDOC01-appb-M000004
 すなわち、(4)式において、重み付けは変数βに依存する。このため、フィルタ適用部22cは、この変数βをノイズ成分増幅度から導出する。変数βは、フィルタの重み係数として「-2」から「1」の値を有する。なお、中心成分β0=1-(3/4)*βであり、中心の上下左右成分β1=β/8であり、中心の斜め方向成分β2=β/16である。
 まず、フィルタ適用部22cは、以下(5)式によって変数γを定義する。変数γは、ローパスフィルタ又はハイパスフィルタの程度を「-1」から「1」の数値で示すLH係数である。また、変数NAは、ノイズ成分増幅度である。このように、変数γは、ノイズ成分増幅度の対数をとる。
Figure JPOXMLDOC01-appb-M000005
 なお、変数%TXは、TX補正係数による輝度補正の程度を示すパラメータであり、どの程度、TX補正係数による輝度補正を望むかといった、ユーザの好みが反映されるものである。また、変数C0は、適応型フィルタVの特性を調整するパラメータであって、画像内の鮮鋭度の不均一感を軽減する程度を示すパラメータであり、どの程度、均一感を望むかといった、ユーザの好みが反映されるものである。また、変数C1は、適応型フィルタVの特性を調整するパラメータであって、補正後の画質を調整するパラメータであり、スムーズにするか、又は、エッジ強調にするかといった、ユーザの好みが反映されるものである。これらの変数%TX、C0、C1は、ユーザによる調整が可能なパラメータである。例えば、ユーザが、表示部25に表示された画像に対して行うウィンドウレベルの調整に応じて、このパラメータ値を変更することが可能である。
 変数γは、以下(6)式によって、「-1」から「1」の数値にトランケート(truncate)される。
Figure JPOXMLDOC01-appb-M000006
 こうして計算された変数γが、以下(7)式に代入されることで、フィルタの重み係数である変数βが計算される。
Figure JPOXMLDOC01-appb-M000007
 この(7)式によって、フィルタを適用することによる効果が正負方向(スムーズ又はエッジ強調)で同程度になるように調整される。具体的には、変数γが「-1」の場合に変数βは「-2」となり、変数γが「1」の場合に変数βは「1」となり、変数γが「0」の場合に変数βは「0」となる。
 以上説明してきた各部の処理について、改めて処理の流れを説明する。図7は、実施形態におけるノイズ成分増幅度導出までの処理手順を示すフローチャートであり、図8は、実施形態におけるフィルタ適用までの処理手順を示すフローチャートである。
 図7に示すように、実施形態に係る制御部26において、まず、感度分布測定部26cが、感度分布の測定を行い(ステップS101)、WBC-WBC感度マップ及びWBC-AC感度マップを収集する。次に、B1磁場分布推定部26dが、ステップS101において収集されたWBC-WBC感度マップにB1磁場分布モデルを適合させ、B1磁場分布を推定する(ステップS102)。
 続いて、補正係数導出部26eが、ステップS102において推定されたB1磁場分布からTX補正係数を導出するとともに、RX補正係数も導出する(ステップS103)。そして、ノイズ成分増幅度導出部26fが、TX補正係数に基づいて、ノイズ成分増幅度を導出する(ステップS104)。
 一方、図8に示すように、実施形態に係る画像再構成部22において、まず、再構成部22aが、画像を再構成し(ステップS201)、次に、輝度補正部22bが、TX補正係数及びRX補正係数を用いて、再構成後の画像に対して輝度補正を行う(ステップS202)。
 続いて、フィルタ適用部22cは、輝度補正後の画像に含まれるピクセル毎にノイズ成分増幅度を用いて適応型フィルタの計算を行う。ノイズ成分増幅度が高い場合(ステップS203肯定)、適応型フィルタはローパスフィルタとなるので、フィルタ適用部22cは、この適応型フィルタをこのピクセルに適用する(ステップS204)。一方、ノイズ成分増幅度が低い場合(ステップS203否定)、適応型フィルタはハイパスフィルタとなるので、フィルタ適用部22cは、この適応型フィルタを、このピクセルに適用する(ステップS205)。
 そして、フィルタ適用部22cは、画像に含まれる全てのピクセルについてフィルタ選択及びフィルタ適用の処理を繰り返し、処理が終了すると(ステップS206肯定)、フィルタ適用前の画像とフィルタ適用後の画像とを重み付け加算して(ステップS207)、最終画像を得る。
 なお、処理手順は上述した例に限られるものではなく、他の同等の処理を行ってもよい。例えば、フィルタを適用した後に輝度補正を行う、あるいは、輝度補正の処理の中で上述したフィルタ処理を行うなど、処理の順序を任意に変更することができる。また、例えば、予めローパスフィルタ及びハイパスフィルタの複数種類のフィルタを準備しておき、ノイズ成分増幅度に応じて適宜選択して用いてもよい。
 上述したように、実施形態に係るMRI装置100は、感度分布からB1磁場分布を推定し、推定したB1磁場分布からTX補正係数を導出するとともに、RX補正係数についても導出し、それぞれの補正係数による輝度補正を行うことで、MR信号の輝度の不均一性を低減することができる。
 また、実施形態に係るMRI装置100は、ノイズ成分増幅度が高い領域についてはローパスフィルタを適用してノイズ成分を抑制し、ノイズ成分増幅度が低い領域についてはハイパスフィルタを適用して鮮鋭度を向上させるので、画質を改善し、高周波磁場の不均一性による影響を適切に低減することができる。
(その他の実施形態)
 なお、実施形態は、上述した実施形態に限られるものではない。
(MR信号収集段階における手法との組合せ)
 上述した実施形態においては、再構成後の画像に対して輝度補正・フィルタ処理を行うことで、B1磁場の不均一性による影響を低減する手法を説明した。この手法は、シーケンス制御部10によって収集されたMR信号に対する画像処理として行われる。一方、MR信号を収集する段階においてB1磁場の不均一性による影響を低減する手法がある。一例を挙げると、例えば、撮像部位やRFコイルの種類等の撮像条件に応じてRFパルスの位相及び振幅を調整しながらMR信号を収集する手法である。この手法によれば、シーケンス制御部10によって収集されたMR信号自体、B1磁場の不均一性による影響が、ある程度低減されたものとなる。
 この点、この2つの手法、すなわち、画像処理として行われる手法、及び、MR信号の収集段階で行われる手法は、その両方を組み合わせて実施してもよいし、一方のみを実施してもよい。両方を実施する場合、例えば、まず、RFパルスの位相及び振幅を調整しながらMR信号が収集され、その後、MR信号に対する画像処理において、フィルタ処理が行われる。この場合、収集段階においても、ある程度B1磁場の不均一性による影響が低減され、その後の画像処理において、さらに、B1磁場の不均一性による影響が低減される。なお、MR信号の収集段階で行われる手法は、他の手法であってもよい。
(感度分布の共通化)
 また、上述した実施形態においては、感度分布測定部26cが、感度マップ撮像を行い、感度分布を取得することを説明した。この感度マップ撮像は、B1磁場分布の推定等の処理のために特別に実施されてもよいし、あるいは、他の目的のための感度マップ撮像と共通化されてもよい。
 例えば、パラレルイメージング(PI(Parallel Imaging))法による撮像では、画像生成時のアンフォールディング処理において感度分布が用いられる。このため、PI法による撮像では、準備スキャン等の段階で感度マップ撮像が実施され、感度分布が取得される。そこで、このような場合に、感動分布測定部26cは、アンフォールディング処理用に取得される感度分布と、B1磁場分布の推定等の処理用に取得される感度分布とを共通化すればよい。言い換えると、PI法を用いた撮像において、再構成部22aは、感度分布測定部26cによって取得された感度分布を用いてアンフォールディング処理を行い、画像を生成する。一方、B1磁場分布推定部26dは、同じ感度分布を用いて、B1磁場分布を推定する。
 以上述べた少なくとも一つの実施形態の磁気共鳴イメージング装置及び磁気共鳴イメージング方法によれば、高周波磁場の不均一性による影響を適切に低減することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (15)

  1.  高周波磁場の分布を取得する取得部と、
     前記高周波磁場の分布から、RFパルスの送信に起因して画像に生じる送信ムラを補正するための送信補正係数を導出する補正係数導出部と、
     前記補正に伴い前記画像内で増幅されるノイズ成分の増幅度を、前記高周波磁場の分布又は前記送信補正係数に基づきピクセル毎に導出する増幅度導出部と、
     前記補正が施される画像の各ピクセルに、前記増幅度に応じたフィルタ処理を行うフィルタ処理部と
     を備える、磁気共鳴イメージング装置。
  2.  前記フィルタ処理部は、前記増幅度が高いほど、相対的に低い周波数帯域を通過させ易いフィルタ処理を行い、前記増幅度が低いほど、相対的に高い周波数帯域を通過させ易いフィルタ処理を行う、請求項1に記載の磁気共鳴イメージング装置。
  3.  前記フィルタ処理部は、複数のフィルタに対する重み付けを前記増幅度に応じて変更することで、前記フィルタ処理を行う、請求項1に記載の磁気共鳴イメージング装置。
  4.  前記フィルタ処理部は、複数のフィルタに対する重み付けを前記増幅度に応じて変更することで、前記フィルタ処理を行う、請求項2に記載の磁気共鳴イメージング装置。
  5.  前記フィルタ処理部は、中心成分のみが1であるフィルタと平滑化フィルタとを重み付けて用いる適応型フィルタを用い、前記増幅度に応じて重み付けを変更することで、前記フィルタ処理を行う、請求項3に記載の磁気共鳴イメージング装置。
  6.  前記フィルタ処理部は、中心成分のみが1であるフィルタと平滑化フィルタとを重み付けて用いる適応型フィルタを用い、前記増幅度に応じて重み付けを変更することで、前記フィルタ処理を行う、請求項4に記載の磁気共鳴イメージング装置。
  7.  前記取得部は、RF(Radio Frequency)コイルの感度分布から、高周波磁場の分布を推定することで、前記高周波磁場の分布を取得する、請求項1に記載の磁気共鳴イメージング装置。
  8.  前記取得部は、RFコイルの感度分布から、高周波磁場の分布を推定することで、前記高周波磁場の分布を取得する、請求項2に記載の磁気共鳴イメージング装置。
  9.  前記取得部は、RFコイルの感度分布から、高周波磁場の分布を推定することで、前記高周波磁場の分布を取得する、請求項3に記載の磁気共鳴イメージング装置。
  10.  パラレルイメージング法によって収集された磁気共鳴信号データから画像を再構成する再構成部を更に備え、
     前記再構成部は、アンフォールディング処理に用いる感度分布として、前記高周波磁場分布の推定に用いられる感度分布を用いる、請求項7に記載の磁気共鳴イメージング装置。
  11.  磁気共鳴信号データから画像を再構成する再構成部と、
     前記再構成された画像に対して輝度補正を行う輝度補正部とを更に備え、
     前記輝度補正部は、前記輝度補正に用いる感度分布として、前記高周波磁場分布の推定に用いられる感度分布を用いる、請求項7に記載の磁気共鳴イメージング装置。
  12.  MR信号を収集するシーケンス制御部を更に備え、
     前記シーケンス制御部は、高周波磁場の不均一性による影響を低減する調整を行って、MR信号を収集する、請求項1に記載の磁気共鳴イメージング装置。
  13.  MR信号を収集するシーケンス制御部を更に備え、
     前記シーケンス制御部は、高周波磁場の不均一性による影響を低減する調整を行って、MR信号を収集する、請求項2に記載の磁気共鳴イメージング装置。
  14.  MR信号を収集するシーケンス制御部を更に備え、
     前記シーケンス制御部は、高周波磁場の不均一性による影響を低減する調整を行って、MR信号を収集する、請求項3に記載の磁気共鳴イメージング装置。
  15.  磁気共鳴イメージング装置で実行される磁気共鳴イメージング方法であって、
     高周波磁場の分布を取得する取得工程と、
     前記高周波磁場の分布から、RFパルスの送信に起因して画像に生じる送信ムラを補正するための送信補正係数を導出する補正係数導出工程と、
     前記補正に伴い前記画像内で増幅されるノイズ成分の増幅度を、前記高周波磁場の分布又は前記送信補正係数に基づきピクセル毎に導出する増幅度導出工程と、
     前記補正が施される画像の各ピクセルに、前記増幅度に応じたフィルタ処理を行うフィルタ処理工程と
     を含む、磁気共鳴イメージング方法。
PCT/JP2013/052512 2012-02-03 2013-02-04 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 WO2013115400A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/303,117 US10175329B2 (en) 2012-02-03 2014-06-12 Magnetic resonance imaging apparatus and magnetic resonance imaging method for correcting transmission unevenness due to RF pulse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012022153 2012-02-03
JP2012-022153 2012-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/303,117 Continuation US10175329B2 (en) 2012-02-03 2014-06-12 Magnetic resonance imaging apparatus and magnetic resonance imaging method for correcting transmission unevenness due to RF pulse

Publications (1)

Publication Number Publication Date
WO2013115400A1 true WO2013115400A1 (ja) 2013-08-08

Family

ID=48905424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052512 WO2013115400A1 (ja) 2012-02-03 2013-02-04 磁気共鳴イメージング装置及び磁気共鳴イメージング方法

Country Status (3)

Country Link
US (1) US10175329B2 (ja)
JP (1) JP2013176553A (ja)
WO (1) WO2013115400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186942A (ja) * 2017-04-28 2018-11-29 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及びパルス設計方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176553A (ja) * 2012-02-03 2013-09-09 Toshiba Corp 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JP6621978B2 (ja) * 2013-12-16 2019-12-18 キヤノンメディカルシステムズ株式会社 Mri装置
US10656225B2 (en) * 2016-09-01 2020-05-19 Canon Medical Systems Corporation Magnetic resonance imaging apparatus
US10677861B2 (en) * 2016-10-21 2020-06-09 Canon Medical Systems Corporation Magnetic resonance imaging apparatus
US10115212B2 (en) * 2016-11-07 2018-10-30 Uih America, Inc. Image reconstruction system and method in magnetic resonance imaging
US11403024B2 (en) * 2019-08-28 2022-08-02 Cohesity, Inc. Efficient restoration of content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222724A (ja) * 1994-02-16 1995-08-22 Hitachi Medical Corp 画像補正方法
JP2007236624A (ja) * 2006-03-08 2007-09-20 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置と磁気共鳴イメージング方法
JP2007244848A (ja) * 2006-02-17 2007-09-27 Toshiba Corp データ補正装置、データ補正方法、磁気共鳴イメージング装置およびx線ct装置
JP2010142411A (ja) * 2008-12-18 2010-07-01 Toshiba Corp 磁気共鳴イメージング装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991887B1 (en) * 2006-02-17 2018-10-17 Regents of the University of Minnesota High field magnetic resonance
US20090285463A1 (en) * 2008-04-18 2009-11-19 Ricardo Otazo Superresolution parallel magnetic resonance imaging
JP5558737B2 (ja) 2008-06-26 2014-07-23 株式会社東芝 磁気共鳴イメージング装置
US8405395B2 (en) * 2010-04-15 2013-03-26 The General Hospital Corporation Method for simultaneous multi-slice magnetic resonance imaging
US8217652B2 (en) 2010-08-06 2012-07-10 Kabushiki Kaisha Toshiba Spatial intensity correction for RF shading non-uniformities in MRI
US9285449B2 (en) * 2011-06-15 2016-03-15 Chunlei Liu Systems and methods for imaging and quantifying tissue magnetism with magnetic resonance imaging
JP2013176553A (ja) * 2012-02-03 2013-09-09 Toshiba Corp 磁気共鳴イメージング装置及び磁気共鳴イメージング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222724A (ja) * 1994-02-16 1995-08-22 Hitachi Medical Corp 画像補正方法
JP2007244848A (ja) * 2006-02-17 2007-09-27 Toshiba Corp データ補正装置、データ補正方法、磁気共鳴イメージング装置およびx線ct装置
JP2007236624A (ja) * 2006-03-08 2007-09-20 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置と磁気共鳴イメージング方法
JP2010142411A (ja) * 2008-12-18 2010-07-01 Toshiba Corp 磁気共鳴イメージング装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186942A (ja) * 2017-04-28 2018-11-29 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及びパルス設計方法

Also Published As

Publication number Publication date
US10175329B2 (en) 2019-01-08
US20140292335A1 (en) 2014-10-02
JP2013176553A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
WO2013115400A1 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JP5902317B2 (ja) 磁気共鳴イメージング装置および定量的磁化率マッピング法
JP6291328B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング装置に搭載されるパルスシーケンスの算出方法
WO2016076076A1 (ja) 磁気共鳴イメージング装置および定量的磁化率マッピング方法
JP6071905B2 (ja) 磁気共鳴イメージング装置及び領域撮像方法
WO2015190244A1 (ja) 磁気共鳴イメージング装置および傾斜磁場波形調整方法
US10088542B2 (en) Magnetic resonance apparatus and method for the operation thereof
US9170315B2 (en) Magnetic resonance imaging apparatus and method
JP2009153971A (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
US9940540B2 (en) Image correction during magnetic resonance dependent on the reception profile of the reception antenna
KR20160038796A (ko) 복수의 서브시스템들을 포함하는 의료 이미징 검사 디바이스의 동작
JP6452994B2 (ja) 画像処理装置及び磁気共鳴イメージング装置
US20120187948A1 (en) Magnetic resonance imaging apparatus
US11300646B2 (en) Magnetic resonance imaging apparatus, image processing apparatus, and image processing method
KR20140101683A (ko) 자기 공명 이미징에서 비율 이미지들을 디노이징하기 위한 단순한 방법
JP7455508B2 (ja) 磁気共鳴イメージング装置および医用複素数画像処理装置
JP2016093494A (ja) 磁気共鳴イメージング装置、画像処理装置及び画像処理方法
CN110068781B (zh) 磁共振成像装置、磁共振成像系统及参数推定方法
JP6202761B2 (ja) 磁気共鳴イメージング装置及びその処理方法
KR101844514B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 획득 방법
JP6113012B2 (ja) 磁気共鳴イメージング装置及び補正用b1マップを計算する方法
JP7183048B2 (ja) 磁気共鳴イメージングシステム、磁気共鳴イメージング方法、及び磁気共鳴イメージングプログラム
JP2023004423A (ja) 医用画像処理装置、医用撮像装置、及び、医用画像におけるノイズ低減方法
JP7510910B2 (ja) 磁気共鳴イメージング装置、画像処理装置および画像処理方法
JP5566587B2 (ja) 磁気共鳴イメージング装置およびリンギング低減方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743366

Country of ref document: EP

Kind code of ref document: A1