WO2013115054A1 - Electrostatic discharge protection device - Google Patents

Electrostatic discharge protection device Download PDF

Info

Publication number
WO2013115054A1
WO2013115054A1 PCT/JP2013/051435 JP2013051435W WO2013115054A1 WO 2013115054 A1 WO2013115054 A1 WO 2013115054A1 JP 2013051435 W JP2013051435 W JP 2013051435W WO 2013115054 A1 WO2013115054 A1 WO 2013115054A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
insulator layer
esd protection
protection device
cavity
Prior art date
Application number
PCT/JP2013/051435
Other languages
French (fr)
Japanese (ja)
Inventor
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013556352A priority Critical patent/JP5874743B2/en
Priority to CN201390000227.5U priority patent/CN204088879U/en
Publication of WO2013115054A1 publication Critical patent/WO2013115054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/15Details of spark gaps for protection against excessive pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • H05K1/026Spark gaps

Definitions

  • the present invention relates to an ESD protection device for protecting against static electricity, and more specifically, first and second discharge electrodes are arranged with a gap in a cavity provided in an insulating substrate.
  • the present invention relates to an ESD protection device.
  • ESD protection devices are used to protect electronic circuit from ESD (Electro-Static Discharge).
  • the ESD protection device 1001 includes a ceramic multilayer substrate 1002.
  • a cavity 1003 is formed in the ceramic multilayer substrate 1002.
  • First and second discharge electrodes 1004 and 1005 are provided so as to reach the cavity 1003.
  • the tip of the first discharge electrode 1004 and the tip of the second discharge electrode 1005 are opposed to each other with a gap.
  • a discharge auxiliary portion 1006 is formed so as to face the gap and straddle the first and second discharge electrodes 1004 and 1005.
  • First and second external electrodes 1007 and 1008 are formed on both end faces of the ceramic multilayer substrate 1002.
  • the first external electrode 1007 is connected to the first discharge electrode 1004, and the second external electrode 1008 is connected to the second discharge electrode 1005.
  • the ESD protection device 1001 there is a possibility that peeling or cracking may occur in the ceramic multilayer substrate 1002 around the cavity 1003 while static electricity is applied and repeated discharge occurs.
  • the ceramic multilayer substrate 1002 there is a possibility that separation between ceramic layers or cracks starting from the peripheral portion may occur at the peripheral portion of the cavity indicated by an arrow A in FIG. For this reason, there is a problem that the ESD protection characteristics deteriorate as the discharge is repeated.
  • An object of the present invention is to provide an ESD protection device in which the ESD protection characteristics are unlikely to deteriorate even if the discharge is repeated to protect against static electricity.
  • the ESD protection device includes an insulating substrate, first and second discharge electrodes, and first and second external electrodes.
  • the insulating substrate has a first insulator layer and a second insulator layer stacked on the first insulator layer. A cavity surrounded by the first insulator layer and the second insulator layer is formed inside the insulating substrate.
  • the first and second discharge electrodes are opposed to each other with a gap in the cavity.
  • the first and second discharge electrodes are disposed on the first insulator layer.
  • the first external electrode is electrically connected to the first discharge electrode and is formed on the outer surface of the insulating substrate.
  • the second external electrode is electrically connected to the second discharge electrode and is formed on the outer surface of the insulating substrate.
  • the peripheral edge portion of the cavity located on each plane including each junction interface between the second insulator layer, the first insulator layer, the first discharge electrode, and the second discharge electrode is provided. Has a recess.
  • the joint portion between the seal layer, the first insulator layer, the first discharge electrode, and the second discharge electrode forms the peripheral edge of the cavity.
  • a plane including a bonding interface is used.
  • the concave portion is a plane including a bonding interface between the second insulator layer and the first discharge electrode, or the second insulator layer and the second discharge electrode. It is located on the plane including the bonding interface.
  • the stress is applied at the bonding interface between the second insulator layer and the first or second discharge electrode as compared with the bonding interface between the first insulator layer and the second insulator layer, peeling or Cracks are likely to occur. Therefore, when the concave portion is located on a plane including the bonding interface between the second insulator layer and the first or second discharge electrode, the crack and the peeling at the portion where the crack and the peeling are likely to occur are more effective. Can be suppressed.
  • the recess includes a plane including the bonding interface between the second insulator layer and the first discharge electrode, and the second insulator layer and the second discharge electrode. It is located on both of the planes including the bonding interface. In this case, it is possible to more effectively suppress the deterioration of the ESD protection characteristics in the ESD protection device.
  • the concave portion does not have an acute angle portion when seen in a plan view.
  • the occurrence of cracks and peeling can be more effectively suppressed, and therefore deterioration of the ESD protection characteristics of the ESD protection device can be more effectively suppressed.
  • a planar shape having no acute angle portion a shape made of a curve or a shape made of a plurality of lines forming an obtuse angle can be adopted.
  • the recess does not reach the gap.
  • the concave portion does not reach the gap which is the discharge region, it is possible to suppress the deterioration of the ESD protection characteristics when repeatedly discharged without further causing the deterioration of the ESD protection characteristics.
  • the first and second discharge electrodes have a rectangular shape, and the long sides of the first and second discharge electrodes separate the gap. Facing each other. In this case, since the lengths of the first and second discharge electrode portions along the opposing direction of the first and second discharge electrodes are long, the deterioration of the ESD protection characteristics after repeated discharge is further effectively suppressed. can do.
  • the long sides of the first and second discharge electrodes opposite to the long sides facing each other. Is located outside the cavity. In this case, the degradation of the ESD protection characteristics can be more effectively suppressed.
  • the ESD protection device may further include a discharge assist unit that includes metal particles and semiconductor particles and is provided in the gap. In this case, the discharge start voltage can be lowered.
  • the ESD protection device may further include a seal layer provided so as to cover the inner wall of the cavity.
  • the peripheral edge of the cavity is located at each joint interface between the seal layer, the first insulator layer, the first discharge electrode, and the second discharge electrode.
  • the seal layer is provided, the formation accuracy of the cavity can be increased.
  • the peripheral portion of the cavity has a recess, even if an impact due to heat or gas occurs when the discharge is repeated, the force due to the impact is dispersed in the peripheral portion of the cavity due to the presence of the recess. . Therefore, peeling and cracking at the peripheral edge of the cavity can be suppressed. Therefore, even if repeated discharge is performed, it is possible to effectively suppress the deterioration of the ESD protection characteristics.
  • FIG. 1A is a schematic plan view of an essential part of the ESD protection apparatus according to the first embodiment of the present invention
  • FIG. 1B is a line (BB) in FIG. It is front sectional drawing of the ESD protection apparatus in the part which corresponds.
  • FIG. 2 is a schematic plan view showing a main part of the ESD protection apparatus according to the second embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing the main part of the ESD protection apparatus according to the third embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the main part of the ESD protection apparatus according to the fourth embodiment of the present invention.
  • FIG. 5 is a schematic plan view showing the main part of the ESD protection apparatus according to the fifth embodiment of the present invention.
  • FIG. 6A and FIG. 6B are schematic plan views showing modifications of the shape of the concave portion at the peripheral edge of the cavity according to the present invention.
  • FIG. 7 is a front sectional view showing a conventional ESD protection device.
  • FIG. 1B is a front cross-sectional view of the ESD protection apparatus according to the first embodiment of the present invention, and shows a cross section corresponding to a portion along line BB in FIG. 1A described later.
  • the ESD protection device 1 has an insulating substrate 2.
  • the insulating substrate 2 is made of a ceramic multilayer substrate in the present embodiment.
  • the ceramic material constituting the ceramic multilayer substrate is not particularly limited, but in this embodiment, low-temperature fired ceramic (LTCC) containing Ba, Al, and Si as main components is used.
  • LTCC low-temperature fired ceramic
  • the insulating substrate 2 has a first insulator layer 2a and a second insulator layer 2b laminated on the first insulator layer 2a.
  • the first and second insulator layers 2a and 2b are formed of the same ceramic material. Therefore, the insulating layers 2a and 2b of the insulating substrate 2 can be formed by laminating and firing a plurality of ceramic green sheets having the same composition.
  • the shrinkage behavior upon firing is the same.
  • the first insulator layer 2a and the second insulator layer 2b may be formed of different ceramic materials.
  • a cavity 3 is formed in the insulating substrate 2.
  • the cavity 3 is formed by removing the resin provided in the portion where the cavity 3 is located by heating and vaporizing the binder resin in the ceramic green sheet.
  • a first discharge electrode 4 and a second discharge electrode 5 are formed on the first insulator layer 2a.
  • the first and second discharge electrodes 4 and 5 are made of Cu.
  • the first and second discharge electrodes 4 and 5 can be formed of other metals or alloys.
  • the first discharge electrode 4 and the second discharge electrode 5 have first and second long sides 4b, 4c, 5b, and 5c extending in the length direction, respectively.
  • the long side 4b and the long side 5b are opposed to each other with a gap G therebetween. Accordingly, the distance along the length direction of the facing portions of the first and second discharge electrodes 4 and 5 across the gap G is increased. Therefore, it is possible to suppress an increase in the discharge start voltage.
  • the long sides 4b and 5b facing each other through the gap G are melted or the electrode material disappears. Accordingly, the facing distance becomes longer in that portion, but when discharging is performed by applying static electricity next, discharge occurs in the remaining portion where the facing distance is not long. Therefore, even if the discharge is repeatedly performed by the amount of the distance along the length direction of the facing portions, the increase in the discharge start voltage can be suppressed.
  • FIG. 1A is a schematic plan view of the ESD protection device 1 in a state where an upper second insulator layer 2b and an upper seal layer 11 described later are removed.
  • the peripheral portion of the cavity 3 is indicated by a one-dot chain line. This peripheral portion is the outer peripheral edge of the cavity 3, and includes a plane including the junction interface between the second insulator layer 2b and the first and second discharge electrodes 4 and 5, and the second insulator layer. 2b and the first insulator layer 2a are located on a plane including the bonding interface.
  • the peripheral portion 3X of the cavity 3 is formed between the second insulator layer 2b and the upper surfaces of the first and second discharge electrodes 4 and 5 in the portion where the first and second discharge electrodes 4 and 5 are present. It is located on a plane including the junction interface, and is located on a plane including the junction interface of the first and second insulator layers 2a and 2b in a portion where the first and second discharge electrodes 4 and 5 are not located. Will be.
  • the “plane including the bonding interface” is used to include a configuration in which the upper seal layer 11 described below is provided.
  • the upper seal layer 11 is provided on the surface facing the cavity 3 of the second insulator layer 2b. Therefore, the peripheral edge portion 3X of the cavity 3 is located on the inner surface of the upper seal layer 11 on each of the bonding interfaces.
  • the peripheral edge portion 3X of the cavity 3 is the inner edge of the joint portion between the upper seal layer 11 and the first insulator layer 2a, the upper seal layer. 11 and the inner edge of the joint portion between the first and second discharge electrodes 4 and 5.
  • the peripheral edge portion 3X of the cavity 3 includes the junction interface between the second insulator layer 2b, the first insulator layer 2a, and the first and second discharge electrodes 4 and 5 described above. It will be located in the plane.
  • the peripheral edge portion 3X of the cavity 3 is located at each junction interface between the second insulator layer 2b, the first insulator layer 2a, and the first and second discharge electrodes 4 and 5.
  • a discharge auxiliary portion 6 is provided so as to straddle the first and second discharge electrodes 4 and 5.
  • the discharge auxiliary portion 6 is made of a particle dispersion in which metal particles 6a whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles 6b are dispersed. More specifically, it is formed by firing a thick film paste containing metal particles whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles.
  • the discharge auxiliary portion 6 in which the metal particles 6a and the semiconductor ceramic particles 6b are dispersed is formed, a discharge using creeping discharge between the first discharge electrode 4 and the second discharge electrode 5 is performed.
  • the discharge start voltage can be lowered. Therefore, protection from static electricity can be achieved more effectively.
  • the metal particles 6a and the semiconductor ceramic particles 6b of the auxiliary discharge portion 6 are shown so as to enter the first and second discharge electrodes 4 and 5 as well.
  • this is a conductive paste for printing the thick film paste containing the metal particles 6a and the semiconductor ceramic particles 6b and further forming the first and second discharge electrodes 4 and 5.
  • the discharge auxiliary portion 6 is formed so as to straddle the first and second discharge electrodes 4 and 5.
  • the discharge auxiliary portion 6 does not enter the first and second discharge electrodes 4 and 5, and may be provided only in the gap portion between the first and second discharge electrodes 4 and 5, or the discharge auxiliary portion 6 may not be provided.
  • the lower seal layer 10 is formed on the lower surface of the discharge auxiliary portion 6.
  • an upper seal layer 11 is formed above the cavity 3.
  • the lower seal layer 10 and the upper seal layer 11 are made of ceramics having a higher sintering temperature than the ceramics constituting the insulating substrate 2.
  • the lower seal layer 10 and the upper seal layer 11 are made of Al 2 O 3 .
  • the ceramic material constituting the sealing layer is not particularly limited as long as the sintering temperature is higher than that of the ceramic material constituting the insulating substrate 2.
  • the lower seal layer 10 is formed on the upper surface of the first insulator layer 2a, and the discharge assisting portion 6 described above is laminated on the lower seal layer 10.
  • the upper surface of the discharge assisting part 6 faces the cavity 3. That is, the lower surface of the cavity 3 is the upper surface of the discharge auxiliary portion 6.
  • the upper surface of the cavity 3 is covered with the upper seal layer 11. Note that the lower seal layer 10 and the upper seal layer 11 are not necessarily provided.
  • a first external electrode 12 is formed so as to cover the end face 2c of the insulating substrate 2.
  • the first discharge electrode 4 is drawn out to the end face 2c. Accordingly, the plurality of first discharge electrodes 4 are electrically connected by the first external electrode 12.
  • a plurality of second discharge electrodes 5 led out to the opposite end face 2d are electrically connected to a second external electrode 13 provided so as to cover the end face 2d.
  • the first and second external electrodes 12 and 13 are made of an appropriate metal or alloy such as Cu, Al, or Ag.
  • the feature of the present embodiment is that the cavity 3 is provided with recesses 3a and 3b in the peripheral edge portion 3X when viewed in plan.
  • the recesses 3a and 3b are recesses that are open to the outside of the gap G at the peripheral edge 3X.
  • the recesses 3a and 3b are provided, the stress due to the impact is dispersed in the peripheral portion 3X. Therefore, the peeling and cracking can be effectively suppressed. Thereby, it is possible to suppress an increase in the discharge start voltage and improve the reliability of the ESD protection apparatus 1.
  • the recesses 3a and 3b are located on the first and second discharge electrodes 4 and 5, respectively.
  • the portion of the first discharge electrode 4 that faces the gap G of the first long side 4b is located in the cavity 3, and the second long side 4c on the opposite side is located outside the cavity 3.
  • the part facing the gap G of the first long side 5 b is located in the cavity 3, and the second long side 5 c on the opposite side is located outside the cavity 3. ing. Therefore, the plane area of the cavity 3 can be reduced and the size can be reduced.
  • peripheral edge portion 3X of the cavity 3 is long on the bonding interface between the second insulator layer 2b and the first and second discharge electrodes 4 and 5, the recesses 3a and 3b are formed. As a result, an increase in the discharge start voltage can be effectively suppressed. In addition, as described above, since the long side 4b and the long side 4c are opposed to each other with the gap G therebetween, an increase in the discharge start voltage can be effectively suppressed.
  • FIG. 2 is a schematic plan view showing a main part of the ESD protection device 21 according to the second embodiment of the present invention.
  • the recesses 3a and 3b provided in the peripheral edge portion 3X of the cavity 3 are located not on the first and second discharge electrodes 4 and 5 but on the first insulator layer 2a. ing. That is, the peripheral edge portion 3X of the cavity 3 has a substantially rectangular shape, but recesses 3a and 3b are provided on a pair of short sides of the substantially rectangular shape.
  • the stress due to the impact described above is dispersed on the short side of the peripheral edge portion 3X of the substantially rectangular cavity 3. Accordingly, it is possible to effectively suppress peeling and cracks caused by an impact between the first and second insulator layers 2a and 2b.
  • the recesses 3a and 3b are more likely to be peeled off or cracked than the bonding interface between the second insulator layer 2b and the first insulator layer 2a. Since it is provided at the bonding interface between the insulator layer 2b and the first and second discharge electrodes 4 and 5, it is possible to more effectively suppress peeling and cracks at the peripheral edge 3X of the cavity 3, so that stress distribution The effect is greater in the first embodiment than in the second embodiment.
  • FIG. 3 is a schematic plan view showing a main part of the ESD protection apparatus 31 according to the third embodiment of the present invention.
  • the peripheral edge 3 ⁇ / b> X of the cavity 3 is formed so as to extend to the outside of the second long side 4 c of the first discharge electrode 4 and the second long side 5 c of the second discharge electrode 5. Yes.
  • the peripheral edge 3X of the cavity 3 reaches not only the first and second long sides 4b and 5b facing each other via the gap G but also the second long sides 4c and 5c on the opposite side. It may be formed.
  • the recesses 3a and 3b are respectively provided on a pair of sides extending in a direction in which the first and second discharge electrodes 4 and 5 face each other in the peripheral edge portion 3X of the substantially rectangular cavity 3.
  • the recesses 3a and 3b are located on the first and second discharge electrodes 4 and 5, respectively.
  • the recesses 3a and 3b are provided, even if an impact caused by repeated discharge is applied to the peripheral edge 3X of the cavity 3, the stress is dispersed, and the second insulator layer 2b and the first Separation and cracks between the second discharge electrodes 4 and 5 can be effectively suppressed.
  • FIG. 4 is a schematic plan view showing a main part of the ESD protection apparatus 41 according to the fourth embodiment of the present invention.
  • the first discharge electrode 4 and the second discharge electrode 5 are opposed to each other with the short sides 4a and 5a located at the tips via the gap G. That is, the short side 4 a of the first discharge electrode 4 and the short side 5 a of the second discharge electrode 5 face each other in the length direction of the ESD protection device 1.
  • a peripheral edge 3X of the cavity 3 is provided so as to surround the gap G. Also in this embodiment, the peripheral edge 3X is provided with recesses 3a and 3b that open toward the side away from the gap G.
  • the recesses 3a and 3b are formed so as to reach from the first and second discharge electrodes 4 and 5 to the junction interface between the first and second insulator layers 2a and 2b. Also in this embodiment, since the recesses 3a and 3b are provided, the second insulator layer 2b and the first and second discharge electrodes 4 and 5 It is possible to reliably suppress peeling and cracks at the bonding interface and the bonding interface between the first insulator layer 2a and the second insulator layer 2b.
  • FIG. 5 is a schematic plan view of an ESD protection device 51 according to a fifth embodiment of the present invention. Also in this embodiment, the short sides 4a and 5a located on the front end sides of the first and second discharge electrodes 4 and 5 are opposed to each other with a gap G, as in the ESD protection device 41 shown in FIG. Yes.
  • the peripheral edge 3X of the cavity 3 has a substantially rectangular shape, and the recesses 3a and 3b are located only on the first and second discharge electrodes 4 and 5, respectively. Also in this embodiment, the stress due to the impact when the discharge is repeated is alleviated by providing the recesses 3a and 3b. Therefore, an increase in the discharge start voltage can be effectively suppressed.
  • the recesses 3a and 3b are located only at the junction interface between the second insulator layer 2b and the first and second discharge electrodes 4 and 5.
  • the recess 3a extends from the bottom 3a1 extending in the length direction of the first and second discharge electrodes 4 and 5 and from both ends of the bottom 3a1 to portions outside the recess of the peripheral edge 3X of the cavity 3, respectively.
  • the shape has a pair of hypotenuses 3a2 and 3a3.
  • the angle formed between the base 3a1 and the hypotenuse 3a2 or 3a3 is an obtuse angle.
  • the recess 3a has an inverted trapezoidal shape.
  • it is desirable that the portion formed by the two sides in the recess 3a has an obtuse angle, thereby enhancing the stress dispersion effect due to the impact described above.
  • a curved recess 3c may be formed.
  • four or more straight lines may be connected so as to form an obtuse angle to form the recess 3d.
  • the recess 3 does not reach the gap G as in the first to fifth embodiments. As a result, variations in the discharge start voltage can be suppressed.
  • the recesses 3a and 3b are provided on the first discharge electrode 4 side and the second discharge electrode 5 side via the gap G, but only one of the recesses 3a or 3b is provided. It may be provided.
  • the number of recesses is not particularly limited, and three or more recesses may be provided at the peripheral edge of the cavity.
  • the corner shape of the peripheral edge of the cavity 3 is also formed by an obtuse angle or a curve. Thereby, peeling and cracks starting from the corners of the peripheral edge of the cavity 3 can be suppressed.
  • Example 1 As Example 1, the ESD protection apparatus 1 according to the first embodiment was produced.
  • a BAS material mainly composed of Ba, Al and Si was mixed so as to have a predetermined composition and calcined at a temperature of 800 ° C. to 1000 ° C.
  • the obtained calcined powder was pulverized with a zirconium ball mill for 12 hours to obtain a ceramic powder.
  • an organic solvent composed of toluene and echinene was added and mixed.
  • a binder and a plasticizer were added to obtain a slurry.
  • the slurry thus obtained was molded by a doctor blade method to obtain a ceramic green sheet having a thickness of 30 ⁇ m.
  • An electrode paste for constituting the first and second discharge electrodes 4 and 5 was prepared as follows. A solvent was added to 80% by weight of Cu particles having an average particle diameter of 2 ⁇ m and a binder resin made of ethyl cellulose, and the mixture was stirred and mixed with a three roll to obtain an electrode paste.
  • a resin paste for forming the cavity 3 As a resin paste for forming the cavity 3, a resin paste containing an organic solvent in an appropriate ratio as a solvent with respect to ethyl cellulose was prepared.
  • a ceramic paste for forming the lower seal layer 10 and the upper seal layer 11 As a ceramic paste for forming the lower seal layer 10 and the upper seal layer 11, a ceramic paste for forming a seal layer prepared by mixing alumina powder and an organic solvent as a solvent so as to be 15% by weight of the whole was prepared. .
  • a plurality of ceramic green sheets for a ceramic multilayer substrate prepared as described above were laminated.
  • the above-mentioned ceramic paste for forming a seal layer was applied to a portion constituting the lower seal layer 10 by screen printing.
  • the auxiliary electrode forming paste was applied onto the seal layer forming paste.
  • the electrode paste was printed such that the dimension a of the gap G between the first and second discharge electrodes was 30 ⁇ m.
  • the cavity forming resin paste was applied.
  • region of the resin paste for cavity formation was set so that the peripheral part of the cavity shown to Fig.1 (a) might be formed.
  • a substantially rectangular region having an oblique side with a long side of 160 ⁇ m, a short side of 80 ⁇ m, and a corner having a length of 17 ⁇ m.
  • the length of the base 3a1 is 20 ⁇ m
  • the length of the hypotenuses 3a2 and 3a3 is 17 ⁇ m
  • the angle between the base 3a1 and the hypotenuse 3a2 or 3a3 is 45 °.
  • a seal layer forming paste for forming the upper seal layer was applied so as to cover the portion to which the resin paste was applied.
  • the laminate is cut in the thickness direction to obtain a laminate chip for each ESD protection device unit, and then an electrode paste is applied to the first and second end faces of the laminate chip, and the external electrodes are attached. Formed. Cu was used as the electrode paste for forming external electrodes.
  • the laminate chip was baked in a nitrogen atmosphere to obtain an ESD protection device having a length of 1.0 mm ⁇ width of 0.5 mm ⁇ thickness of 0.3 mm.
  • the first and second discharge electrodes 4 and 5 have a length of 550 ⁇ m and a width of 40 ⁇ m.
  • the gap G was 30 ⁇ m, and the lengthwise dimension of the facing portions of the first and second discharge electrodes 4 and 5 was 100 ⁇ m.
  • Example 2 The ESD protection device 21 of the second embodiment shown in FIG. 2 was produced.
  • the dimensions of the recesses 3a and 3b were the same as in Example 1.
  • Example 3 The ESD protection device 31 of the third embodiment shown in FIG. 3 was produced. In addition, it was the same as that of Example 1 except having set the dimension of the peripheral part of a cavity as follows.
  • the dimension along the length direction of the first and second discharge electrodes 4 and 5 at the peripheral edge of the cavity is 130 ⁇ m, and extends in a direction orthogonal to the direction in which the first and second discharge electrodes 4 and 5 at the peripheral edge of the cavity extend.
  • the dimension is 170 ⁇ m.
  • the corners of the four corners of the peripheral edge of the cavity were dropped so that the length of the hypotenuse was 17 ⁇ m.
  • the dimensions of the recesses 3a and 3b were as follows. That is, the length of the base is 20 ⁇ m, the length of the first and second hypotenuses is 15 ⁇ m, and the depth of the recess is 10 ⁇ m.
  • Example 1 An ESD protection device of a comparative example was fabricated in the same manner as in Example 1 except that the planar shape of the peripheral edge of the cavity was a substantially rectangular shape having a length of 160 ⁇ m ⁇ 80 ⁇ m and the recesses 3a and 3b were not provided.
  • Comparative Example 2 An ESD protection device of a comparative example was fabricated in the same manner as in Example 3 except that the planar shape of the peripheral edge of the cavity was a substantially rectangular shape having a length of 130 ⁇ m ⁇ 170 ⁇ m and the recesses 3a and 3b were not provided.
  • ESD protection devices of Examples 1 to 3 and Comparative Examples 1 and 2 (1) ESD discharge responsiveness and (2) ESD repetition resistance were evaluated as follows.
  • Discharge responsiveness to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was investigated whether or not discharge occurred between the discharge electrodes of the sample by applying 8 kV by contact discharge. The discharge start voltage (V) at which discharge detected on the protection circuit side occurs was determined.
  • ESD protective device 2 Insulating substrate 2a, 2b ... 1st, 2nd insulator layer 2c, 2d ... 1st, 2nd end surface 3 ... Cavity 3X ... Peripheral part 3a, 3b, 3c, 3d ... Recessed part 3a1 ... bottom 3a2, 3a3 ... hypotenuse 4, 5 ... first and second discharge electrodes 4a, 5a ... short sides 4b, 5b ... first long sides 4c, 5c ... second long sides 6 ... discharge auxiliary portion 6a ... Metal particles 6b ... Semiconductor ceramic element 10 ... Lower seal layer 11 ... Upper seal layer 12,13 ... First and second external electrodes 21, 31, 41, 51 ... ESD protection device

Abstract

Provided is an electrostatic discharge protection device in which deterioration in electrostatic discharge protection properties can be minimized even after being repeatedly subjected to static electricity and repeatedly subjected to discharge. An electrostatic discharge protection device (1) comprising: a cavity (3) between first and second insulator layers (2a, 2b) of an insulating substrate (2); first and second discharge electrodes (4, 5) formed on the first insulator layer (2a) so as to face each other in the cavity (3) across a gap (G); first and second external electrodes (12, 13) electrically connected to the first and second discharge electrodes (4, 5) and formed on the outer surface of the insulating substrate (2); and recesses (3a, 3b) provided at the periphery (3X) of the cavity (3) and positioned within a plane that includes the bonding interfaces between the second insulator layer (2b) and the first and second discharge electrodes (4, 5) and the first insulator layer (2a).

Description

ESD保護装置ESD protection device
 本発明は、静電気からの保護を図るためのESD保護装置に関し、より詳細には、絶縁性基板内に設けられた空洞内においてギャップを隔てて第1,第2の放電電極が配置されているESD保護装置に関する。 The present invention relates to an ESD protection device for protecting against static electricity, and more specifically, first and second discharge electrodes are arranged with a gap in a cavity provided in an insulating substrate. The present invention relates to an ESD protection device.
 ESD(Electro-static Discharge:静電気放電)から電子機器の回路を保護するために、様々なESD保護装置が用いられている。 Various ESD protection devices are used to protect electronic circuit from ESD (Electro-Static Discharge).
 下記の特許文献1には、図7に示すESD保護装置が開示されている。ESD保護装置1001は、セラミック多層基板1002を有する。セラミック多層基板1002内には、空洞1003が形成されている。空洞1003内に至るように、第1,第2の放電電極1004,1005が設けられている。第1の放電電極1004の先端と第2の放電電極1005の先端とがギャップを隔てて対向されている。そのギャップに臨むように、かつ第1,第2の放電電極1004,1005に跨がるように、放電補助部1006が形成されている。セラミック多層基板1002の両端面には、第1,第2の外部電極1007,1008が形成されている。第1の外部電極1007は、第1の放電電極1004に接続されており、第2の外部電極1008は、第2の放電電極1005に接続されている。 The following Patent Document 1 discloses an ESD protection device shown in FIG. The ESD protection device 1001 includes a ceramic multilayer substrate 1002. A cavity 1003 is formed in the ceramic multilayer substrate 1002. First and second discharge electrodes 1004 and 1005 are provided so as to reach the cavity 1003. The tip of the first discharge electrode 1004 and the tip of the second discharge electrode 1005 are opposed to each other with a gap. A discharge auxiliary portion 1006 is formed so as to face the gap and straddle the first and second discharge electrodes 1004 and 1005. First and second external electrodes 1007 and 1008 are formed on both end faces of the ceramic multilayer substrate 1002. The first external electrode 1007 is connected to the first discharge electrode 1004, and the second external electrode 1008 is connected to the second discharge electrode 1005.
WO2008/146514A1WO2008 / 146514A1
 ESD保護装置1001では、静電気が加わり、繰り返し放電が生じるうちに、空洞1003の周囲においてセラミック多層基板1002に剥離やクラックが生じるおそれがあった。特に、セラミック多層基板1002内では、図7の矢印Aで示す空洞周縁部において、セラミック層間の剥離や該周縁部を起点とするクラックが生じるおそれがあった。そのため、放電を繰り返すうちに、ESD保護特性が劣化するという問題があった。 In the ESD protection device 1001, there is a possibility that peeling or cracking may occur in the ceramic multilayer substrate 1002 around the cavity 1003 while static electricity is applied and repeated discharge occurs. In particular, in the ceramic multilayer substrate 1002, there is a possibility that separation between ceramic layers or cracks starting from the peripheral portion may occur at the peripheral portion of the cavity indicated by an arrow A in FIG. For this reason, there is a problem that the ESD protection characteristics deteriorate as the discharge is repeated.
 本発明の目的は、静電気からの保護を図るために放電が繰り返されたとしても、ESD保護特性の劣化が生じ難いESD保護装置を提供することにある。 An object of the present invention is to provide an ESD protection device in which the ESD protection characteristics are unlikely to deteriorate even if the discharge is repeated to protect against static electricity.
 本発明に係るESD保護装置は、絶縁性基板と、第1,第2の放電電極と、第1,第2の外部電極とを備える。絶縁性基板は、第1の絶縁体層と、第1の絶縁体層上に積層されている第2の絶縁体層とを有する。第1の絶縁体層と第2の絶縁体層とにより囲まれた空洞が絶縁性基板の内部に形成されている。第1及び第2の放電電極は、空洞内においてギャップを隔てて対向されている。第1及び第2の放電電極は、上記第1の絶縁体層上に配置されている。第1の外部電極は、第1の放電電極に電気的に接続されており、かつ絶縁性基板の外表面に形成されている。第2の外部電極は、第2の放電電極に電気的に接続されており、かつ絶縁性基板の外表面に形成されている。本発明においては、第2の絶縁体層と、第1の絶縁体層、第1の放電電極及び第2の放電電極との各接合界面を含む各平面に位置している空洞の周縁部が凹部を有する。 The ESD protection device according to the present invention includes an insulating substrate, first and second discharge electrodes, and first and second external electrodes. The insulating substrate has a first insulator layer and a second insulator layer stacked on the first insulator layer. A cavity surrounded by the first insulator layer and the second insulator layer is formed inside the insulating substrate. The first and second discharge electrodes are opposed to each other with a gap in the cavity. The first and second discharge electrodes are disposed on the first insulator layer. The first external electrode is electrically connected to the first discharge electrode and is formed on the outer surface of the insulating substrate. The second external electrode is electrically connected to the second discharge electrode and is formed on the outer surface of the insulating substrate. In the present invention, the peripheral edge portion of the cavity located on each plane including each junction interface between the second insulator layer, the first insulator layer, the first discharge electrode, and the second discharge electrode is provided. Has a recess.
 なお、後述のシール層が設けられている場合、シール層と、第1の絶縁体層、第1の放電電極及び第2の放電電極との接合部分が空洞の周縁部を構成しているため、このような構成を含む表現として、「接合界面を含む平面」としているものである。シール層が設けられていない場合には、空洞の周縁部は、第2の絶縁体層と、第1の絶縁体層、第1の放電電極及び第2の放電電極との各接合界面に位置することとなる。 In the case where a seal layer described later is provided, the joint portion between the seal layer, the first insulator layer, the first discharge electrode, and the second discharge electrode forms the peripheral edge of the cavity. As an expression including such a configuration, “a plane including a bonding interface” is used. When the seal layer is not provided, the peripheral edge of the cavity is located at each junction interface between the second insulator layer, the first insulator layer, the first discharge electrode, and the second discharge electrode. Will be.
 本発明に係るESD保護装置のある特定の局面では、凹部が、第2の絶縁体層と第1の放電電極との接合界面を含む平面または前記第2の絶縁体層と第2の放電電極との接合界面を含む平面に位置している。第2の絶縁体層と、第1または第2の放電電極との接合界面では、第1の絶縁体層と第2の絶縁体層との接合界面に比べて応力が加わった場合に剥離やクラックが生じやすい。従って、凹部が、第2の絶縁体層と第1または第2の放電電極との接合界面を含む平面に位置している場合には、クラックや剥離が生じやすい部分におけるクラックや剥離をより効果的に抑制することができる。 In a specific aspect of the ESD protection apparatus according to the present invention, the concave portion is a plane including a bonding interface between the second insulator layer and the first discharge electrode, or the second insulator layer and the second discharge electrode. It is located on the plane including the bonding interface. When the stress is applied at the bonding interface between the second insulator layer and the first or second discharge electrode as compared with the bonding interface between the first insulator layer and the second insulator layer, peeling or Cracks are likely to occur. Therefore, when the concave portion is located on a plane including the bonding interface between the second insulator layer and the first or second discharge electrode, the crack and the peeling at the portion where the crack and the peeling are likely to occur are more effective. Can be suppressed.
 本発明に係るESD保護装置の他の特定の局面では、凹部が、第2の絶縁体層と第1の放電電極との接合界面を含む平面及び第2の絶縁体層と第2の放電電極との接合界面を含む平面の両方に位置している。この場合には、ESD保護装置におけるESD保護特性の劣化をより効果的に抑制することができる。 In another specific aspect of the ESD protection apparatus according to the present invention, the recess includes a plane including the bonding interface between the second insulator layer and the first discharge electrode, and the second insulator layer and the second discharge electrode. It is located on both of the planes including the bonding interface. In this case, it is possible to more effectively suppress the deterioration of the ESD protection characteristics in the ESD protection device.
 本発明に係るESD保護装置のさらに他の特定の局面では、凹部が、平面視したときに鋭角部分を有しない。この場合には、クラックや剥離の発生をより効果的に抑制でき、従って、ESD保護装置のESD保護特性の劣化をより一層効果的に抑制することができる。鋭角部分を有しない平面形状としては、曲線からなる形状、あるいは鈍角を形成する複数の線からなる形状を採用することができる。 In yet another specific aspect of the ESD protection device according to the present invention, the concave portion does not have an acute angle portion when seen in a plan view. In this case, the occurrence of cracks and peeling can be more effectively suppressed, and therefore deterioration of the ESD protection characteristics of the ESD protection device can be more effectively suppressed. As a planar shape having no acute angle portion, a shape made of a curve or a shape made of a plurality of lines forming an obtuse angle can be adopted.
 本発明に係るESD保護装置のさらに他の特定の局面では、凹部が前記ギャップに至っていない。この場合には、放電領域であるギャップに凹部が至っていないため、ESD保護特性の劣化をより一層招くことなく、繰り返し放電された場合のESD保護特性の劣化を抑制することができる。 In yet another specific aspect of the ESD protection apparatus according to the present invention, the recess does not reach the gap. In this case, since the concave portion does not reach the gap which is the discharge region, it is possible to suppress the deterioration of the ESD protection characteristics when repeatedly discharged without further causing the deterioration of the ESD protection characteristics.
 本発明に係るESD保護装置のさらに他の特定の局面では、第1及び第2の放電電極が矩形形状を有しており、第1及び第2の放電電極の長辺同士が前記ギャップを隔てて対向している。この場合には、第1,第2の放電電極の対向方向に沿う第1,第2の放電電極部分の長さが長いため、繰り返し放電後のESD保護特性の劣化をより一層効果的に抑制することができる。 In still another specific aspect of the ESD protection apparatus according to the present invention, the first and second discharge electrodes have a rectangular shape, and the long sides of the first and second discharge electrodes separate the gap. Facing each other. In this case, since the lengths of the first and second discharge electrode portions along the opposing direction of the first and second discharge electrodes are long, the deterioration of the ESD protection characteristics after repeated discharge is further effectively suppressed. can do.
 本発明に係るESD保護装置のさらに別の特定の局面では、第1及び第2の放電電極において、互いに対向している前記長辺とは反対側の第1及び第2の放電電極の長辺が、前記空洞の外側に位置している。この場合には、ESD保護特性の劣化をより効果的に抑制することができる。 In still another specific aspect of the ESD protection apparatus according to the present invention, in the first and second discharge electrodes, the long sides of the first and second discharge electrodes opposite to the long sides facing each other. Is located outside the cavity. In this case, the degradation of the ESD protection characteristics can be more effectively suppressed.
 本発明に係るESD保護装置では、金属粒子と半導体粒子とを含み、ギャップに設けられた放電補助部がさらに備えられていてもよい。この場合には、放電開始電圧を低めることができる。 The ESD protection device according to the present invention may further include a discharge assist unit that includes metal particles and semiconductor particles and is provided in the gap. In this case, the discharge start voltage can be lowered.
 本発明に係るESD保護装置では、空洞の内壁を覆うように設けられたシール層がさらに備えられていてもよい。その場合には、空洞の周縁部が、シール層と、第1の絶縁体層、第1の放電電極及び第2の放電電極との各接合界面に位置している。シール層が設けられている場合には、空洞の形成精度を高めることができる。 The ESD protection device according to the present invention may further include a seal layer provided so as to cover the inner wall of the cavity. In that case, the peripheral edge of the cavity is located at each joint interface between the seal layer, the first insulator layer, the first discharge electrode, and the second discharge electrode. In the case where the seal layer is provided, the formation accuracy of the cavity can be increased.
 本発明によれば、空洞の周縁部が凹部を有するため、放電を繰り返した際の熱やガスによる衝撃が発生したとしても、該衝撃による力が凹部の存在により空洞の周縁部において分散される。従って、空洞の周縁部における剥離やクラックを抑制することができる。よって、繰り返し放電が行なわれたとしても、ESD保護特性の劣化を効果的に抑制することが可能となる。 According to the present invention, since the peripheral portion of the cavity has a recess, even if an impact due to heat or gas occurs when the discharge is repeated, the force due to the impact is dispersed in the peripheral portion of the cavity due to the presence of the recess. . Therefore, peeling and cracking at the peripheral edge of the cavity can be suppressed. Therefore, even if repeated discharge is performed, it is possible to effectively suppress the deterioration of the ESD protection characteristics.
図1(a)は本発明の第1の実施形態に係るESD保護装置の要部の模式的平面図であり、図1(b)は図1(a)中の(B-B)線に相当する部分におけるESD保護装置の正面断面図である。FIG. 1A is a schematic plan view of an essential part of the ESD protection apparatus according to the first embodiment of the present invention, and FIG. 1B is a line (BB) in FIG. It is front sectional drawing of the ESD protection apparatus in the part which corresponds. 図2は、本発明の第2の実施形態に係るESD保護装置の要部を示す模式的平面図である。FIG. 2 is a schematic plan view showing a main part of the ESD protection apparatus according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係るESD保護装置の要部を示す模式的平面図である。FIG. 3 is a schematic plan view showing the main part of the ESD protection apparatus according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係るESD保護装置の要部を示す模式的平面図である。FIG. 4 is a schematic plan view showing the main part of the ESD protection apparatus according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係るESD保護装置の要部を示す模式的平面図である。FIG. 5 is a schematic plan view showing the main part of the ESD protection apparatus according to the fifth embodiment of the present invention. 図6(a)及び図6(b)は、本発明における空洞の周縁部の凹部の形状の変形例を示す各略図的平面図である。FIG. 6A and FIG. 6B are schematic plan views showing modifications of the shape of the concave portion at the peripheral edge of the cavity according to the present invention. 図7は、従来のESD保護装置を示す正面断面図である。FIG. 7 is a front sectional view showing a conventional ESD protection device.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1(b)は、本発明の第1の実施形態に係るESD保護装置の正面断面図であり、後述の図1(a)のB-B線に沿う部分に相当する断面を示す。 FIG. 1B is a front cross-sectional view of the ESD protection apparatus according to the first embodiment of the present invention, and shows a cross section corresponding to a portion along line BB in FIG. 1A described later.
 ESD保護装置1は、絶縁性基板2を有する。絶縁性基板2は、本実施形態では、セラミック多層基板からなる。このセラミック多層基板を構成するセラミック材料については特に限定されるものではないが、本実施形態では、Ba、Al、Siを主成分として含む低温焼成セラミックス(LTCC)が用いられている。 The ESD protection device 1 has an insulating substrate 2. The insulating substrate 2 is made of a ceramic multilayer substrate in the present embodiment. The ceramic material constituting the ceramic multilayer substrate is not particularly limited, but in this embodiment, low-temperature fired ceramic (LTCC) containing Ba, Al, and Si as main components is used.
 絶縁性基板2は、第1の絶縁体層2aと、第1の絶縁体層2aの上に積層されている第2の絶縁体層2bとを有する。第1,第2の絶縁体層2a,2bは、同じセラミック材料により形成されている。従って、同一組成のセラミックグリーンシートを複数枚積層し、焼成することにより、絶縁性基板2の絶縁体層2a,2bを形成することができる。 The insulating substrate 2 has a first insulator layer 2a and a second insulator layer 2b laminated on the first insulator layer 2a. The first and second insulator layers 2a and 2b are formed of the same ceramic material. Therefore, the insulating layers 2a and 2b of the insulating substrate 2 can be formed by laminating and firing a plurality of ceramic green sheets having the same composition.
 本実施形態では、第1,第2の絶縁体層2a,2bの組成が同一であるため、焼成に際しての収縮挙動は等しい。もっとも、第1の絶縁体層2aと、第2の絶縁体層2bとは異なるセラミック材料により形成されてもよい。 In this embodiment, since the compositions of the first and second insulator layers 2a and 2b are the same, the shrinkage behavior upon firing is the same. However, the first insulator layer 2a and the second insulator layer 2b may be formed of different ceramic materials.
 絶縁性基板2内には、空洞3が形成されている。空洞3は、絶縁性基板2を焼成により得るに際し、空洞3が位置している部分に設けられている樹脂を加熱により消失させること、並びにセラミックグリーンシート中のバインダー樹脂の気化などにより形成される。第1の絶縁体層2a上には、第1の放電電極4と第2の放電電極5が形成されている。本実施形態では、第1及び第2の放電電極4,5はCuにより形成されている。もっとも、第1,第2の放電電極4,5は他の金属もしくは合金により形成することができる。 A cavity 3 is formed in the insulating substrate 2. When the insulating substrate 2 is obtained by firing, the cavity 3 is formed by removing the resin provided in the portion where the cavity 3 is located by heating and vaporizing the binder resin in the ceramic green sheet. . A first discharge electrode 4 and a second discharge electrode 5 are formed on the first insulator layer 2a. In the present embodiment, the first and second discharge electrodes 4 and 5 are made of Cu. However, the first and second discharge electrodes 4 and 5 can be formed of other metals or alloys.
 本実施形態では、第1の放電電極4及び第2の放電電極5は、それぞれ、その長さ方向に延びる第1,第2の長辺4b,4c,5b,5cを有する。長辺4bと長辺5bとが、ギャップGを隔てて対向している。従って、ギャップGを隔てた第1,第2の放電電極4,5の対向し合っている部分の上記長さ方向に沿う距離が長くされている。そのため、放電開始電圧の上昇を抑制することができる。これは、放電を生じると、ギャップGを介して対向している長辺4b,5bにおいて、溶融もしくは電極材料の消滅等が生じる。従って、その部分では対向距離が長くなるが、次に静電気が加わって放電を行なう場合には、対向距離が長くなっていない残りの部分において放電が生じる。よって、対向し合っている部分の上記長さ方向に沿う距離が長い分だけ、繰り返し放電が行なわれたとしても、放電開始電圧の上昇を抑制することができる。 In the present embodiment, the first discharge electrode 4 and the second discharge electrode 5 have first and second long sides 4b, 4c, 5b, and 5c extending in the length direction, respectively. The long side 4b and the long side 5b are opposed to each other with a gap G therebetween. Accordingly, the distance along the length direction of the facing portions of the first and second discharge electrodes 4 and 5 across the gap G is increased. Therefore, it is possible to suppress an increase in the discharge start voltage. When discharge occurs, the long sides 4b and 5b facing each other through the gap G are melted or the electrode material disappears. Accordingly, the facing distance becomes longer in that portion, but when discharging is performed by applying static electricity next, discharge occurs in the remaining portion where the facing distance is not long. Therefore, even if the discharge is repeatedly performed by the amount of the distance along the length direction of the facing portions, the increase in the discharge start voltage can be suppressed.
 図1(a)は、ESD保護装置1において、上方の第2の絶縁体層2b及び後述の上部シール層11を除去した状態の模式的平面図である。なお、図1(a)では、空洞3の周縁部分を一点鎖線で示すこととする。この周縁部分とは、空洞3の外周縁であって、第2の絶縁体層2bと、第1,第2の放電電極4,5との接合界面を含む平面、並びに第2の絶縁体層2bと第1の絶縁体層2aとの接合界面を含む平面に位置している。すなわち、空洞3の周縁部3Xは、第1,第2の放電電極4,5が存在する部分では、第2の絶縁体層2bと第1,第2の放電電極4,5の上面との接合界面を含む平面に位置することとなり、第1,第2の放電電極4,5が位置していない部分では、第1,第2の絶縁体層2a,2bの接合界面を含む平面に位置することとなる。 FIG. 1A is a schematic plan view of the ESD protection device 1 in a state where an upper second insulator layer 2b and an upper seal layer 11 described later are removed. In FIG. 1A, the peripheral portion of the cavity 3 is indicated by a one-dot chain line. This peripheral portion is the outer peripheral edge of the cavity 3, and includes a plane including the junction interface between the second insulator layer 2b and the first and second discharge electrodes 4 and 5, and the second insulator layer. 2b and the first insulator layer 2a are located on a plane including the bonding interface. That is, the peripheral portion 3X of the cavity 3 is formed between the second insulator layer 2b and the upper surfaces of the first and second discharge electrodes 4 and 5 in the portion where the first and second discharge electrodes 4 and 5 are present. It is located on a plane including the junction interface, and is located on a plane including the junction interface of the first and second insulator layers 2a and 2b in a portion where the first and second discharge electrodes 4 and 5 are not located. Will be.
 上記「接合界面を含む平面」とは、以下に述べる上部シール層11が設けられている構成を含ませるために用いられている。 The “plane including the bonding interface” is used to include a configuration in which the upper seal layer 11 described below is provided.
 すなわち、本実施形態では、第2の絶縁体層2bの空洞3に臨む面に上部シール層11が設けられている。従って、空洞3の周縁部3Xは、上記各接合界面上において、上部シール層11の内側の面に位置することとなる。言い換えれば、上部シール層11が空洞3の内壁に設けられているので、空洞3の周縁部3Xは、上部シール層11と、第1の絶縁体層2aとの接合部分の内縁、上部シール層11と第1,第2の放電電極4,5との接合部分の内縁により構成されることになる。この場合においても、空洞3の周縁部3Xは、前述した第2の絶縁体層2bと、第1の絶縁体層2a、第1,第2の放電電極4,5との接合界面を含む各平面内に位置することとなる。 That is, in the present embodiment, the upper seal layer 11 is provided on the surface facing the cavity 3 of the second insulator layer 2b. Therefore, the peripheral edge portion 3X of the cavity 3 is located on the inner surface of the upper seal layer 11 on each of the bonding interfaces. In other words, since the upper seal layer 11 is provided on the inner wall of the cavity 3, the peripheral edge portion 3X of the cavity 3 is the inner edge of the joint portion between the upper seal layer 11 and the first insulator layer 2a, the upper seal layer. 11 and the inner edge of the joint portion between the first and second discharge electrodes 4 and 5. Even in this case, the peripheral edge portion 3X of the cavity 3 includes the junction interface between the second insulator layer 2b, the first insulator layer 2a, and the first and second discharge electrodes 4 and 5 described above. It will be located in the plane.
 もっとも、上部シール層11が設けられていない構造であってもよい。その場合には、空洞3の周縁部3Xは、第2の絶縁体層2bと、第1の絶縁体層2a、第1,第2の放電電極4,5との各接合界面に位置する。 However, a structure in which the upper seal layer 11 is not provided may be used. In that case, the peripheral edge portion 3X of the cavity 3 is located at each junction interface between the second insulator layer 2b, the first insulator layer 2a, and the first and second discharge electrodes 4 and 5.
 第1,第2の放電電極4,5にまたがるように、放電補助部6が設けられている。放電補助部6は、導電性を有しない無機材料により表面がコーティングされた金属粒子6aと、半導体セラミック粒子6bとが分散されている、粒子分散体からなる。より具体的には、導電性を有しない無機材料により表面がコーティングされた金属粒子と、半導体セラミック粒子とを含む厚膜ペーストを焼成することにより、形成されている。 A discharge auxiliary portion 6 is provided so as to straddle the first and second discharge electrodes 4 and 5. The discharge auxiliary portion 6 is made of a particle dispersion in which metal particles 6a whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles 6b are dispersed. More specifically, it is formed by firing a thick film paste containing metal particles whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles.
 上記金属粒子6a及び半導体セラミック粒子6bが分散されている放電補助部6が形成されているため、第1の放電電極4と第2の放電電極5との間における沿面放電を利用した放電に際しての放電開始電圧を低めることができる。従って、静電気からの保護をより効果的に図ることができる。 Since the discharge auxiliary portion 6 in which the metal particles 6a and the semiconductor ceramic particles 6b are dispersed is formed, a discharge using creeping discharge between the first discharge electrode 4 and the second discharge electrode 5 is performed. The discharge start voltage can be lowered. Therefore, protection from static electricity can be achieved more effectively.
 なお、図1(b)では、放電補助部6の金属粒子6a及び半導体セラミック粒子6bが、第1,第2の放電電極4,5内にも入り込むように図示されている。これは、後述する製造方法から明らかなように、上記金属粒子6a及び半導体セラミック粒子6bを含む厚膜ペーストを印刷し、さらに第1,第2の放電電極4,5を形成するための導電ペーストを印刷し、セラミックス一体焼成技術により、複数枚のセラミックグリーンシートとともに積層した場合、金属粒子6a及び半導体セラミック粒子6bが第1,第2の放電電極4,5内に一部入り込むためである。そのため、放電補助部6は、第1,第2の放電電極4,5にまたがるように形成されている。なお、放電補助部6は第1,2の放電電極4,5内に入り込まず、第1,2の放電電極4,5間のギャップ部分にのみ設けられてもよいし、また、放電補助部6は設けられなくてもよい。 In FIG. 1B, the metal particles 6a and the semiconductor ceramic particles 6b of the auxiliary discharge portion 6 are shown so as to enter the first and second discharge electrodes 4 and 5 as well. As will be apparent from the manufacturing method described later, this is a conductive paste for printing the thick film paste containing the metal particles 6a and the semiconductor ceramic particles 6b and further forming the first and second discharge electrodes 4 and 5. This is because the metal particles 6a and the semiconductor ceramic particles 6b partially enter the first and second discharge electrodes 4 and 5 when they are laminated together with a plurality of ceramic green sheets by an integrated ceramic firing technique. Therefore, the discharge auxiliary portion 6 is formed so as to straddle the first and second discharge electrodes 4 and 5. The discharge auxiliary portion 6 does not enter the first and second discharge electrodes 4 and 5, and may be provided only in the gap portion between the first and second discharge electrodes 4 and 5, or the discharge auxiliary portion 6 may not be provided.
 また、本実施形態では、上記放電補助部6の下面に下部シール層10が形成されている。同様に、空洞3の上方には上部シール層11が形成されている。 In the present embodiment, the lower seal layer 10 is formed on the lower surface of the discharge auxiliary portion 6. Similarly, an upper seal layer 11 is formed above the cavity 3.
 下部シール層10及び上部シール層11は、絶縁性基板2を構成しているセラミックスよりも焼結温度が高いセラミックスからなる。本実施形態では、下部シール層10及び上部シール層11は、Alからなる。シール層構成セラミック材料は、絶縁性基板2を構成しているセラミック材料よりも焼結温度が高い限り、特に限定されるものではない。 The lower seal layer 10 and the upper seal layer 11 are made of ceramics having a higher sintering temperature than the ceramics constituting the insulating substrate 2. In the present embodiment, the lower seal layer 10 and the upper seal layer 11 are made of Al 2 O 3 . The ceramic material constituting the sealing layer is not particularly limited as long as the sintering temperature is higher than that of the ceramic material constituting the insulating substrate 2.
 本実施形態では、第1の絶縁体層2aの上面に下部シール層10が形成されており、下部シール層10上に前述した放電補助部6が積層されている。そして、放電補助部6の上面が空洞3に臨んでいる。すなわち、空洞3の下面は放電補助部6の上面となっている。他方、空洞3の上面は、上部シール層11で覆われている。なお、下部シール層10及び上部シール層11は、必ずとも設けられずともよい。 In the present embodiment, the lower seal layer 10 is formed on the upper surface of the first insulator layer 2a, and the discharge assisting portion 6 described above is laminated on the lower seal layer 10. The upper surface of the discharge assisting part 6 faces the cavity 3. That is, the lower surface of the cavity 3 is the upper surface of the discharge auxiliary portion 6. On the other hand, the upper surface of the cavity 3 is covered with the upper seal layer 11. Note that the lower seal layer 10 and the upper seal layer 11 are not necessarily provided.
 図1(a)に示すように、絶縁性基板2の端面2cを覆うように、第1の外部電極12が形成されている。他方、第1の放電電極4は、端面2cに引き出されている。従って、複数の第1の放電電極4が、第1の外部電極12により電気的に接続されている。同様に、反対側の端面2dに引き出されている複数の第2の放電電極5が、端面2dを覆うように設けられた第2の外部電極13に電気的に接続されている。 As shown in FIG. 1A, a first external electrode 12 is formed so as to cover the end face 2c of the insulating substrate 2. On the other hand, the first discharge electrode 4 is drawn out to the end face 2c. Accordingly, the plurality of first discharge electrodes 4 are electrically connected by the first external electrode 12. Similarly, a plurality of second discharge electrodes 5 led out to the opposite end face 2d are electrically connected to a second external electrode 13 provided so as to cover the end face 2d.
 第1,第2の外部電極12,13は、Cu、Al、Agなどの適宜の金属もしくは合金からなる。 The first and second external electrodes 12 and 13 are made of an appropriate metal or alloy such as Cu, Al, or Ag.
 本実施形態の特徴は、上記空洞3において、平面視した際に、周縁部3Xに凹部3a,3bが設けられていることにある。凹部3a,3bは、周縁部3Xにおいて、ギャップGの外側に対して開いた形状の凹部とされている。 The feature of the present embodiment is that the cavity 3 is provided with recesses 3a and 3b in the peripheral edge portion 3X when viewed in plan. The recesses 3a and 3b are recesses that are open to the outside of the gap G at the peripheral edge 3X.
 凹部3a,3bが設けられているため、放電が繰り返されたとしても、第1,第2の絶縁体層2a,2b間の剥離や、第2の絶縁体層2bと第1,第2の放電電極4,5との間の剥離が生じ難い。それによって、繰り返し放電したとしても、放電開始電圧の上昇を抑制することができる。これをより具体的に説明する。 Since the recesses 3a and 3b are provided, even if the discharge is repeated, peeling between the first and second insulator layers 2a and 2b, and the second insulator layer 2b and the first and second layers Peeling between the discharge electrodes 4 and 5 hardly occurs. Thereby, even if it discharges repeatedly, the raise of a discharge start voltage can be suppressed. This will be described more specifically.
 ESD保護装置1を使用しているうちに、静電気が繰り返し加わることになる。この場合、放電発生時に生じた熱や、空洞3内のガスの膨張による衝撃が生じる。空洞3の内面のうち、衝撃に弱い部分は、上記各接合界面である。従って、上記各接合界面に位置している周縁部3Xに大きな衝撃が加わると、第1,第2の絶縁体層2a,2b間の接合界面や、第2の絶縁体層2bと第1,第2の放電電極4,5との接合界面において剥離が生じる。特に、異種材料からなる第2の絶縁体層2bと、第1,第2の放電電極4,5との接合界面に衝撃が加わると、剥離や、クラックが生じやすくなる。このような剥離やクラックが生じると、後述の実験例で示すように、放電開始電圧が上昇する。 While using the ESD protection device 1, static electricity is repeatedly applied. In this case, an impact is generated due to heat generated at the time of occurrence of discharge or expansion of gas in the cavity 3. Of the inner surface of the cavity 3, the portions that are vulnerable to impact are the above-described bonding interfaces. Therefore, when a large impact is applied to the peripheral edge portion 3X located at each joint interface, the joint interface between the first and second insulator layers 2a and 2b, the second insulator layer 2b and the first and Separation occurs at the bonding interface with the second discharge electrodes 4 and 5. In particular, when an impact is applied to the bonding interface between the second insulator layer 2b made of a different material and the first and second discharge electrodes 4 and 5, peeling or cracking is likely to occur. When such peeling or cracking occurs, the discharge start voltage increases as shown in an experimental example described later.
 これに対して、本実施形態では、凹部3a,3bが設けられているため、上記衝撃による応力が周縁部3Xにおいて分散される。そのため、上記剥離やクラックを効果的に抑制することができる。それによって、放電開始電圧の上昇を抑制し、ESD保護装置1の信頼性を高めることが可能となる。 On the other hand, in the present embodiment, since the recesses 3a and 3b are provided, the stress due to the impact is dispersed in the peripheral portion 3X. Therefore, the peeling and cracking can be effectively suppressed. Thereby, it is possible to suppress an increase in the discharge start voltage and improve the reliability of the ESD protection apparatus 1.
 特に、本実施形態では、凹部3a,3bが、第1,第2の放電電極4,5上に位置している。言い換えれば、第1の放電電極4の第1の長辺4bのギャップGに臨む部分が空洞3内に位置しており、反対側の第2の長辺4cが空洞3外に位置している。同様に、第2の放電電極5においても、第1の長辺5bのギャップGに臨む部分が空洞3内に位置しており、反対側の第2の長辺5cが空洞3外に位置している。そのため、空洞3の平面積を小さくし、小型化を図ることができる。また、空洞3の周縁部3Xが第2の絶縁体層2bと第1,第2の放電電極4,5との接合界面上に位置している部分が長いものの、上記凹部3a,3bの形成により、放電開始電圧の上昇を効果的に抑制することができる。しかも、前述したように、長辺4bと長辺4cとがギャップGを隔てて対向しているため、それによっても放電開始電圧の上昇を効果的に抑制することができる。 In particular, in this embodiment, the recesses 3a and 3b are located on the first and second discharge electrodes 4 and 5, respectively. In other words, the portion of the first discharge electrode 4 that faces the gap G of the first long side 4b is located in the cavity 3, and the second long side 4c on the opposite side is located outside the cavity 3. . Similarly, in the second discharge electrode 5, the part facing the gap G of the first long side 5 b is located in the cavity 3, and the second long side 5 c on the opposite side is located outside the cavity 3. ing. Therefore, the plane area of the cavity 3 can be reduced and the size can be reduced. Further, although the peripheral edge portion 3X of the cavity 3 is long on the bonding interface between the second insulator layer 2b and the first and second discharge electrodes 4 and 5, the recesses 3a and 3b are formed. As a result, an increase in the discharge start voltage can be effectively suppressed. In addition, as described above, since the long side 4b and the long side 4c are opposed to each other with the gap G therebetween, an increase in the discharge start voltage can be effectively suppressed.
 図2は、本発明の第2の実施形態のESD保護装置21の要部を示す模式的平面図である。第2の実施形態では、空洞3の周縁部3Xに設けられている凹部3a,3bが、第1,第2の放電電極4,5上ではなく、第1の絶縁体層2a上に位置している。すなわち、空洞3の周縁部3Xは略矩形の形状を有するが、該略矩形の一対の短辺に凹部3a,3bが設けられている。略矩形の空洞3の周縁部3Xの短辺側において前述した衝撃による応力が分散される。従って、第1,第2の絶縁体層2a,2b間における衝撃による剥離やクラックを効果的に抑制することができる。もっとも、第1の実施形態のESD保護装置1では、凹部3a,3bが第2の絶縁体層2bと第1の絶縁体層2aとの接合界面より剥離やクラックが発生しやすい、第2の絶縁体層2bと第1,第2の放電電極4,5との接合界面に設けられており、空洞3の周縁部3Xにおける剥離やクラックをより効果的に抑制することができるため、応力分散効果は第1の実施形態の方が第2の実施形態の場合よりも大きい。 FIG. 2 is a schematic plan view showing a main part of the ESD protection device 21 according to the second embodiment of the present invention. In the second embodiment, the recesses 3a and 3b provided in the peripheral edge portion 3X of the cavity 3 are located not on the first and second discharge electrodes 4 and 5 but on the first insulator layer 2a. ing. That is, the peripheral edge portion 3X of the cavity 3 has a substantially rectangular shape, but recesses 3a and 3b are provided on a pair of short sides of the substantially rectangular shape. The stress due to the impact described above is dispersed on the short side of the peripheral edge portion 3X of the substantially rectangular cavity 3. Accordingly, it is possible to effectively suppress peeling and cracks caused by an impact between the first and second insulator layers 2a and 2b. However, in the ESD protection apparatus 1 according to the first embodiment, the recesses 3a and 3b are more likely to be peeled off or cracked than the bonding interface between the second insulator layer 2b and the first insulator layer 2a. Since it is provided at the bonding interface between the insulator layer 2b and the first and second discharge electrodes 4 and 5, it is possible to more effectively suppress peeling and cracks at the peripheral edge 3X of the cavity 3, so that stress distribution The effect is greater in the first embodiment than in the second embodiment.
 図3は、本発明の第3の実施形態に係るESD保護装置31の要部を示す模式的平面図である。本実施形態では、空洞3の周縁部3Xは、第1の放電電極4の第2の長辺4c及び第2の放電電極5の第2の長辺5cの外側にも至るように形成されている。このように、空洞3の周縁部3Xは、ギャップGを介して対向している第1,第2の長辺4b,5bだけでなく、反対側の第2の長辺4c,5cに至るように形成されていてもよい。ここでは、凹部3a,3bは、略矩形の空洞3の周縁部3Xのうち、第1,第2の放電電極4,5が対向している方向に延びる一対の辺にそれぞれ設けられている。また、第1の実施形態と同様に、本実施形態においても、凹部3a,3bは、第1,第2の放電電極4,5上にそれぞれ位置している。 FIG. 3 is a schematic plan view showing a main part of the ESD protection apparatus 31 according to the third embodiment of the present invention. In the present embodiment, the peripheral edge 3 </ b> X of the cavity 3 is formed so as to extend to the outside of the second long side 4 c of the first discharge electrode 4 and the second long side 5 c of the second discharge electrode 5. Yes. In this way, the peripheral edge 3X of the cavity 3 reaches not only the first and second long sides 4b and 5b facing each other via the gap G but also the second long sides 4c and 5c on the opposite side. It may be formed. Here, the recesses 3a and 3b are respectively provided on a pair of sides extending in a direction in which the first and second discharge electrodes 4 and 5 face each other in the peripheral edge portion 3X of the substantially rectangular cavity 3. Similarly to the first embodiment, in this embodiment, the recesses 3a and 3b are located on the first and second discharge electrodes 4 and 5, respectively.
 本実施形態においても、凹部3a,3bが設けられているため、繰り返し放電による衝撃が空洞3の周縁部3Xに加わったとしても、応力が分散され、第2の絶縁体層2bと第1,第2の放電電極4,5間の剥離や、クラックを効果的に抑制することができる。 Also in this embodiment, since the recesses 3a and 3b are provided, even if an impact caused by repeated discharge is applied to the peripheral edge 3X of the cavity 3, the stress is dispersed, and the second insulator layer 2b and the first Separation and cracks between the second discharge electrodes 4 and 5 can be effectively suppressed.
 図4は、本発明の第4の実施形態に係るESD保護装置41の要部を示す模式的平面図である。本実施形態では、第1の放電電極4と第2の放電電極5とは、先端に位置している短辺4a,5aがギャップGを介して対向している。すなわち、ESD保護装置1の長さ方向において、第1の放電電極4の短辺4aと第2の放電電極5の短辺5aとが対向している。空洞3の周縁部3Xは、このギャップGを囲むように設けられている。本実施形態においても、周縁部3Xにおいて、ギャップGから遠ざかる側に向かって開いた凹部3a,3bが設けられている。凹部3a,3bは、第1,第2の放電電極4,5上から第1,第2の絶縁体層2a,2b間の接合界面に至るように形成されている。本実施形態においても、凹部3a,3bが設けられているため、放電による衝撃に基づく応力が加わったとしても、第2の絶縁体層2bと、第1,第2の放電電極4,5との接合界面及び第1の絶縁体層2aと第2の絶縁体層2bとの接合界面における剥離やクラックを確実に抑制することができる。 FIG. 4 is a schematic plan view showing a main part of the ESD protection apparatus 41 according to the fourth embodiment of the present invention. In the present embodiment, the first discharge electrode 4 and the second discharge electrode 5 are opposed to each other with the short sides 4a and 5a located at the tips via the gap G. That is, the short side 4 a of the first discharge electrode 4 and the short side 5 a of the second discharge electrode 5 face each other in the length direction of the ESD protection device 1. A peripheral edge 3X of the cavity 3 is provided so as to surround the gap G. Also in this embodiment, the peripheral edge 3X is provided with recesses 3a and 3b that open toward the side away from the gap G. The recesses 3a and 3b are formed so as to reach from the first and second discharge electrodes 4 and 5 to the junction interface between the first and second insulator layers 2a and 2b. Also in this embodiment, since the recesses 3a and 3b are provided, the second insulator layer 2b and the first and second discharge electrodes 4 and 5 It is possible to reliably suppress peeling and cracks at the bonding interface and the bonding interface between the first insulator layer 2a and the second insulator layer 2b.
 図5は、本発明の第5の実施形態に係るESD保護装置51の模式的平面図である。本実施形態においても、図4に示したESD保護装置41と同様に、第1,第2の放電電極4,5の先端側に位置する短辺4a,5aがギャップGを隔てて対向されている。空洞3の周縁部3Xは、略矩形の形状を有し、凹部3a,3bは、それぞれ、第1,第2の放電電極4,5上にのみ位置している。本実施形態においても、放電が繰り返された場合の衝撃による応力が、凹部3a,3bを設けたことにより緩和される。従って、放電開始電圧の上昇を効果的に抑制することができる。なお、図5では、凹部3a,3bは、第2の絶縁体層2bと第1,第2の放電電極4,5との接合界面にのみ位置している。 FIG. 5 is a schematic plan view of an ESD protection device 51 according to a fifth embodiment of the present invention. Also in this embodiment, the short sides 4a and 5a located on the front end sides of the first and second discharge electrodes 4 and 5 are opposed to each other with a gap G, as in the ESD protection device 41 shown in FIG. Yes. The peripheral edge 3X of the cavity 3 has a substantially rectangular shape, and the recesses 3a and 3b are located only on the first and second discharge electrodes 4 and 5, respectively. Also in this embodiment, the stress due to the impact when the discharge is repeated is alleviated by providing the recesses 3a and 3b. Therefore, an increase in the discharge start voltage can be effectively suppressed. In FIG. 5, the recesses 3a and 3b are located only at the junction interface between the second insulator layer 2b and the first and second discharge electrodes 4 and 5.
 図1(a)では、凹部3aは、第1,第2の放電電極4,5の長さ方向に延びる底辺3a1と底辺3a1の両端からそれぞれ空洞3の周縁部3Xの凹部外の部分に延びる一対の斜辺3a2,3a3とを有する形状とされていた。そして、底辺3a1と斜辺3a2または3a3との間のなす角度は鈍角とされていた。言い換えれば、凹部3aは逆台形の形状を有している。このように、凹部3aにおいて、2つの辺がなす部分が鈍角であることが望ましく、それによって、前述した衝撃による応力分散効果を高めることができる。 In FIG. 1A, the recess 3a extends from the bottom 3a1 extending in the length direction of the first and second discharge electrodes 4 and 5 and from both ends of the bottom 3a1 to portions outside the recess of the peripheral edge 3X of the cavity 3, respectively. The shape has a pair of hypotenuses 3a2 and 3a3. The angle formed between the base 3a1 and the hypotenuse 3a2 or 3a3 is an obtuse angle. In other words, the recess 3a has an inverted trapezoidal shape. As described above, it is desirable that the portion formed by the two sides in the recess 3a has an obtuse angle, thereby enhancing the stress dispersion effect due to the impact described above.
 もっとも、図6(a)に示すように、曲線状の凹部3cを形成してもよい。あるいは、図6(b)に示すように、4以上の直線が鈍角をなすように連ねられて、凹部3dが形成されていてもよい。 However, as shown in FIG. 6A, a curved recess 3c may be formed. Alternatively, as shown in FIG. 6B, four or more straight lines may be connected so as to form an obtuse angle to form the recess 3d.
 なお、第1~第5の実施形態のように凹部3はギャップGに至っていないことが好ましい。それによって放電開始電圧のばらつきを抑制することができる。 In addition, it is preferable that the recess 3 does not reach the gap G as in the first to fifth embodiments. As a result, variations in the discharge start voltage can be suppressed.
 図1(a)では、ギャップGを介して第1の放電電極4側及び第2の放電電極5側のそれぞれにおいて凹部3a,3bが設けられていたが、凹部3aまたは3bのうち一方のみが設けられていてもよい。 In FIG. 1A, the recesses 3a and 3b are provided on the first discharge electrode 4 side and the second discharge electrode 5 side via the gap G, but only one of the recesses 3a or 3b is provided. It may be provided.
 また、凹部の数についても特に限定されず、3以上の凹部が空洞の周縁部に設けられていてもよい。 Also, the number of recesses is not particularly limited, and three or more recesses may be provided at the peripheral edge of the cavity.
 さらに、空洞3の周縁部の角の形状も鈍角や曲線により形成されていることが好ましい。それによって、空洞3の周縁部の角部を起点とする剥離やクラックを抑制することができる。 Furthermore, it is preferable that the corner shape of the peripheral edge of the cavity 3 is also formed by an obtuse angle or a curve. Thereby, peeling and cracks starting from the corners of the peripheral edge of the cavity 3 can be suppressed.
 次に、具体的な実験例を説明することにより、上記各実施形態の効果を明らかにする。 Next, the effects of the above-described embodiments will be clarified by describing specific experimental examples.
 (実施例1)
 実施例1として、第1の実施形態に係るESD保護装置1を作製した。
(Example 1)
As Example 1, the ESD protection apparatus 1 according to the first embodiment was produced.
 Ba、Al及びSiを主体とするBAS材を所定の組成となるように混合し、800℃~1000℃の温度で仮焼した。得られた仮焼粉末をジルコニウムボールミルで12時間粉砕し、セラミック粉末を得た。このセラミック粉末に、トルエン及びエキネンからなる有機溶媒を加え混合した。さらに、バインダー及び可塑剤を加えスラリーを得た。このようにして得られたスラリーをドクターブレード法により成形し、厚さ30μmのセラミックグリーンシートを得た。 A BAS material mainly composed of Ba, Al and Si was mixed so as to have a predetermined composition and calcined at a temperature of 800 ° C. to 1000 ° C. The obtained calcined powder was pulverized with a zirconium ball mill for 12 hours to obtain a ceramic powder. To this ceramic powder, an organic solvent composed of toluene and echinene was added and mixed. Furthermore, a binder and a plasticizer were added to obtain a slurry. The slurry thus obtained was molded by a doctor blade method to obtain a ceramic green sheet having a thickness of 30 μm.
 電極ペーストの調製:第1,第2の放電電極4,5を構成するための電極ペーストを以下のようにして用意した。平均粒径2μmのCu粒子80重量%と、エチルセルロースからなるバインダー樹脂とに溶剤を添加し、三本ロールで攪拌し、混合し、電極ペーストを得た。 Preparation of electrode paste: An electrode paste for constituting the first and second discharge electrodes 4 and 5 was prepared as follows. A solvent was added to 80% by weight of Cu particles having an average particle diameter of 2 μm and a binder resin made of ethyl cellulose, and the mixture was stirred and mixed with a three roll to obtain an electrode paste.
 放電補助部6形成用ペーストの調製:平均粒径2μmのCu粒子の表面に平均粒径数nm~数十nmのAl粉末を付着させた。それによって、導電性を有さない無機材料により表面がコーティングされた金属粒子を用意した。この粒子に平均粒径1μmの炭化ケイ素粉末を所定の割合で配合した。この配合物に、バインダー樹脂及び溶剤を、バインダー樹脂及び溶剤の合計の割合が全体の20重量%となるように添加し、混合し、混合ペーストを得た。 Preparation of Discharge Auxiliary Part 6 Forming Paste: Al 2 O 3 powder having an average particle size of several nm to several tens of nm was adhered to the surface of Cu particles having an average particle size of 2 μm. Thereby, metal particles whose surfaces were coated with an inorganic material having no conductivity were prepared. Silicon carbide powder having an average particle diameter of 1 μm was blended with the particles at a predetermined ratio. To this blend, a binder resin and a solvent were added and mixed so that the total ratio of the binder resin and the solvent was 20% by weight to obtain a mixed paste.
 空洞3を形成する樹脂ペーストとして、エチルセルロースに対し溶剤として有機溶剤を適宜の割合で含む樹脂ペーストを用意した。 As a resin paste for forming the cavity 3, a resin paste containing an organic solvent in an appropriate ratio as a solvent with respect to ethyl cellulose was prepared.
 下部シール層10及び上部シール層11を形成するためのセラミックペーストとして、アルミナ粉末と、溶剤としての有機溶剤が全体の15重量%となるように混合してなるシール層形成用セラミックペーストを用意した。 As a ceramic paste for forming the lower seal layer 10 and the upper seal layer 11, a ceramic paste for forming a seal layer prepared by mixing alumina powder and an organic solvent as a solvent so as to be 15% by weight of the whole was prepared. .
 上記のようにして用意したセラミック多層基板用のセラミックグリーンシートを複数枚積層した。得られた積層体上に、上記シール層形成用セラミックペーストを下部シール層10を構成する部分にスクリーン印刷により塗布した。次に、補助電極形成用ペーストを上記シール層形成用ペースト上に塗布した。しかるのち、上記電極ペーストを、第1,第2の放電電極間のギャップGの寸法aが30μmとなるように印刷した。さらに、上記空洞形成用樹脂ペーストを塗布した。空洞形成用樹脂ペーストの塗布領域は、図1(a)に示した空洞の周縁部を形成するように設定した。すなわち、長辺が160μm、短辺が80μm、コーナー部が17μmの長さの斜辺を有する略矩形の領域とした。また、凹部3a,3bについては、底辺3a1の長さを20μm、斜辺3a2,3a3の長さを17μm、底辺3a1と斜辺3a2または3a3とのなす角度を45°とした。 A plurality of ceramic green sheets for a ceramic multilayer substrate prepared as described above were laminated. On the obtained laminate, the above-mentioned ceramic paste for forming a seal layer was applied to a portion constituting the lower seal layer 10 by screen printing. Next, the auxiliary electrode forming paste was applied onto the seal layer forming paste. Thereafter, the electrode paste was printed such that the dimension a of the gap G between the first and second discharge electrodes was 30 μm. Further, the cavity forming resin paste was applied. The application area | region of the resin paste for cavity formation was set so that the peripheral part of the cavity shown to Fig.1 (a) might be formed. That is, a substantially rectangular region having an oblique side with a long side of 160 μm, a short side of 80 μm, and a corner having a length of 17 μm. For the recesses 3a and 3b, the length of the base 3a1 is 20 μm, the length of the hypotenuses 3a2 and 3a3 is 17 μm, and the angle between the base 3a1 and the hypotenuse 3a2 or 3a3 is 45 °.
 次に、上記樹脂ペーストが付与されている部分を覆うように、上部シール層を形成するためのシール層形成用ペーストを塗布した。 Next, a seal layer forming paste for forming the upper seal layer was applied so as to cover the portion to which the resin paste was applied.
 さらに、上面にセラミック多層基板形成用セラミックグリーンシートを複数枚積層し、全体を厚み方向に圧着した。 Furthermore, a plurality of ceramic green sheets for forming a ceramic multilayer substrate were laminated on the upper surface, and the whole was pressure-bonded in the thickness direction.
 しかるのち、上記積層体を厚み方向に切断し、個々のESD保護デバイス単位の積層体チップを得た後、この積層体チップの第1,第2の端面に電極ペーストを塗布し、外部電極を形成した。外部電極形成用電極ペーストとしては、Cuを用いた。 After that, the laminate is cut in the thickness direction to obtain a laminate chip for each ESD protection device unit, and then an electrode paste is applied to the first and second end faces of the laminate chip, and the external electrodes are attached. Formed. Cu was used as the electrode paste for forming external electrodes.
 次に、窒素雰囲気中で、上記積層体チップを焼成し、長さ1.0mm×幅0.5mm×厚み0.3mmのESD保護デバイスを得た。 Next, the laminate chip was baked in a nitrogen atmosphere to obtain an ESD protection device having a length of 1.0 mm × width of 0.5 mm × thickness of 0.3 mm.
 なお、第1,第2の放電電極4,5の長さは550μm、幅は40μmとした。ギャップGは30μm、第1,第2の放電電極4,5の対向し合っている部分の長さ方向寸法は100μmとした。 The first and second discharge electrodes 4 and 5 have a length of 550 μm and a width of 40 μm. The gap G was 30 μm, and the lengthwise dimension of the facing portions of the first and second discharge electrodes 4 and 5 was 100 μm.
 (実施例2)
 図2に示した第2の実施形態のESD保護装置21を作製した。なお、凹部3a,3bの寸法は実施例1と同様とした。
(Example 2)
The ESD protection device 21 of the second embodiment shown in FIG. 2 was produced. The dimensions of the recesses 3a and 3b were the same as in Example 1.
 (実施例3)
 図3に示した第3の実施形態のESD保護装置31を作製した。なお、空洞の周縁部の寸法を以下の通りとしたことを除いては、実施例1と同様とした。空洞の周縁部の第1,第2の放電電極4,5の長さ方向に沿う寸法130μm、空洞の周縁部の第1,第2の放電電極4,5が延びる方向と直交する方向に延びる寸法170μm。空洞の周縁部の四隅については、斜辺の長さが17μmとなるように角を落とした。凹部3a,3bの寸法は以下の通りとした。すなわち、底辺の長さ20μm、第1,第2の斜辺の長さ15μm、凹部の深さ10μm。
(Example 3)
The ESD protection device 31 of the third embodiment shown in FIG. 3 was produced. In addition, it was the same as that of Example 1 except having set the dimension of the peripheral part of a cavity as follows. The dimension along the length direction of the first and second discharge electrodes 4 and 5 at the peripheral edge of the cavity is 130 μm, and extends in a direction orthogonal to the direction in which the first and second discharge electrodes 4 and 5 at the peripheral edge of the cavity extend. The dimension is 170 μm. The corners of the four corners of the peripheral edge of the cavity were dropped so that the length of the hypotenuse was 17 μm. The dimensions of the recesses 3a and 3b were as follows. That is, the length of the base is 20 μm, the length of the first and second hypotenuses is 15 μm, and the depth of the recess is 10 μm.
 (比較例1)
 空洞の周縁部の平面形状を長さ160μm×80μmの略矩形とし、凹部3a,3bを設けなかったことを除いては実施例1と同様として、比較例のESD保護装置を作製した。
(Comparative Example 1)
An ESD protection device of a comparative example was fabricated in the same manner as in Example 1 except that the planar shape of the peripheral edge of the cavity was a substantially rectangular shape having a length of 160 μm × 80 μm and the recesses 3a and 3b were not provided.
 (比較例2)
 空洞の周縁部の平面形状を長さ130μm×170μmの略矩形とし、凹部3a,3bを設けなかったことを除いては実施例3と同様として、比較例のESD保護装置を作製した。
(Comparative Example 2)
An ESD protection device of a comparative example was fabricated in the same manner as in Example 3 except that the planar shape of the peripheral edge of the cavity was a substantially rectangular shape having a length of 130 μm × 170 μm and the recesses 3a and 3b were not provided.
 上記実施例1~3及び比較例1,2のESD保護装置について、(1)ESD放電応答性及び(2)ESD繰り返し耐性を以下の要領で評価した。 For the ESD protection devices of Examples 1 to 3 and Comparative Examples 1 and 2, (1) ESD discharge responsiveness and (2) ESD repetition resistance were evaluated as follows.
 (1)ESDに対する放電応答性
 ESDに対する放電応答性は、IECの規格、IEC61000-4-2に定められている、静電気放電イミュニティ試験によって行った。接触放電にて8kV印加して試料の放電電極間で放電が生じるか否かを調べた。保護回路側で検出された放電が生じる放電開始電圧(V)を求めた。
(1) Discharge responsiveness to ESD Discharge responsiveness to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was investigated whether or not discharge occurred between the discharge electrodes of the sample by applying 8 kV by contact discharge. The discharge start voltage (V) at which discharge detected on the protection circuit side occurs was determined.
 (2)ESD繰り返し耐性
 接触放電にて2kV印加を20回、3kV印加を20回、4kV印加を20回、6kV印加を20回、8kV印加を20回行い、続いて、前記のESDに対する放電応答性を評価した。保護回路側で検出されたピーク電圧(V)を求め、下記の表1に示す。ESD繰り返し耐性におけるピーク電圧値が低いほど、繰り返し放電による放電応答性の劣化が生じ難いこと、すなわち放電開始電圧の上昇が抑制されていることを示す。
(2) Resistance to repeated ESD: 2 kV application 20 times, 3 kV application 20 times, 4 kV application 20 times, 6 kV application 20 times, 8 kV application 20 times by contact discharge, followed by discharge response to the ESD Sex was evaluated. The peak voltage (V) detected on the protection circuit side is obtained and shown in Table 1 below. It shows that the lower the peak voltage value in the ESD repetition resistance is, the more difficult the deterioration of the discharge response due to the repeated discharge occurs, that is, the increase in the discharge start voltage is suppressed.
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較例のESD保護装置では、初期のESD放電応答性が十分でなく、さらに静電気が繰り返し印加された場合に、放電開始電圧が大幅に上昇した。 As is clear from Table 1, in the ESD protection device of the comparative example, the initial ESD discharge response was not sufficient, and further, when static electricity was repeatedly applied, the discharge start voltage increased significantly.
 これに対して、実施例1~3では、初期状態におけるESD放電応答性において比較例に比べて優れているだけでなく、上記のように繰り返し放電が行なわれた後でも、ピーク電圧すなわち放電開始電圧の上昇を効果的に抑制することができた。 On the other hand, in Examples 1 to 3, not only the ESD discharge response in the initial state is superior to the comparative example, but also the peak voltage, that is, the discharge start even after repeated discharge as described above. The increase in voltage could be effectively suppressed.
 特に、実施例1及び2によれば、実施例3に比べ、放電が繰り返されたとしても、放電開始電圧の上昇をより効果的に抑制し得た。 In particular, according to Examples 1 and 2, even when the discharge was repeated, the increase in the discharge start voltage could be more effectively suppressed as compared with Example 3.
 1…ESD保護装置
 2…絶縁性基板
 2a,2b…第1,第2の絶縁体層
 2c,2d…第1,第2の端面
 3…空洞
 3X…周縁部
 3a,3b,3c,3d…凹部
 3a1…底辺
 3a2,3a3…斜辺
 4,5…第1,第2の放電電極
 4a,5a…短辺
 4b,5b…第1の長辺
 4c,5c…第2の長辺
 6…放電補助部
 6a…金属粒子
 6b…半導体セラミック素子
 10…下部シール層
 11…上部シール層
 12,13…第1,第2の外部電極
 21,31,41,51…ESD保護装置
DESCRIPTION OF SYMBOLS 1 ... ESD protective device 2 ... Insulating substrate 2a, 2b ... 1st, 2nd insulator layer 2c, 2d ... 1st, 2nd end surface 3 ... Cavity 3X ... Peripheral part 3a, 3b, 3c, 3d ... Recessed part 3a1 ... bottom 3a2, 3a3 ... hypotenuse 4, 5 ... first and second discharge electrodes 4a, 5a ... short sides 4b, 5b ... first long sides 4c, 5c ... second long sides 6 ... discharge auxiliary portion 6a ... Metal particles 6b ... Semiconductor ceramic element 10 ... Lower seal layer 11 ... Upper seal layer 12,13 ... First and second external electrodes 21, 31, 41, 51 ... ESD protection device

Claims (10)

  1.  第1の絶縁体層と、前記第1の絶縁体層上に積層されている第2の絶縁体層とを有し、前記第1の絶縁体層と前記第2の絶縁体層とにより囲まれた空洞が内部に形成されている絶縁性基板と、
     前記空洞内においてギャップを隔てて対向するように、前記第1の絶縁体層上に配置されている第1及び第2の放電電極と、
     前記第1の放電電極に電気的に接続されており、前記絶縁性基板の外表面に形成された第1の外部電極と、
     前記第2の放電電極に電気的に接続されており、前記絶縁性基板の外表面に形成された第2の外部電極とを備え、
     前記第2の絶縁体層と、前記第1の絶縁体層、前記第1の放電電極及び第2の放電電極との各接合界面を含む各平面に位置している前記空洞の周縁部が凹部を有する、ESD保護装置。
    A first insulator layer; and a second insulator layer stacked on the first insulator layer, and surrounded by the first insulator layer and the second insulator layer. An insulating substrate having a hollow formed therein;
    First and second discharge electrodes disposed on the first insulator layer to face each other with a gap in the cavity;
    A first external electrode electrically connected to the first discharge electrode and formed on an outer surface of the insulating substrate;
    A second external electrode electrically connected to the second discharge electrode and formed on the outer surface of the insulating substrate;
    The peripheral portion of the cavity located in each plane including the bonding interface between the second insulator layer, the first insulator layer, the first discharge electrode, and the second discharge electrode is a recess. An ESD protection device.
  2.  前記凹部が、前記第2の絶縁体層と前記第1の放電電極との接合界面を含む平面または、前記第2の絶縁体層と前記第2の放電電極との接合界面を含む平面に位置している、請求項1に記載のESD保護装置。 The concave portion is located on a plane including a bonding interface between the second insulator layer and the first discharge electrode or a plane including a bonding interface between the second insulator layer and the second discharge electrode. The ESD protection device according to claim 1.
  3.  前記凹部が、前記第2の絶縁体層と前記第1の放電電極との接合界面を含む平面及び前記第2の絶縁体層と前記第2の放電電極との接合界面を含む平面の両方に位置している、請求項1または2に記載のESD保護装置。 The concave portion is on both a plane including a bonding interface between the second insulator layer and the first discharge electrode and a plane including a bonding interface between the second insulator layer and the second discharge electrode. The ESD protection device according to claim 1, wherein the ESD protection device is located.
  4.  前記凹部が、平面視したときに鋭角部分を有しない、請求項1~3のいずれか1項に記載のESD保護装置。 The ESD protection device according to any one of claims 1 to 3, wherein the concave portion does not have an acute angle portion when seen in a plan view.
  5.  前記凹部が、曲線または鈍角を形成する複数の線からなる、請求項4に記載のESD保護装置。 The ESD protection device according to claim 4, wherein the concave portion is composed of a plurality of lines forming a curve or an obtuse angle.
  6.  前記凹部が前記ギャップに至っていない、請求項1~5のいずれか1項に記載のESD保護装置。 The ESD protection device according to any one of claims 1 to 5, wherein the concave portion does not reach the gap.
  7.  前記第1及び第2の放電電極が矩形形状を有しており、前記第1及び第2の放電電極の長辺同士が前記ギャップを隔てて対向している、請求項1~6のいずれか1項に記載のESD保護装置。 The first and second discharge electrodes have a rectangular shape, and the long sides of the first and second discharge electrodes are opposed to each other with the gap therebetween. The ESD protection device according to Item 1.
  8.  前記第1及び第2の放電電極において、互いに対向している前記長辺とは反対側の前記第1及び第2の放電電極の長辺が、前記空洞の外側に位置している、請求項7に記載のESD保護装置。 The long side of the first and second discharge electrodes opposite to the long sides facing each other in the first and second discharge electrodes is located outside the cavity. 8. The ESD protection device according to 7.
  9.  金属粒子と半導体粒子とを含み、前記ギャップに設けられた放電補助部をさらに備える、請求項1~8のいずれか1項に記載のESD保護装置。 The ESD protection device according to any one of claims 1 to 8, further comprising a discharge assisting portion that includes metal particles and semiconductor particles and is provided in the gap.
  10.  前記空洞の内壁を覆うように設けられたシール層をさらに備え、前記空洞の周縁部が、前記シール層と、前記第1の絶縁体層、前記第1の放電電極及び前記第2の放電電極との各接合界面に位置している、請求項1~9のいずれか1項に記載のESD保護装置。 A seal layer provided so as to cover an inner wall of the cavity, and a peripheral portion of the cavity includes the seal layer, the first insulator layer, the first discharge electrode, and the second discharge electrode; The ESD protection device according to any one of claims 1 to 9, wherein the ESD protection device is located at each of the bonding interfaces.
PCT/JP2013/051435 2012-01-30 2013-01-24 Electrostatic discharge protection device WO2013115054A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013556352A JP5874743B2 (en) 2012-01-30 2013-01-24 ESD protection device
CN201390000227.5U CN204088879U (en) 2012-01-30 2013-01-24 ESD protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016994 2012-01-30
JP2012-016994 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115054A1 true WO2013115054A1 (en) 2013-08-08

Family

ID=48905096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051435 WO2013115054A1 (en) 2012-01-30 2013-01-24 Electrostatic discharge protection device

Country Status (3)

Country Link
JP (1) JP5874743B2 (en)
CN (1) CN204088879U (en)
WO (1) WO2013115054A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098084A1 (en) * 2012-12-19 2014-06-26 株式会社 村田製作所 Esd protection device
WO2016039021A1 (en) * 2014-09-10 2016-03-17 株式会社村田製作所 Esd protection device and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537344A (en) * 2019-06-19 2022-08-25 ボーンズ、インコーポレイテッド Gas discharge tube with improved ratio of leak path length to gap dimension

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017212A (en) * 2001-06-29 2003-01-17 Mitsubishi Materials Corp Chip-type surge absorber
JP2003100417A (en) * 2001-09-25 2003-04-04 Mitsubishi Materials Corp Tip-type surge absorber
JP2007317541A (en) * 2006-05-26 2007-12-06 Mitsubishi Materials Corp Surge suppressor
WO2008053717A1 (en) * 2006-10-31 2008-05-08 Panasonic Corporation Anti-static part and its manufacturing method
WO2011040437A1 (en) * 2009-09-30 2011-04-07 株式会社村田製作所 Esd protection device and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093546A (en) * 2000-07-10 2002-03-29 Samsung Electro Mech Co Ltd Surface mount electrostatic discharge device
JP3439746B2 (en) * 2001-03-12 2003-08-25 株式会社コンド電機 Surface mount type surge absorbing element and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017212A (en) * 2001-06-29 2003-01-17 Mitsubishi Materials Corp Chip-type surge absorber
JP2003100417A (en) * 2001-09-25 2003-04-04 Mitsubishi Materials Corp Tip-type surge absorber
JP2007317541A (en) * 2006-05-26 2007-12-06 Mitsubishi Materials Corp Surge suppressor
WO2008053717A1 (en) * 2006-10-31 2008-05-08 Panasonic Corporation Anti-static part and its manufacturing method
WO2011040437A1 (en) * 2009-09-30 2011-04-07 株式会社村田製作所 Esd protection device and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098084A1 (en) * 2012-12-19 2014-06-26 株式会社 村田製作所 Esd protection device
US9837795B2 (en) 2012-12-19 2017-12-05 Murata Manufacturing Co., Ltd. ESD protection device
WO2016039021A1 (en) * 2014-09-10 2016-03-17 株式会社村田製作所 Esd protection device and production method therefor
JPWO2016039021A1 (en) * 2014-09-10 2017-04-27 株式会社村田製作所 ESD protection device and manufacturing method thereof
US10297982B2 (en) 2014-09-10 2019-05-21 Murata Manufacturing Co., Ltd. ESD protective device and method for manufacturing thereof

Also Published As

Publication number Publication date
JP5874743B2 (en) 2016-03-02
CN204088879U (en) 2015-01-07
JPWO2013115054A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5590122B2 (en) ESD protection device
JP4434314B2 (en) ESD protection device
KR101392455B1 (en) Esd protection device and method for manufacturing same
US8711537B2 (en) ESD protection device and method for producing the same
JP5649391B2 (en) ESD protection device
JP5874743B2 (en) ESD protection device
WO2012105497A1 (en) Esd protection device
JP6036989B2 (en) ESD protection device
JP5757372B2 (en) ESD protection device
JP5757294B2 (en) ESD protection device and manufacturing method thereof
JP5648696B2 (en) ESD protection device and manufacturing method thereof
JP5605413B2 (en) ESD protection device and manufacturing method thereof
JP6428938B2 (en) ESD protection device
JP6086151B2 (en) ESD protection device
US9780533B2 (en) ESD protective device
JP6048055B2 (en) ESD protection device and manufacturing method thereof
TWI506900B (en) Electrostatic discharge protection device
JP5614563B2 (en) Manufacturing method of ESD protection device
WO2013146324A1 (en) Esd protection device and production method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000227.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744140

Country of ref document: EP

Kind code of ref document: A1