WO2013114914A1 - 連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法 - Google Patents

連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法 Download PDF

Info

Publication number
WO2013114914A1
WO2013114914A1 PCT/JP2013/050111 JP2013050111W WO2013114914A1 WO 2013114914 A1 WO2013114914 A1 WO 2013114914A1 JP 2013050111 W JP2013050111 W JP 2013050111W WO 2013114914 A1 WO2013114914 A1 WO 2013114914A1
Authority
WO
WIPO (PCT)
Prior art keywords
standing wave
output
wave signal
signal
feedback amplifier
Prior art date
Application number
PCT/JP2013/050111
Other languages
English (en)
French (fr)
Inventor
新井 学
中田 正之
Original Assignee
品川リフラクトリーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 品川リフラクトリーズ株式会社 filed Critical 品川リフラクトリーズ株式会社
Publication of WO2013114914A1 publication Critical patent/WO2013114914A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to a mold level meter for continuous casting that measures the level of a molten metal level in a mold used for continuous casting, and a molten metal level control method using the same.
  • Patent Document 1 an eddy current type distance meter described in Patent Document 1 is known as this type of mold level gauge.
  • the eddy current range meter disclosed in Patent Document 1 includes a primary coil, a pair of secondary coils that are coaxially arranged vertically with the primary coil interposed therebetween, and differentially connected to each other, and an oscillator connected to the primary coil.
  • Patent Document 1 since the secondary coil that is divided into the upper and lower axes coaxially as the sensor coil is used as described above and the secondary coils are differentially connected to each other to obtain a feedback signal, The detection sensitivity can be maintained only in the axial direction, so the influence of the side conductor is also eliminated by being compensated by the divided secondary coil, and the secondary coil is also divided against temperature changes. Therefore, it is said that the characteristics are excellent and a vortex rangefinder with high measurement accuracy can be obtained.
  • the standing wave is the same as the natural frequency of the equipment, and always exists as a wave on the surface of the hot water. Since mold surface control is mass balance control, such standing waves should not be controlled. However, since the detection head of the eddy current type distance meter detects the molten metal surface where the standing wave is generated, the sliding nozzle or the stopper device is operated to adjust the molten metal surface height to the target value based on the detection result. For this reason, a standing wave is promoted, and a divergence phenomenon occurs in which the amplitude becomes larger and larger.
  • control gain is lowered, that is, the sliding nozzle or the stopper device is operated insensitively to the output signal from the eddy current type distance meter main body.
  • this method deteriorates the original hot water surface control accuracy. Specifically, the fluctuation of the molten metal surface is increased at the time of operation change such as casting speed change, tundish weight change and argon blowing.
  • an object of the present invention is to provide a continuous casting mold level meter that can measure the molten metal level in the continuous casting mold with high accuracy without being affected by the standing wave, and a divergence phenomenon due to the standing wave. It is an object of the present invention to provide a molten metal level control method capable of controlling the molten metal level in a continuous casting mold without occurring.
  • the present invention includes an oscillator that transmits an AC signal having a predetermined frequency, a feedback amplifier to which the AC signal is supplied, and a detection head having a primary coil and a pair of secondary coils that are differentially connected to each other.
  • the output of the feedback amplifier is supplied to the primary coil, the output of the secondary coil is fed back to the feedback amplifier, and continuous casting is performed based on the output of the feedback amplifier that changes in response to a change in the molten metal surface level.
  • An in-mold hot water level meter for continuous casting is provided.
  • the present invention also includes an oscillator for transmitting an AC signal having a predetermined frequency, a feedback amplifier to which the AC signal is supplied, a detection head including a primary coil and a pair of secondary coils that are differentially connected to each other.
  • the output of the feedback amplifier is supplied to the primary coil, the output of the secondary coil is fed back to the feedback amplifier, and the mold for continuous casting is based on the output of the feedback amplifier that changes corresponding to the change in the molten metal surface level.
  • a standing wave signal is extracted by a bandpass filter, and the extracted standing wave signal and an output signal of the feedback amplifier including the standing wave signal are input to a differential amplifier, and the differential The standing wave signal included in the output signal of the feedback amplifier and the extracted standing wave signal are canceled by the width device to remove the standing wave signal due to the natural frequency of the mold.
  • a molten metal surface control method for controlling the molten metal surface in the continuous casting mold based on the output signal after removing the standing wave signal is provided.
  • a standing wave signal due to the natural frequency of the mold mixed in the output of the feedback amplifier is extracted by the band-pass filter, and the extracted standing wave signal and feedback including the standing wave signal are extracted.
  • the output signal of the amplifier is input to the differential amplifier, and the standing wave signal included in the output signal and the extracted standing wave signal are canceled by the differential amplifier, thereby stabilizing the frequency due to the natural frequency of the mold.
  • the standing wave signal can be removed. For this reason, the influence of the standing wave can be removed, and by performing the hot water level control using this, the divergence of the hot water level control due to the standing wave can be prevented.
  • FIG. 1 is a block diagram showing a mold level meter for continuous casting according to an embodiment of the present invention.
  • 1 is a mold for continuous casting
  • 2 is a molten metal surface in the mold 1.
  • the continuous casting mold level meter 20 includes an oscillator 3 that transmits an AC signal having a predetermined frequency, a feedback amplifier 4 to which the transmitted AC signal is supplied, a detection head 5, a signal amplifier 10, and a standing wave. And a removal circuit 11.
  • the detection head 5 is provided above the molten metal surface 2 in the mold 1 and is composed of a primary coil 7 wound around a coil bobbin 6 and a pair of secondary coils 8 and 9 arranged coaxially.
  • the pair of secondary coils 8 and 9 are differentially connected.
  • the primary coil 7 is supplied with an AC voltage having a fixed frequency from the oscillator 3 via the feedback amplifier 4, thereby generating an AC magnetic field, crossing the secondary coils 8 and 9, crossing the molten steel, and in the hot water surface. Eddy currents are generated in the molten steel. Due to the reaction of the eddy current, an AC magnetic field having a reverse polarity is generated. By this reaction, a voltage is induced in the pair of secondary coils 8 and 9, and the difference between the induced voltages is amplified by the signal amplifier 10, and then the feedback amplifier 4. It returned to, and output as an output voltage E 0.
  • the standing wave removal circuit 11 includes a band pass filter 12 that extracts a standing wave signal caused by the natural frequency of the mold 1 from the output voltage E 0, an amplifier 13 that amplifies the extracted standing wave signal, And a differential amplifier 14 to which the amplified standing wave signal and an output voltage signal E 0 including the standing wave signal are input.
  • the detection head 5 is installed above the level 2 in the mold 1 (relative distance h from the level), and a feedback amplifier is connected to the primary coil 7 thereof.
  • An AC voltage having a fixed frequency is supplied from the oscillator 3 via 4. This generates an alternating magnetic field.
  • This AC magnetic field intersects with the secondary coils 8 and 9 and also intersects with the molten steel in the mold 1, and an eddy current is generated in the molten metal surface by this intersection.
  • the eddy current generates an AC magnetic field having a polarity opposite to that generated from the primary coil 7, and the induced voltage induced in the pair of secondary coils 8 and 9 changes due to the influence.
  • E 0 ⁇ G1 ⁇ E in / ⁇ 1 ⁇ G1 (K + G2 ⁇ f (h)) ⁇ (1)
  • the output voltage E 0 includes this standing wave signal.
  • the output signal including such a standing wave signal as a control signal and operating the sliding nozzle or stopper device to match the molten metal surface height to the target value the standing wave is promoted and the amplitude becomes larger. The divergence phenomenon occurs.
  • the standing wave signal is removed from the output signal (output voltage E 0 ) including the standing wave signal output from the feedback amplifier 4 by the standing wave removal circuit 11.
  • the signal is supplied to the band-pass filter 12 having the frequency characteristics shown in FIG. 2, and only the standing wave signal is extracted, and the extracted standing wave signal is amplified by the amplifier 13 to be supplied to the differential amplifier 14. input.
  • the differential amplifier 14 also receives an output signal (output voltage E 0 ) including a standing wave signal output from the feedback amplifier 4 described above.
  • the differential amplifier 14 adds these input signals to cancel the standing wave signal, thereby obtaining an output signal (output voltage E 0 ′) from which the standing wave signal has been removed.
  • the level of the molten metal surface 2 is measured by the output signal (output voltage E 0 ′) from which the standing wave signal has been removed in this way, the level of the molten metal surface 2 is measured with high accuracy without being affected by the standing wave. can do.
  • the output signal (output voltage E 0 ′) measured in this way is used as a control signal to cause a divergence phenomenon by performing feedback control for operating the sliding nozzle or the stopper device so that the molten metal surface height matches the target value. Therefore, it is possible to control the molten metal surface in the mold with extremely high accuracy.
  • the standing wave removing circuit 11 is added with a comparator 15 and a frequency / voltage converter 16. It is preferable. That is, the output of the bandpass filter 12 described above is input to the comparator 15 and shaped into a rectangular wave having a constant amplitude, and then the standing wave extracted by F / V conversion by the frequency / voltage converter 16. A DC voltage proportional to the signal frequency is obtained. By applying this DC voltage to the bandpass filter 12 to change the constant of the bandpass filter 12 and causing the center frequency to follow the frequency of the standing wave signal to be extracted, the center of the bandpass filter 12 is automatically set. The frequency can be matched to the frequency of the standing wave. The frequency of the standing wave is 0.7 to 0.9 Hz, and the actual fluctuation level of the molten metal surface is 0.5 Hz or less.
  • FIG. 4 is a chart showing the change over time in the molten metal surface level when the mold surface is controlled according to the present invention
  • FIG. 5 is a comparative example in which the molten metal surface is controlled without removing standing waves. It is a chart showing the time-dependent change of a surface level.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

 湯面計(20)は、発振器(3)と、帰還増幅器(4)と、一次コイル(7)および互いに差動接続された一対の二次コイル(8,9)を有する検出ヘッド(5)とを備え、帰還増幅器(4)の出力が一次コイル(7)に供給され、二次コイル(8,9)の出力を帰還増幅器(4)に帰還し、湯面レベルの変化に対応して変化する帰還増幅器(4)の出力に基づいてモールド内の湯面レベルを計測する。さらに、帰還増幅器(4)の出力に混入する定在波の信号を抽出するバンドパスフィルター(12)と、抽出された定在波信号と定在波信号を含む帰還増幅器(4)の出力信号とが入力される差動増幅器(14)とを備え、差動増幅器(14)により出力信号に含まれている定在波信号と抽出された定在波信号とを相殺することにより定在波信号を除去する。

Description

連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法
 本発明は、連続鋳造に用いるモールド内の湯面レベルを計測する連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法に関する。
 連続鋳造において、モールド内の湯面レベルを高精度で計測し、湯面レベルを一定に制御することが、鋳片の品質を向上させることになるので、高精度なモールド湯面計の開発が行なわれている。
 従来、この種のモールド湯面計として、特許文献1に記載された渦流式距離計が知られている。
 特許文献1に開示された渦流距離計は、一次コイルと、一次コイルを挟んで上下に同軸に配置され、相互に差動的に接続された一対の二次コイルと、前記一次コイルに発振器からの交流電圧を増幅して印加する増幅器と、前記一対の二次コイルの差分出力電圧を増幅して前記増幅器に帰還させる信号増幅器とを備えたものである。
 特許文献1では、このようにセンサーコイルとして同軸に上下に分割された二次コイルを用い、これら二次コイルを互いに差動的に接続して帰還信号を得るようにしたから、二次コイルの軸方向に対してのみ検出感度を保持させることができ、したがって、側面導体の影響も分割された二次コイルによって補償されることにより除去され、また温度変化に対しても分割された二次コイルにより補償し合うため、特性が良好となり、渦流距離計として測定精度が高いものが得られるとしている。
特公昭62-30562号公報
 ところで、連続鋳造においてはモールドの固有振動数に起因する定在波が存在するため、渦流距離計の計測によりこの定在波も同時に計測される。この定在波信号を含む渦流式距離計からの出力信号を制御信号として用いると、上記定在波信号により湯面の制御精度が悪化する。
 すなわち、定在波は設備の固有振動数と同じで、湯面上の波として必ず存在する。モールド湯面制御はマスバランス制御であるため、このような定在波の波を制御してはならない。しかし、渦流式距離計の検出ヘッドは、定在波が発生した湯面を検知するため、その検知結果に基づいて湯面高さを目標値に合せようとスライディングノズルまたはストッパー装置を作動させる。そのため、定在波が助長され、振幅がますます大きくなるという発散現象が発生する。
 従来はこの発散現象を防止するために、制御ゲインを下げて、すなわち、渦流式距離計本体からの出力信号に対して鈍感にスライディングノズルまたはストッパー装置を作動させて操業を行なっている。
 しかしながら、この方法は、本来の湯面制御精度を悪化させてしまう。具体的には、鋳造速度変更、タンディッシュ重量変更およびアルゴン吹込み等の操業変化時に湯面変動が増長されてしまう。
 したがって、本発明の目的は、定在波の影響を受けずに高精度で連続鋳造用モールド内の湯面を計測することができる連続鋳造用モールド内湯面計、および定在波による発散現象を生じることなく連続鋳造用モールド内の湯面を制御することができる湯面制御方法を提供することにある。
 すなわち、本発明は、所定の周波数の交流信号を送出する発振器と、前記交流信号が供給される帰還増幅器と、一次コイルおよび互いに差動接続された一対の二次コイルを有する検出ヘッドとを備え、前記帰還増幅器の出力が前記一次コイルに供給され、前記二次コイルの出力を前記帰還増幅器に帰還し、湯面レベルの変化に対応して変化する前記帰還増幅器の出力に基づいて連続鋳造用モールド内の湯面レベルを計測する連続鋳造用モールド内湯面計において、前記帰還増幅器の出力に混入する前記連続鋳造用モールドの固有振動数に起因する定在波の信号を抽出するバンドパスフィルターと、前記バンドパスフィルターにより抽出された定在波信号と前記定在波信号を含む前記帰還増幅器の出力信号とが入力される差動増幅器とをさらに備え、前記差動増幅器により前記帰還増幅器の出力信号に含まれている定在波信号と前記抽出された定在波信号とを相殺することにより前記モールド固有振動数に起因する定在波信号を除去する、連続鋳造用モールド内湯面計を提供する。
 また、本発明は、所定の周波数の交流信号を送出する発振器と、前記交流信号が供給される帰還増幅器と、一次コイルおよび互いに差動接続された一対の二次コイルを備えた検出ヘッドを備え、前記帰還増幅器の出力が前記一次コイルに供給され、前記二次コイルの出力を前記帰還増幅器に帰還し、湯面レベルの変化に対応して変化する帰還増幅器の出力に基づいて連続鋳造用モールド内の湯面レベルを計測する連続鋳造用モールド内湯面計を用いて湯面を制御する湯面制御方法であって、前記帰還増幅器の出力に混入する前記連続鋳造用モールドの固有振動数に起因する定在波の信号をバンドパスフィルターにより抽出し、この抽出された定在波信号と前記定在波信号を含む前記帰還増幅器の出力信号とを差動増幅器に入力し、前記差動増幅器により前記帰還増幅器の出力信号に含まれている定在波信号と前記抽出された定在波信号とを相殺することにより前記モールド固有振動数に起因する定在波信号を除去し、定在波信号を除去した後の出力信号に基づいて前記連続鋳造用モールド内の湯面を制御する、湯面制御方法を提供する。
 本発明によれば、帰還増幅器の出力に混入するモールドの固有振動数に起因する定在波の信号をバンドパスフィルターにより抽出し、この抽出された定在波信号と定在波信号を含む帰還増幅器の出力信号とを差動増幅器に入力し、差動増幅器により出力信号に含まれている定在波信号と抽出された定在波信号とを相殺することによりモールド固有振動数に起因する定在波信号を除去することができる。このため、定在波の影響を除去することができ、これを用いて湯面制御を行うことにより、定在波に起因する湯面制御の発散を防止することができる。
本発明の一実施形態に係る連続鋳造用モールド内湯面計を示すブロック図である。 バンドパスフィルターの周波数特性図である。 本発明の他の実施形態に係る連続鋳造用モールド内湯面計の一部を示すブロック図である。 本発明によりモールド湯面を制御した場合の湯面レベルの経時変化を表すチャートである。 本発明によらないでモールド湯面を制御した場合の湯面レベルの経時変化を表すチャートである。
 以下、添付図面を参照して、本発明の実施の形態について説明する。
 図1は、本発明の一実施形態に係る連続鋳造用モールド内湯面計を示すブロック図である。同図において、1は連続鋳造用モールドであり、2はモールド1内の湯面である。
 連続鋳造用モールド内湯面計20は、所定の周波数の交流信号を送出する発振器3と、送出された交流信号が供給される帰還増幅器4と、検出ヘッド5と、信号増幅器10と、定在波除去回路11とを有している。
 検出ヘッド5は、モールド1内の湯面2の上方に設けられ、コイルボビン6に巻回される一次コイル7および同軸配置された一対の二次コイル8,9から構成されている。一対の二次コイル8,9は差動接続されている。一次コイル7には、帰還増幅器4を介して発振器3から固定周波数の交流電圧が供給され、これにより交流磁界が発生して二次コイル8,9と交差するとともに溶鋼と交差し、湯面内の溶鋼には渦電流が発生する。渦電流の反作用により、逆極性の交流磁界が発生し、この反作用によって一対の二次コイル8,9に電圧が誘起され、その誘起電圧の差分が信号増幅器10により増幅された後、帰還増幅器4に帰還し、出力電圧Eとして出力される。
 定在波除去回路11は、出力電圧Eからモールド1の固有振動数に起因する定在波の信号を抽出するバンドパスフィルター12と、抽出された定在波信号を増幅するアンプ13と、この増幅された定在波信号と定在波信号を含む出力電圧信号Eとが入力される差動増幅器14とを有する。
 このように構成される連続鋳造用モールド内湯面計20においては、検出ヘッド5をモールド1内の湯面2の上方(湯面との相対距離h)に設置し、その一次コイル7に帰還増幅器4を介して発振器3から固定周波数の交流電圧を供給する。これにより交流磁界が発生する。この交流磁界は、二次コイル8,9と交差するとともに、モールド1内の溶鋼とも交差し、この交差により湯面内に渦電流が発生する。この渦電流の発生によりその反作用として一次コイル7から発生したのと逆極性の交流磁界が発生し、その影響により一対の二次コイル8,9に誘起する誘起電圧が変化する。この影響は、湯面2に近い二次コイル9がより大きく受けるので、一対の二次コイル8,9の誘起電圧VS1,VS2はVS1>VS2となり、その差分V=(VS1-VS2)を信号増幅器10に加え、所期の増幅をした後、帰還増幅器4に帰還する。
 すなわち、帰還増幅器4の出力は以下の(1)式によって表される。
=-G1・Ein/{1-G1(K+G2・f(h))}・・・(1)
ただし、
 E;帰還増幅器4の出力電圧
 Ein;発振器3の出力電圧(帰還増幅器4の入力電圧)
 G1;帰還増幅器4のオープン増幅度
 G2;信号増幅器10の増幅度
 K;正帰還率
 f(h);検出ヘッド5と溶鋼湯面レベル2との相対距離によって決定される関数(f(h)=V/Eで表される。)
である。
 したがって、(1)式から明らかなように、G1、G2、Einが固定されると、検出ヘッド5と湯面2との相対距離hに対応して出力電圧Eの値が変化するので、この値を測定することにより湯面2のレベルを計測することができる。
 しかし、連続鋳造においてはモールドの固有振動数に起因する定在波が存在するため、出力電圧Eにはこの定在波信号も含むものとなる。このような定在波信号を含む出力信号を制御信号として用いて、湯面高さを目標値に合せるべくスライディングノズルまたはストッパー装置を作動させると定在波が助長され、振幅がますます大きくなるという発散現象が発生する。
 そこで、本実施形態では、帰還増幅器4から出力される定在波信号を含む出力信号(出力電圧E)から、定在波除去回路11により定在波信号を除去する。
 具体的には、例えば図2に示す周波数特性を有するバンドパスフィルター12に供給し、定在波信号のみを抽出し、この抽出した定在波信号をアンプ13で増幅して差動増幅器14に入力する。この差動増幅器14には、上述した帰還増幅器4から出力される定在波信号を含む出力信号(出力電圧E)も入力される。差動増幅器14でこれらの入力信号を加算して定在波信号を相殺することにより、差動増幅器14からは定在波信号が除去された出力信号(出力電圧E′)が得られる。
 このように定在波信号が除去された出力信号(出力電圧E′)により湯面2のレベルを計測するので、定在波の影響を受けずに高精度で湯面2のレベルを計測することができる。
 このため、このように計測した出力信号(出力電圧E′)を制御信号として、湯面高さを目標値に合せるべくスライディングノズルまたはストッパー装置を作動させるフィードバック制御を行うことにより発散現象を生じることなく極めて高精度のモールド内湯面制御を行うことができる。
 上記した定在波の周波数が大幅に変化する場合には、図3に示すように、上記定在波除去回路11として、コンパレーター15と、周波数・電圧変換器16とを加えたものを用いることが好ましい。すなわち、上述のバンドパスフィルター12の出力をコンパレーター15に入力して一定振幅の矩形波に波形整形し、然る後に周波数・電圧変換器16によりF・V変換して抽出された定在波信号の周波数に比例した直流電圧を得る。この直流電圧をバンドパスフィルター12に印加してバンドパスフィルター12の定数を変化させ、その中心周波数を抽出すべき定在波信号の周波数に追従させることにより、自動的にバンドパスフィルター12の中心周波数を上記定在波の周波数に合せることができる。なお、定在波の周波数は0.7~0.9Hz、実際の湯面変動の周波数は0.5Hz以下である。
 以下、本発明の実施例について説明する。
 図4は、本発明によりモールド湯面を制御した場合の湯面レベルの経時変化を表すチャートであり、図5は、比較として定在波を除去せずにモールド湯面を制御した場合の湯面レベルの経時変化を表すチャートである。
 図4から明らかなように、本発明によってモールド湯面を制御した場合、湯面変動は±2mm以内で安定していることがわかる。一方、本発明によらないでモールド湯面を制御した場合、図5に示すように、湯面変動は途中から突然増加し、±5mm以上まで増加している。
 このことから、本発明に従って出力信号から定在波の信号を除去することにより、発散現象を有効に防止することができ、高精度でモールド内湯面制御を行えることが確認された。
 したがって、実際の湯面変動のみが渦流式距離計本体から信号として出力され、これが制御信号として使用される。すなわち、定在波による発散現象が防止できる。
1;モールド、2;湯面、3;発振器、4;帰還増幅器、5;検出ヘッド、6;コイルボビン、7;一次コイル、8,9;二次コイル、10;信号増幅器、11;定在波除去回路、12;バンドパスフィルター、13;アンプ、14;差動増幅器、15;コンパレーター、16;周波数・電圧変換器、20;連続鋳造用モールド内湯面計

Claims (4)

  1.  所定の周波数の交流信号を送出する発振器と、前記交流信号が供給される帰還増幅器と、一次コイルおよび互いに差動接続された一対の二次コイルを有する検出ヘッドとを備え、前記帰還増幅器の出力が前記一次コイルに供給され、前記二次コイルの出力を前記帰還増幅器に帰還し、湯面レベルの変化に対応して変化する前記帰還増幅器の出力に基づいて連続鋳造用モールド内の湯面レベルを計測する連続鋳造用モールド内湯面計において、
     前記帰還増幅器の出力に混入する前記連続鋳造用モールドの固有振動数に起因する定在波の信号を抽出するバンドパスフィルターと、
     前記バンドパスフィルターにより抽出された定在波信号と前記定在波信号を含む前記帰還増幅器の出力信号とが入力される差動増幅器と
    をさらに備え、
     前記差動増幅器により前記帰還増幅器の出力信号に含まれている定在波信号と前記抽出された定在波信号とを相殺することにより前記モールド固有振動数に起因する定在波信号を除去する、連続鋳造用モールド内湯面計。
  2.  前記バンドパスフィルターの出力を一定振幅の矩形波に波形整形するコンパレーターと、前記コンパレーターにより波形整形されて得られた矩形波をF・V変換して定在波信号の周波数に比例した直流電圧を抽出する周波数・電圧変換器とをさらに備える、請求項1に記載の連続鋳造用モールド内湯面計。
  3.  所定の周波数の交流信号を送出する発振器と、前記交流信号が供給される帰還増幅器と、一次コイルおよび互いに差動接続された一対の二次コイルを備えた検出ヘッドを備え、前記帰還増幅器の出力が前記一次コイルに供給され、前記二次コイルの出力を前記帰還増幅器に帰還し、湯面レベルの変化に対応して変化する帰還増幅器の出力に基づいて連続鋳造用モールド内の湯面レベルを計測する連続鋳造用モールド内湯面計を用いて湯面を制御する湯面制御方法であって、
     前記帰還増幅器の出力に混入する前記連続鋳造用モールドの固有振動数に起因する定在波の信号をバンドパスフィルターにより抽出し、この抽出された定在波信号と前記定在波信号を含む前記帰還増幅器の出力信号とを差動増幅器に入力し、前記差動増幅器により前記帰還増幅器の出力信号に含まれている定在波信号と前記抽出された定在波信号とを相殺することにより前記モールド固有振動数に起因する定在波信号を除去し、定在波信号を除去した後の出力信号に基づいて前記連続鋳造用モールド内の湯面を制御する、湯面制御方法。
  4.  前記バンドパスフィルターの出力をコンパレーターに入力して一定振幅の矩形波に波形整形し、然る後に周波数・電圧変換器によりF・V変換して抽出された定在波信号の周波数に比例した直流電圧を得る、請求項3に記載の湯面制御方法。
PCT/JP2013/050111 2012-01-31 2013-01-08 連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法 WO2013114914A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-019116 2012-01-31
JP2012019116A JP2013154393A (ja) 2012-01-31 2012-01-31 連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法

Publications (1)

Publication Number Publication Date
WO2013114914A1 true WO2013114914A1 (ja) 2013-08-08

Family

ID=48904958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050111 WO2013114914A1 (ja) 2012-01-31 2013-01-08 連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法

Country Status (2)

Country Link
JP (1) JP2013154393A (ja)
WO (1) WO2013114914A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153663A (en) * 1978-05-24 1979-12-04 Nippon Kokan Kk Method of removing nozzle for measured signal of molten material level in mold for continuous casting
JPS6093316A (ja) * 1983-10-27 1985-05-25 Nippon Kokan Kk <Nkk> 渦流式湯面レベル測定法
JPS63111248U (ja) * 1987-01-13 1988-07-16
JP2010069513A (ja) * 2008-09-19 2010-04-02 Jfe Steel Corp 連続鋳造機のモールド内湯面レベル制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153663A (en) * 1978-05-24 1979-12-04 Nippon Kokan Kk Method of removing nozzle for measured signal of molten material level in mold for continuous casting
JPS6093316A (ja) * 1983-10-27 1985-05-25 Nippon Kokan Kk <Nkk> 渦流式湯面レベル測定法
JPS63111248U (ja) * 1987-01-13 1988-07-16
JP2010069513A (ja) * 2008-09-19 2010-04-02 Jfe Steel Corp 連続鋳造機のモールド内湯面レベル制御方法

Also Published As

Publication number Publication date
JP2013154393A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JPS6057217A (ja) 渦流式モ−ルド湯面計
JP3602096B2 (ja) 電磁連続鋳造における溶融金属レベルを測定する装置及びその方法
KR20060087610A (ko) 연속주조주편의 응고완료위치검지방법 및 검지장치 및연속주조주편의 제조방법
JP5463440B1 (ja) モールド内湯面計の校正方法および校正治具
JP4453556B2 (ja) 連続鋳造鋳片の製造方法
WO2013114914A1 (ja) 連続鋳造用モールド内湯面計およびそれを用いた湯面制御方法
JP5782202B1 (ja) 渦流式モールドレベル測定装置及びモールドレベル測定方法
JPH08211085A (ja) 流速測定装置
JP2005028381A (ja) 鋳型内湯面レベル検出装置
JPH08211083A (ja) 流速測定方法及びその測定装置
JP5347402B2 (ja) 連続鋳造機のモールド内湯面レベル制御方法
WO2016017028A1 (ja) 渦流式モールドレベル測定装置及びモールドレベル測定方法
JPH08211084A (ja) 流速測定装置
JPH08211086A (ja) 流速測定方法及びその測定装置
JP2017207395A (ja) 溶鋼のレベル測定システム、情報処理装置、測定方法及びプログラム
JP5223842B2 (ja) 鋳片表面温度導出装置及び鋳片表面温度導出方法
JPH02140621A (ja) 渦流式モールドレベル計
KR100482219B1 (ko) 전자기 연속주조에서 탕면레벨 검출장치 및 그 방법
JPH11211741A (ja) 流速測定方法及び装置
JPH09101320A (ja) 流速測定方法及びその測定装置
JPH08327647A (ja) 流速測定装置
WO2013114915A1 (ja) 渦流式モールド湯面レベルセンサー
JPS6031020A (ja) 溶鋼量の測定方法
JP5223841B2 (ja) 鋳片状態測定装置、鋳片状態測定方法、及びコンピュータプログラム
JP2016022489A (ja) 溶鋼流速測定方法及び溶鋼流速測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744377

Country of ref document: EP

Kind code of ref document: A1