WO2013114843A1 - 内燃機関温度調整システム - Google Patents

内燃機関温度調整システム Download PDF

Info

Publication number
WO2013114843A1
WO2013114843A1 PCT/JP2013/000407 JP2013000407W WO2013114843A1 WO 2013114843 A1 WO2013114843 A1 WO 2013114843A1 JP 2013000407 W JP2013000407 W JP 2013000407W WO 2013114843 A1 WO2013114843 A1 WO 2013114843A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
internal combustion
combustion engine
temperature
engine
Prior art date
Application number
PCT/JP2013/000407
Other languages
English (en)
French (fr)
Inventor
道夫 西川
伊藤 肇
梯 伸治
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013114843A1 publication Critical patent/WO2013114843A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00314Arrangements permitting a rapid heating of the heating liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0688Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/18Heater

Definitions

  • the present disclosure relates to an internal combustion engine temperature adjustment system applied to a hybrid vehicle.
  • a hybrid vehicle that includes a battery that travels by a driving force output from at least one of an internal combustion engine (engine) and a traveling electric motor and stores electric power supplied to the traveling electric motor.
  • engine internal combustion engine
  • a hybrid vehicle for example, as in a plug-in hybrid vehicle, when the remaining capacity SOC (State Of Charge) of the battery is sufficiently secured, the vehicle travels only with the driving force output from the electric motor for traveling. However, when the remaining capacity SOC of the battery decreases, there is a battery that operates the internal combustion engine to obtain a driving force for traveling. In such a hybrid vehicle, since the internal combustion engine is started and stopped irregularly, the internal combustion engine is likely to be cold started, and a large amount of unburned fuel such as HC is discharged at the time of startup.
  • SOC State Of Charge
  • the exhaust purification catalyst uses a rare metal or the like, and the exhaust purification catalyst. Increasing the catalyst for use may increase the cost.
  • the cold start of the internal combustion engine itself is suppressed to suppress the discharge of HC and the like when the internal combustion engine is started. It is desirable to do.
  • an object of the present disclosure to provide an internal combustion engine temperature adjustment system capable of suppressing a cold start of an internal combustion engine in a hybrid vehicle in which the internal combustion engine is started and stopped irregularly.
  • the internal combustion engine temperature control system includes a travel electric motor that outputs a driving force for traveling the vehicle by supplying power from the storage battery, and a drive for generating the driving force for traveling the vehicle or the power stored in the storage battery. This is applied to a hybrid vehicle having a water-cooled internal combustion engine that outputs power and capable of traveling only with the driving force output by the traveling electric motor until the remaining capacity of the storage battery falls below a predetermined first reference capacity. Can be adjusted to a desired temperature.
  • An internal combustion engine temperature control system includes a cooling water circulation circuit that circulates cooling water of the internal combustion engine, a first cooling water circulation device that is provided in the cooling water circulation circuit and circulates the cooling water, and blows air into the vehicle interior.
  • a heating unit provided in the air conditioner for adjusting the temperature of the blown air to be heated, and a control unit for controlling the operation of the internal combustion engine and the air conditioner; .
  • the control device operates the internal combustion engine at least when the remaining capacity of the storage battery falls below the first reference capacity. Further, the pre-warm-up process for raising the temperature of the cooling water of the internal combustion engine at the cooling water temperature raising unit when the remaining capacity of the storage battery is lower than the first reference capacity and the remaining capacity of the storage battery is reduced. Execute.
  • the cooling water of the internal combustion engine is raised in temperature by the cooling water temperature raising unit before the operation of the internal combustion engine due to a decrease in the remaining capacity of the storage battery, the internal combustion engine is started and stopped irregularly. In the vehicle, the cold start of the internal combustion engine can be suppressed. As a result, it is possible to suppress the discharge of HC and the like when starting the internal combustion engine.
  • control device may be configured to determine the start timing of the pre-warming-up process based on at least the state of decrease in the remaining capacity of the storage battery.
  • the control device starts the pre-warm-up process when the remaining capacity of the storage battery falls below a second reference capacity that is greater than the first reference capacity. It may be configured as follows.
  • the control device calculates the expected time until the remaining capacity of the storage battery falls below the first reference capacity from the degree of decrease in the remaining capacity of the storage battery, and Calculate the required warm-up time required to raise the cooling water to the desired target temperature at the heating unit during the warm-up process, and perform the pre-warm-up process at least until the expected time falls below the required warm-up time. You may start.
  • the start timing of the pre-warm-up process is based on the relationship between the expected time predicted from the degree of decrease in the remaining capacity of the storage battery and the required warm-up time required for the temperature rise of the cooling water in the pre-warm process. Therefore, the pre-warm-up process can be executed at an appropriate timing.
  • the control device performs the pre-warm-up process when the expected time is equal to or less than the time obtained by adding a predetermined reference time to the warm-up required time. You may start.
  • the target temperature of the cooling water in the pre-warm-up process may be set so as to increase as the vehicle exterior temperature decreases.
  • control device may perform the pre-warm-up process when the heating capacity of the heating unit is lower than the maximum capacity.
  • the heating unit may be configured to generate heat by supplying power from the storage battery.
  • the heating unit compresses and discharges the refrigerant
  • the heat of the high-temperature and high-pressure refrigerant discharged from the compressor is blown air and cooled
  • You may be comprised including the refrigerant
  • the cooling water temperature raising unit is a cooling water side heat exchanger that radiates the heat of the cooling water to the blown air
  • the refrigerant heat radiating unit has the refrigerant.
  • It is a refrigerant side heat exchanger that radiates heat to the blown air
  • the cooling water side heat exchanger and the refrigerant side heat exchanger are the refrigerant that flows through the cooling water and the refrigerant side heat exchanger that flow through the cooling water side heat exchanger.
  • the cooling water side heat exchanger that radiates the heat of the cooling water to the blown air is provided, and the cooling water temperature rising unit is the water refrigerant heat that is the refrigerant heat radiating unit. You may comprise with an exchanger.
  • the air conditioner is provided with an air inflow amount adjustment unit that adjusts an inflow amount of blown air flowing into the cooling water side heat exchanger, and the control device includes: When performing the pre-warm-up process, the air inflow amount adjustment unit may reduce the inflow amount of the blown air.
  • the cooling water circulation circuit includes a main path configured to flow cooling water through a cooling water flow path formed inside the internal combustion engine, and a cooling water heating unit. And a sub-path configured to allow cooling water to flow therethrough.
  • the configuration is such that the flow rate of the cooling water flowing through the cooling water flow path and the flow rate of the cooling water flowing through the cooling water heating unit can be adjusted, the cooling water of the internal combustion engine can be efficiently heated. It becomes.
  • the sub path is provided with a second cooling water circulation device for circulating the cooling water.
  • the sub path may be provided with a heat storage unit for storing heat of the cooling water.
  • the heat of the cooling water heated by the cooling water temperature raising unit can be efficiently stored.
  • the heat of the cooling water may be stored in the heat storage section when the heating capacity of the heating section is lower than the maximum capacity. According to this, when there is a surplus in the heating capacity of the heating unit, the cold start of the internal combustion engine is effectively performed by storing the heat of the cooling water heated in the cooling water heating unit in the heat storage unit Can be suppressed.
  • the internal combustion engine has a block side flow path for cooling the cylinder block and a head side flow for cooling the cylinder head as a cooling water flow path.
  • a path is formed, and the cooling water circulation circuit may be provided with a second flow rate adjusting unit that adjusts the flow rate of the cooling water flowing in the block side flow path and the flow rate of the cooling water flowing in the head side flow path.
  • FIG. 1 is an overall configuration diagram of an internal combustion engine temperature adjustment system according to a first embodiment.
  • (A), (b), (c) is the schematic explaining operation
  • (A), (b), (c) is the schematic explaining operation
  • (A), (b), (c) is the schematic explaining operation
  • FIGS. 1 to 6 A first embodiment of the present disclosure will be described based on FIGS. 1 to 6.
  • the internal combustion engine temperature adjustment system of the present disclosure is applied to a hybrid vehicle that obtains driving force for vehicle travel from the water-cooled engine (internal combustion engine) 10 and the travel electric motor MG.
  • the hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle that can charge a battery (storage battery) BT mounted on the vehicle with electric power supplied from an external power source (commercial power source) when the vehicle is stopped.
  • a battery storage battery
  • commercial power source commercial power source
  • an operation mode (HV traveling) is enabled in which the vehicle can travel mainly by the driving force output by the engine 10.
  • the HV traveling is an operation mode in which the vehicle travels mainly by the driving force output from the engine 10, but when the vehicle traveling load becomes high, the traveling electric motor is activated to assist the engine 10. .
  • the fuel consumption of the engine 10 is suppressed with respect to a normal vehicle that obtains the driving force for vehicle traveling only from the engine 10 by switching between EV traveling and HV traveling in this way. This improves vehicle fuel efficiency.
  • the internal combustion engine temperature adjustment system adjusts the temperature of the engine 10 by circulating cooling water through cooling water passages 11 a and 12 a formed inside the engine 10.
  • This cooling water is used as a temperature adjusting medium for adjusting the temperature of the engine 10 and also as a heating medium for blown air to be blown into the vehicle interior in the air conditioner 5 described later.
  • cooling water ethylene glycol aqueous solution etc. are employable, for example.
  • a gasoline engine having a cylinder block 11 and a cylinder head 12 is employed as the engine 10.
  • an exhaust purification device (not shown) configured to include a catalyst for purifying exhaust gas is provided in the exhaust path of the engine 10. This exhaust purification device adsorbs HC and the like discharged at the cold start.
  • the cylinder block 11 forms a cylinder bore in which a piston reciprocates, and a metal block body provided with a crankcase that houses a crankshaft and a connecting rod that connects the piston and the crankshaft, etc., below the cylinder bore in a vehicle-mounted state. It is.
  • the cylinder head 12 is a metal block body that closes the top dead center side opening of the cylinder bore and forms a combustion chamber together with the cylinder bore and the piston.
  • the block-side flow path 11 a that circulates cooling water for cooling the cylinder block 11 and cooling for cooling the cylinder head 12.
  • a head-side flow path 12a through which water flows is formed.
  • an inflow port 10a for allowing cooling water to flow into the engine 10 is provided in the cylinder block 11, and an outflow port 10b for allowing cooling water to flow out of the engine 10 is provided in the cylinder head 12.
  • the cooling water flows from the inflow port 10a to the block side flow path 11a, the head side flow path 12a, and the outflow port 10b.
  • the internal combustion engine temperature adjustment system includes a cooling water circulation circuit 20 through which cooling water of the engine 10 circulates, an engine control device 100a (ENGINE ECU), and an air conditioning control device 100b (A / C ECU).
  • the control apparatus 100 which consists of these is provided.
  • the cooling water circulation circuit 20 is provided with a main pump 21 as a first cooling water circulation device for circulating the cooling water in the circuit.
  • the main pump 21 of the present embodiment is configured by an electric water pump that drives an impeller disposed in a casing forming a pump chamber by an electric motor.
  • the rotation speed (cooling water pumping ability) of this electric motor is controlled by a control voltage output from an engine control device 100a described later.
  • the cooling water discharge side of the main pump 21 is connected to the inflow port 10a of the engine 10, and the cooling water discharged from the main pump 21 is supplied to the cooling water flow paths 11a and 12a inside the engine 10.
  • the radiator 24 and the heater core 54a are connected to the outflow port 10b of the engine 10 through a branch portion that branches the flow of the cooling water.
  • the radiator 24 is disposed in the engine room, and heat-exchanges the cooling water that has flowed out of the engine 10 with the outside air (outside air) blown from the outdoor blower fan 24a to radiate the heat of the cooling water to the outside air. It is a heat exchanger for heat dissipation.
  • the outlet side of the radiator 24 is connected to the suction side of the main pump 21.
  • the heater core 54a is a heating heat exchanger that heats the blown air by dissipating the heat of the cooling water flowing out from the engine 10 to the blown air blown into the vehicle interior.
  • the outlet side of the heater core 54 a is connected to the suction side of the main pump 21. More specifically, the heater core 54a is disposed in the casing 51 of the indoor air conditioning unit 50 that forms an air passage for the blown air in the air conditioner 5 described later.
  • the heater core 54a and the indoor condenser 54b of the heat pump cycle 60 to be described later are configured as a composite heat exchanger 54 capable of exchanging heat between the cooling water flowing inside and the refrigerant flowing through the indoor condenser 54b. ing. Therefore, the heater core 54a of the present embodiment constitutes a cooling water side heat exchanger that radiates the heat of the cooling water to the blown air, and also cools the cooling water by radiating the heat of the refrigerant to the cooling water. Functions as a water temperature riser.
  • Such a composite heat exchanger 54 has, for example, a configuration in which a tube through which cooling water flows in the heater core 54a and a tube through which refrigerant flows in the indoor condenser 54b are in direct contact, and each tube is transferred to an outer fin or the like. It is realizable by setting it as the structure made to contact indirectly through a thermal member.
  • the cooling water circulation circuit 20 has a bypass passage 25 for flowing cooling water around the radiator 24, a thermostat 26 for switching between a circuit for flowing cooling water to the radiator 24 side and a circuit for flowing cooling water to the bypass passage 25 side. Is provided.
  • the thermostat 26 is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body by a thermo wax (temperature sensitive member) that changes in volume according to temperature.
  • a thermo wax temperature sensitive member
  • the thermostat 26 of the present embodiment switches to a circuit that allows the cooling water to flow to the bypass passage 25 side.
  • the circuit is configured to switch to a circuit for flowing cooling water to the radiator 24 side.
  • the air conditioner 5 of the present embodiment includes an indoor air conditioning unit 50, a heat pump cycle 60 that constitutes a heating unit in the air conditioner 5, and the like.
  • the indoor air-conditioning unit 50 is disposed inside the instrument panel at the foremost part of the vehicle interior, and houses the blower 52, the indoor evaporator 53, the indoor condenser 54b, the above-described heater core 54a, and the like in the above-described casing 51. is there.
  • the blower 52 is a blower that blows outside air or inside air (vehicle interior air) sucked into the casing 51 toward the vehicle interior.
  • the blower 52 is an electric blower that drives a sirocco fan by an electric motor 52a, and the number of rotations (the amount of blown air) is controlled by a control voltage from the air conditioning control device 100b.
  • An indoor evaporator 53 is disposed on the downstream side of the air flow of the blower 52.
  • the indoor evaporator 53 functions as a cooling heat exchanger that cools the blown air by exchanging heat between the refrigerant circulating in the interior and the blown air from the blower 52.
  • an indoor condenser 54b and a heater core 54a are disposed, and a cold air bypass passage 55 is formed to flow air around the indoor condenser 54b and the heater core 54a.
  • the indoor condenser 54b functions as a heat exchanger for heating that heats the blown air, as well as constituting a refrigerant-side heat exchanger that exchanges heat between the refrigerant flowing through the indoor condenser 54 and the air that has passed through the indoor evaporator 53.
  • the indoor condenser 54b of the present embodiment constitutes the composite heat exchanger 54 together with the heater core 54a, and is configured to dissipate heat of the refrigerant to the cooling water.
  • the air that has passed through the indoor condenser 54b, the heater core 54a, and the air that has passed through the cold air bypass passage 55 are mixed in the mixing space in the casing 51, and then blown out into the vehicle interior via a blowout duct or the like. .
  • an air mix door 56 is arranged between the indoor evaporator 53 in the casing 51, the composite heat exchanger 54 and the cold air bypass passage 55.
  • the air mix door 56 functions as an air temperature adjusting unit that adjusts the mixing ratio of the cold air cooled by the indoor evaporator 53 and the hot air heated by the composite heat exchanger 54.
  • the blower 52 and the air mix door 56 in the indoor air conditioning unit 50 constitute an air inflow amount adjusting unit that adjusts the inflow amount of the blown air flowing into the heater core 54a.
  • the air mix door 56 is driven by an electric actuator for the air mix door, and the operation of this electric actuator is controlled by a control signal output from an air conditioning control device 100b described later.
  • the heat pump cycle 60 is a vapor compression refrigeration cycle including a compressor 61, the above-described indoor condenser 54b, the outdoor heat exchanger 62, an expansion valve 63, the above-described indoor evaporator 53, an accumulator 64, and the like. .
  • the compressor 61 is disposed in the engine room, sucks refrigerant in the heat pump cycle 60, compresses and discharges it, and is configured as an electric compressor that drives a compression mechanism with a fixed discharge capacity by an electric motor. Has been.
  • the operation (rotation speed) of the electric motor is controlled by a control signal output from the air conditioning control device 100b described later.
  • the outdoor heat exchanger 62 is disposed in the engine room together with the radiator 24, and exchanges heat between the refrigerant circulating in the interior and the air outside the vehicle (outside air) blown from the outdoor fan 24a. It condenses the discharged refrigerant.
  • the expansion valve 63 is a decompression device that decompresses and expands the refrigerant flowing out of the outdoor heat exchanger 62.
  • the accumulator 64 gas-liquid separates the refrigerant flowing out of the indoor evaporator 53, stores the gas-liquid separated liquid-phase refrigerant as an excess refrigerant, and flows only the gas-phase refrigerant to the suction side of the compressor 61.
  • the heat pump cycle 60 of the present embodiment is basically configured to operate by supplying power from the battery BT. For this reason, the heat radiated to the blown air or the cooling water in the indoor condenser 54b is generated by the power supply from the battery BT.
  • the control device 100 includes an engine control device 100a that controls the operation of the engine 10 and the like, and an air conditioning control device 100b that controls the operation of the air conditioning device 5.
  • Each control device 100a, 100b includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like, and its peripheral circuits. Then, various operations and processes are performed based on the control program stored in the ROM, and the operation of various devices connected to the output side is controlled.
  • a starter for starting the engine 10 a drive circuit for a fuel injection valve (injector) that supplies fuel to the engine 10, an electric motor for the main pump 21, and the like are connected to the output side of the engine control device 100a. Yes.
  • an engine speed sensor that detects the engine speed Ne
  • a vehicle speed sensor that detects the vehicle speed Vv
  • a thermistor as a temperature detection unit that detects the temperature of the coolant that has flowed out of the engine 10
  • a sensor group 22 for controlling the engine a battery capacity detecting unit for detecting the remaining capacity SOC of the battery BT, and the like are connected.
  • the electric actuator of the air mix door 56, the blower 52, various components constituting the heat pump cycle 60, and the like are connected to the output side of the air conditioning control device 100b.
  • an inside air sensor that detects a vehicle interior temperature Tr
  • an outside air temperature sensor that detects an outside air temperature (a vehicle exterior temperature) Tam
  • a solar radiation sensor that detects the amount of solar radiation Ts in the vehicle interior
  • a sensor group for air conditioning control such as an evaporator temperature sensor for detecting the temperature of air blown out from the evaporator 53 (refrigerant evaporation temperature) Te is connected.
  • an operation panel arranged in the passenger compartment is connected to the input side of the air conditioning control device 100b.
  • the operation panel is provided with an operation switch of the air conditioner 5, a temperature setting switch in the passenger compartment, and the like.
  • the engine control device 100a reads the detection signals of various engine control sensor groups connected to the input side at every predetermined control cycle, and the remaining capacity SOC of the battery BT. Based on the read detection value, the traveling load of the vehicle is detected. Further, the engine 10 is operated or stopped according to the detected traveling load.
  • the engine control apparatus 100a of the present embodiment realizes EV traveling that travels by obtaining driving force from the traveling electric motor MG and stopping the engine 10 at least until the remaining capacity SOC of the battery BT falls below the traveling lower limit capacity.
  • engine control device 100a realizes HV traveling that operates by obtaining driving force from both engine 10 and the traveling electric motor by operating engine 10. .
  • the air conditioner control device 100b reads the detection signal of the above-described sensor group for air conditioning control and the operation signal of the operation panel. And the target blowing temperature TAO which is the target temperature of the air which blows off into a vehicle interior is calculated based on the value of a detection signal and an operation signal.
  • this target blowing temperature TAO is calculated by the following formula 1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch
  • Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor
  • Tam is the outside air temperature detected by the outside air sensor
  • Ts is detected by the solar radiation sensor. Is the amount of solar radiation.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the air conditioning control device 100b determines the operating states of the various air conditioning control devices connected to the output side of the air conditioning control device 100b based on the calculated target blowing temperature TAO and the sensor group detection signal.
  • the target blowout is performed by referring to the control map stored in the air conditioning control device 100b in advance based on the target blowout temperature TAO or the like.
  • the temperature TAO is determined so as to be higher at the high temperature and at the low temperature than at the intermediate temperature.
  • the control signal output to the servo motor of the air mix door 56 is blown into the vehicle interior using the target blow temperature TAO, the detected value of the blown air temperature Te from the indoor evaporator 53 and the detected value of the thermistor 22.
  • the air temperature is determined so as to be a passenger's desired temperature set by the vehicle interior temperature setting switch.
  • the air conditioning control device 100b outputs the determined control voltage and control signal to various air conditioning control devices. Thereafter, until the operation panel is requested to stop the operation of the air conditioner 5, the above-described detection signal and operation signal are read at every predetermined control cycle ⁇ the target blowing temperature TAO is calculated ⁇ the operating states of various air conditioning control devices are determined ⁇ Control routines such as control voltage and control signal output are repeated.
  • FIGS. 2 to 4 indicate the flow of the refrigerant in the heat pump cycle 60.
  • the air conditioning control device 100b closes the cold air bypass passage 55 at the position of the air mix door 56 as shown in FIG. Set to closed position.
  • the air conditioning control device 100b sets the position of the air mix door 56 to the intermediate position as shown in FIG.
  • the air conditioner 5 a part of the air that has passed through the indoor evaporator 53 is heated when passing through the composite heat exchanger 54, and the remaining air that has passed through the indoor evaporator 53 is cooled by cold air. Passing through the bypass passage 55, air at an intermediate temperature is blown into the passenger compartment.
  • the air conditioning control device 100b opens the cold air bypass passage 55 at the position of the air mix door 56 as shown in FIG. Set to the fully open position.
  • the engine control device 100a reads the detection signals of various sensor groups for engine control and the remaining capacity SOC of the battery BT, and the running state of the vehicle based on the read detection values. Is detected.
  • the engine control device 100a When the operation mode of the vehicle is HV traveling, the engine control device 100a operates the main pump 21 to adjust the temperature of the engine 10, and the cooling water is supplied to the cooling water flow path 11a inside the engine 10. , 12a. At this time, the thermostat 26 opens and closes according to the temperature detected by the thermistor 22, and the flow rate of the cooling water flowing through the radiator 24 or the bypass passage 25 is adjusted so that the temperature of the cooling water flowing into the engine 10 approaches the reference temperature.
  • the engine control device 100a basically stops the main pump 21 and adjusts the temperature of the engine 10. Not performed.
  • the engine 10 may be cold-started when switching from EV traveling to HV traveling due to a decrease in the remaining capacity SOC of the battery BT. is there.
  • the temperature of the cooling water is raised to a desired temperature (target temperature) using the heat pump cycle 60 as a heating source, and the engine 10 is warmed up.
  • the pre-warm-up process is performed.
  • the target temperature of the cooling water in the pre-warm-up process is set within a temperature range of 40 ° C. + 5 to 10 ° C. (preferably 40 ° C.) at which the effect of reducing HC when starting the engine 10 is obtained. Note that the engine 10 is difficult to warm up with a decrease in the outside air temperature Tam. Therefore, the target temperature of the cooling water is preferably set to a high value in accordance with the decrease in the outside air temperature Tam.
  • the heat generated by the heat pump cycle 60 constituting the air conditioner 5 is used, and the start timing of the pre-warm-up process is performed in order to suppress a decrease in the air-conditioning capacity of the air conditioner 5. Is determined according to the decrease state of the remaining capacity SOC of the battery BT. Details of this control process will be described with reference to the flowchart shown in FIG. FIG. 5 shows the flow of control processing executed by the control device 100.
  • detection signals of various sensor groups, a remaining capacity SOC of the battery BT, and the like are read (S110).
  • an expected time tsoc required for the remaining capacity SOC of the battery BT to fall below a predetermined traveling lower limit capacity is calculated (S120). The expected time tsoc is calculated based on the degree of decrease in the remaining capacity SOC of the battery BT.
  • the expected time tsoc can be calculated using the following formula F1.
  • tsoc (SOCc ⁇ SOCcr) / (dSOC / dt) (F1)
  • SOCc is the current remaining capacity of the battery BT
  • SOCcr is the traveling lower limit capacity
  • dSOC / dt indicates the degree of decrease in the remaining capacity SOC of the battery BT.
  • the degree of decrease in remaining capacity SOC of battery BT can be calculated as the amount of change per unit time of remaining capacity SOC of battery BT.
  • Formula F1 since the expected time tsoc becomes infinitely large when the decrease degree of the remaining capacity SOC approaches zero, a lower limit is provided for the decrease degree.
  • the warm-up required time thu required to heat the cooling water to a desired temperature is calculated by the heat generated by the heat pump cycle 60 (S130).
  • This warm-up required time tw is calculated according to the heating capacity for heating the blown air and the cooling water in the heat pump cycle 60.
  • the required warm-up time tw can be calculated using the following formula F2.
  • thu ⁇ (Twt ⁇ Two) ⁇ Vw ⁇ Cp ⁇ ⁇ / Qw (F2)
  • Twt is the target temperature of the cooling water in the pre-warm-up process
  • Two is the initial temperature of the cooling water when the vehicle is started
  • Vw is the cooling in the circuit circulating through the main pump 21 ⁇ the engine 10 ⁇ the heater core 54a in the cooling water circuit
  • the capacity of water Cp is the specific heat of the cooling water
  • is the density of the cooling water
  • Qw is the amount of heat received by the cooling water from the heat pump cycle 60 per unit time.
  • the amount of heat received Qw can be calculated based on the amount of heat obtained by removing the amount of heat received by the blown air (the amount of requested heating) from the maximum amount of heat (maximum capacity) that can be generated by the heat pump cycle 60. .
  • the lower limit heat amount is provided for the heat reception amount Qw.
  • step S120 it is determined whether or not the expected time tsoc calculated in step S120 is equal to or shorter than the required warm-up time twu calculated in step S130 (S140).
  • S140 pre-warm-up processing is executed (S150), and it is determined that the expected time tsoc is longer than the required warm-up time twu. If so (S140: NO), the process returns to step S110.
  • the timing at which the expected time is equal to or shorter than the warm-up required time is set as the start timing of the pre-warm-up process. For this reason, when the remaining capacity SOC of the battery BT falls below the traveling lower limit capacity and the vehicle operation mode is switched from EV traveling to HV traveling, the temperature of the cooling water can be raised to the target temperature. Therefore, the cold start of the engine 10 can be suppressed.
  • the engine control device 100a stops the main pump 21 until the pre-warm-up process is started (see FIGS. 2A to 4A). That is, the heat generated in the heat pump cycle 60 is used to heat the blown air.
  • the engine control device 100a operates the main pump 21 (see FIGS. 2 (b) to 4 (b)).
  • the cooling water is heated by the heat of the refrigerant in the composite heat exchanger 54 in the indoor air conditioning unit 50.
  • the cooling water whose temperature has been raised by the composite heat exchanger 54 is supplied to the cooling water passages 11a and 12a of the engine 10, and the engine 10 is warmed up.
  • the blower in order to promote heat exchange between the refrigerant and the cooling water in the composite heat exchanger 54, the blower is configured so that the inflow amount of blown air flowing into the composite heat exchanger 54 is reduced. 52 and the air mix door 56 are controlled.
  • the engine control device 100a controls the main pump 21 so that the temperature of the engine 10 is maintained at a desired temperature. The operation is controlled (see FIGS. 2C to 4C).
  • the cooling water of the engine 10 is heated by the heat generated by the heat pump cycle 60 before the operation of the engine 10 due to the decrease in the remaining capacity SOC of the battery BT. For this reason, in the hybrid vehicle in which the engine 10 is started and stopped irregularly, the cold start of the engine 10 can be suppressed. As a result, emission of HC and the like at the start of the engine 10 can be suppressed, and an increase in the catalyst of the exhaust purification device can be suppressed. Therefore, it is possible to suppress an increase in the size of the exhaust purification device.
  • the start timing of the warm-up process is determined.
  • the cold start of the engine 10 can be suppressed by adjusting the temperature of the blown air in the air conditioner 5 and heating the cooling water at an appropriate timing.
  • the target temperature of the cooling water in the pre-warm-up process is set to a high value in accordance with the decrease in the outside air temperature Tam
  • the cooling water for the engine 10 is appropriately used under conditions where the outside air temperature Tam is low such as in winter. It is possible to effectively suppress the cold start of the engine 10 by raising the temperature.
  • the amount of blown air flowing into the composite heat exchanger 54 is reduced. Heat exchange can be promoted, and the cooling water can be efficiently heated.
  • the detection signals of the various sensor groups, the remaining capacity SOC of the battery BT, etc. are read (S110), and then the remaining capacity SOC of the battery BT is below the determination reference capacity (second reference capacity). Is determined (S160).
  • the determination reference capacity is a threshold value set in advance in consideration of the warm-up required time, and is set in advance at a capacity higher than the traveling lower limit capacity.
  • the timing when the remaining capacity SOC of the battery BT falls below the determination reference capacity is set as the start timing of the pre-warming-up process.
  • the first sub bypass passage 28 that bypasses the cooling water flow paths 11a and 12a of the engine 10 on the discharge side of the main pump 21 and is connected to the cooling water inlet side of the heater core 54a is provided. Is provided.
  • a first electromagnetic valve 27 is provided at a connection portion connecting the discharge side of the main pump 21 and the first sub-bypass passage 28.
  • the first solenoid valve 27 adjusts the flow rate of the cooling water flowing through the heater core 54a via the cooling water flow channels 11a and 12a of the engine 10 and the flow rate of the cooling water flowing through the heater core 54a without passing through the cooling water flow channels 11a and 12a. Functions as a first flow rate adjusting unit.
  • a path for flowing cooling water to the cooling water flow paths 11a and 12a inside the engine 10 constitutes the main path 20a, and a path for flowing cooling water to the heater core 54a via the first sub bypass path 28 constitutes the sub path 20b. ing.
  • the main path 20a is a path in which the cooling water discharged from the main pump 21 flows in the order of the cooling water flow paths 11a, 12a ⁇ the radiator 24 or the bypass path 25, and the path in which the engine 10 ⁇ the heater core 54a flows in this order. It has become.
  • the sub path 20b is a path through which the cooling water discharged from the main pump 21 flows in the order of the first sub bypass path 28 ⁇ the heater core 54a.
  • a check that restricts the flow of the cooling water in one direction between the bypass passage 25 of the cooling water circulation circuit 20 and the cooling water flow paths 11a and 12a of the engine 10 and the inlet side of the heater core 54a. Valves 25a and 29 are arranged.
  • the engine control device 100a controls the operation of the first electromagnetic valve 27 so that all of the cooling water discharged from the main pump 21 flows through the first sub-bypass passage 28 in the first half step of the pre-warming-up process.
  • the cooling water discharged from the main pump 21 circulates in the sub-path 20b.
  • the capacity of the cooling water circulating through the sub path 20b is reduced. For this reason, in the first half step of the pre-warm-up process, the temperature of the cooling water can be raised in a short time.
  • the engine control device 100a closes the first sub-bypass passage 28, and all the cooling water discharged from the main pump 21 passes through the cooling water passages 11a, 12a of the engine 10.
  • the operation of the first electromagnetic valve 27 is controlled to flow.
  • the cooling water discharged from the main pump 21 circulates in the main path 20a, and the engine 10 is warmed up.
  • switching from the first half step to the second half step of the pre-warm-up process is performed when the temperature of the cooling water sucked into the main pump 21 rises to a predetermined temperature, or after a predetermined time has elapsed since the start of the pre-warm-up process. Just do it.
  • the sub-path 20b is provided to flow the cooling water discharged from the main pump 21 to the heater core 54a without flowing to the cooling water flow paths 11a and 12a of the engine 10. Thereby, it becomes possible to raise the temperature of the cooling water in a short time in the pre-warm-up process.
  • the first electromagnetic valve 27 can adjust the flow rate of the cooling water flowing through the cooling water flow paths 11a and 12a of the engine 10 and the flow rate of the cooling water flowing through the heater core 54a. It is possible to increase the temperature efficiently.
  • the path through which the cooling water flows in the cooling water circulation circuit 20 is switched by the first electromagnetic valve 27.
  • the path is not limited to the first electromagnetic valve 27.
  • the path is switched by using a thermostat.
  • the thermostat switches to the sub path 20b when the temperature of the cooling water on the suction side of the main pump 21 becomes lower than a predetermined temperature, and changes to the main path 20a when the temperature of the cooling water on the suction side of the main pump 21 becomes equal to or higher than the predetermined temperature. It may be configured to switch to. The same applies to the following embodiments.
  • a heat storage tank (heat storage unit) 30 that stores cooling water heated by the heater core 54 a is disposed on the outlet side of the heater core 54 a in the cooling water circulation circuit 20.
  • the heat storage tank 30 functions as a heat storage unit that stores heat of the cooling water heated by the heater core 54a.
  • the engine control device 100a receives all of the cooling water discharged from the main pump 21 in the first sub
  • the operation of the first electromagnetic valve 27 is controlled so as to flow through the bypass passage 28.
  • the cooling water discharged from the main pump 21 circulates in the sub path 20b as shown in FIG.
  • the cooling water heated by the heater core 54 a is stored in the heat storage tank 30.
  • the cooling water discharged from the main pump 21 circulates in the main path 20a, and the engine 10 is warmed up.
  • the cooling water stored in the heat storage tank 30 circulates in the main path 20a, the engine 10 can be warmed up in a short time. If a sufficient amount of heat is not stored in the heat storage tank 30 at the start of the pre-warming process, the cooling water discharged from the main pump 21 is circulated in the sub-path 20b to heat the cooling water. You may do it.
  • the heater core 54a can be used when the heating capacity of the heat pump cycle 60 has a margin in addition to the effects described in the second embodiment.
  • the heat of the cooling water heated in can be stored.
  • the pre-warm-up process can be executed at the next vehicle travel start.
  • the cooling water circulation circuit 20 of this embodiment has a circuit configuration in which the cooling water flow paths 11a and 12a of the engine 10 are not connected to the inlet side of the heater core 54a.
  • the main path 20a of the cooling water circulation circuit 20 of the present embodiment is a path in which the cooling water discharged from the main pump 21 flows in the order of the cooling water flow paths 11a, 12a ⁇ the radiator 24 or the bypass passage 25.
  • the engine control device 100a controls the operation of the first electromagnetic valve 27 so that all of the cooling water discharged from the main pump 21 flows through the first sub-bypass passage 28 in the first half step of the pre-warming-up process.
  • the cooling water discharged from the main pump 21 circulates in the sub-path 20b.
  • the temperature of the cooling water can be raised in a short time.
  • the engine control apparatus 100a allows the cooling water discharged from the main pump 21 to flow in both the cooling water flow paths 11a and 12a and the first sub-bypass path 28 of the engine 10 in the second half step of the pre-warming-up process.
  • the operation of the first electromagnetic valve 27 is controlled. Accordingly, as shown in FIG. 14B, the cooling water discharged from the main pump 21 circulates in the main path 20a and the sub path 20b, and the engine 10 is warmed up.
  • the engine control apparatus 100a allows the cooling water discharged from the main pump 21 to flow through the first sub-bypass passage 28 when the heating capacity of the air conditioner 5 is sufficient before and after the pre-warming-up process.
  • the operation of the first electromagnetic valve 27 is controlled.
  • the cooling water discharged from the main pump 21 circulates in the sub path 20b as shown in FIG.
  • the cooling water heated by the heater core 54 a is stored in the heat storage tank 30.
  • the cooling water discharged from the main pump 21 flows to both the cooling water flow paths 11a and 12a and the first sub bypass passage 28 of the engine 10.
  • the operation of the first electromagnetic valve 27 is controlled.
  • the engine 10 can be warmed up in a short time, and the engine 10 can be effectively started cold. Can be suppressed.
  • the sub pump 31 is provided on the inlet side of the heater core 54a of the sub path 20b of the cooling water circulation circuit 20.
  • the sub-pump 31 functions as a second cooling water circulation device that circulates the cooling water in the sub-path 20 b, and its basic configuration is constituted by a water pump, like the main pump 21.
  • the sub pump 31 employs a water pump that has a smaller pump capacity (discharge capacity) and lower power consumption than the main pump 21.
  • the sub path 20b of the present embodiment is configured such that the cooling water discharged from the sub pump 31 flows in the order of the heater core 54a ⁇ the main pump 21 ⁇ the first sub bypass passage 28.
  • the engine control apparatus 100a stops the main pump 21 and operates the sub pump 31 in the first half step of the pre-warming-up process. Further, as shown in FIG. 18A, the operation of the first electromagnetic valve 27 is controlled so that the cooling water discharged from the sub pump 31 circulates in the sub path 20b.
  • the temperature of the cooling water can be raised in a short time and the sub pump 31 that consumes less power than the main pump 21 is operated, so that the power consumption during the pre-warming process can be reduced.
  • the engine control device 100a operates the main pump 21 and stops the sub pump 31 in the latter half of the pre-warm-up process. Further, the operation of the first electromagnetic valve 27 is controlled so that the cooling water discharged from the main pump 21 flows through both the cooling water flow paths 11 a and 12 a and the first sub bypass passage 28 of the engine 10. As a result, as shown in FIG. 18B, the cooling water discharged from the main pump 21 circulates in the main path 20a and the sub path 20b, and the engine 10 is warmed up. Note that the sub-pump 31 is stopped when the internal combustion engine temperature adjustment system is in operation other than the pre-warm-up process.
  • the coolant circulation circuit 20 of the present embodiment eliminates the first sub-bypass passage 28 and the first electromagnetic valve 27 in the sixth embodiment, while connecting the inlet side and the outlet side of the heater core 54a. 33, the second electromagnetic valve 32 is provided at the connection portion between the inlet side of the heater core 54a and the second sub-bypass passage 33.
  • the engine control device 100a operates the main pump 21 and stops the sub pump 31 in the latter half of the pre-warm-up process. Further, the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the main pump 21 circulates in the main path 20a. As a result, as shown in FIG. 20B, the cooling water discharged from the main pump 21 circulates in the main path 20a, and the engine 10 is warmed up.
  • the cooling water circulation circuit 20 of the present embodiment is an on-off valve that opens and closes between the outflow port 10b of the engine 10, the radiator 24, and the bypass passage 25 at a branching portion that branches the flow of the cooling water on the outflow port 10b side of the engine 10. 34 is provided.
  • the sub pump 31 is configured such that the cooling water discharge direction of the sub pump 31 is opposite to that of the seventh embodiment, and the cooling water flow paths 11a and 12a of the engine 10 and the heater core 54a.
  • the check valve 29 between the inlet side and the inlet side is eliminated.
  • the engine control device 100a When adjusting the temperature of the engine 10 before and after the pre-warm-up process, the engine control device 100a operates the main pump 21 and stops the sub pump 31 and opens the on-off valve 34. Further, the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the main pump 21 flows from the engine 10 to the radiator 24 or the bypass passage 25 and from the engine 10 to the heater core 54a.
  • the engine control device 100a stops the main pump 21 and operates the sub pump 31 to close the on-off valve 34.
  • the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the sub pump 31 flows in the order of the second sub bypass passage 33 ⁇ the heater core 54a.
  • the cooling water discharged from the sub pump 31 flows through the sub path 20b as shown in FIG. 22A, and the cooling water is heated by the heater core 54a.
  • the second electromagnetic valve 32 is such that the cooling water discharged from the sub pump 31 flows in the order of the engine 10 ⁇ the main pump 21 ⁇ the heater core 54a. Control the operation of Thereby, the cooling water heated by the composite heat exchanger 54 is supplied to the cooling water flow paths 11a and 12a of the engine 10, and the engine 10 is warmed up.
  • the cooling water heated by the heater core 54a flows from the outflow port 10b ⁇ the head side channel 12a ⁇ the block side channel 11a ⁇ the inflow port 10a. For this reason, it is possible to preferentially warm up the cylinder head 12 having a high effect of reducing the discharge of HC and the like when the engine 10 is started.
  • the same operational effects as the configuration of the seventh embodiment can be obtained, and the cylinder head 12 can be preferentially warmed up over the cylinder block 11, and the engine 10 can be started. Emissions of HC and the like can be effectively reduced.
  • the cooling water circulation circuit 20 of the present embodiment has a configuration in which the sub pump 31 is disposed in the second sub bypass passage 33 and the heat storage tank 30 is disposed on the cooling water discharge side of the sub pump 31.
  • the engine control device 100a stops the main pump 21 and activates the sub pump 31 when the heating load of the air conditioner 5 is low and the heating capacity of the air conditioner 5 is sufficient before and after the pre-warm-up process. Further, as shown in FIG. 24A, the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the sub pump 31 circulates in the sub path 20b.
  • the cooling water discharged from the sub pump 31 flows in the order of the heat storage tank 30 ⁇ the heater core 54a.
  • the cooling water heated by the heater core 54 a is stored in the heat storage tank 30.
  • the engine control device 100a operates the main pump 21 and stops the sub pump 31 when executing the pre-warming-up process. Further, as shown in FIG. 24 (b), the cooling water discharged from the main pump 21 flows in the order of the engine 10 ⁇ the radiator 24 or the bypass passage 25 and also flows in the order of the engine 10 ⁇ the sub pump 31 ⁇ the heat storage tank 30. The operation of the second electromagnetic valve 32 is controlled.
  • the high-temperature cooling water stored in the heat storage tank 30 is discharged to the engine 10 side through the main pump 21, and the engine 10 is warmed up.
  • the second solenoid valve is configured so that the cooling water discharged from the main pump 21 flows in the order of the engine 10 ⁇ the heater core 54a.
  • the operation of 32 may be controlled so that the cooling water is heated by the heater core 54a.
  • the heater core 54a can be used when the heating capacity of the heat pump cycle 60 has a margin in addition to the effects described in the seventh embodiment.
  • the heat of the cooling water heated in can be stored. Thereby, it is possible to shorten the time for raising the temperature of the cooling water in the pre-warm-up process, and it is possible to effectively suppress the cold start of the engine 10.
  • the engine 10 of the present embodiment is configured such that the cooling water flowing through the block side flow path 11a and the cooling water flowing through the head side flow path 12a flow out from different outflow ports 10b and 10c.
  • the cylinder head 12 is provided with a head side outflow port 10b through which cooling water flows out from the head side flow path 12a, and the cylinder block 11 is cooled from the block side flow path 11a.
  • a block-side outflow port 10c through which water flows out is provided.
  • the cooling water flowing in from the inflow port 10a of the engine 10 flows from the head side flow path 12a to the head side outflow port 10b and from the block side flow path 11a to the block side outflow port 10c.
  • a cooling water outlet of the engine 10 is provided with a merging portion for merging the cooling water flowing out from the head-side outflow port 10b and the cooling water flowing out from the block-side outflow port 10c.
  • An adjustment valve 35 is provided.
  • the flow rate adjusting valve 35 functions as a second flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the block-side flow channel 11a and the flow rate of the cooling water flowing through the head-side flow channel 12a.
  • the engine control apparatus 100a stops the main pump 21 and operates the sub pump 31 in the first half step of the pre-warming-up process. Further, as shown in FIG. 26A, the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the sub pump 31 circulates in the sub path 20b. Thereby, the cooling water is heated by the heater core 54a.
  • the engine control device 100a operates the main pump 21 and stops the sub pump 31 in the latter half of the pre-warm-up process. Further, the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the main pump 21 circulates in the main path 20a.
  • the engine control device 100a controls the operation of the flow rate adjustment valve 35 so that the cooling water flows only through the head side flow path 12a inside the engine 10.
  • the cooling water discharged from the main pump 21 circulates in the main path 20a, and the engine 10 is warmed up.
  • the cooling water heated by the heater core 54a flows from the inflow port 10a ⁇ the head side flow path 12a ⁇ the head side outflow port 10b, so that the cylinder head is highly effective in reducing the discharge of HC and the like. 12 can be warmed up preferentially.
  • the same effects as the configuration of the seventh embodiment can be obtained, and the cylinder head 12 can be preferentially warmed up over the cylinder block 11, so that the engine 10 can be started. Emission of HC and the like in can be effectively reduced.
  • the example in which the flow rate adjustment valve 35 is operated so that the cooling water flows only to the head-side flow path 12a in the engine 10 in the latter half of the pre-warming process has been described.
  • the flow rate adjustment valve 35 may be operated so that the cooling water flows through both the 12a and the block-side flow path 11a.
  • the cylinder head 12 is warmed up more preferentially than the cylinder block 11 by operating the flow rate adjustment valve 35 so that the flow rate of the cooling water flowing through the head side flow channel 12a is greater than the block side flow channel 11a. can do.
  • the engine control device 100a stops the main pump 21 and activates the sub pump 31 when the heating load of the air conditioner 5 is low and the heating capacity of the air conditioner 5 is sufficient before and after the pre-warm-up process. . Further, as shown in FIG. 28A, the operation of the second electromagnetic valve 32 is controlled so that the cooling water discharged from the sub pump 31 circulates in the sub path 20b. Thereby, the cooling water heated by the heater core 54 a is stored in the heat storage tank 30.
  • the engine control device 100a operates the main pump 21 and stops the sub pump 31 when executing the pre-warming-up process.
  • the cooling water discharged from the main pump 21 flows in the order of the engine 10 ⁇ the radiator 24 or the bypass passage 25 and also flows in the order of the engine 10 ⁇ the sub pump 31 ⁇ the heat storage tank 30.
  • the operation of the second electromagnetic valve 32 is controlled. Thereby, the high-temperature cooling water stored in the heat storage tank 30 is discharged to the engine 10 side through the main pump 21, and the engine 10 is warmed up.
  • the heat pump cycle 60 of the present embodiment is configured such that heating, cooling, and dehumidifying heating in the passenger compartment can be realized by switching the refrigerant flow path.
  • a first expansion valve 65 that depressurizes the refrigerant, and a high-pressure bypass that bypasses the first expansion valve 65 and flows the refrigerant.
  • a high pressure side opening / closing valve 65b for opening and closing the passage 65a and the high pressure side bypass passage 65a is provided.
  • a second expansion valve 63 that depressurizes the refrigerant, a low-pressure bypass passage 63a that bypasses the second expansion valve 63 and flows the refrigerant, A low-pressure side opening / closing valve 63b that opens and closes the low-pressure side bypass passage 63a is provided.
  • the air conditioner 5 of the present embodiment is configured to be able to switch the operation mode to a cooling mode, a heating mode, and a dehumidifying heating mode in accordance with the target blowing temperature TAO or the like.
  • the air conditioning control device 100b opens the high-pressure side bypass passage 65a with the high-pressure side opening / closing valve 65b and closes the low-pressure side bypass passage 63a with the low-pressure side opening / closing valve 63b.
  • the air conditioning control device 100b operates the compressor 61 and controls the servo motor of the air mix door 56 so that the position of the air mix door 56 becomes a fully open position where the cool air bypass passage 55 is fully opened.
  • the air conditioning control device 100b opens the high-pressure side bypass passage 65a with the high-pressure side on-off valve 65b and closes the low-pressure side bypass passage 63a with the low-pressure side on-off valve 63b.
  • the air conditioning control device 100b operates the compressor 61 and controls the servo motor of the air mix door 56 so that the position of the air mix door 56 becomes an intermediate position.
  • the air conditioner 5 a part of the air dehumidified after passing through the indoor evaporator 53 is heated when passing through the composite heat exchanger 54, and the air that has passed through the indoor evaporator 53 is also heated. The remainder passes through the cold air bypass passage 55, and the dehumidified air is blown out into the passenger compartment.
  • the air conditioning controller 100b closes the high-pressure side bypass passage 65a with the high-pressure side opening / closing valve 65b and opens the low-pressure side bypass passage 63a with the low-pressure side opening / closing valve 63b.
  • the air conditioning controller 100b operates the compressor 61 and controls the servo motor of the air mix door 56 so that the position of the air mix door 56 becomes a closed position where the cold air bypass passage 55 is closed.
  • the blown air is not cooled by the indoor evaporator 53 but is heated when passing through the composite heat exchanger 54, and the heated high-temperature air is blown out into the vehicle interior. .
  • the heat of the refrigerant in the composite heat exchanger 54 (heat pump)
  • the heat generated by the cycle 60) can be dissipated to the cooling water.
  • the cooling water of the engine 10 is raised to suppress the cold start of the engine 10. Can do.
  • the refrigerant heat exchanger 57 constitutes a refrigerant heat dissipating part that dissipates the heat of the refrigerant, and also functions as a cooling water temperature raising part that raises the temperature of the cooling water.
  • the indoor air conditioning unit 50 of the present embodiment is connected to the outlet side of the water refrigerant heat exchanger 57, and radiates the heat of the cooling water heated by the water refrigerant heat exchanger 57 to the blown air.
  • a heating heat exchanger 58 as a heat exchanger is arranged.
  • the water refrigerant heat exchanger 57 can dissipate the heat of the refrigerant discharged from the compressor 61 (the heat generated by the heat pump cycle 60) to the cooling water.
  • the pre-warm-up process is executed to raise the temperature of the coolant of the engine 10 and suppress the cold start of the engine 10. be able to.
  • the circuit configuration of the cooling water circulation circuit 20 is changed to a configuration in which the cooling water flowing through the bypass passage 25 flows from the water / refrigerant heat exchanger 57 to the heating heat exchanger 58. Also good. According to this, when the heating load of the air conditioner 5 is high, the heat of the cooling water heated by the engine 10 in the water / refrigerant heat exchanger 57 can be radiated to the refrigerant.
  • the cooling water is heated by the heat generated by the heat pump cycle 60 in the pre-warming-up process.
  • the cooling water circulation circuit 20 is provided with an electric heater 59 for heating the cooling water.
  • the electric heater 59 is provided on the inlet side of a heating heat exchanger 58 that radiates heat of the cooling water to the blown air.
  • the electric heater 59 of the present embodiment constitutes a heating unit for heating the blown air through the cooling water, and also functions as a cooling water temperature raising unit that raises the temperature of the cooling water.
  • the temperature of the cooling water can be raised by the heat generated by the electric heater 59, so that the cooling water for the engine 10 can be reduced by performing the pre-warm-up process as in the above-described embodiments. It is possible to suppress the cold start of the engine 10 by raising the temperature.
  • the configuration of the present embodiment may be changed to a configuration in which a heat storage tank 30 for storing heat of the cooling water is provided on the outlet side of the heating heat exchanger 58 as shown in FIG.
  • the configuration of the present embodiment may be a configuration in which an electric heater 59 is disposed in the heat storage tank 30 as shown in FIG.
  • the expected time tsoc until the remaining capacity SOC of the battery BT falls below the traveling lower limit capacity is equal to or less than the required warm-up time twu required to raise the cooling water to the target temperature.
  • the pre-warm-up process is started at the timing, but the present invention is not limited to this.
  • the pre-warm-up process may be started when the expected time tsoc becomes equal to or shorter than the time (twu + ⁇ ) obtained by adding a predetermined reference time ⁇ to the warm-up required time twu.
  • the pre-warm-up process described in each of the above-described embodiments uses heat generated by a heating unit such as the heat pump cycle 60 and the electric heater 59 constituting the heating unit of the air-conditioning device 5.
  • a heating unit such as the heat pump cycle 60 and the electric heater 59 constituting the heating unit of the air-conditioning device 5.
  • the pre-warm-up process may not be performed.
  • the pre-warm-up process is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

ハイブリッド車両に適用される内燃機関温度調整システムは、エンジン(10)の冷却水が循環する冷却水循環回路(20)と、冷却水循環回路(20)に設けられ、冷却水を循環させるメインポンプ(21)と、車室内へ送風する送風空気の温度を調整する空調装置(5)に設けられたヒートポンプサイクル(60)を加熱源として冷却水を昇温させるヒータコア(54a)と、エンジン(10)および空調装置(5)の作動を制御する制御装置(100)と、を備える。制御装置(100)は、バッテリの残存容量が走行下限容量を下回った際に、エンジン(10)を作動させる。さらに、残存容量が走行下限容量を下回る前であって、残存容量が低下している際に、ヒータコア(54a)にてエンジン(10)の冷却水を昇温させるプレ暖機処理を実行する。そのため、ハイブリッド車両において、内燃機関の冷間始動を抑制できる。

Description

内燃機関温度調整システム 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年2月1日に出願された日本特許出願2012-20037を基にしている。
 本開示は、ハイブリッド車両に適用される内燃機関温度調整システムに関する。
 従来、内燃機関(エンジン)および走行用電動モータのうち、少なくとも一方が出力する駆動力によって走行すると共に、走行用電動モータに供給する電力を蓄積するバッテリを備えるハイブリッド車両が知られている。
 ハイブリッド車両としては、例えば、プラグイン型のハイブリッド車両のように、バッテリの残存容量SOC(State Of Charge)が充分に確保されている際に、走行用電動モータから出力される駆動力だけで走行し、バッテリの残存容量SOCが低下すると、内燃機関を作動させて走行用の駆動力を得るものがある。このようなハイブリッド車両では、内燃機関の始動および停止が不定期に行われることから、内燃機関が冷間始動となり易く、始動時にHC等の未燃燃料が多量に排出されてしまう。
 これに対して、排気浄化用触媒を用いた触媒コンバータ(排気浄化装置)を改良して、冷間始動時に排出されるHC等を効率的に吸着する構成が提案されている(例えば、特許文献1参照)。
特開2008-261295号公報
 ところで、触媒コンバータにおけるHC等の吸着量の増加を図るために、排気浄化用触媒を増加することが考えられるが、排気浄化用触媒は、希少金属(レアメタル)等が用いられており、排気浄化用触媒を増加させるとコストが高くなる場合がある。
 このため、内燃機関の始動および停止が不定期に行われるハイブリッド車両においては、触媒コンバータの改良以外に、内燃機関の冷間始動自体を抑制して、内燃機関始動時におけるHC等の排出を抑制することが望ましい。
 本開示は上記点に鑑みて、内燃機関の始動および停止が不定期に行われるハイブリッド車両において、内燃機関の冷間始動を抑制可能な内燃機関温度調整システムを提供することを目的とする。
 本開示では、内燃機関温度調整システムは、蓄電池からの電力供給により車両走行用の駆動力を出力する走行用電動モータ、および車両走行用の駆動力、または蓄電池に蓄える電力を生成するための駆動力を出力する水冷式の内燃機関を備え、蓄電池の残存容量が所定の第1基準容量を下回るまで走行用電動モータが出力する駆動力だけで走行可能なハイブリッド車両に適用され、内燃機関の温度を所望の温度に調整できる。
 本開示の第1態様による内燃機関温度調整システムは、内燃機関の冷却水が循環する冷却水循環回路と、冷却水循環回路に設けられ、冷却水を循環させる第1冷却水循環装置と、車室内へ送風する送風空気の温度を調整する空調装置に設けられた加熱部を加熱源として、内燃機関の冷却水を昇温させる冷却水昇温部と、内燃機関および空調装置の作動を制御する制御装置と、を備える。制御装置は、少なくとも蓄電池の残存容量が第1基準容量を下回った際に、内燃機関を作動させる。さらに、蓄電池の残存容量が第1基準容量を下回る前であって、蓄電池の残存容量が低下している際に、冷却水昇温部にて内燃機関の冷却水を昇温させるプレ暖機処理を実行する。
 これによれば、蓄電池の残存容量の低下による内燃機関の作動前に、冷却水昇温部にて内燃機関の冷却水を昇温させるので、内燃機関の始動および停止が不定期に行われるハイブリッド車両において、内燃機関の冷間始動を抑制することができる。この結果、内燃機関始動時におけるHC等の排出を抑制することが可能となる。
 本開示の第2態様の内燃機関温度調整システムによると、制御装置は、少なくとも蓄電池の残存容量の低下状態に基づいてプレ暖機処理の開始タイミングを決定する構成されてもよい。
 たとえば、本開示の第3態様の内燃機関温度調整システムによると、制御装置は、蓄電池の残存容量が第1基準容量よりも多い第2基準容量を下回った際に、プレ暖機処理を開始するように構成されてもよい。
 あるいは、本開示の第4態様の内燃機関温度調整システムによると、制御装置は、蓄電池の残存容量の減少度合いから蓄電池の残存容量が第1基準容量を下回るまでの予想時間を算出すると共に、プレ暖機処理の実行時に加熱部にて冷却水を所望の目標温度まで昇温させるために要する暖機必要時間を算出し、少なくとも予想時間が暖機必要時間を下回るまでに、プレ暖機処理を開始してもよい。
 これによれば、蓄電池の残存容量の減少度合いから予想した予想時間と、プレ暖機処理にて冷却水の昇温に要する暖機必要時間との関係に基づいて、プレ暖機処理の開始タイミングを決定する構成としているので、適切なタイミングでプレ暖機処理を実行することが可能となる。
 本開示の第5態様の内燃機関温度調整システムによると、制御装置は、予想時間が暖機必要時間に予め定めた基準時間を加えた加算した時間以下となった際に、プレ暖機処理を開始してもよい。
 本開示の第6態様の内燃機関温度調整システムによると、プレ暖機処理における冷却水の目標温度は、車室外温度の低下に伴い増加するように設定されてもよい。
 これによれば、冬期等のように車室外温度が低い条件において、内燃機関の冷却水を適切に昇温させることができ、内燃機関の冷間始動を効果的に抑制することができる。
 本開示の第7態様の内燃機関温度調整システムによると、制御装置は、加熱部の加熱能力が最大能力よりも低い場合にプレ暖機処理を実行してもよい。
 本開示の第8態様の内燃機関温度調整システムによると、加熱部を、蓄電池からの電力供給により温熱を生成する構成としてもよい。
 より詳しくは、本開示の第9態様の内燃機関温度調整システムによると、加熱部を、冷媒を圧縮して吐出する圧縮機、圧縮機から吐出された高温高圧の冷媒の熱を送風空気および冷却水の少なくとも一方に放熱可能な冷媒放熱部を含んで構成されてもよい。
 本開示の第10態様の内燃機関温度調整システムによると、冷却水昇温部は、冷却水が有する熱を送風空気に放熱する冷却水側熱交換器であり、冷媒放熱部は、冷媒が有する熱を送風空気に放熱する冷媒側熱交換器であり、冷却水側熱交換器および冷媒側熱交換器は、冷却水側熱交換器を流通する冷却水および冷媒側熱交換器を流通する冷媒が互いに熱交換可能な複合型熱交換器で構成されてもよい。
 このように、冷媒、空気、冷却水といった異なる3つの流体間で熱交換可能な複合型熱交換器を採用すれば、内燃機関温度調整システムのシステム構成の簡素化を図ることができる。
 本開示の第11態様の内燃機関温度調整システムによると、冷却水が有する熱を送風空気に放熱する冷却水側熱交換器を備え、冷却水昇温部を、冷媒放熱部である水冷媒熱交換器で構成してもよい。
 本開示の第12態様の内燃機関温度調整システムによると、空調装置には、冷却水側熱交換器に流入する送風空気の流入量を調整する空気流入量調整部が設けられ、制御装置は、プレ暖機処理を実行する際に、空気流入量調整部にて送風空気の流入量を低下させてもよい。
 これによれば、プレ暖機処理の実行時に、冷却水側熱交換器にて冷却水が有する熱が送風空気に放熱されることを抑制することができ、冷却水を効率的に昇温させることができる。
 本開示の第13態様の内燃機関温度調整システムによると、冷却水循環回路は、内燃機関の内部に形成された冷却水流路に冷却水が流れるように構成されたメイン経路と、冷却水昇温部に冷却水が流れるように構成されたサブ経路と、を有してもよい。
 このように、冷却水昇温部に冷却水が流れるサブ経路を設ける構成とすれば、冷却水を効率的に昇温させることができ、内燃機関の冷間始動を効果的に抑制することが可能となる。
 本開示の第14態様の内燃機関温度調整システムによると、冷却水循環回路には、冷却水流路を流れる冷却水の流量と冷却水昇温部を流れる冷却水の流量とを調整する第1流量調整部が設けられてもよい。
 このように、冷却水流路を流れる冷却水の流量と冷却水昇温部を流れる冷却水の流量とを調整可能な構成とすれば、内燃機関の冷却水を効率的に昇温させることが可能となる。
 例えば、本開示の第15態様の内燃機関温度調整システムによると、サブ経路には、冷却水を循環させる第2冷却水循環装置が設けられていることを特徴とする。
 これによれば、第1冷却水循環装置を作動させることなく、第2冷却水循環装置の作動だけで、サブ経路内の冷却水を循環させることが可能となる。
 本開示の第16態様の内燃機関温度調整システムによると、サブ経路には、冷却水が有する熱を蓄熱するための蓄熱部が設けられてもよい。この場合、冷却水昇温部にて昇温された冷却水の熱を効率的に蓄熱することができる。
 本開示の第17態様の内燃機関温度調整システムによると、蓄熱部には、加熱部の加熱能力が最大能力よりも低い場合に、冷却水が有する熱が蓄熱されてもよい。これによれば、加熱部の加熱能力に余力がある場合に、冷却水昇温部にて昇温された冷却水の熱を蓄熱部に蓄熱することで、内燃機関の冷間始動を効果的に抑制することが可能となる。
 本開示の第18態様の内燃機関温度調整システムによると、内燃機関の内部には、冷却水流路として、シリンダブロックを冷却するためのブロック側流路、およびシリンダヘッドを冷却するためのヘッド側流路が形成され、冷却水循環回路には、ブロック側流路に流れる冷却水の流量とヘッド側流路に流れる冷却水の流量とを調整する第2流量調整部が設けられてもよい。
 これによれば、HC等の排出の低減効果が高いシリンダヘッドを優先的に暖機することができるので、内燃機関始動時におけるHC等の排出を抑制することが可能となる。
第1実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)、(c)は、外気温が低温となる際の空調装置等の作動を説明する概略図である。 (a)、(b)、(c)は、外気温が中温となる際の空調装置等の作動を説明する概略図である。 (a)、(b)、(c)は、外気温が高温となる際の空調装置等の作動を説明する概略図である。 第1実施形態に係る制御装置が実行する制御処理の流れを示すフローチャートである。 第1実施形態に係るプレ暖機処理の開始タイミングを説明するためのタイミングチャートである。 第2実施形態に係る制御装置が実行する制御処理の流れを示すフローチャートである。 第2実施形態に係るプレ暖機処理の開始タイミングを説明するためのタイミングチャートである。 第3実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第3実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第4実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第4実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第5実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第5実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第5実施形態の内燃機関温度調整システムの変形例の全体構成図である。 (a)、(b)は、第5実施形態の変形例に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第6実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第6実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第7実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第7実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第8実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第8実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第9実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第9実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第10実施形態に係る内燃機関温度調整システムの全体構成図である。 (a)、(b)は、第10実施形態に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第10実施形態の内燃機関温度調整システムの変形例の全体構成図である。 (a)、(b)は、第10実施形態の変形例に係るプレ暖機処理時の冷却水の流れを説明する概略図である。 第11実施形態に係る内燃機関温度調整システムの全体構成図である。 第12実施形態に係る内燃機関温度調整システムの全体構成図である。 第12実施形態に係る内燃機関温度調整システムの変形例を示す全体構成図である。 第12実施形態に係る内燃機関温度調整システムの変形例を示す全体構成図である。 第13実施形態に係る内燃機関温度調整システムの変形例を示す全体構成図である。 第13実施形態に係る内燃機関温度調整システムの変形例を示す全体構成図である。 第13実施形態に係る内燃機関温度調整システムの変形例を示す全体構成図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付すと共に、当該部分の重複した説明を省略する。
 (第1実施形態)
 図1~図6に基づいて本開示の第1実施形態について説明する。本実施形態では、本開示の内燃機関温度調整システムを、水冷式のエンジン(内燃機関)10および走行用電動モータMGから車両走行用の駆動力を得るハイブリッド車両に適用している。
 本実施形態のハイブリッド車両は、車両停車時に外部電源(商用電源)から供給された電力を車両に搭載されたバッテリ(蓄電池)BTに充電可能なプラグインハイブリッド車両として構成されている。
 このプラグインハイブリッド車両は、走行開始時のようにバッテリBTの残存容量SOCが予め定めた走行下限容量(第1基準容量)以上になっている際に、走行用電動モータMGが出力する駆動力だけで走行可能な運転モード(EV走行)となる。
 一方、車両走行中にバッテリBTの残存容量SOCが走行下限容量よりも低くなる際には、主にエンジン10が出力する駆動力により走行可能な運転モード(HV走行)となる。なお、HV走行時は、主にエンジン10が出力する駆動力により走行する運転モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジン10を補助する。
 本実施形態のプラグインハイブリッド車両では、このようにEV走行とHV走行とを切り替えることによって、車両走行用の駆動力をエンジン10だけから得る通常の車両に対してエンジン10の燃料消費量を抑制して、車両燃費を向上させている。
 次に、内燃機関温度調整システムについて説明する。内燃機関温度調整システムは、エンジン10内部に形成された冷却水流路11a、12aに冷却水を流通させることでエンジン10の温度を調整するものである。この冷却水は、エンジン10の温度を調整する温度調整媒体として利用されると共に、後述する空調装置5において車室内へ送風する送風空気の加熱媒体として利用される。なお、冷却水としては、例えば、エチレングリコール水溶液等を採用することができる。
 まず、エンジン10について説明する。本実施形態では、エンジン10として、シリンダブロック11、およびシリンダヘッド12を有して構成されるガソリンエンジンを採用している。さらに、エンジン10の排気経路には、排気ガスを浄化する触媒を含んで構成される排気浄化装置(図示略)が設けられている。この排気浄化装置により冷間始動時に排出されるHC等を吸着するようにしている。
 シリンダブロック11は、ピストンが往復運動するシリンダボアを形成するとともに、車両搭載状態におけるシリンダボアの下方側に、クランクシャフトおよびピストンとクランクシャフトを連結するコンロッド等を収容するクランクケースが設けられた金属ブロック体である。シリンダヘッド12は、シリンダボアの上死点側の開口部を閉塞して、シリンダボアおよびピストンとともに燃焼室を形成する金属ブロック体である。
 さらに、エンジン10では、シリンダブロック11およびシリンダヘッド12を一体に組み付けると、内部にシリンダブロック11を冷却するための冷却水を流通させるブロック側流路11a、およびシリンダヘッド12を冷却するための冷却水を流通させるヘッド側流路12aが形成される。
 本実施形態では、エンジン10内部に冷却水を流入させる流入ポート10aがシリンダブロック11に設けられ、エンジン10内部から冷却水を流出させる流出ポート10bがシリンダヘッド12に設けられている。なお、冷却水は、流入ポート10a→ブロック側流路11a→ヘッド側流路12a→流出ポート10bへ流れる。
 次に、本実施形態の内燃機関温度調整システムの詳細構成について説明する。図1の全体構成図で示すように、内燃機関温度調整システムは、エンジン10の冷却水が循環する冷却水循環回路20、エンジン制御装置100a(ENGINE ECU)および空調制御装置100b(A/C ECU)からなる制御装置100を備えている。
 冷却水循環回路20には、回路内に冷却水を循環させる第1冷却水循環装置としてのメインポンプ21が設けられている。本実施形態のメインポンプ21は、ポンプ室を形成するケーシング内に配置された羽根車を電動モータで駆動する電動式の水ポンプで構成されている。この電動モータは、後述するエンジン制御装置100aから出力される制御電圧によって回転数(冷却水圧送能力)が制御される。
 メインポンプ21における冷却水の吐出側は、エンジン10の流入ポート10aが接続されており、メインポンプ21から吐出された冷却水が、エンジン10内部の冷却水流路11a、12aに供給される。
 エンジン10の流出ポート10bには、冷却水の流れを分岐する分岐部を介して、ラジエータ24、およびヒータコア54aが接続されている。
 ラジエータ24は、エンジンルーム内に配置され、エンジン10から流出した冷却水を、室外送風ファン24aから送風される車室外空気(外気)と熱交換させて、冷却水が有する熱を外気に放熱する放熱用熱交換器である。ラジエータ24の出口側は、メインポンプ21の吸入側に接続されている。
 ヒータコア54aは、エンジン10から流出した冷却水が有する熱を車室内に送風する送風空気に放熱して、送風空気を加熱する加熱用熱交換器である。ヒータコア54aの出口側は、メインポンプ21の吸入側に接続されている。より詳しくは、ヒータコア54aは、後述する空調装置5において送風空気の空気通路を形成する室内空調ユニット50のケーシング51内に配置されている。
 本実施形態では、ヒータコア54aおよび後述するヒートポンプサイクル60の室内凝縮器54bを、内部を流通する冷却水と室内凝縮器54bを流通する冷媒とが熱交換可能な複合型熱交換器54として構成している。従って、本実施形態のヒータコア54aは、冷却水が有する熱を送風空気に放熱する冷却水側熱交換器を構成すると共に、冷媒が有する熱を冷却水に放熱して冷却水を昇温させる冷却水昇温部として機能する。
 このような複合型熱交換器54は、例えば、ヒータコア54aにおける冷却水が流通するチューブと、室内凝縮器54bにおける冷媒が流通するチューブとを直接接触させる構成や、各チューブをアウターフィン等の伝熱部材を介して間接的に接触させる構成とすることで実現可能である。
 さらに、冷却水循環回路20には、冷却水を、ラジエータ24を迂回して流すバイパス通路25、およびラジエータ24側に冷却水を流す回路とバイパス通路25側に冷却水を流す回路に切り替えるサーモスタット26が設けられている。
 このサーモスタット26は、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される冷却水温度応動弁である。本実施形態のサーモスタット26は、メインポンプ21の吸入側の冷却水の温度が基準温度(例えば、65℃)以下になると、バイパス通路25側に冷却水を流す回路に切り替え、基準温度を超えるとラジエータ24側に冷却水を流す回路に切り替えるように構成されている。
 次に、本実施形態の空調装置5について説明する。本実施形態の空調装置5は、室内空調ユニット50、空調装置5における加熱部を構成するヒートポンプサイクル60等を備えている。
 室内空調ユニット50は、車室内最前部の計器盤の内側に配置されて、前述のケーシング51内に、送風機52、室内蒸発器53、室内凝縮器54b、前述のヒータコア54a等を収容したものである。
 送風機52は、ケーシング51内に吸入した外気または内気(車室内空気)を車室内へ向けて送風する送風装置である。この送風機52は、シロッコファンを電動モータ52aにて駆動する電動送風機であって、空調制御装置100bからの制御電圧によって回転数(送風量)が制御される。
 送風機52の空気流れ下流側には、室内蒸発器53が配置されている。室内蒸発器53は、その内部を流通する冷媒と送風機52からの送風空気と熱交換させて、送風空気を冷却する冷却用熱交換器として機能する。
 ケーシング51における室内蒸発器53の空気流れ下流側には、室内凝縮器54bおよびヒータコア54aが配置されると共に、室内凝縮器54bおよびヒータコア54aを迂回して空気を流す冷風バイパス通路55が形成されている。
 室内凝縮器54bは、その内部を流通する冷媒と室内蒸発器53通過後の空気とを熱交換させる冷媒側熱交換器を構成すると共に、送風空気を加熱する加熱用熱交換器として機能する。前述のように本実施形態の室内凝縮器54bは、ヒータコア54aと共に複合型熱交換器54を構成しており、冷媒が有する熱を冷却水に放熱可能に構成されている。
 室内凝縮器54b、ヒータコア54aを通過した空気、および冷風バイパス通路55を通過した空気は、ケーシング51内の混合空間にて混合された後、吹出用のダクト等を介して車室内に吹き出される。
 ここで、ケーシング51内における室内蒸発器53と、複合型熱交換器54および冷風バイパス通路55との間には、エアミックスドア56が配置されている。このエアミックスドア56は、室内蒸発器53にて冷却された冷風と、複合型熱交換器54で加熱された温風との混合割合を調整する空気温度調整部として機能する。なお、本実施形態では、室内空調ユニット50における送風機52およびエアミックスドア56が、ヒータコア54aに流入する送風空気の流入量を調整する空気流入量調整部を構成している。
 エアミックスドア56は、エアミックスドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、後述する空調制御装置100bから出力される制御信号によって、その作動が制御される。
 続いて、空調装置5のヒートポンプサイクル60について説明する。ヒートポンプサイクル60は、圧縮機61、前述の室内凝縮器54b、室外熱交換器62、膨張弁63、前述の室内蒸発器53、アキュムレータ64等を含んで構成される蒸気圧縮式の冷凍サイクルである。
 圧縮機61は、エンジンルーム内に配置され、ヒートポンプサイクル60において冷媒を吸入し、圧縮して吐出するものであり、吐出容量が固定された圧縮機構を電動モータにて駆動する電動圧縮機として構成されている。電動モータは、後述する空調制御装置100bから出力される制御信号によって、その作動(回転数)が制御される。
 室外熱交換器62は、ラジエータ24と共にエンジンルーム内に配置されて、内部を流通する冷媒と、室外送風ファン24aから送風された車室外空気(外気)とを熱交換させることにより、圧縮機61吐出冷媒を凝縮させるものである。
 膨張弁63は、室外熱交換器62から流出した冷媒を減圧膨張させる減圧装置である。アキュムレータ64は、室内蒸発器53から流出した冷媒を気液分離して、気液分離した液相冷媒を余剰冷媒として蓄え、気相冷媒だけを圧縮機61の吸入側に流すものである。
 本実施形態のヒートポンプサイクル60は、基本的にバッテリBTからの電力供給により作動するように構成されている。このため、室内凝縮器54bにて送風空気や冷却水に放熱される温熱は、バッテリBTからの電力供給により生成されることとなる。
 次に、エンジン10および空調装置5の作動を制御する制御装置(制御装置)100について説明する。本実施形態の制御装置100は、エンジン10等の作動を制御するエンジン制御装置100a、および空調装置5の作動を制御する空調制御装置100bで構成されている。
 各制御装置100a、100bは、それぞれCPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。そして、このROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、それぞれ出力側に接続された各種機器の作動を制御する。
 具体的には、エンジン制御装置100aの出力側には、エンジン10を始動させるスタータ、エンジン10に燃料を供給する燃料噴射弁(インジェクタ)の駆動回路、メインポンプ21の電動モータ等が接続されている。
 一方、エンジン制御装置100aの入力側には、エンジン回転数Neを検出するエンジン回転数センサ、車速Vvを検出する車速センサ、エンジン10から流出した冷却水の温度を検出する温度検出部としてのサーミスタ22といったエンジン制御用のセンサ群、バッテリBTの残存容量SOCを検出するバッテリ容量検出部等が接続されている。
 また、空調制御装置100bの出力側には、前述のエアミックスドア56の電動アクチュエータ、送風機52、ヒートポンプサイクル60を構成する各種構成機器等が接続されている。
 一方、空調制御装置100bの入力側には、車室内温度Trを検出する内気センサ、外気温(車室外温度)Tamを検出する外気温センサ、車室内の日射量Tsを検出する日射センサ、室内蒸発器53からの吹出空気温度(冷媒蒸発温度)Teを検出する蒸発器温度センサ等の空調制御用のセンサ群が接続されている。
 さらに、空調制御装置100bの入力側には、車室内に配置された操作パネルが接続されている。この操作パネルには、空調装置5の作動スイッチ、車室内の温度設定スイッチ等が設けられている。
 なお、本実施形態のエンジン制御装置100aおよび空調制御装置100bは、互いに電気的に接続されて、通信可能に構成されている。これにより、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置が出力側に接続された各種機器の作動を制御することもできる。従って、エンジン制御装置100aおよび空調制御装置100bを1つの制御装置として一体的に構成してもよい。
 次に、上記構成における本実施形態の作動について説明する。まず、エンジン10の作動例について説明する。車両スタートスイッチが投入されて車両が起動すると、エンジン制御装置100aが、所定の制御周期毎に入力側に接続された各種エンジン制御用のセンサ群の検出信号、バッテリBTの残存容量SOCを読み込み、読み込まれた検出値に基づいて車両の走行負荷を検出する。さらに、検出された走行負荷に応じてエンジン10を作動あるいは停止させる。
 本実施形態のエンジン制御装置100aは、少なくともバッテリBTの残存容量SOCが走行下限容量を下回るまでは、エンジン10を停止させて走行用電動モータMGから駆動力を得て走行するEV走行を実現する。一方、エンジン制御装置100aは、バッテリBTの残存容量SOCが走行下限容量を下回ると、エンジン10を作動させてエンジン10および走行用電動モータの双方から駆動力を得て走行するHV走行を実現する。
 次に、空調装置5の作動例について説明する。車両スタートスイッチが投入された状態で、空調装置の作動スイッチが投入(ON)されると、空調制御装置100bが上述の空調制御用のセンサ群の検出信号および操作パネルの操作信号を読み込む。そして、検出信号および操作信号の値に基づいて車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。
 具体的には、この目標吹出温度TAOは、以下数式1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 ここで、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサによって検出された外気温、Tsは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 さらに、空調制御装置100bは、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置100bの出力側に接続された各種空調制御機器の作動状態を決定する。
 例えば、送風機52の目標送風量、すなわち送風機52の電動モータ52aに出力する制御電圧については、目標吹出温度TAO等に基づいて予め空調制御装置100bに記憶された制御マップを参照して、目標吹出温度TAOが高温時および低温時に中間温度時よりも高くなるように決定される。
 また、エアミックスドア56のサーボモータへ出力される制御信号については、目標吹出温度TAO、室内蒸発器53からの吹出空気温度Teの検出値およびサーミスタ22の検出値を用いて、車室内へ吹き出される空気の温度が車室内温度設定スイッチによって設定された乗員の所望の温度となるように決定される。
 そして、空調制御装置100bは、決定した制御電圧および制御信号を各種空調制御機器へ出力する。その後、操作パネルによって空調装置5の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種空調制御機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンを繰り返す。
 ここで、外気温Tamの変化に応じた空調装置5の作動例を図2~図4を用いて説明する。なお、図2~図4における黒太矢印は、ヒートポンプサイクル60における冷媒の流れを示している。
 まず、冬期等のように外気温Tamが低温となり目標吹出温度TAOが高温となる場合、空調制御装置100bは、図2に示すように、エアミックスドア56の位置を冷風バイパス通路55を閉鎖する閉鎖位置に設定する。
 これにより、空調装置5では、室内蒸発器53を通過した空気の全てが、室内凝縮器54b、ヒータコア54aで構成される複合型熱交換器54を通過する際に加熱され、加熱された高温の空気が車室内に吹き出される。
 春期や秋期等のように外気温Tamが中温となり目標吹出温度TAOが中間温度となる場合、空調制御装置100bは、図3に示すように、エアミックスドア56の位置を中間位置に設定する。
 これにより、空調装置5では、室内蒸発器53を通過した空気の一部が、複合型熱交換器54を通過する際に加熱されると共に、室内蒸発器53を通過した空気の残りが、冷風バイパス通路55を通過して、車室内に中間温度の空気が吹き出される。
 また、夏期等のように外気温Tamが高温となり目標吹出温度TAOが低温となる場合、空調制御装置100bは、図4に示すように、エアミックスドア56の位置を冷風バイパス通路55を全開放する全開位置に設定する。
 これにより、空調装置5では、室内蒸発器53を通過した空気の全てが、複合型熱交換器54を通過することなく、冷風バイパス通路55を通過して、車室内に低温の空気が吹き出される。
 次に、内燃機関温度調整システムの作動例について説明する。車両スタートスイッチが投入されて車両が起動すると、エンジン制御装置100aが、各種エンジン制御用のセンサ群の検出信号、バッテリBTの残存容量SOCを読み込み、読み込まれた検出値に基づいて車両の走行状態を検出する。
 車両の運転モードがHV走行となっている際には、エンジン制御装置100aが、エンジン10の温度を調整するために、メインポンプ21を作動させて、冷却水をエンジン10内部の冷却水流路11a、12aに供給する。この際、サーモスタット26がサーミスタ22の検出温度に応じて開閉し、エンジン10に流入する冷却水の温度が基準温度に近づくように、ラジエータ24あるいはバイパス通路25を流れる冷却水流量が調整される。
 一方、車両の運転モードがEV走行となっている際には、エンジン10が作動しないことから、基本的には、エンジン制御装置100aが、メインポンプ21を停止させ、エンジン10の温度の調整を行わない。
 しかし、EV走行時において、全くエンジン10の温度調整を行わないと、バッテリBTの残存容量SOCの低下によって、EV走行からHV走行に切り替わる際に、エンジン10が冷間始動となってしまう虞がある。
 そこで、内燃機関温度調整システムでは、EV走行からHV走行に切り替わる前に、ヒートポンプサイクル60を加熱源として、冷却水の温度を所望の温度(目標温度)まで昇温させて、エンジン10を暖機するプレ暖機処理を行うようにしている。
 プレ暖機処理における冷却水の目標温度は、エンジン10始動時のHCの低減効果が得られる40℃+5~10℃(望ましくは40℃)の温度範囲内に設定される。なお、エンジン10は、外気温Tamの低下に伴って暖機し難くなることから、冷却水の目標温度は、外気温Tamの低下に応じて高い値に設定することが望ましい。
 本実施形態のプレ暖機処理では、空調装置5を構成するヒートポンプサイクル60が生成する温熱を利用しており、空調装置5の空調能力の低下を抑制するために、プレ暖機処理の開始タイミングをバッテリBTの残存容量SOCの低下状態に応じて決定するようにしている。この制御処理の詳細については、図5に示すフローチャートを用いて説明する。なお、図5は、制御装置100が実行する制御処理の流れを示している。
 図5に示すように、まず、各種センサ群の検出信号、バッテリBTの残存容量SOC等を読み込む(S110)。そして、バッテリBTの残存容量SOCが予め定めた走行下限容量を下回るのに要する予想時間tsocを算出する(S120)。この予想時間tsocは、バッテリBTの残存容量SOCの減少度合いに基づいて算出する。
 具体的には、予想時間tsocは、以下に示す数式F1を用いて算出することができる。
tsoc=(SOCc-SOCcr)/(dSOC/dt)…(F1)
但し、SOCcが現状のバッテリBTの残存容量、SOCcrが走行下限容量、dSOC/dtが、バッテリBTの残存容量SOCの減少度合いを示している。なお、バッテリBTの残存容量SOCの減少度合いは、バッテリBTの残存容量SOCの単位時間あたりの変化量として算出することができる。なお、数式F1では、残存容量SOCの減少度合いがゼロに近づくと、予想時間tsocが無限に大きくなってしまうから、減少度合いには、下限値が設けられている。
 続いて、ヒートポンプサイクル60が生成する温熱によって、冷却水を所望の温度まで加熱するのに要する暖機必要時間twuを算出する(S130)。この暖機必要時間twuは、ヒートポンプサイクル60において送風空気および冷却水を加熱する加熱能力に応じて算出する。
 具体的には、暖機必要時間twuは、以下に示す数式F2を用いて算出することができる。
twu={(Twt-Two)×Vw×Cp×ρ}/Qw…(F2)
但し、Twtがプレ暖機処理における冷却水の目標温度、Twoが車両起動時の冷却水の初期温度、Vwが冷却水循環回路20におけるメインポンプ21→エンジン10→ヒータコア54aを循環する回路内の冷却水の容量、Cpが冷却水の比熱、ρが冷却水の密度、Qwが単位時間あたりにヒートポンプサイクル60から冷却水が受熱する受熱量を示している。
 ここで、受熱量Qwは、ヒートポンプサイクル60にて生成可能な温熱の最大熱量(最大能力)から、送風空気が受熱する受熱量(要求暖房熱量)を除いた熱量に基づいて算出することができる。なお、数式F2では、受熱量Qwがゼロに近づくと、暖機必要時間twuが無限に大きくなってしまうことから、受熱量Qwには、下限熱量が設けられている。
 続いて、ステップS120で算出した予想時間tsocが、ステップS130で算出した暖機必要時間twu以下であるか否かを判定する(S140)。この結果、予想時間tsocが暖機必要時間twu以下と判定された場合(S140:YES)には、プレ暖機処理を実行し(S150)、予想時間tsocが暖機必要時間twuより長いと判定された場合(S140:NO)には、ステップS110に戻る。
 つまり、本実施形態では、図6のタイミングチャートに示すように、予想時間が暖機必要時間以下となるタイミングをプレ暖機処理の開始タイミングに設定している。このため、バッテリBTの残存容量SOCが走行下限容量を下回り、車両の運転モードがEV走行からHV走行に切り替わる際に、冷却水の温度を目標温度まで昇温させることができる。従って、エンジン10の冷間始動を抑制することができる。
 ここで、EV走行時において、エンジン制御装置100aは、プレ暖機処理を開始するまでは、メインポンプ21を停止させる(図2(a)~図4(a)参照)。つまり、ヒートポンプサイクル60にて生成された温熱は、送風空気を加熱するために利用される。
 一方、EV走行時において、プレ暖機開始後は、エンジン制御装置100aは、メインポンプ21を作動させる(図2(b)~図4(b)参照)。これにより、室内空調ユニット50内の複合型熱交換器54にて、冷媒が有する熱により冷却水が加熱される。複合型熱交換器54にて昇温した冷却水は、エンジン10の冷却水流路11a、12aに供給されて、エンジン10が暖機される。
 この際、空調制御装置100bでは、複合型熱交換器54における冷媒と冷却水との熱交換を促進させるため、複合型熱交換器54に流入する送風空気の流入量が低下するように、送風機52およびエアミックスドア56を制御する。
 その後、バッテリBTの残存容量SOCが走行下限容量を下回って、EV走行からHV走行に切り替わると、エンジン制御装置100aは、エンジン10の温度が所望の温度に維持されるように、メインポンプ21の作動を制御する(図2(c)~図4(c)参照)。
 以上説明した本実施形態では、バッテリBTの残存容量SOCの低下によるエンジン10の作動前に、ヒートポンプサイクル60が生成する温熱によりエンジン10の冷却水を昇温させる構成としている。このため、エンジン10の始動および停止が不定期に行われるハイブリッド車両において、エンジン10の冷間始動を抑制することができる。この結果、エンジン10始動時におけるHC等の排出を抑制でき、排気浄化装置の触媒の増加を抑制できることから、排気浄化装置の大型化の抑制を図ることが可能となる。
 また、本実施形態では、バッテリBTの残存容量SOCの減少度合いから予想した予想時間tsocと、プレ暖機処理にて冷却水の昇温に要する暖機必要時間twuとの関係に基づいて、プレ暖機処理の開始タイミングを決定する構成としている。このように、空調装置5における送風空気の温度調整、および冷却水の加熱を、適切なタイミングで行うことで、エンジン10の冷間始動を抑制することができる。
 この際、プレ暖機処理における冷却水の目標温度を、外気温Tamの低下に応じて高い値に設定すれば、冬期等のように外気温Tamが低い条件において、エンジン10の冷却水を適切に昇温させて、エンジン10の冷間始動を効果的に抑制することができる。
 さらに、本実施形態では、プレ暖機処理を実行する際に、複合型熱交換器54に流入する送風空気の流入量を低下させる構成としているので、プレ暖機処理の実行時に冷媒と冷却水との熱交換を促進させ、冷却水を効率的に昇温させることができる。
 (第2実施形態)
 次に、本開示の第2実施形態について説明する。本実施形態では、第1実施形態に対してプレ暖機処理の開始タイミングを変更した例について説明する。本実施形態のプレ暖機処理の開始タイミングについては、図7のフローチャート、図8のタイミングチャートを用いて説明する。
 図7に示すように、各種センサ群の検出信号、バッテリBTの残存容量SOC等を読み込み(S110)、その後、バッテリBTの残存容量SOCが判定基準容量(第2基準容量)を下回っているか否かを判定する(S160)。なお、判定基準容量は、予め暖機必要時間等を考慮して設定された閾値であり、予め走行下限容量よりも高い容量に設定されている。
 この結果、バッテリBTの残存容量SOCが、判定基準容量を下回っていると判定された場合(S160:YES)には、プレ暖機処理を実行し(S150)、残存容量SOCが判定基準容量を下回っていないと判定された場合(S160:NO)には、ステップS110に戻る。
 つまり、本実施形態では、図8のタイミングチャートに示すように、バッテリBTの残存容量SOCが判定基準容量を下回るタイミングをプレ暖機処理の開始タイミングに設定している。
 これにより、バッテリBTの残存容量SOCが走行下限容量を下回り、車両の運転モードがEV走行からHV走行に切り替わる際に、冷却水の温度を目標温度まで昇温させることができる。従って、本実施形態では、第1実施形態と同様にエンジン10の冷間始動を抑制することができるといった作用効果を奏する。
 (第3実施形態)
 次に、本開示の第3実施形態について説明する。本実施形態では、第1実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図9の全体構成図を用いて説明する。
 本実施形態では、冷却水循環回路20において、メインポンプ21の吐出側にエンジン10の冷却水流路11a、12aを迂回して、ヒータコア54aの冷却水の入口側に接続する第1サブバイパス通路28が設けられている。メインポンプ21の吐出側と第1サブバイパス通路28とを接続する接続部には、第1電磁弁27が設けられている。
 この第1電磁弁27は、エンジン10の冷却水流路11a、12aを介してヒータコア54aに流れる冷却水の流量と、冷却水流路11a、12aを介さずにヒータコア54aに流れる冷却水の流量を調整する第1流量調整部として機能する。
 なお、エンジン10内部の冷却水流路11a、12aに冷却水を流す経路がメイン経路20aを構成し、第1サブバイパス通路28を介してヒータコア54aに冷却水を流す経路がサブ経路20bを構成している。
 具体的には、メイン経路20aは、メインポンプ21から吐出された冷却水が、冷却水流路11a、12a→ラジエータ24またはバイパス通路25といった順に流れる経路、およびエンジン10→ヒータコア54aといった順に流れる経路となっている。また、サブ経路20bは、メインポンプ21から吐出された冷却水が、第1サブバイパス通路28→ヒータコア54aといった順に流れる経路となっている。
 なお、本実施形態では、冷却水循環回路20のバイパス通路25、およびエンジン10の冷却水流路11a、12aとヒータコア54aの入口側との間には、冷却水の流れを一方向に制限する逆止弁25a、29が配置されている。
 続いて、本実施形態に係るプレ暖機処理時の作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前半ステップにおいて、メインポンプ21から吐出された冷却水の全てが第1サブバイパス通路28を流れるように第1電磁弁27の作動を制御する。
 これにより、図10(a)に示すように、メインポンプ21から吐出された冷却水は、サブ経路20b内を循環する。前述のように、サブ経路20bは、エンジン10の冷却水流路11a、12aに流れないことから、サブ経路20bを循環する冷却水の容量が少なくなる。このため、プレ暖機処理の前半ステップでは、冷却水を短時間で昇温させることができる。
 そして、エンジン制御装置100aは、プレ暖機処理の後半ステップにおいて、第1サブバイパス通路28を閉鎖して、メインポンプ21から吐出された冷却水の全てがエンジン10の冷却水流路11a、12aを流れるように第1電磁弁27の作動を制御する。これにより、図10(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20a内を循環して、エンジン10が暖機される。
 なお、プレ暖機処理の前半ステップから後半ステップの切り替えは、メインポンプ21に吸入される冷却水の温度が所定温度に上昇した際に行ったり、プレ暖機処理の開始から所定時間経過後に行ったりすればよい。
 以上説明した本実施形態によれば、第1実施形態で説明した作用効果に加え、以下の作用効果を奏する。すなわち、本実施形態では、メインポンプ21から吐出された冷却水を、エンジン10の冷却水流路11a、12aに流すことなく、ヒータコア54aに流すサブ経路20bを設ける構成としている。これにより、プレ暖機処理において冷却水を短時間で昇温させることが可能となる。
 さらに、第1電磁弁27にて、エンジン10の冷却水流路11a、12aを流れる冷却水の流量と、ヒータコア54aを流れる冷却水の流量とを調整することができるので、エンジン10の冷却水の昇温を効率的に昇温させることが可能となる。
 なお、本実施形態では、第1電磁弁27により冷却水循環回路20における冷却水が流れる経路を切り替えるようにしているが、第1電磁弁27に限らず、例えば、サーモスタットを用いて切り替えるようにしてもよい。サーモスタットは、例えば、メインポンプ21吸入側の冷却水の温度が所定温度未満となる際にサブ経路20bに切り替え、メインポンプ21吸入側の冷却水の温度が所定温度以上となる際にメイン経路20aに切り替える構成とすればよい。このことは、以降の実施形態においても同様である。
 (第4実施形態)
 次に、本開示の第4実施形態について説明する。本実施形態では、第3実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図11の全体構成図を用いて説明する。
 本実施形態では、図11に示すように、冷却水循環回路20におけるヒータコア54aの出口側に、ヒータコア54aにて加熱された冷却水を蓄える蓄熱タンク(蓄熱部)30を配置している。蓄熱タンク30は、ヒータコア54aにて加熱された冷却水の熱を蓄熱する蓄熱部として機能する。
 続いて、本実施形態に係る内燃機関温度調整システムの作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前後において、空調装置5の暖房負荷が低く空調装置5の加熱能力に余裕がある場合に、メインポンプ21から吐出された冷却水の全てが第1サブバイパス通路28を流れるように第1電磁弁27の作動を制御する。
 これにより、メインポンプ21から吐出された冷却水は、図12(a)に示すように、サブ経路20b内を循環する。この際、ヒータコア54aにて加熱された冷却水が、蓄熱タンク30に蓄えられる。
 そして、エンジン制御装置100aは、プレ暖機処理を実行する際に、第1サブバイパス通路28を閉鎖して、メインポンプ21から吐出された冷却水の全てがエンジン10の冷却水流路11a、12aを流れるように第1電磁弁27の作動を制御する。
 これにより、図12(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20a内を循環して、エンジン10が暖機される。この際、蓄熱タンク30に蓄えられた冷却水がメイン経路20a内を循環するので、エンジン10の暖機を短時間で行うことが可能となる。なお、プレ暖機処理の開始時に蓄熱タンク30に充分な熱量が蓄えられていない場合には、メインポンプ21から吐出された冷却水を、サブ経路20b内を循環させて、冷却水を加熱するようにしてもよい。
 本実施形態のように、冷却水循環回路20に蓄熱タンク30を設ける構成とすれば、第2実施形態で説明した作用効果に加えて、ヒートポンプサイクル60の加熱能力に余裕がある際に、ヒータコア54aにて加熱された冷却水が有する熱を蓄熱することができる。
 これにより、プレ暖機処理における冷却水を昇温させる時間の短縮化を図ることができ、エンジン10の冷間始動を効果的に抑制することが可能となる。さらに、前回の車両走行時に昇温した冷却水を蓄熱タンク30に蓄えておけば、次回の車両走行開始時にプレ暖機処理を実行することも可能となる。
 (第5実施形態)
 次に、本開示の第5実施形態について説明する。本実施形態では、第3実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図13の全体構成図を用いて説明する。
 図13に示すように、本実施形態の冷却水循環回路20は、エンジン10の冷却水流路11a、12aとヒータコア54aの入口側とを接続しない回路構成としている。このため、本実施形態の冷却水循環回路20のメイン経路20aは、メインポンプ21から吐出された冷却水が、冷却水流路11a、12a→ラジエータ24またはバイパス通路25といった順に流れる経路となっている。
 続いて、本実施形態に係るプレ暖機処理時の作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前半ステップにおいて、メインポンプ21から吐出された冷却水の全てが第1サブバイパス通路28を流れるように第1電磁弁27の作動を制御する。
 これにより、図14(a)に示すように、メインポンプ21から吐出された冷却水は、サブ経路20b内を循環する。このため、プレ暖機処理の前半ステップでは、冷却水を短時間で昇温させることができる。
 そして、エンジン制御装置100aは、プレ暖機処理の後半ステップにおいて、メインポンプ21から吐出された冷却水が、エンジン10の冷却水流路11a、12aおよび第1サブバイパス通路28の双方に流れるように第1電磁弁27の作動を制御する。これにより、図14(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20aおよびサブ経路20b内を循環して、エンジン10が暖機される。
 本実施形態によれば、第1、第3実施形態で説明した作用効果に加え、簡素な冷却水循環回路20の回路構成で、プレ暖機処理を実現することができるといった作用効果を奏する。
 なお、図15に示すように、本実施形態の冷却水循環回路20に対して、第4実施形態と同様の蓄熱タンク30を設ける構成としてもよい。この場合、エンジン制御装置100aは、プレ暖機処理の前後において、空調装置5の加熱能力に余裕がある場合に、メインポンプ21から吐出された冷却水の全てが第1サブバイパス通路28を流れるように第1電磁弁27の作動を制御する。
 これにより、メインポンプ21から吐出された冷却水は、図16(a)に示すように、サブ経路20b内を循環する。この際、ヒータコア54aにて加熱された冷却水が、蓄熱タンク30に蓄えられる。
 そして、エンジン制御装置100aは、プレ暖機処理を実行する際に、メインポンプ21から吐出された冷却水が、エンジン10の冷却水流路11a、12aおよび第1サブバイパス通路28の双方に流れるように第1電磁弁27の作動を制御する。
 これにより、図16(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20aおよびサブ経路20b内を循環して、エンジン10が暖機される。
 このような構成とすれば、蓄熱タンク30に蓄えられた冷却水がメイン経路20a内を循環するので、エンジン10の暖機を短時間で行うことができ、エンジン10の冷間始動を効果的に抑制することが可能となる。
 (第6実施形態)
 次に、本開示の第6実施形態について説明する。本実施形態では、第3実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図17の全体構成図を用いて説明する。
 本実施形態では、冷却水循環回路20のサブ経路20bのヒータコア54aの入口側にサブポンプ31が設けられている。サブポンプ31は、サブ経路20b内にて冷却水を循環させる第2冷却水循環装置として機能するもので、その基本構成は、メインポンプ21と同様に、水ポンプで構成されている。なお、サブポンプ31には、メインポンプ21に比べて、ポンプ容量(吐出容量)が少なく、消費電力が小さい水ポンプが採用されている。
 本実施形態のサブ経路20bは、サブポンプ31から吐出された冷却水が、ヒータコア54a→メインポンプ21→第1サブバイパス通路28の順に流れるように構成されている。
 続いて、本実施形態のプレ暖機処理時の作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前半ステップにおいて、メインポンプ21を停止し、サブポンプ31を作動させる。また、図18(a)に示すように、サブポンプ31から吐出された冷却水がサブ経路20b内を循環するように第1電磁弁27の作動を制御する。
 これにより、冷却水を短時間で昇温させることができると共に、メインポンプ21よりも消費電力の小さいサブポンプ31を作動させるので、プレ暖機処理時の消費電力の低減を図ることができる。
 一方、エンジン制御装置100aは、プレ暖機処理の後半ステップにおいて、メインポンプ21を作動させ、サブポンプ31を停止する。また、メインポンプ21から吐出された冷却水が、エンジン10の冷却水流路11a、12aおよび第1サブバイパス通路28の双方に流れるように第1電磁弁27の作動を制御する。これにより、図18(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20aおよびサブ経路20b内を循環して、エンジン10が暖機される。なお、内燃機関温度調整システムにおけるプレ暖機処理時以外の他の作動時には、サブポンプ31を停止する。
 本実施形態によれば、第1、第3実施形態で説明した作用効果に加え、プレ暖機処理時における消費電力の低減を図ることができる。
 (第7実施形態)
 次に、本開示の第7実施形態について説明する。本実施形態では、第6実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図19の全体構成図を用いて説明する。
 本実施形態の冷却水循環回路20は、第6実施形態における第1サブバイパス通路28、および第1電磁弁27を廃する一方、ヒータコア54aの入口側と出口側とを接続する第2サブバイパス通路33、ヒータコア54aの入口側と第2サブバイパス通路33との接続部に第2電磁弁32を設ける構成としている。
 この第2電磁弁32は、第1電磁弁27と同様に、エンジン10の冷却水流路11a、12aを介してヒータコア54aに流れる冷却水の流量と、冷却水流路11a、12aを介さずにヒータコア54aに流れる冷却水の流量を調整する第1流量調整部として機能する。なお、本実施形態のサブ経路20bは、サブポンプ31から吐出された冷却水が、ヒータコア54a→第2サブバイパス通路33といった順に流れる経路となっている。
 続いて、本実施形態に係るプレ暖機処理時の作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前半ステップにおいて、メインポンプ21を停止し、サブポンプ31を作動させる。また、図20(a)に示すように、サブポンプ31から吐出された冷却水がサブ経路20b内を循環するように第2電磁弁32の作動を制御する。
 一方、エンジン制御装置100aは、プレ暖機処理の後半ステップにおいて、メインポンプ21を作動させ、サブポンプ31を停止する。また、メインポンプ21から吐出された冷却水が、メイン経路20a内を循環するように第2電磁弁32の作動を制御する。これにより、図20(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20a内を循環して、エンジン10が暖機される。
 従って、本実施形態のように、冷却水循環回路20に第2サブバイパス通路33、および第2電磁弁32を設ける構成としても、第6実施形態の構成と同様の作用効果を奏することができる。
 (第8実施形態)
 次に、本開示の第8実施形態について説明する。本実施形態では、第7実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図21の全体構成図を用いて説明する。
 本実施形態の冷却水循環回路20は、エンジン10の流出ポート10b側において冷却水の流れを分岐する分岐部に、エンジン10の流出ポート10bとラジエータ24およびバイパス通路25との間を開閉する開閉弁34が設けられている。
 また、本実施形態では、サブポンプ31を、サブポンプ31の冷却水の吐出方向が第7実施形態に対して反対方向となるように構成し、さらに、エンジン10の冷却水流路11a、12aとヒータコア54aの入口側との間の逆止弁29を廃している。
 続いて、本実施形態に係る内燃機関温度調整システムの作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前後において、エンジン10の温度を調整する場合、メインポンプ21を作動させると共にサブポンプ31を停止し、開閉弁34を開放する。さらに、メインポンプ21から吐出された冷却水が、エンジン10→ラジエータ24またはバイパス通路25へと流れると共に、およびエンジン10→ヒータコア54aといった順に流れるように第2電磁弁32の作動を制御する。
 また、エンジン制御装置100aは、プレ暖機処理を実行する際には、メインポンプ21を停止させると共にサブポンプ31を作動させ、開閉弁34を閉鎖する。そして、プレ暖機処理の前半ステップでは、サブポンプ31から吐出された冷却水が、第2サブバイパス通路33→ヒータコア54aといった順に流れるように第2電磁弁32の作動を制御する。これにより、サブポンプ31から吐出された冷却水が、図22(a)に示すようにサブ経路20b内を流れ、ヒータコア54aにて冷却水が加熱される。
 さらに、プレ暖機処理の後半ステップでは、図22(b)に示すように、サブポンプ31から吐出された冷却水が、エンジン10→メインポンプ21→ヒータコア54aといった順に流れるように第2電磁弁32の作動を制御する。これにより、複合型熱交換器54にて昇温した冷却水が、エンジン10の冷却水流路11a、12aに供給されて、エンジン10が暖機される。
 この際、エンジン10内部では、ヒータコア54aにて加熱された冷却水が、流出ポート10b→ヘッド側流路12a→ブロック側流路11a→流入ポート10aへ流れる。このため、エンジン10の始動時にHC等の排出の低減効果が高いシリンダヘッド12を優先的に暖機することができる。
 本実施形態によれば、第7実施形態の構成と同様の作用効果を奏することができると共に、シリンダブロック11よりもシリンダヘッド12を優先的に暖機することができ、エンジン10の始動時におけるHC等の排出を効果的に低減することができる。
 (第9実施形態)
 次に、本開示の第9実施形態について説明する。本実施形態では、第7実施形態に対して冷却水循環回路20の回路構成を変更した例について説明する。本実施形態の冷却水循環回路20の回路構成については、図23の全体構成図を用いて説明する。
 本実施形態の冷却水循環回路20は、サブポンプ31を第2サブバイパス通路33に配置すると共に、サブポンプ31の冷却水の吐出側に、蓄熱タンク30を配置する構成としている。
 続いて、本実施形態に係る内燃機関温度調整システムの作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前後において、空調装置5の暖房負荷が低く空調装置5の加熱能力に余裕がある場合に、メインポンプ21を停止し、サブポンプ31を作動させる。また、図24(a)に示すように、サブポンプ31から吐出された冷却水がサブ経路20b内を循環するように第2電磁弁32の作動を制御する。
 これにより、サブポンプ31から吐出された冷却水が、蓄熱タンク30→ヒータコア54aの順に流れる。この際、ヒータコア54aにて加熱された冷却水が、蓄熱タンク30に蓄えられる。
 そして、エンジン制御装置100aは、プレ暖機処理を実行する際に、メインポンプ21を作動させ、サブポンプ31を停止させる。また、図24(b)に示すように、メインポンプ21から吐出された冷却水が、エンジン10→ラジエータ24またはバイパス通路25の順に流れると共に、エンジン10→サブポンプ31→蓄熱タンク30の順に流れるように第2電磁弁32の作動を制御する。
 これにより、蓄熱タンク30内に蓄えられた高温の冷却水が、メインポンプ21を介してエンジン10側に吐出されて、エンジン10が暖機される。なお、プレ暖機処理の開始時に蓄熱タンク30に充分な熱量が蓄えられていない場合には、メインポンプ21から吐出された冷却水を、エンジン10→ヒータコア54aの順に流れるように第2電磁弁32の作動を制御して、ヒータコア54aにて冷却水を加熱するようにしてもよい。
 本実施形態のように、冷却水循環回路20に蓄熱タンク30を設ける構成とすれば、第7実施形態で説明した作用効果に加えて、ヒートポンプサイクル60の加熱能力に余裕がある際に、ヒータコア54aにて加熱された冷却水が有する熱を蓄熱することができる。これにより、プレ暖機処理における冷却水を昇温させる時間の短縮化を図ることができ、エンジン10の冷間始動を効果的に抑制することが可能となる。
 (第10実施形態)
 次に、本開示の第10実施形態について説明する。本実施形態では、第7実施形態に対してエンジン10内部の冷却水流路11a、12aの構成を変更した例について説明する。本実施形態のエンジン10内部の冷却水流路11a、12aの回路構成については、図25の全体構成図を用いて説明する。
 本実施形態のエンジン10は、ブロック側流路11aを流れる冷却水およびヘッド側流路12aを流れる冷却水が異なる流出ポート10b、10cから流出するように構成されている。具体的には、本実施形態10のエンジン10には、シリンダヘッド12にヘッド側流路12aから冷却水を流出させるヘッド側流出ポート10bが設けられ、シリンダブロック11にブロック側流路11aから冷却水を流出させるブロック側流出ポート10cが設けられている。これにより、エンジン10の流入ポート10aから流入した冷却水は、ヘッド側流路12a→ヘッド側流出ポート10bへ流れると共に、ブロック側流路11a→ブロック側流出ポート10cへ流れる。
 そして、エンジン10の冷却水の出口側には、ヘッド側流出ポート10bから流出した冷却水と、ブロック側流出ポート10cから流出した冷却水とを合流させる合流部が設けられ、当該合流部に流量調整弁35が設けられている。この流量調整弁35は、ブロック側流路11aを流れる冷却水の流量とヘッド側流路12aを流れる冷却水の流量とを調整する第2流量調整部として機能する。
 続いて、本実施形態に係るプレ暖機処理時の作動例について説明する。エンジン制御装置100aは、プレ暖機処理の前半ステップにおいて、メインポンプ21を停止し、サブポンプ31を作動させる。また、図26(a)に示すように、サブポンプ31から吐出された冷却水がサブ経路20b内を循環するように第2電磁弁32の作動を制御する。これにより、ヒータコア54aにて冷却水が加熱される。
 一方、エンジン制御装置100aは、プレ暖機処理の後半ステップにおいて、メインポンプ21を作動させ、サブポンプ31を停止する。また、メインポンプ21から吐出された冷却水が、メイン経路20a内を循環するように第2電磁弁32の作動を制御する。
 さらに、エンジン制御装置100aは、エンジン10内部のヘッド側流路12aにだけ冷却水が流れるように流量調整弁35の作動を制御する。
 これにより、図26(b)に示すように、メインポンプ21から吐出された冷却水は、メイン経路20a内を循環して、エンジン10が暖機される。この際、エンジン10内部では、ヒータコア54aにて加熱された冷却水が、流入ポート10a→ヘッド側流路12a→ヘッド側流出ポート10bへ流れることから、HC等の排出の低減効果が高いシリンダヘッド12を優先的に暖機することができる。
 本実施形態によれば、第7実施形態の構成と同様の作用効果を奏することができると共に、シリンダブロック11よりもシリンダヘッド12を優先的に暖機することができるので、エンジン10の始動時におけるHC等の排出を効果的に低減することができる。
 なお、本実施形態では、プレ暖機処理の後半ステップに、エンジン10内部のヘッド側流路12aにだけ冷却水が流れるように流量調整弁35を作動させる例を説明したが、ヘッド側流路12aおよびブロック側流路11aの双方に冷却水が流れるように流量調整弁35を作動させてもよい。この場合、ブロック側流路11aよりもヘッド側流路12aを流れる冷却水の流量が増加するように流量調整弁35を作動させることで、シリンダブロック11よりもシリンダヘッド12を優先的に暖機することができる。
 なお、図27に示すように、本実施形態の冷却水循環回路20に対して、第9実施形態と同様に、蓄熱タンク30を設ける構成としてもよい。
 この場合、エンジン制御装置100aは、プレ暖機処理の前後において、空調装置5の暖房負荷が低く空調装置5の加熱能力に余裕がある場合に、メインポンプ21を停止し、サブポンプ31を作動させる。また、図28(a)に示すように、サブポンプ31から吐出された冷却水がサブ経路20b内を循環するように第2電磁弁32の作動を制御する。これにより、ヒータコア54aにて加熱された冷却水が、蓄熱タンク30に蓄えられる。
 そして、エンジン制御装置100aは、プレ暖機処理を実行する際に、メインポンプ21を作動させ、サブポンプ31を停止させる。また、図28(b)に示すように、メインポンプ21から吐出された冷却水が、エンジン10→ラジエータ24またはバイパス通路25の順に流れると共に、エンジン10→サブポンプ31→蓄熱タンク30の順に流れるように第2電磁弁32の作動を制御する。これにより、蓄熱タンク30内に蓄えられた高温の冷却水が、メインポンプ21を介してエンジン10側に吐出されて、エンジン10が暖機される。
 このように、冷却水循環回路20に蓄熱タンク30を設ける構成とすれば、ヒートポンプサイクル60の加熱能力に余裕がある際に、ヒータコア54aにて加熱された冷却水が有する熱を蓄熱することができる。これにより、プレ暖機処理における冷却水を昇温させる時間の短縮化を図ることができ、エンジン10の冷間始動を効果的に抑制することが可能となる。
 (第11実施形態)
 次に、本開示の第11実施形態について説明する。本実施形態では、第1実施形態に対してヒートポンプサイクル60のサイクル構成を変更した例について、図29に示す全体構成図を用いて説明する。
 本実施形態のヒートポンプサイクル60は、冷媒の流路を切り替えることで、車室内の暖房、冷房、および除湿暖房を実現可能に構成されている。
 具体的には、ヒートポンプサイクル60の室内凝縮器54bと室外熱交換器62との間には、冷媒を減圧させる第1膨張弁65、第1膨張弁65を迂回して冷媒を流す高圧側バイパス通路65a、高圧側バイパス通路65aを開閉する高圧側開閉弁65bが設けられている。
 また、ヒートポンプサイクル60における室外熱交換器62と室内蒸発器53との間には、冷媒を減圧させる第2膨張弁63、第2膨張弁63を迂回して冷媒を流す低圧側バイパス通路63a、低圧側バイパス通路63aを開閉する低圧側開閉弁63bが設けられている。
 続いて、本実施形態の空調装置5の作動を説明する。本実施形態の空調装置5は、目標吹出温度TAO等に応じて、運転モードを冷房モード、暖房モード、および除湿暖房モードに切り替え可能に構成されている。
 冷房モード時には、空調制御装置100bが、高圧側開閉弁65bにて高圧側バイパス通路65aを開放すると共に、低圧側開閉弁63bにて低圧側バイパス通路63aを閉鎖する。また、空調制御装置100bは、圧縮機61を作動させると共に、エアミックスドア56の位置が冷風バイパス通路55を全開する全開位置となるようにエアミックスドア56のサーボモータを制御する。
 これにより、空調装置5では、室内蒸発器53を通過した空気の全てが、複合型熱交換器54を通過することなく、冷風バイパス通路55を通過して、車室内に低温の空気が吹き出される。
 また、除湿暖房モード時には、空調制御装置100bが、高圧側開閉弁65bにて高圧側バイパス通路65aを開放すると共に、低圧側開閉弁63bにて低圧側バイパス通路63aを閉鎖する。また、空調制御装置100bは、圧縮機61を作動させると共に、エアミックスドア56の位置が中間位置となるようにエアミックスドア56のサーボモータを制御する。
 これにより、空調装置5では、室内蒸発器53を通過して除湿された空気の一部が、複合型熱交換器54を通過する際に加熱されると共に、室内蒸発器53を通過した空気の残りが、冷風バイパス通路55を通過して、車室内に除湿された空気が吹き出される。
 また、暖房モード時には、空調制御装置100bが、高圧側開閉弁65bにて高圧側バイパス通路65aを閉鎖すると共に、低圧側開閉弁63bにて低圧側バイパス通路63aを開放する。また、空調制御装置100bは、圧縮機61を作動させると共に、エアミックスドア56の位置が冷風バイパス通路55を閉鎖する閉鎖位置となるようにエアミックスドア56のサーボモータを制御する。
 これにより、空調装置5では、送風空気が室内蒸発器53にて冷却されることなく、複合型熱交換器54を通過する際に加熱され、加熱された高温の空気が車室内に吹き出される。
 このように構成される空調装置5では、各モード時において、室内凝縮器54bには、圧縮機61から吐出された冷媒が流通するため、複合型熱交換器54にて冷媒が有する熱(ヒートポンプサイクル60が生成する温熱)を冷却水に放熱することができる。
 従って、本実施形態の構成によれば、第1実施形態と同様に、プレ暖機処理を実行することで、エンジン10の冷却水を昇温させて、エンジン10の冷間始動を抑制することができる。
 (第12実施形態)
 次に、本開示の第12実施形態について説明する。前述までの実施形態では、室内空調ユニット50のケーシング51内に配置した複合型熱交換器54を介してヒートポンプサイクル60を流れる冷媒の熱を冷却水に放熱する構成としている。
 これに対して、本実施形態では、図30の全体構成図に示すように、室内空調ユニット50のケーシング51の外部に、圧縮機61から吐出された冷媒が有する熱を冷却水に放熱する水冷媒熱交換器57を設ける構成としている。本実施形態の水冷媒熱交換器57は、冷媒が有する熱を放熱する冷媒放熱部を構成すると共に、冷却水の温度を昇温させる冷却水昇温部としても機能する。
 また、本実施形態の室内空調ユニット50には、水冷媒熱交換器57の出口側に接続され、水冷媒熱交換器57にて昇温した冷却水の熱を送風空気に放熱する冷却水側熱交換器としての加熱用熱交換器58が配置されている。
 このような構成であっても、水冷媒熱交換器57において、圧縮機61から吐出された冷媒が有する熱(ヒートポンプサイクル60が生成する温熱)を冷却水に放熱することができる。
 従って、本実施形態の構成によれば、前述の各実施形態と同様に、プレ暖機処理を実行することで、エンジン10の冷却水を昇温させて、エンジン10の冷間始動を抑制することができる。
 なお、本実施形態の構成に対して、図31の全体構成図に示すように、エンジン10の冷却水の流出ポート10bと、水冷媒熱交換器57との間に通路開閉弁36を設ける構成としてもよい。
 このような構成とすれば、例えば、空調装置5の暖房負荷が高い場合に、通路開閉弁36を開放して、水冷媒熱交換器57にて冷却水が有する熱を冷媒に放熱することができる。従って、エンジン10の廃熱を空調装置5にて有効活用することが可能となる。
 また、図32の全体構成図に示すように、冷却水循環回路20の回路構成を、バイパス通路25を流れる冷却水が水冷媒熱交換器57→加熱用熱交換器58に流れる構成に変更してもよい。これによれば、空調装置5の暖房負荷が高い場合に、水冷媒熱交換器57にてエンジン10にて加熱された冷却水の熱を冷媒に放熱することができる。
 (第13実施形態)
 次に、本開示の第13実施形態について説明する。前述までの実施形態では、プレ暖機処理において、ヒートポンプサイクル60が生成する温熱によって冷却水を加熱する構成としている。
 これに対して、本実施形態では、図33の全体構成図に示すように、冷却水循環回路20に、冷却水を加熱する電気ヒータ59を設ける構成としている。この電気ヒータ59は、冷却水が有する熱を送風空気に放熱する加熱用熱交換器58の入口側に設けられている。本実施形態の電気ヒータ59は、冷却水を介して送風空気を加熱するための加熱部を構成すると共に、冷却水の温度を昇温させる冷却水昇温部としても機能する。
 このような構成では、電気ヒータ59が生成する温熱で冷却水を昇温させることができるので、前述の各実施形態と同様に、プレ暖機処理を実行することで、エンジン10の冷却水を昇温させて、エンジン10の冷間始動を抑制することができる。
 なお、本実施形態の構成を、図34に示すように、加熱用熱交換器58の出口側に、冷却水の熱を蓄熱する蓄熱タンク30を設ける構成に変更してもよい。さらに、本実施形態の構成を、図35に示すように、蓄熱タンク30内に電気ヒータ59を配置する構成としてもよい。
 (他の実施形態)
 以上、本開示の実施形態について説明したが、本開示はこれに限定されるものではなく、例えば、以下のように種々変形可能である。
 (1)上述の第1実施形態では、バッテリBTの残存容量SOCが走行下限容量を下回るまでの予想時間tsocが、冷却水を目標温度まで昇温させるのに必要な暖機必要時間twu以下となるタイミングで、プレ暖機処理の開始するようにしているが、これに限定されない。例えば、予想時間tsocが、暖機必要時間twuに予め定めた基準時間αを加えた加算した時間(twu+α)以下となった際に、プレ暖機処理を開始する構成としてもよい。
 (2)上述の各実施形態で説明したプレ暖機処理は、空調装置5の加熱部を構成するヒートポンプサイクル60や電気ヒータ59といった加熱部が生成する熱を利用することから、空調装置5の暖房負荷が高く、空調装置5の加熱部の加熱能力が最大能力となっている際には、プレ暖機処理を行わないようにしてもよい。この場合、空調装置5の加熱部の加熱能力が最大能力を下回っている際に、プレ暖機処理を実行することとなる。
 (3)上述の各実施形態では、内燃機関温度調整システムを、エンジン10が走行用の駆動力を出力するハイブリッド車両に適用する例を説明したが、これに限らず、例えば、エンジン10がバッテリBTに蓄える電力を生成するための駆動力を出力するハイブリッド車両に適用してもよい。
 (4)上述の各実施形態で説明した構成は、可能な範囲で適宜組み合わせることができる。

Claims (18)

  1.  蓄電池(BT)からの電力供給により車両走行用の駆動力を出力する走行用電動モータ(MG)、および車両走行用の駆動力、または前記蓄電池(BT)に蓄える電力を生成するための駆動力を出力する水冷式の内燃機関(10)を備え、前記蓄電池(BT)の残存容量(SOC)が所定の第1基準容量を下回るまで前記走行用電動モータ(MG)が出力する駆動力だけで走行可能なハイブリッド車両に適用され、前記内燃機関(10)の温度を所望の温度に調整する内燃機関温度調整システムにおいて、
     前記内燃機関(10)の冷却水が循環する冷却水循環回路(20)と、
     前記冷却水循環回路(20)に設けられ、前記冷却水を循環させる第1冷却水循環装置(21)と、
     車室内へ送風する送風空気の温度を調整する空調装置(5)に設けられた加熱部(59、60)を加熱源として、前記内燃機関(10)の冷却水を昇温させる冷却水昇温部(54a、57)と、
     前記内燃機関(10)および空調装置(5)の作動を制御する制御装置(100)と、を備え、
     前記制御装置(100)は、
     少なくとも前記蓄電池(BT)の残存容量(SOC)が前記第1基準容量を下回った際に、前記内燃機関(10)を作動させ、
     さらに、前記蓄電池の残存容量(SOC)が前記第1基準容量を下回る前であって、前記蓄電池(BT)の残存容量(SOC)が低下している際に、前記冷却水昇温部(54a、57)にて前記内燃機関(10)の冷却水を昇温させるプレ暖機処理を実行する内燃機関温度調整システム。
  2.  前記制御装置(100)は、少なくとも前記蓄電池(BT)の残存容量(SOC)の低下状態に基づいて前記プレ暖機処理の開始タイミングを決定する請求項1に記載の内燃機関温度調整システム。
  3.  前記制御装置(100)は、前記蓄電池(BT)の残存容量(SOC)が前記第1基準容量よりも多い第2基準容量を下回った際に、前記プレ暖機処理を開始する請求項2に記載の内燃機関温度調整システム。
  4.  前記制御装置(100)は、
     前記蓄電池(BT)の残存容量(SOC)の減少度合いから前記蓄電池(BT)の残存容量(SOC)が前記第1基準容量を下回るまでの予想時間(tsoc)を算出すると共に、
     前記プレ暖機処理の実行時に前記加熱部(60)にて前記冷却水を所望の目標温度まで昇温させるために要する暖機必要時間(twu)を算出し、
     少なくとも前記予想時間(tsoc)が前記暖機必要時間(twu)を下回るまでに、前記プレ暖機処理を開始する請求項2に記載の内燃機関温度調整システム。
  5.  前記制御装置(100)は、前記予想時間(tsoc)が、前記暖機必要時間(twu)に予め定めた基準時間(α)を加えた加算した時間(twu+α)以下となった際に、前記プレ暖機処理を開始する請求項4に記載の内燃機関温度調整システム。
  6.  前記プレ暖機処理における前記冷却水の目標温度は、車室外温度の低下に伴い増加するように設定される請求項3ないし5のいずれか1つに記載の内燃機関温度調整システム。
  7.  前記制御装置(100)は、前記加熱部(59、60)の加熱能力が最大能力よりも低い場合に、プレ暖機処理を実行する請求項1ないし6のいずれか1つに記載の内燃機関温度調整システム。
  8.  前記加熱部(59、60)は、前記蓄電池(BT)からの電力供給により温熱を生成する請求項1ないし7のいずれか1つに記載の内燃機関温度調整システム。
  9.  前記加熱部は、冷媒を圧縮して吐出する圧縮機(61)と、前記圧縮機(61)から吐出された冷媒の熱を前記送風空気および前記冷却水の少なくとも一方に放熱可能な冷媒放熱部(54b、57)を含んで構成されるヒートポンプサイクル(60)である請求項1ないし8のいずれか1つに記載の内燃機関温度調整システム。
  10.  前記冷却水昇温部は、前記冷却水が有する熱を前記送風空気に放熱する冷却水側熱交換器(54a)であり、
     前記冷媒放熱部は、前記冷媒が有する熱を前記送風空気に放熱する冷媒側熱交換器(54b)であり、
     前記冷却水側熱交換器(54a)および前記冷媒側熱交換器(54b)は、前記冷却水側熱交換器(54a)を流通する冷却水および前記冷媒側熱交換器(54b)を流通する冷媒が互いに熱交換可能な複合型熱交換器で構成されている請求項9に記載の内燃機関温度調整システム。
  11.  前記冷却水が有する熱を前記送風空気に放熱する冷却水側熱交換器(58)を備え、
     前記冷却水昇温部は、前記冷媒が有する熱を前記冷却水に放熱する水冷媒熱交換器(57)であり、前記冷媒放熱部としても機能する請求項9に記載の内燃機関温度調整システム。
  12.  前記空調装置(5)には、前記冷却水側熱交換器(54a、58)に流入する前記送風空気の流入量を調整する空気流入量調整部(52、56)が設けられ、
     前記制御装置(100)は、前記プレ暖機処理を実行する際に、前記空気流入量調整部(52、56)にて前記送風空気の流入量を低下させる請求項10または11に記載の内燃機関温度調整システム。
  13.  前記冷却水循環回路(20)は、前記内燃機関(10)の内部に形成された冷却水流路(11a、12a)に前記冷却水が流れるように構成されたメイン経路(20a)と、前記冷却水昇温部(54a、57)に前記冷却水が流れるように構成されたサブ経路(20b)と、を有する請求項9ないし12のいずれか1つに記載の内燃機関温度調整システム。
  14.  前記冷却水循環回路(20)には、前記冷却水流路(11a、12a)を流れる前記冷却水の流量と前記冷却水昇温部(54a、57)を流れる前記冷却水の流量とを調整する第1流量調整部(27、32)が設けられている請求項13に記載の内燃機関温度調整システム。
  15.  前記サブ経路(20b)には、前記冷却水を循環させる第2冷却水循環装置(31)が設けられている請求項13または14に記載の内燃機関温度調整システム。
  16.  前記サブ経路(20b)には、前記冷却水が有する熱を蓄熱するための蓄熱部(30)が設けられている請求項13ないし15のいずれか1つに記載の内燃機関温度調整システム。
  17.  前記蓄熱部(30)には、前記加熱部(59、60)の加熱能力が最大能力よりも低い場合に、前記冷却水が有する熱が蓄熱される請求項16に記載の内燃機関温度調整システム。
  18.  前記内燃機関(10)の内部には、前記冷却水流路(11a、12a)として、シリンダブロック(11)を冷却するためのブロック側流路(11a)、およびシリンダヘッド(12)を冷却するためのヘッド側流路(12a)が形成され、
     前記冷却水循環回路(10)には、前記ブロック側流路(11a)に流れる冷却水の流量と前記ヘッド側流路(12a)に流れる冷却水の流量とを調整する第2流量調整部(35)が設けられている請求項13ないし17のいずれか1つに記載の内燃機関温度調整システム。
PCT/JP2013/000407 2012-02-01 2013-01-28 内燃機関温度調整システム WO2013114843A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-020037 2012-02-01
JP2012020037A JP2013160058A (ja) 2012-02-01 2012-02-01 内燃機関温度調整システム

Publications (1)

Publication Number Publication Date
WO2013114843A1 true WO2013114843A1 (ja) 2013-08-08

Family

ID=48904890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000407 WO2013114843A1 (ja) 2012-02-01 2013-01-28 内燃機関温度調整システム

Country Status (2)

Country Link
JP (1) JP2013160058A (ja)
WO (1) WO2013114843A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599373A1 (en) * 2018-07-24 2020-01-29 Kofama Kozle S.A. Heat accumulation system in a hybrid vehicle
CN111613853A (zh) * 2019-02-25 2020-09-01 本田技研工业株式会社 电池升温装置
CN114714925A (zh) * 2022-04-28 2022-07-08 重庆金康赛力斯新能源汽车设计院有限公司 一种增程器的控制方法、装置和系统
US11834050B2 (en) 2019-02-28 2023-12-05 Hitachi Astemo, Ltd. System and method for predictive pre-warming control of hybrid electric vehicles (HEV)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358501B2 (ja) * 2014-06-17 2018-07-18 三菱自動車工業株式会社 ハイブリッド自動車
JP6394580B2 (ja) * 2015-12-11 2018-09-26 株式会社デンソー 車両の制御装置
SE541445C2 (en) * 2016-09-23 2019-10-01 Scania Cv Ab A cooling system for a vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055299A (ja) * 2005-08-22 2007-03-08 Toyota Motor Corp 内燃機関の蓄熱装置
JP2009180103A (ja) * 2008-01-29 2009-08-13 Toyota Motor Corp 冷却液循環装置
JP2010089718A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp ハイブリッド車両の制御装置および制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055299A (ja) * 2005-08-22 2007-03-08 Toyota Motor Corp 内燃機関の蓄熱装置
JP2009180103A (ja) * 2008-01-29 2009-08-13 Toyota Motor Corp 冷却液循環装置
JP2010089718A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp ハイブリッド車両の制御装置および制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599373A1 (en) * 2018-07-24 2020-01-29 Kofama Kozle S.A. Heat accumulation system in a hybrid vehicle
CN111613853A (zh) * 2019-02-25 2020-09-01 本田技研工业株式会社 电池升温装置
CN111613853B (zh) * 2019-02-25 2023-11-14 本田技研工业株式会社 电池升温装置
US11834050B2 (en) 2019-02-28 2023-12-05 Hitachi Astemo, Ltd. System and method for predictive pre-warming control of hybrid electric vehicles (HEV)
CN114714925A (zh) * 2022-04-28 2022-07-08 重庆金康赛力斯新能源汽车设计院有限公司 一种增程器的控制方法、装置和系统

Also Published As

Publication number Publication date
JP2013160058A (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
US11413931B2 (en) Vehicle-mounted temperature controller
JP5370402B2 (ja) 車両用空調装置
WO2013114843A1 (ja) 内燃機関温度調整システム
JP5494312B2 (ja) 車両用空調装置
US7520320B2 (en) Automotive air conditioning system
JP6269307B2 (ja) 車両用空調装置
US20090183697A1 (en) Exhaust heat recovery system
US11724570B2 (en) Vehicle-mounted temperature control system
US20210387506A1 (en) In-vehicle temperature control system
CN112572092B (zh) 冷却系统
JP2014008857A (ja) 車両用空調装置
JP2012172624A (ja) 内燃機関冷却システム
JP2010013044A (ja) 車両用空気調和システム
JP7111082B2 (ja) 冷却システム
WO2017104254A1 (ja) 車両用空調装置
JP2009291008A (ja) 電気駆動自動車の熱管理システム
JP2014037179A (ja) 電動車両用熱管理システム
JP2014020229A (ja) 車載内燃機関の冷却システム
KR20140091187A (ko) 차량용 난방시스템
JP2002225545A (ja) 車両用空調装置
US11780293B2 (en) In-vehicle temperature control system
WO2023037898A1 (en) Vehicle thermal management system and method for operating the same
JP2024065590A (ja) 車載温調システム
JP2023085089A (ja) 車載温調装置
JPH0752634A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744008

Country of ref document: EP

Kind code of ref document: A1