WO2013114696A1 - Balancing device - Google Patents

Balancing device Download PDF

Info

Publication number
WO2013114696A1
WO2013114696A1 PCT/JP2012/078921 JP2012078921W WO2013114696A1 WO 2013114696 A1 WO2013114696 A1 WO 2013114696A1 JP 2012078921 W JP2012078921 W JP 2012078921W WO 2013114696 A1 WO2013114696 A1 WO 2013114696A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cells
battery cell
equalization
state
Prior art date
Application number
PCT/JP2012/078921
Other languages
French (fr)
Japanese (ja)
Inventor
正彰 鈴木
守 倉石
宗隆 山本
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013114696A1 publication Critical patent/WO2013114696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for performing equalization for reducing a difference in charge state between battery cells for a battery including a plurality of battery cells connected in series.
  • Rechargeable batteries (secondary batteries) are now widely used. Actually, the voltage obtained between the terminals of one battery is relatively small. For this reason, the battery which needs to generate a higher voltage employs a configuration in which a plurality of battery cells as constituent elements are connected in series.
  • the charging state of each battery cell varies as charging and discharging are repeated.
  • the charged state means a remaining charge capacity, a battery cell voltage, and the like.
  • SOC StateSOof Charge
  • This SOC is a state quantity defined as the ratio of the remaining charge to the charge capacity of the battery cell.
  • the variation is not only caused to cause overcharge and overdischarge of the battery cell, but also stored in the entire battery. It becomes a cause to enlarge the part that cannot be used in the electric power.
  • Overcharge and overdischarge accelerate the deterioration of battery cell performance.
  • the deterioration of the performance of the battery cell causes a decrease in the charge capacity of the entire battery. For this reason, in a battery including a plurality of battery cells, the SOC of each battery cell, that is, the remaining amount is managed.
  • One of the management methods is an active cell balance method that dynamically controls and equalizes SOC between battery cells (Patent Document 1).
  • the conventional equalization apparatus that equalizes the SOC of each battery cell by the active cell balance method identifies the battery cells having a difference in SOC between two adjacent battery cells, and determines the battery cell having a high SOC. Equalization was performed by moving energy (electric power) to battery cells with low SOC (Patent Document 1). However, in such energy transfer between two battery cells, equalization in the whole battery cell cannot always be performed appropriately.
  • the equalization is performed so that the SOC of all battery cells is the same.
  • the average SOC of two battery cells having different SOCs is not necessarily the same as the average SOC of all battery cells. For this reason, even if energy is transferred only between two battery cells having different SOCs, even if the degree of variation in SOC can be further reduced, equalization across the battery cells cannot be performed with high accuracy.
  • the average SOC of all the battery cells is referred to as “overall average SOC”, and the average SOC of the two battery cells is referred to as “local average SOC”.
  • the accuracy of equalization in the whole battery cell can be further improved.
  • the energy transfer between the two battery cells brings the SOC of the two battery cells closer to the local average SOC. Therefore, if the local average SOC and the overall average SOC do not match, the variation remains even if energy is transferred between the two battery cells. In such a case, it is not expected that the equalization can be efficiently performed by the method in which the specification between the two battery cells and the energy transfer between the two specified battery cells are repeatedly performed. This means that the method must take a very long time for high-precision equalization.
  • the equalization apparatus adopting the active cell balance method is required to perform equalization as necessary. This means that, for example, in a vehicle equipped with a motor as a power source, equalization must be performed while it is necessary to assume a short time such as when the vehicle is stopped or idling. Such a vehicle is equipped with a battery having a very large number of battery cells. In consideration of this, it can be said that it is necessary to perform highly accurate equalization in a shorter time.
  • An object of the present invention is to provide a technique for performing equalization for reducing a difference in charge state between battery cells of a battery with high accuracy and in a short time.
  • 1 aspect of this invention is the equalization apparatus which performs equalization which reduces the difference of the charge condition between each battery cell for the battery provided with the several battery cell connected in series, and is a plurality of switching And a switching means provided on the moving means, each of which is capable of transferring energy between the two adjacent battery cells by turning on / off the switching element.
  • the information acquisition means for acquiring the state information indicating the charge state of each battery cell, and the state information acquired for each battery cell by the information acquisition means, the energy transfer using the moving means is performed.
  • the determination means that determines whether or not to move and the determination means determines that energy transfer should be performed
  • the plurality of battery cells are divided into two or more groups, and the drive means is controlled for each group. And comprises a control means for equalization using a mobile unit.
  • Another aspect of the present invention is an equalization device that performs equalization for reducing a difference in charge state between each battery cell for a battery including a plurality of battery cells connected in series.
  • Each of the switching elements provided in the moving means can be moved separately between two adjacent battery cells by switching on / off the switching elements, and the switching elements provided in the moving means are individually provided.
  • the state of charge targeted for equalization of the present invention is specifically a state in which the SOC (remaining charge capacity), battery cell voltage, discharge capacity, charge amount, etc. can be quantified.
  • equalization for reducing the difference in charge state between the battery cells of the battery can be performed with high accuracy and in a short time.
  • FIG. It is a figure explaining the structure of the equalization apparatus by this embodiment. It is a figure showing the example of the voltage between terminals of each battery cell of a battery. It is a flowchart of a battery cell monitoring process. It is a flowchart of the balance control process at the time of applying the method of patent document 1.
  • FIG. It is a figure explaining the grouping method of the power cell by this embodiment. It is a figure explaining the equalization performed in a group. It is a flowchart of the balance control process by this embodiment. It is a figure explaining the equalization performed by the modification of a grouping method, and a group. It is a flowchart of the balance control process by the modification of this embodiment.
  • FIG. 1 is a diagram illustrating the configuration of an equalization apparatus according to the present embodiment.
  • the equalizing device 2 is mounted on a vehicle that can charge the battery 1 with a charging function (not shown), for example, an automobile, and employs an active cell balance method.
  • the battery 1 is used to supply electric power to a motor that is a power source of the vehicle.
  • the battery 1 includes a plurality of battery cells 11 connected in series. Therefore, the equalizing device 2 is mounted on the vehicle in order to dynamically control and equalize (smooth) the SOC between the battery cells 11 provided in the battery 1.
  • the target for mounting the equalizing device 2 is not limited to a vehicle, as long as the battery 1 having a configuration in which a plurality of battery cells are connected in series is used as a power supply source.
  • four battery cells 11a to 11d are illustrated in FIG.
  • the number of the battery cells 11 is not limited to four. Actually, the battery 1 includes a large number of battery cells 11.
  • the subject of equalization of the present invention is not limited to SOC (remaining charge capacity), but may be other charge states such as battery cell voltage or discharge capacity.
  • the equalizing apparatus 2 includes a moving circuit 21 that is a moving unit that can realize energy transfer between two adjacent battery cells 11, that is, between two battery cells 11 that are directly connected. I have.
  • the moving circuit 21 includes a total of six switching elements 25 (25a to 25f) and a total of three inductors 26 (26a to 26c) when the battery 1 including the four battery cells 11 is targeted.
  • the equalization apparatus 2 controls the switch control unit 22 as a driving unit for individually turning on / off the six switching elements 25 of the moving circuit 21 and the switch control unit 22 in addition to the moving circuit 21.
  • a CPU (Central Processing Unit) 23 is provided.
  • Each switching element 25 of the moving circuit 21 realizes a closed loop circuit that connects terminals of one battery cell 11.
  • Each closed loop circuit includes one inductor 26 in addition to one switching element 25.
  • the inductor 26 of each closed loop circuit is used for accumulation (storage) of energy to be moved between the two battery cells 11.
  • the movement of energy between the two battery cells 11 by the moving circuit 21 is performed as follows.
  • the switching element 25a when energy is transferred from the battery cell 11a to the battery cell 11b, first, the switching element 25a is turned on. When the switching element 25a is turned on, a closed loop circuit is formed between the terminals of the battery cell 11a, and a current flows from the positive side terminal to the negative side terminal of the battery cell 11a via the switching element 25a and the inductor 26a. As the current flows in such a manner, energy (electric power) is stored in the inductor 26a.
  • the switching element 25a is turned off and the switching element 25b is turned on. For this reason, the closed loop circuit formed between the terminals of the battery cell 11a is released, and a closed loop circuit is newly formed between the terminals of the battery cell 11b. As a result, the energy of the inductor 26a is stored in the battery cell 11b by a closed loop circuit formed between the terminals of the battery cell 11b. Thereby, the movement of energy from the battery cell 11a to the battery cell 11b is realized. The closed loop circuit formed between the terminals of the battery cell 11b is released after the energy is transferred.
  • the switching elements 25a and 25b are turned on / off in the reverse order. That is, first, the switching element 25b is turned on, a closed loop circuit is formed between the terminals of the battery cell 11b, and the energy of the battery cell 11b is stored in the inductor 26a. Next, the switching element 25b is turned off and the switching element 25a is turned on. Thereby, the closed loop circuit formed between the terminals of the battery cell 11b is released, and a closed loop circuit is newly formed between the terminals of the battery cell 11a. Therefore, the energy of the inductor 26a is stored in the battery cell 11a by the closed loop circuit formed between the terminals of the battery cell 11a. As a result, energy transfer from the battery cell 11b to the battery cell 11a is realized.
  • the energy transfer between the battery cell 11a and the battery cell 11b is performed by turning on / off the switching elements 25a and 25b.
  • Energy transfer between the battery cell 11b and the battery cell 11c is performed by turning on / off the switching elements 25e and 25f.
  • Energy transfer between the battery cell 11c and the battery cell 11d is performed by turning on / off the switching elements 25c and 25d.
  • the battery cell moving circuit 21 that realizes the energy transfer between the two battery cells 11 is used for equalization to reduce the variation in SOC between the battery cells 11.
  • the switch control unit 22 is realized as a driving unit that individually turns on / off each switching element 25 in order to transfer energy between the two battery cells as described above. Each switching element 25 is turned on / off according to the control of the CPU 23. Thereby, the CPU 23 functions as a control unit that controls the switch control unit 22.
  • the CPU 23 is equipped with a non-volatile memory 23a and controls the switch control unit 22 by executing a program stored in the memory 23a.
  • the voltage of each battery cell 11 of the battery 1 is monitored by the voltage monitoring unit 3, and the monitoring result, that is, the voltage value between terminals of each battery cell 11 is output to the CPU 23.
  • the CPU 23 refers to the voltage value between the terminals of each battery cell 11 input from the voltage monitoring unit 3 and determines whether or not equalization should be performed. Thereby, equalization is performed when the CPU 23 determines that equalization should be performed.
  • the equalization is hereinafter referred to as “battery cell balance”.
  • the voltage value between terminals of each battery cell 11 varies depending on the SOC. From this, the voltage value between terminals of each battery cell 11 input from the voltage monitoring unit 3 corresponds to state information representing SOC.
  • the CPU 23 inputs the voltage value between the terminals of each battery cell 11 and determines whether or not the energy transfer between the two battery cells 11 should be performed, so that the information acquisition means for acquiring the state information, and the battery It also functions as a determination means for determining whether or not to perform cell balance.
  • the voltage monitoring unit 3 is used to monitor the SOC of each battery cell 11 even when the battery 1 is charged. For this reason, in the present embodiment, the voltage monitoring unit 3 is not a component of the equalization apparatus 2. However, means for generating and outputting state information such as the voltage monitoring unit 3 may be a component of the equalization apparatus 2.
  • FIG. 2 is a diagram illustrating an example of a voltage between terminals of each battery cell of the battery.
  • the horizontal axis represents the battery cell
  • the vertical axis represents the terminal voltage.
  • the number of battery cells 11 is 16, each battery cell 11 connected in series is represented by a position on the horizontal axis, and the voltage between terminals of each battery cell 11 is individually represented by a bar graph.
  • the CPU 23 refers to the voltage value between the terminals of each battery cell 11 input from the voltage monitoring unit 3, extracts the maximum value and the minimum value of the voltage value between the terminals, and extracts the extracted maximum value and minimum value. It is determined whether or not equalization is performed depending on whether or not the difference between the two is equal to or greater than a threshold value.
  • the voltage monitoring unit 3 outputs the voltage value between the terminals of each battery cell 11 every time a predetermined time elapses, or outputs it according to a request from the CPU 23.
  • the CPU 23 acquires the voltage value between the terminals of each battery cell 11 from the voltage monitoring unit 3 as necessary.
  • FIG. 3 is a flowchart of the battery cell monitoring process.
  • This battery cell monitoring process acquires the voltage value between terminals of each battery cell 11 from the voltage monitoring unit 3, determines whether equalization should be performed from the acquired voltage value between terminals of each battery cell 11, and the determination
  • This is a process for performing equalization according to the result.
  • This monitoring process is realized by the CPU 23 executing a program stored in the memory 23a. In a vehicle such as an automobile, this monitoring process is executed when a predetermined condition is satisfied on the assumption that the vehicle is idling or stopped.
  • the battery cell monitoring process will be described in detail with reference to FIG. Note that the predetermined condition is satisfied, for example, that at least one of the elapsed time, the moving distance, and the power consumption amount since the battery cell monitoring process was executed last time is equal to or more than a set threshold value. It is.
  • the CPU 23 inputs a voltage value between terminals of each battery cell 11 obtained by the voltage monitoring unit 3 measuring a voltage between terminals of each battery cell 11 (S1). Next, the CPU 23 extracts the maximum value and the minimum value from the input inter-terminal voltage value of each battery cell 11, and calculates the difference (S2).
  • the CPU 23 determines whether or not the difference is greater than or equal to a threshold value (S3). If the difference is less than the threshold, the determination in S3 is NO, and the battery cell monitoring process ends here. On the other hand, if the difference is greater than or equal to the threshold, the determination in S3 is YES and the process proceeds to S4.
  • S3 a threshold value
  • FIG. 4 is a flowchart of balance control processing when the method described in Patent Document 1 is applied. First, the balance control process in that case will be described in detail with reference to FIGS.
  • the CPU 23 selects between the two battery cells 11 to which energy is transferred from the voltage value between the terminals of each battery cell 11, and for each of the two selected battery cells 11, the difference between the voltage values between the terminals ( From the potential difference, a pulse frequency for performing switching control of the corresponding switching element 25 and a duty ratio, which is a ratio for turning on the switching element 25 in one cycle, are calculated and set (S11).
  • one of the pulse frequency and the duty ratio is fixed, and the other is determined from the value of the internal resistance of the battery cell 11 or the temperature. May be set.
  • the battery 1 has characteristics that the higher the temperature, the lower the viscosity of the electrolyte, the higher the charge transfer rate, and the lower the internal resistance. For this reason, the value of internal resistance and temperature can be used as an index for setting the pulse frequency or duty ratio.
  • the CPU 23 performs switching control with the set pulse frequency and duty ratio between the two selected battery cells 11, and moves energy by turning on / off the two switching elements 25. Thereafter, the balance control process ends.
  • an arrow between two adjacent battery cells 11 indicates the direction of energy transfer performed between the two battery cells 11 actually selected.
  • the selection between the two battery cells 11 as a whole is such that the variation in the voltage value between the terminals of each battery cell 11 becomes smaller, that is, the terminals of each battery cell 11 within a narrower range. It is performed so that the inter-voltage value falls.
  • the voltage value between the terminals of each battery cell 11 does not always match with high accuracy. This is because the energy transfer between the two battery cells 11 makes the voltage value between the terminals of the two battery cells 11 equal to the voltage value between the terminals of the other battery cells 11 even if the voltage values between the terminals of the two battery cells 11 match. This is because it is not guaranteed to match.
  • the voltage value between the terminals after energy transfer depends on the two battery cells 11 to be selected, and the voltage value between the terminals of the two battery cells 11 to be selected varies.
  • the process returns to S ⁇ b> 1, so that the difference between the maximum value and the minimum value extracted from the inter-terminal voltage value of each battery cell 11 is less than the threshold value.
  • the balance control process is repeatedly executed. Thereby, the voltage value between terminals of each battery cell 11 can be stored in a range where the difference between the maximum value and the minimum value is less than the threshold value.
  • the number of repetitions until the difference between the maximum value and the minimum value converges below the threshold greatly depends on the size of the threshold and the variation state of the voltage value between terminals of each battery cell 11.
  • the smaller the threshold value the greater the number of repetitions.
  • the maximum value is reduced by executing the balance control process once. Since the number is small, the number of repetitions tends to increase. For this reason, the technique described in Patent Document 1 cannot be expected to perform equalization efficiently.
  • the battery cells 11 are divided into a plurality of groups and equalization is performed in units of groups.
  • Dividing the battery cells 11 into a plurality of groups and performing equalization in units of groups means equalizing a smaller number of battery cells 11 in parallel.
  • the time required for equalization of the whole battery 1 becomes the same as or close to the time required for equalization most in the group. Therefore, the time required for equalization can be greatly shortened as compared with the case where energy is simply transferred between the two battery cells 11 individually.
  • equalization is performed so that the variation in the inter-terminal voltage value between the battery cells 11 becomes smaller. From this, equalization in units of groups is performed by calculating the average value of the inter-terminal voltage values of all the battery cells 11 and making the calculated inter-terminal voltage value of each battery cell 11 coincide with the calculated average value. ing.
  • the variation state of the voltage value between the terminals of the battery cells 11 is not taken into consideration. There is a very high possibility that multiple energy transfers will be performed.
  • the equalization performed by setting the target value (average value) of the voltage value between the terminals of each battery cell 11 and making the voltage value between the terminals of each battery cell 11 coincide with the target value the same two battery cells It is possible to avoid performing a plurality of energy transfers targeting 11. For this reason, equalization can be performed with high accuracy, and equalization can be efficiently advanced. Since the equalization can be performed efficiently, the time required for the equalization is greatly reduced. As described above, the grouping further reduces the time required for equalization. For these reasons, in the present embodiment, high accuracy is realized while equalization can be performed in an extremely short time.
  • FIG. 5 is a diagram for explaining a method of grouping power cells.
  • the horizontal axis represents the battery cell and the vertical axis represents the voltage across the terminals.
  • a group 62 that divides the power cells 11 is represented by a frame surrounded by a broken line. Accordingly, the grouping example shown in FIG. 5 is a case where the 16 power cells 11 constituting the battery 1 are divided into four groups 61a to 62d.
  • a straight line 61 in FIG. 5 represents the average value of the voltage values between the terminals. Accordingly, the straight line 61 is hereinafter referred to as “average value 61”.
  • the average value of the inter-terminal voltage values of the power cells 11 belonging to the group 62 (hereinafter referred to as “group average value” in order to clarify the difference from the average value 61) is an average.
  • the value 61 is matched with the allowable range. This is because the equalization of the entire battery 1 is completed by the end of the equalization in units of 62 groups. Thereby, the time required for equalization is the time of the group 62 that takes the longest time for equalization among the groups 62.
  • FIG. 6 is a diagram for explaining equalization performed in a group.
  • FIG. 6 shows an equalization procedure for each group 62, taking as an example two groups 62 with different variations in the inter-terminal voltage value of each power cell 11.
  • the voltage values between the terminals of the two power supply cells 11a and 11b adjacent to the end thereof coincide with the average value 61 within an allowable range. ing. Therefore, as represented by the arrow in FIG. 6A, in the equalization of the group 62, only energy transfer from the power cell 11d to the power cell 11c is performed. Due to the movement of the energy, the inter-terminal voltage values of all the power cells 11a to 11d belonging to the group 62 are equalized with high accuracy so as to coincide with the average value 61 within an allowable range.
  • the energy transfer from the power cell 11d to the power cell 11c ⁇ the energy transfer from the power cell 11c to the power cell 11b ⁇ the power source Energy transfer is performed in the order of energy transfer from the cell 11b to the power source cell 11a.
  • the voltage values between terminals of all the power cells 11a to 11d belonging to the group 62 are equalized with high accuracy so as to coincide with the average value 61 within an allowable range.
  • FIG. 7 is a flowchart of the balance control process according to this embodiment. Next, the balance control processing according to the present embodiment will be described in detail with reference to FIG.
  • the CPU 23 calculates an average value 61 of the inter-terminal voltage value using the inter-terminal voltage value of each battery cell 11 input from the voltage monitoring unit 3 in S1 of FIG. 3 (S21).
  • the CPU 23 compares the calculated average value 61 with the inter-terminal voltage value of each battery cell 11, so that the battery cell 11 whose terminal voltage value does not coincide with the average value 61 within the allowable range (“average” in FIG. 7). Extract the above and below cells).
  • the difference (potential difference) between the inter-terminal voltage value and the average value 61 is calculated for each battery cell 11 to be extracted (S22).
  • the CPU 23 After extracting the battery cells 11, the CPU 23 uses several battery cells 11 (indicated as “adjacent several cells” in FIG. 7) that are continuously connected in series for all the battery cells 11 of the battery 1. Grouping is performed by dividing the cumulative value of the calculated potential difference so that it becomes 0 (S23). After grouping, CPU23 determines the range of the battery cell 11 which should perform energy transfer for every group by making each group into a control unit of equalization (S24).
  • the cumulative value of the potential difference of several battery cells 11 connected in series continuously is not necessarily 0 or a value close to 0. If the upper limit number of the battery cells 11 belonging to the group 62 is increased, the cumulative value of the potential difference is likely to be close to zero. However, the time required for equalization tends to become longer as the number of battery cells 11 belonging to the group 62 increases. Therefore, in the present embodiment, the upper limit number is set to a relatively small number so that the value obtained by dividing the cumulative value by the number of battery cells 11 belonging to the group 62 becomes smaller. Grouping is performed so as to be closer to the average value 61. Thereby, the standard for equalization in the group 62 is actually the group average value. The average value 61 is actually used as a reference when the grouping can be performed ideally so that the average value 61 and the group average value match within an allowable range.
  • the battery cell 11 located at that end moves the energy. Are excluded from the target.
  • the voltage value between the terminals of the battery cell 11 located at the end and the adjacent battery cell 11 matches the group average value within the allowable range, the adjacent battery cell 11 is also excluded from the energy transfer target. (FIG. 6A).
  • the range of the battery cell 11 that should perform the energy transfer is set in such a manner that the battery cell 11 that should be excluded from the target for the energy transfer is excluded.
  • the CPU 23 When the range of the battery cells 11 to which the energy transfer is to be performed is determined for each group 62, the CPU 23 then describes two battery cells 11 to which the energy is transferred for each group 62 (in FIG. 7, "adjacent cell pair"). ) Is used to calculate and set the pulse frequency and the duty ratio in one cycle for switching control of the corresponding switching element 25 (S25). Thereafter, the CPU 23 performs switching control for the range of the battery cell 11 to which energy transfer is to be performed for each group 62, and moves energy by sequentially turning on / off the plurality of switching elements 25 ( S26). After the switching control of all the groups 62 is finished, this balance control process is finished.
  • the potential difference between the two battery cells 11 is the result of the energy transfer performed so far, and thereafter It takes into account the energy transfer to be performed.
  • the voltage values between the terminals of the battery cells 11c and 11b are substantially equal, but the energy of the battery cell 11d is moved to the battery cell 11a via the battery cells 11c and 11b. I have to let it. From this, when the energy transfer between the battery cells 11d and 11c is performed first, the potential difference between the battery cells 11d and 11c takes into account the amount of energy to be transferred from the battery cell 11d in addition to the potential difference between them. Will be.
  • the potential difference between the battery cells 11c and 11b is not limited to the difference between the voltage value between the terminals of the battery cell 11c after the energy transfer and the voltage value between the terminals of the battery cell 11b before the energy transfer. It takes into account the amount of energy to be transferred from. Assuming such a potential difference, by performing energy transfer between the two battery cells 11, the battery cells 11 belonging to each group 62 have an inter-terminal voltage value that matches the average value 61 or the group average value. So that it is equalized.
  • the inter-terminal voltage of the battery cell 11 is adopted as an index for equalization.
  • the index may be a state quantity other than voltage. That is, the index may be SOC, remaining charge capacity, discharge capacity, or charge amount. Since the remaining charge capacity, the discharge capacity, and the charge amount of the battery cell 11 can be specified by monitoring the flow of charge from the battery cell 11 and the flow of charge to the battery cell 11, the charge flow monitoring results Alternatively, an integration result obtained using the monitoring result may be adopted as the status information.
  • grouping is performed so that the group average value matches the average value 61, but the grouping may be performed according to a predetermined rule. That is, the grouping may be performed without placing importance on bringing the group average value close to the average value 61.
  • FIG. 8 is a diagram for explaining a modification of the grouping method and equalization performed in the group.
  • FIG. 9 is a flowchart of balance control processing when a modification of the grouping method is applied.
  • the state of the battery 1 at times t0 to t3 is represented by the inter-terminal voltage value of each battery cell 11.
  • the state at time t0 is the state before starting equalization (initial state)
  • the state at time t1 is the state after starting equalization
  • the state at time t2 is the state after time t1
  • the state at time t3 is equal. Represents the state at the end of conversion.
  • the modification it is assumed that the energy transfer is sequentially performed inward from the battery cells 11 located at both ends of the battery 1.
  • the battery cells 11 of the entire battery 1 are divided into two groups 62 with the same number or almost the same number according to the number.
  • the broken line drawn in the state at time t0 represents the boundary between the two groups 62.
  • the group average value of each group 62 matches the average value 61 with high accuracy.
  • the voltage values between the terminals of the battery cells 11 of the battery 1 are equalized so as to coincide with the average value 61 sequentially from both ends of the battery 1 as represented by the states at the times t1 and t2.
  • the voltage values between the terminals of all the battery cells 11 are in a state where the average value 61 coincides with high accuracy.
  • the state at time t ⁇ b> 2 is a state before the last energy transfer between the two battery cells 11 in each group 62.
  • balance control process When grouping is performed as shown in FIG. 8 and energy is transferred, for example, the following balance control process may be executed as S4 of FIG. The balance control process will be described in detail with reference to FIG.
  • the CPU 23 calculates an average value 61 of the inter-terminal voltage values using the inter-terminal voltage value of each battery cell 11 input from the voltage monitoring unit 3 in S1 of FIG. 3 (S31).
  • the CPU 23 determines the distance between the two battery cells 11 to which the energy is transferred, the pulse frequency for performing the switching control of the corresponding switching element 25 from the potential difference between the two battery cells 11, and one cycle thereof.
  • the duty ratio is calculated and set (S32).
  • CPU23 performs switching control for moving energy between the determined two battery cells 11 using the set pulse frequency and duty ratio (S33). As described above, the potential difference between the two battery cells 11 considers the result of energy transfer performed so far and the energy transfer to be performed thereafter.
  • the process returns to S ⁇ b> 1, so that the confirmation of the equalization result using the measurement result of the voltage value between the terminals of each battery cell 11 is confirmed. Will be done. Thereby, when equalization cannot be appropriately performed by executing the balance control process once, the balance control process is executed again. However, since equalization can be performed with high accuracy as shown in FIG. 8, execution of the balance control process again is avoided with a very high probability.
  • energy is transferred within each group 62, but energy may be transferred between groups 62 as necessary.
  • energy transfer between the groups 62 is performed as necessary, it is possible to cope with variations in group average values between the groups 62. For this reason, the equalization of each group 62 can be performed with high accuracy regardless of whether or not the grouping considering the average value 61 is performed.

Abstract

A battery (1) is configured by connecting a plurality of battery cells (11) in series. When performing balancing for reducing the differences among the inter-terminal voltage values between the battery cells (11) of the battery (1), the battery cells (11) are divided into a plurality of groups (62) in consideration of an average value (61) calculated from the inter-terminal voltage values of the respective battery cells (11). The balancing is performed for each of the groups (62) so as to make the inter-terminal voltage values of the respective battery cells (11) belonging to the each of the groups (62) closer to the average value (61).

Description

均等化装置Equalization equipment
 本発明は、直列に接続されている複数の電池セルを備えた電池を対象に、各電池セル間の充電状態の差を低減する均等化を行うための技術に関する。 The present invention relates to a technique for performing equalization for reducing a difference in charge state between battery cells for a battery including a plurality of battery cells connected in series.
 充電可能な電池(二次電池)は現在、広く用いられている。1つの電池の端子間に得られる電圧は、比較的に小さいのが実情である。このため、より高い電圧を発生させる必要のある電池には、構成要素となる電池である電池セルを複数、直列に接続した構成が採用される。 Rechargeable batteries (secondary batteries) are now widely used. Actually, the voltage obtained between the terminals of one battery is relatively small. For this reason, the battery which needs to generate a higher voltage employs a configuration in which a plurality of battery cells as constituent elements are connected in series.
 複数の電池セルを直列に接続した構成の電池では、充放電を繰り返すうちに、各電池セルの充電状態にばらつきが発生する。尚、充電状態とは、充電残容量や電池セル電圧等を意味しているが以下、便宜的に充電状態は充電残容量(SOC:State of Charge)を想定する。 In a battery having a configuration in which a plurality of battery cells are connected in series, the charging state of each battery cell varies as charging and discharging are repeated. The charged state means a remaining charge capacity, a battery cell voltage, and the like. Hereinafter, for convenience, the charged state is assumed to be a remaining charge capacity (SOC: StateSOof Charge).
 このSOCは、電池セルの充電容量に対する充電残量の比率として定義される状態量であり、そのばらつきは、電池セルの過充電、及び過放電を起こす原因となる他に、電池全体に蓄えられた電力のなかで利用できない分をより大きくする原因となる。過充電、及び過放電は、電池セルの性能の劣化を早める。電池セルの性能の劣化は、電池全体の充電容量の低下を招く。このようなことから、複数の電池セルを備えた電池では、各電池セルのSOC、つまり残量を管理することが行われている。その管理を行う方式の一つに、電池セル間のSOCを動的に制御して均等化するアクティブ・セル・バランス方式がある(特許文献1)。 This SOC is a state quantity defined as the ratio of the remaining charge to the charge capacity of the battery cell. The variation is not only caused to cause overcharge and overdischarge of the battery cell, but also stored in the entire battery. It becomes a cause to enlarge the part that cannot be used in the electric power. Overcharge and overdischarge accelerate the deterioration of battery cell performance. The deterioration of the performance of the battery cell causes a decrease in the charge capacity of the entire battery. For this reason, in a battery including a plurality of battery cells, the SOC of each battery cell, that is, the remaining amount is managed. One of the management methods is an active cell balance method that dynamically controls and equalizes SOC between battery cells (Patent Document 1).
 アクティブ・セル・バランス方式により、各電池セルのSOCを均等化する従来の均等化装置は、隣接する2つの電池セル間でSOCに差のある電池セル間を特定し、SOCが高い電池セルのエネルギー(電力)をSOCが低い電池セルに移動させることで均等化を行っていた(特許文献1)。しかし、そのような2つの電池セル間でのエネルギーの移動では、電池セル全体での均等化を適切に行えるとは限らない。 The conventional equalization apparatus that equalizes the SOC of each battery cell by the active cell balance method identifies the battery cells having a difference in SOC between two adjacent battery cells, and determines the battery cell having a high SOC. Equalization was performed by moving energy (electric power) to battery cells with low SOC (Patent Document 1). However, in such energy transfer between two battery cells, equalization in the whole battery cell cannot always be performed appropriately.
 均等化は、全ての電池セルのSOCが同じになるように行うことが望まれる。しかし、SOCが異なる2つの電池セルの平均のSOCは、全ての電池セルの平均のSOCと同じであるとは限らない。このことから、SOCが異なる2つの電池セル間でエネルギーを移動させるだけでは、SOCのばらつきの程度をより小さくできても、電池セル全体での均等化は高精度に行うことはできない。以降、便宜的に、全ての電池セルの平均のSOCは「全体平均SOC」と呼び、2つの電池セルの平均のSOCは「局所平均SOC」と呼ぶことにする。 It is desirable that the equalization is performed so that the SOC of all battery cells is the same. However, the average SOC of two battery cells having different SOCs is not necessarily the same as the average SOC of all battery cells. For this reason, even if energy is transferred only between two battery cells having different SOCs, even if the degree of variation in SOC can be further reduced, equalization across the battery cells cannot be performed with high accuracy. Hereinafter, for convenience, the average SOC of all the battery cells is referred to as “overall average SOC”, and the average SOC of the two battery cells is referred to as “local average SOC”.
 SOCが異なる2つの電池セル間の特定、及び特定した2つの電池セル間でのエネルギーの移動を繰り返し行う場合、電池セル全体での均等化の精度をより向上させることができる。しかし、2つの電池セル間でのエネルギーの移動は、2つの電池セルのSOCを局所平均SOCに近づけるものである。そのため、局所平均SOCと全体平均SOCとが一致しない場合、2つの電池セル間でエネルギーを移動させても、ばらつきは残る。このようなこともあり、2つの電池セル間の特定、及び特定した2つの電池セル間でのエネルギーの移動を繰り返し行う方法では、均等化を効率的に行うことは期待できない。これは、その方法では、高精度な均等化には非常に長い時間が必要と見なさなければならないことを意味する。 When the specification between two battery cells having different SOCs and the transfer of energy between the two specified battery cells are repeatedly performed, the accuracy of equalization in the whole battery cell can be further improved. However, the energy transfer between the two battery cells brings the SOC of the two battery cells closer to the local average SOC. Therefore, if the local average SOC and the overall average SOC do not match, the variation remains even if energy is transferred between the two battery cells. In such a case, it is not expected that the equalization can be efficiently performed by the method in which the specification between the two battery cells and the energy transfer between the two specified battery cells are repeatedly performed. This means that the method must take a very long time for high-precision equalization.
 電池に蓄えられるエネルギーのなかで有効利用できない分を抑えるうえで、各電池セルのSOCのばらつきはより小さくする必要がある。そのばらつきは、放電中であっても発生する。それにより、アクティブ・セル・バランス方式を採用した均等化装置は、必要に応じて均等化を行うことが求められる。これは、例えばモータを動力源として搭載した車両では、停車中、或いはアイドリング中といった短い時間を想定する必要のある状態となっている間に均等化を行わなければならないことを意味する。そのような車両には、非常に多くの電池セルを備えた電池が搭載される。このようなことも考慮すれば、高精度な均等化をより短い時間で行えるようにすることも必要と云える。 In order to reduce the amount of energy stored in the battery that cannot be used effectively, the variation in SOC of each battery cell needs to be reduced. The variation occurs even during discharge. As a result, the equalization apparatus adopting the active cell balance method is required to perform equalization as necessary. This means that, for example, in a vehicle equipped with a motor as a power source, equalization must be performed while it is necessary to assume a short time such as when the vehicle is stopped or idling. Such a vehicle is equipped with a battery having a very large number of battery cells. In consideration of this, it can be said that it is necessary to perform highly accurate equalization in a shorter time.
特開2010-220373号公報JP 2010-220373 A 特開2005-341645号公報JP 2005-341645 A 特開平11-234917号公報Japanese Patent Application Laid-Open No. 11-234917 特開2004-080909号公報JP 2004-080909 A
 本発明は、電池が有する各電池セルの間の充電状態の差を低減する均等化を高精度、且つ短時間に行うための技術を提供することを目的とする。 An object of the present invention is to provide a technique for performing equalization for reducing a difference in charge state between battery cells of a battery with high accuracy and in a short time.
 本発明の1態様は、直列に接続されている複数の電池セルを備えた電池を対象に、各電池セル間の充電状態の差を低減する均等化を行う均等化装置であり、複数のスイッチング素子を有し、スイッチング素子のオン/オフにより、隣接する2つの電池セル間別に、該2つの電池セル間でエネルギーを移動できる移動手段と、移動手段に設けられたスイッチング素子を個別にオン/オフできる駆動手段と、各電池セルの充電状態を表す状態情報を取得する情報取得手段と、情報取得手段が電池セル毎に取得した状態情報を基に、移動手段を用いたエネルギーの移動を行うべきか否か判定する判定手段と、エネルギーの移動を行うべきと判定手段が判定した場合に、複数の電池セルを2つ以上のグループに分け、該グループ毎に、駆動手段を制御して、移動手段を用いた均等化を行う制御手段と、を具備する。 1 aspect of this invention is the equalization apparatus which performs equalization which reduces the difference of the charge condition between each battery cell for the battery provided with the several battery cell connected in series, and is a plurality of switching And a switching means provided on the moving means, each of which is capable of transferring energy between the two adjacent battery cells by turning on / off the switching element. Based on the drive means that can be turned off, the information acquisition means for acquiring the state information indicating the charge state of each battery cell, and the state information acquired for each battery cell by the information acquisition means, the energy transfer using the moving means is performed. When the determination means that determines whether or not to move and the determination means determines that energy transfer should be performed, the plurality of battery cells are divided into two or more groups, and the drive means is controlled for each group. And comprises a control means for equalization using a mobile unit.
 本発明の他の1態様は、直列に接続されている複数の電池セルを備えた電池を対象に、各電池セル間の充電状態の差を低減する均等化を行う均等化装置であり、複数のスイッチング素子を有し、スイッチング素子のオン/オフにより、隣接する2つの電池セル間別に、該2つの電池セル間でエネルギーを移動できる移動手段と、移動手段に設けられたスイッチング素子を個別にオン/オフできる駆動手段と、各電池セルの充電状態を表す状態情報を取得する情報取得手段と、情報取得手段が電池セル毎に取得した状態情報を基に、移動手段を用いたエネルギーの移動を行うべきか否か判定する判定手段と、エネルギーの移動を行うべきと判定手段が判定した場合に、情報取得手段が電池セル毎に取得した状態情報から、複数の電池セル全体の平均の充電状態を求め、該平均の充電状態を基に、駆動手段を制御して、移動手段を用いた均等化を行う制御手段と、を具備する。 Another aspect of the present invention is an equalization device that performs equalization for reducing a difference in charge state between each battery cell for a battery including a plurality of battery cells connected in series. Each of the switching elements provided in the moving means can be moved separately between two adjacent battery cells by switching on / off the switching elements, and the switching elements provided in the moving means are individually provided. Energy transfer using moving means based on driving means that can be turned on / off, information acquisition means for acquiring state information indicating the state of charge of each battery cell, and state information acquired by the information acquisition means for each battery cell A plurality of battery cells from the state information acquired by the information acquisition unit for each battery cell when the determination unit determines whether the energy transfer should be performed. It obtains the state of charge of the average, based on the charge state of the average, by controlling the drive means comprises a control means for performing equalization using a mobile device.
 尚、本発明の均等化の対象とする充電状態とは、具体的にはSOC(充電残容量)、電池セル電圧、放電容量、電荷量等の数値化できる状態である。 The state of charge targeted for equalization of the present invention is specifically a state in which the SOC (remaining charge capacity), battery cell voltage, discharge capacity, charge amount, etc. can be quantified.
 本発明では、電池が有する各電池セルの間の充電状態の差を低減する均等化を高精度、且つ短時間に行うことができる。 In the present invention, equalization for reducing the difference in charge state between the battery cells of the battery can be performed with high accuracy and in a short time.
本実施形態による均等化装置の構成を説明する図である。It is a figure explaining the structure of the equalization apparatus by this embodiment. 電池の各電池セルの端子間電圧の例を表す図である。It is a figure showing the example of the voltage between terminals of each battery cell of a battery. 電池セル監視処理のフローチャートである。It is a flowchart of a battery cell monitoring process. 特許文献1に記載の手法を適用した場合のバランス制御処理のフローチャートである。It is a flowchart of the balance control process at the time of applying the method of patent document 1. FIG. 本実施形態による電源セルのグループ化方法を説明する図である。It is a figure explaining the grouping method of the power cell by this embodiment. グループで行われる均等化を説明する図である。It is a figure explaining the equalization performed in a group. 本実施形態によるバランス制御処理のフローチャートである。It is a flowchart of the balance control process by this embodiment. グループ化方法の変形例とグループで行われる均等化を説明する図である。It is a figure explaining the equalization performed by the modification of a grouping method, and a group. 本実施形態の変形例によるバランス制御処理のフローチャートである。It is a flowchart of the balance control process by the modification of this embodiment.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態による均等化装置の構成を説明する図である。 FIG. 1 is a diagram illustrating the configuration of an equalization apparatus according to the present embodiment.
 この均等化装置2は、不図示の充電機能により電池1を充電可能な車両、例えば自動車に搭載されたものであり、アクティブ・セル・バランス方式が採用されている。その電池1は、車両の動力源となるモータへの電力の供給に用いられる。そのために電池1は、直列に接続された複数の電池セル11を備えている。このことから、均等化装置2は、電池1に備えられた電池セル11間のSOCを動的に制御して均等化(平滑化)するために車両に搭載されている。なお、均等化装置2を搭載する対象は、複数の電池セルを直列に接続した構成の電池1を電力の供給源として用いる物であれば良いことから、車両に限定されない。また、電池1が備えた電池セル11として4つの電池セル11a~11dを図1に表しているが、電池セル11の数は4つに限定されない。実際には、電池1は多数の電池セル11を備えている。本発明の均等化の対象はSOC(充電残容量)だけではなく、電池セル電圧、或いは放電容量等の他の充電状態であっても良い。 The equalizing device 2 is mounted on a vehicle that can charge the battery 1 with a charging function (not shown), for example, an automobile, and employs an active cell balance method. The battery 1 is used to supply electric power to a motor that is a power source of the vehicle. For that purpose, the battery 1 includes a plurality of battery cells 11 connected in series. Therefore, the equalizing device 2 is mounted on the vehicle in order to dynamically control and equalize (smooth) the SOC between the battery cells 11 provided in the battery 1. The target for mounting the equalizing device 2 is not limited to a vehicle, as long as the battery 1 having a configuration in which a plurality of battery cells are connected in series is used as a power supply source. In addition, although four battery cells 11a to 11d are illustrated in FIG. 1 as the battery cells 11 included in the battery 1, the number of the battery cells 11 is not limited to four. Actually, the battery 1 includes a large number of battery cells 11. The subject of equalization of the present invention is not limited to SOC (remaining charge capacity), but may be other charge states such as battery cell voltage or discharge capacity.
 均等化装置2は、図1に表すように、隣接する2つの電池セル11間、つまり直接、接続された2つの電池セル11間でのエネルギーの移動を実現できる移動手段である移動回路21を備えている。その移動回路21は、4つの電池セル11を備えた電池1を対象にする場合、計6つのスイッチング素子25(25a~25f)、及び計3つのインダクタ26(26a~26c)を備えている。それにより均等化装置2は、移動回路21の他に、移動回路21の6つのスイッチング素子25のオン/オフを個別に行う駆動手段としてのスイッチ制御部22、及びそのスイッチ制御部22を制御するCPU(Central Processing Unit)23を備えている。 As shown in FIG. 1, the equalizing apparatus 2 includes a moving circuit 21 that is a moving unit that can realize energy transfer between two adjacent battery cells 11, that is, between two battery cells 11 that are directly connected. I have. The moving circuit 21 includes a total of six switching elements 25 (25a to 25f) and a total of three inductors 26 (26a to 26c) when the battery 1 including the four battery cells 11 is targeted. Thereby, the equalization apparatus 2 controls the switch control unit 22 as a driving unit for individually turning on / off the six switching elements 25 of the moving circuit 21 and the switch control unit 22 in addition to the moving circuit 21. A CPU (Central Processing Unit) 23 is provided.
 移動回路21の各スイッチング素子25は、1つの電池セル11の端子間を接続する閉ループ回路を実現させる。各閉ループ回路は、1つのスイッチング素子25の他に、1つのインダクタ26を備える。各閉ループ回路のインダクタ26は、2つの電池セル11間で移動させるべきエネルギーの蓄積(蓄電)に用いられる。 Each switching element 25 of the moving circuit 21 realizes a closed loop circuit that connects terminals of one battery cell 11. Each closed loop circuit includes one inductor 26 in addition to one switching element 25. The inductor 26 of each closed loop circuit is used for accumulation (storage) of energy to be moved between the two battery cells 11.
 移動回路21による2つの電池セル11間のエネルギーの移動は、以下のようにして行われる。 The movement of energy between the two battery cells 11 by the moving circuit 21 is performed as follows.
 例えば電池セル11aから電池セル11bにエネルギーを移動させる場合、先ず、スイッチング素子25aがオンされる。そのスイッチング素子25aのオンにより、電池セル11aの端子間に閉ループ回路が形成され、電池セル11aのプラス側端子からマイナス側端子に、スイッチング素子25a、及びインダクタ26aを介して電流が流れる。そのように電流が流れることで、インダクタ26aにエネルギー(電力)が蓄えられる。 For example, when energy is transferred from the battery cell 11a to the battery cell 11b, first, the switching element 25a is turned on. When the switching element 25a is turned on, a closed loop circuit is formed between the terminals of the battery cell 11a, and a current flows from the positive side terminal to the negative side terminal of the battery cell 11a via the switching element 25a and the inductor 26a. As the current flows in such a manner, energy (electric power) is stored in the inductor 26a.
 次に、スイッチング素子25aがオフされ、スイッチング素子25bがオンされる。このため、電池セル11aの端子間に形成された閉ループ回路は解除され、電池セル11bの端子間に閉ループ回路が新たに形成される。その結果、インダクタ26aのエネルギーは、電池セル11bの端子間に形成された閉ループ回路によって、その電池セル11bに蓄えられる。それにより、電池セル11aから電池セル11bへのエネルギーの移動が実現される。電池セル11bの端子間に形成された閉ループ回路は、エネルギーを移動させた後、解除される。 Next, the switching element 25a is turned off and the switching element 25b is turned on. For this reason, the closed loop circuit formed between the terminals of the battery cell 11a is released, and a closed loop circuit is newly formed between the terminals of the battery cell 11b. As a result, the energy of the inductor 26a is stored in the battery cell 11b by a closed loop circuit formed between the terminals of the battery cell 11b. Thereby, the movement of energy from the battery cell 11a to the battery cell 11b is realized. The closed loop circuit formed between the terminals of the battery cell 11b is released after the energy is transferred.
 一方、電池セル11bから電池セル11aにエネルギーを移動させる場合、スイッチング素子25a及び25bは上記とは逆の順序でオン/オフされる。つまり、先ず、スイッチング素子25bがオンされて、電池セル11bの端子間に閉ループ回路が形成され、電池セル11bのエネルギーがインダクタ26aに蓄えられる。次に、スイッチング素子25bがオフされ、スイッチング素子25aがオンされる。それにより、電池セル11bの端子間に形成された閉ループ回路は解除され、電池セル11aの端子間に閉ループ回路が新たに形成される。そのため、インダクタ26aのエネルギーは、電池セル11aの端子間に形成された閉ループ回路によって、その電池セル11aに蓄えられる。この結果、電池セル11bから電池セル11aへのエネルギーの移動が実現される。 On the other hand, when energy is transferred from the battery cell 11b to the battery cell 11a, the switching elements 25a and 25b are turned on / off in the reverse order. That is, first, the switching element 25b is turned on, a closed loop circuit is formed between the terminals of the battery cell 11b, and the energy of the battery cell 11b is stored in the inductor 26a. Next, the switching element 25b is turned off and the switching element 25a is turned on. Thereby, the closed loop circuit formed between the terminals of the battery cell 11b is released, and a closed loop circuit is newly formed between the terminals of the battery cell 11a. Therefore, the energy of the inductor 26a is stored in the battery cell 11a by the closed loop circuit formed between the terminals of the battery cell 11a. As a result, energy transfer from the battery cell 11b to the battery cell 11a is realized.
 このように、電池セル11aと電池セル11b間のエネルギーの移動は、スイッチング素子25a、及び25bのオン/オフによって行われる。電池セル11bと電池セル11c間のエネルギーの移動は、スイッチング素子25e、及び25fのオン/オフによって行われる。電池セル11cと電池セル11d間のエネルギーの移動は、スイッチング素子25c、及び25dのオン/オフによって行われる。そのように2つの電池セル11間のエネルギーの移動を実現する電池セル移動回路21は、電池セル11間のSOCのばらつきを低減する均等化に用いられる。 Thus, the energy transfer between the battery cell 11a and the battery cell 11b is performed by turning on / off the switching elements 25a and 25b. Energy transfer between the battery cell 11b and the battery cell 11c is performed by turning on / off the switching elements 25e and 25f. Energy transfer between the battery cell 11c and the battery cell 11d is performed by turning on / off the switching elements 25c and 25d. The battery cell moving circuit 21 that realizes the energy transfer between the two battery cells 11 is used for equalization to reduce the variation in SOC between the battery cells 11.
 スイッチ制御部22は、上記のような2つの電池セル間のエネルギーの移動を行うために、各スイッチング素子25を個別にオン/オフする駆動手段として実現されている。各スイッチング素子25のオン/オフは、CPU23の制御に従って行われる。それにより、CPU23は、スイッチ制御部22を制御する制御手段として機能する。 The switch control unit 22 is realized as a driving unit that individually turns on / off each switching element 25 in order to transfer energy between the two battery cells as described above. Each switching element 25 is turned on / off according to the control of the CPU 23. Thereby, the CPU 23 functions as a control unit that controls the switch control unit 22.
 CPU23は、不揮発性のメモリ23aを搭載し、そのメモリ23aに格納されたプログラムを実行することで、スイッチ制御部22を制御する。電池1の各電池セル11の電圧は、電圧監視部3によって監視され、その監視結果、つまり各電池セル11の端子間電圧値はCPU23に出力される。CPU23は、電圧監視部3から入力する各電池セル11の端子間電圧値を参照して、均等化を行うべきか否かを判定する。それにより、均等化は、CPU23が均等化を行うべきと判定した場合に行われる。なお、均等化は以降「電池セルバランス」とも呼ぶことにする。 The CPU 23 is equipped with a non-volatile memory 23a and controls the switch control unit 22 by executing a program stored in the memory 23a. The voltage of each battery cell 11 of the battery 1 is monitored by the voltage monitoring unit 3, and the monitoring result, that is, the voltage value between terminals of each battery cell 11 is output to the CPU 23. The CPU 23 refers to the voltage value between the terminals of each battery cell 11 input from the voltage monitoring unit 3 and determines whether or not equalization should be performed. Thereby, equalization is performed when the CPU 23 determines that equalization should be performed. The equalization is hereinafter referred to as “battery cell balance”.
 各電池セル11の端子間電圧値は、SOCによって変化する。このことから、電圧監視部3から入力される各電池セル11の端子間電圧値は、SOCを表す状態情報に相当する。CPU23は、各電池セル11の端子間電圧値を入力し、2つの電池セル11間でのエネルギーの移動を行うべきか否かを判定することから、状態情報を取得する情報取得手段、及び電池セルバランスを行うか否かを判定する判定手段としても機能する。 The voltage value between terminals of each battery cell 11 varies depending on the SOC. From this, the voltage value between terminals of each battery cell 11 input from the voltage monitoring unit 3 corresponds to state information representing SOC. The CPU 23 inputs the voltage value between the terminals of each battery cell 11 and determines whether or not the energy transfer between the two battery cells 11 should be performed, so that the information acquisition means for acquiring the state information, and the battery It also functions as a determination means for determining whether or not to perform cell balance.
 電圧監視部3は、電池1を充電する場合にも、各電池セル11のSOCを監視するために用いられる。このことから、本実施形態では、電圧監視部3は均等化装置2の構成要素となっていない。しかし、電圧監視部3のような状態情報を生成・出力する手段は、均等化装置2の構成要素としても良い。 The voltage monitoring unit 3 is used to monitor the SOC of each battery cell 11 even when the battery 1 is charged. For this reason, in the present embodiment, the voltage monitoring unit 3 is not a component of the equalization apparatus 2. However, means for generating and outputting state information such as the voltage monitoring unit 3 may be a component of the equalization apparatus 2.
 図2は、電池の各電池セルの端子間電圧の例を表す図である。ここでは、横軸に電池セル、縦軸に端子間電圧をとっている。電池セル11の個数を16として、直列に接続された各電池セル11を横軸上の位置で表し、各電池セル11の端子間電圧を個別に棒グラフで表している。 FIG. 2 is a diagram illustrating an example of a voltage between terminals of each battery cell of the battery. Here, the horizontal axis represents the battery cell, and the vertical axis represents the terminal voltage. The number of battery cells 11 is 16, each battery cell 11 connected in series is represented by a position on the horizontal axis, and the voltage between terminals of each battery cell 11 is individually represented by a bar graph.
 電池1の各電池セル11のSOCには、充放電を繰り返すうちにばらつきが発生し、そのばらつきは、図2に表すように、各電池セル11の端子間電圧値の違いとして現れる。このことから、CPU23は、電圧監視部3から入力した各電池セル11の端子間電圧値を参照して、その端子間電圧値の最大値、最小値を抽出し、抽出した最大値と最小値の差が閾値以上か否かにより、均等化を行うか否か判定する。電圧監視部3は、各電池セル11の端子間電圧値を、例えば予め定めた時間が経過する度に出力するか、或いはCPU23からの要求によって出力する。ここでは便宜的に、CPU23は必要に応じて、電圧監視部3から各電池セル11の端子間電圧値を取得すると想定する。 The SOC of each battery cell 11 of the battery 1 varies while charging and discharging are repeated, and the variation appears as a difference in the voltage value between the terminals of each battery cell 11 as shown in FIG. Therefore, the CPU 23 refers to the voltage value between the terminals of each battery cell 11 input from the voltage monitoring unit 3, extracts the maximum value and the minimum value of the voltage value between the terminals, and extracts the extracted maximum value and minimum value. It is determined whether or not equalization is performed depending on whether or not the difference between the two is equal to or greater than a threshold value. The voltage monitoring unit 3 outputs the voltage value between the terminals of each battery cell 11 every time a predetermined time elapses, or outputs it according to a request from the CPU 23. Here, for convenience, it is assumed that the CPU 23 acquires the voltage value between the terminals of each battery cell 11 from the voltage monitoring unit 3 as necessary.
 図3は、電池セル監視処理のフローチャートである。この電池セル監視処理は、電圧監視部3から各電池セル11の端子間電圧値を取得し、取得した各電池セル11の端子間電圧値から均等化を行うべきか否か判定し、その判定結果に応じて均等化を行うための処理である。この監視処理は、CPU23がメモリ23aに格納されたプログラムを実行することで実現される。この監視処理は、自動車等の車両では、アイドリング時、或いは停車時であることを前提に、予め定めた条件が満たされた場合に実行される。ここで図3を参照して、電池セル監視処理について詳細に説明する。なお、予め定めた条件が満たされるとは、例えば前回、電池セル監視処理を実行してからの経過時間、移動距離、及び消費電力量のうちの少なくとも1つが、設定された閾値以上となることである。 FIG. 3 is a flowchart of the battery cell monitoring process. This battery cell monitoring process acquires the voltage value between terminals of each battery cell 11 from the voltage monitoring unit 3, determines whether equalization should be performed from the acquired voltage value between terminals of each battery cell 11, and the determination This is a process for performing equalization according to the result. This monitoring process is realized by the CPU 23 executing a program stored in the memory 23a. In a vehicle such as an automobile, this monitoring process is executed when a predetermined condition is satisfied on the assumption that the vehicle is idling or stopped. Here, the battery cell monitoring process will be described in detail with reference to FIG. Note that the predetermined condition is satisfied, for example, that at least one of the elapsed time, the moving distance, and the power consumption amount since the battery cell monitoring process was executed last time is equal to or more than a set threshold value. It is.
 先ず、CPU23は、電圧監視部3が各電池セル11の端子間電圧を測定することで得られる各電池セル11の端子間電圧値を入力する(S1)。次にCPU23は、入力した各電池セル11の端子間電圧値から最大値、及び最小値を抽出し、その差を計算する(S2)。 First, the CPU 23 inputs a voltage value between terminals of each battery cell 11 obtained by the voltage monitoring unit 3 measuring a voltage between terminals of each battery cell 11 (S1). Next, the CPU 23 extracts the maximum value and the minimum value from the input inter-terminal voltage value of each battery cell 11, and calculates the difference (S2).
 最大値と最小値の差を計算した後、CPU23は、その差が閾値以上か否か判定する(S3)。その差が閾値未満であった場合、S3の判定はNOとなり、ここで電池セル監視処理が終了する。一方、その差が閾値以上であった場合、S3の判定はYESとなってS4に移行する。 After calculating the difference between the maximum value and the minimum value, the CPU 23 determines whether or not the difference is greater than or equal to a threshold value (S3). If the difference is less than the threshold, the determination in S3 is NO, and the battery cell monitoring process ends here. On the other hand, if the difference is greater than or equal to the threshold, the determination in S3 is YES and the process proceeds to S4.
 S4では、CPU23は、均等化(電池セルバランス)を行うためのバランス制御処理を実行する。その実行後は、上記S1に戻る。 In S4, the CPU 23 executes a balance control process for equalization (battery cell balance). After the execution, the process returns to S1.
 S4のバランス制御処理としては、以下のような処理が実行される。ここでは、本実施形態との相違をより理解できるように、特許文献1に記載の手法を適用した場合の処理も併せて説明する。 The following processing is executed as the balance control processing in S4. Here, in order to better understand the difference from the present embodiment, the processing in the case of applying the method described in Patent Document 1 will also be described.
 図4は、特許文献1に記載の手法を適用した場合のバランス制御処理のフローチャートである。始めに図4、及び図2を参照して、その場合のバランス制御処理について詳細に説明する。 FIG. 4 is a flowchart of balance control processing when the method described in Patent Document 1 is applied. First, the balance control process in that case will be described in detail with reference to FIGS.
 先ず、CPU23は、各電池セル11の端子間電圧値から、エネルギーを移動させる2つの電池セル間11を選択し、選択した2つの電池セル11間毎に、それらの端子間電圧値の差(電位差)から、対応するスイッチング素子25のスイッチング制御を行ううえでのパルス周波数、及びその1周期のなかでスイッチング素子25をオンさせる比率であるデューティ(Duty)比を計算し設定する(S11)。 First, the CPU 23 selects between the two battery cells 11 to which energy is transferred from the voltage value between the terminals of each battery cell 11, and for each of the two selected battery cells 11, the difference between the voltage values between the terminals ( From the potential difference, a pulse frequency for performing switching control of the corresponding switching element 25 and a duty ratio, which is a ratio for turning on the switching element 25 in one cycle, are calculated and set (S11).
 なお、2つの電池セル11間で予め想定した量のエネルギーを移動させるような場合、パルス周波数、及びデューティ比のうちの一方を固定とし、他方を電池セル11の内部抵抗の値、或いは温度から設定しても良い。電池1には、温度が高くなるほど、電解質の粘性は低くなって、電荷移動速度は大きくなり、内部抵抗の値は小さくなるという特性がある。このため、内部抵抗の値、及び温度は、パルス周波数、或いはデューティ比を設定するうえでの指標として用いることができる。 In addition, when transferring the energy of the amount assumed beforehand between the two battery cells 11, one of the pulse frequency and the duty ratio is fixed, and the other is determined from the value of the internal resistance of the battery cell 11 or the temperature. May be set. The battery 1 has characteristics that the higher the temperature, the lower the viscosity of the electrolyte, the higher the charge transfer rate, and the lower the internal resistance. For this reason, the value of internal resistance and temperature can be used as an index for setting the pulse frequency or duty ratio.
 次に、CPU23は、選択した2つの電池セル11間毎に、設定したパルス周波数、デューティ比でスイッチング制御を行い、2つのスイッチング素子25のオン/オフによるエネルギーの移動を行う。その後、このバランス制御処理が終了する。 Next, the CPU 23 performs switching control with the set pulse frequency and duty ratio between the two selected battery cells 11, and moves energy by turning on / off the two switching elements 25. Thereafter, the balance control process ends.
 図2において、隣接する2つの電池セル11間の間に表記の矢印は、実際に選択された2つの電池セル11の間で行われるエネルギーの移動方向を表している。図2に表すように、2つの電池セル11間の選択は、全体として、各電池セル11の端子間電圧値のばらつきがより小さくなるように、つまりより狭い範囲内に各電池セル11の端子間電圧値が収まるように行われる。 In FIG. 2, an arrow between two adjacent battery cells 11 indicates the direction of energy transfer performed between the two battery cells 11 actually selected. As shown in FIG. 2, the selection between the two battery cells 11 as a whole is such that the variation in the voltage value between the terminals of each battery cell 11 becomes smaller, that is, the terminals of each battery cell 11 within a narrower range. It is performed so that the inter-voltage value falls.
 そのように2つの電池セル11間を選択し、それらの間のエネルギーの移動を適切に行っても、各電池セル11の端子間電圧値は高精度に一致するとは限らない。これは、2つの電池セル11間でのエネルギーの移動は、その2つの電池セル11の端子間電圧値を一致させるとしても、その端子間電圧値を他の電池セル11の端子間電圧値と一致させるのを保証しないからである。エネルギー移動後の端子間電圧値は、選択される2つの電池セル11に依存し、選択される2つの電池セル11の各端子間電圧値は様々である。 Even if such a selection is made between the two battery cells 11 and the energy transfer between them is appropriately performed, the voltage value between the terminals of each battery cell 11 does not always match with high accuracy. This is because the energy transfer between the two battery cells 11 makes the voltage value between the terminals of the two battery cells 11 equal to the voltage value between the terminals of the other battery cells 11 even if the voltage values between the terminals of the two battery cells 11 match. This is because it is not guaranteed to match. The voltage value between the terminals after energy transfer depends on the two battery cells 11 to be selected, and the voltage value between the terminals of the two battery cells 11 to be selected varies.
 図3に表す電池セル監視処理では、バランス制御処理の実行後、S1に戻ることから、各電池セル11の端子間電圧値から抽出される最大値と最小値の差が閾値未満となるまで、バランス制御処理が繰り返し実行される。それにより、各電池セル11の端子間電圧値は、その最大値と最小値の差が閾値未満となる範囲内に収めることができる。しかし、その最大値と最小値の差が閾値未満に収束するまでの繰り返し回数は、閾値の大きさ、各電池セル11の端子間電圧値のばらつき状態に大きく依存する。 In the battery cell monitoring process shown in FIG. 3, after the balance control process is executed, the process returns to S <b> 1, so that the difference between the maximum value and the minimum value extracted from the inter-terminal voltage value of each battery cell 11 is less than the threshold value. The balance control process is repeatedly executed. Thereby, the voltage value between terminals of each battery cell 11 can be stored in a range where the difference between the maximum value and the minimum value is less than the threshold value. However, the number of repetitions until the difference between the maximum value and the minimum value converges below the threshold greatly depends on the size of the threshold and the variation state of the voltage value between terminals of each battery cell 11.
 例えば閾値が小さくなるほど、繰り返し回数はより多くなる。また、例えば最大値の端子間電圧値となっている電池セル11の周辺に高い端子間電圧値の電池セル11が集中している場合、1回のバランス制御処理の実行による最大値の減少は僅かとなることから、繰り返し回数は多くなる傾向にある。このようなことから、特許文献1に記載の手法では、均等化を効率的に行うことは期待できない。それにより、本実施形態では、高精度の均等化を効率的に行うために、電池セル11を複数のグループに分け、グループ単位で均等化を行うようにしている。 For example, the smaller the threshold value, the greater the number of repetitions. Further, for example, when the battery cells 11 having a high inter-terminal voltage value are concentrated around the battery cell 11 having the maximum inter-terminal voltage value, the maximum value is reduced by executing the balance control process once. Since the number is small, the number of repetitions tends to increase. For this reason, the technique described in Patent Document 1 cannot be expected to perform equalization efficiently. Thereby, in this embodiment, in order to efficiently perform high-precision equalization, the battery cells 11 are divided into a plurality of groups and equalization is performed in units of groups.
 電池セル11を複数のグループに分け、グループ単位で均等化を行うことは、より少ない数の電池セル11を並行して均等化を行うことを意味する。そのようなグループ化により、電池1全体の均等化に要する時間は、グループのなかで最も均等化に要する時間と一致するか、或いは近いものとなる。そのため、単に2つの電池セル11間でのエネルギーの移動を個別に行うような場合と比較して、均等化に要する時間を大幅に短縮することができる。 分 け Dividing the battery cells 11 into a plurality of groups and performing equalization in units of groups means equalizing a smaller number of battery cells 11 in parallel. By such grouping, the time required for equalization of the whole battery 1 becomes the same as or close to the time required for equalization most in the group. Therefore, the time required for equalization can be greatly shortened as compared with the case where energy is simply transferred between the two battery cells 11 individually.
 均等化は、電池セル11間の端子間電圧値のばらつきがより小さくなるように行うことが望まれる。このことから、グループ単位の均等化は、全ての電池セル11の端子間電圧値の平均値を計算し、計算した平均値に各電池セル11の端子間電圧値を一致させるように行うようにしている。 It is desired that the equalization is performed so that the variation in the inter-terminal voltage value between the battery cells 11 becomes smaller. From this, equalization in units of groups is performed by calculating the average value of the inter-terminal voltage values of all the battery cells 11 and making the calculated inter-terminal voltage value of each battery cell 11 coincide with the calculated average value. ing.
 2つの電池セル11間の端子間電圧値に着目した均等化では、電池セル11の端子間電圧値のばらつき状態は考慮されないことから、均等化を行っている間に、同じ2つの電池セル11を対象にしたエネルギーの移動が複数、行われる可能性は非常に高い。しかし、各電池セル11の端子間電圧値の目標値(平均値)を設定し、その目標値に各電池セル11の端子間電圧値を一致させるように行う均等化では、同じ2つの電池セル11を対象にしたエネルギーの移動を複数、行うことは回避することができる。このことから、均等化は高精度に行えると共に、均等化を効率的に進めることができるようになる。効率的に均等化が行えることにより、その均等化に要する時間も大幅に短縮される。グループ化は、上記のように、均等化に要する時間をより短縮させる。これらのことから、本実施形態では、極めて短時間で均等化を行えるようにしつつ、高い精度も実現させている。 In the equalization paying attention to the voltage value between the terminals of the two battery cells 11, the variation state of the voltage value between the terminals of the battery cells 11 is not taken into consideration. There is a very high possibility that multiple energy transfers will be performed. However, in the equalization performed by setting the target value (average value) of the voltage value between the terminals of each battery cell 11 and making the voltage value between the terminals of each battery cell 11 coincide with the target value, the same two battery cells It is possible to avoid performing a plurality of energy transfers targeting 11. For this reason, equalization can be performed with high accuracy, and equalization can be efficiently advanced. Since the equalization can be performed efficiently, the time required for the equalization is greatly reduced. As described above, the grouping further reduces the time required for equalization. For these reasons, in the present embodiment, high accuracy is realized while equalization can be performed in an extremely short time.
 図5は、電源セルのグループ化方法を説明する図である。図5でも図2と同様に、横軸に電池セル、縦軸に端子間電圧をとっている。電源セル11を分けるグループ62は破線で囲った枠により表している。それにより、図5に表すグループ化の例は、電池1を構成する16個の電源セル11を4つのグループ61a~62dに分けた場合のものとなっている。 FIG. 5 is a diagram for explaining a method of grouping power cells. In FIG. 5, as in FIG. 2, the horizontal axis represents the battery cell and the vertical axis represents the voltage across the terminals. A group 62 that divides the power cells 11 is represented by a frame surrounded by a broken line. Accordingly, the grouping example shown in FIG. 5 is a case where the 16 power cells 11 constituting the battery 1 are divided into four groups 61a to 62d.
 図5に表すようなグループ化は、各電源セル11の端子間電圧値から計算した端子間電圧値の平均値に着目して行われる。図5の直線61は、端子間電圧値の平均値を表している。それにより、以降、直線61は「平均値61」と表記する。 The grouping as shown in FIG. 5 is performed by paying attention to the average value of the inter-terminal voltage values calculated from the inter-terminal voltage values of each power cell 11. A straight line 61 in FIG. 5 represents the average value of the voltage values between the terminals. Accordingly, the straight line 61 is hereinafter referred to as “average value 61”.
 平均値61に着目したグループ化は、グループ62に属する電源セル11の端子間電圧値の平均値(以降、平均値61との相違を明確にするために「グループ平均値」と表記)が平均値61と許容範囲内で一致するように行う。これは、グループ62単位の均等化の終了により、電池1全体の均等化が終了するようにするためである。それにより、均等化に要する時間は、グループ62のなかで均等化に最も時間がかかるグループ62の時間となる。 In the grouping focusing on the average value 61, the average value of the inter-terminal voltage values of the power cells 11 belonging to the group 62 (hereinafter referred to as “group average value” in order to clarify the difference from the average value 61) is an average. The value 61 is matched with the allowable range. This is because the equalization of the entire battery 1 is completed by the end of the equalization in units of 62 groups. Thereby, the time required for equalization is the time of the group 62 that takes the longest time for equalization among the groups 62.
 なお、エネルギーの移動は、局所的には隣接する2つの電池セル11間で行われることから、グループ化は、同じグループ62に属する電池セル11の間に他のグループ62に属する電池セル11が直列に接続されることがないように行われる。それにより、図5に表すように、同じグループ62に属する電池セル11は連続して直列に接続された形となっている。 Since energy transfer is locally performed between two adjacent battery cells 11, grouping is performed between battery cells 11 belonging to the same group 62 and battery cells 11 belonging to other groups 62. This is done so that they are not connected in series. Thereby, as shown in FIG. 5, the battery cells 11 belonging to the same group 62 are continuously connected in series.
 図6は、グループで行われる均等化を説明する図である。図6では、各電源セル11の端子間電圧値のばらつきが異なる2つのグループ62を例にとって、グループ62毎に均等化の手順を表している。 FIG. 6 is a diagram for explaining equalization performed in a group. FIG. 6 shows an equalization procedure for each group 62, taking as an example two groups 62 with different variations in the inter-terminal voltage value of each power cell 11.
 図6(a)に表すグループ62では、4つの電源セル11a~11dのなかで端に位置に隣接する2つの電源セル11a及び11bの端子間電圧値は平均値61と許容範囲内で一致している。そのため、図6(a)中の矢印で表すように、グループ62の均等化では、電源セル11dから電源セル11cへのエネルギーの移動のみが行われる。そのエネルギーの移動により、グループ62に属する全ての電源セル11a~11dの端子間電圧値は平均値61と許容範囲内で一致するように高精度に均等化される。 In the group 62 shown in FIG. 6A, among the four power supply cells 11a to 11d, the voltage values between the terminals of the two power supply cells 11a and 11b adjacent to the end thereof coincide with the average value 61 within an allowable range. ing. Therefore, as represented by the arrow in FIG. 6A, in the equalization of the group 62, only energy transfer from the power cell 11d to the power cell 11c is performed. Due to the movement of the energy, the inter-terminal voltage values of all the power cells 11a to 11d belonging to the group 62 are equalized with high accuracy so as to coincide with the average value 61 within an allowable range.
 図6(b)に表すグループ62では、4つの電源セル11a~11dのなかで中央に位置に隣接する2つの電源セル11b及び11cの端子間電圧値は平均値61と許容範囲内で一致している。しかし、その2つの電源セル11b、及び11cの両側には、端子間電圧値が平均値61と許容範囲内で一致しない電源セルa及び11dが存在する。そのため、図6(b)中の矢印で表すように、グループ62の均等化では、例えば電源セル11dから電源セル11cへのエネルギーの移動→電源セル11cから電源セル11bへのエネルギーの移動→電源セル11bから電源セル11aへのエネルギーの移動、の順にエネルギーの移動が行われることとなる。そのような順序で行われるエネルギーの移動により、グループ62に属する全ての電源セル11a~11dの端子間電圧値は平均値61と許容範囲内で一致するように高精度に均等化される。 In the group 62 shown in FIG. 6B, among the four power cells 11a to 11d, the voltage values between the terminals of the two power cells 11b and 11c adjacent to the center in the center coincide with the average value 61 within an allowable range. ing. However, on both sides of the two power cells 11b and 11c, there are power cells a and 11d whose inter-terminal voltage values do not coincide with the average value 61 within an allowable range. Therefore, as shown by the arrow in FIG. 6B, in the equalization of the group 62, for example, the energy transfer from the power cell 11d to the power cell 11c → the energy transfer from the power cell 11c to the power cell 11b → the power source Energy transfer is performed in the order of energy transfer from the cell 11b to the power source cell 11a. By the energy transfer performed in this order, the voltage values between terminals of all the power cells 11a to 11d belonging to the group 62 are equalized with high accuracy so as to coincide with the average value 61 within an allowable range.
 図7は、本実施形態によるバランス制御処理のフローチャートである。次に図7を参照して、本実施形態によるバランス制御処理について詳細に説明する。 FIG. 7 is a flowchart of the balance control process according to this embodiment. Next, the balance control processing according to the present embodiment will be described in detail with reference to FIG.
 先ず、CPU23は、図3のS1で電圧監視部3から入力した各電池セル11の端子間電圧値を用いて、端子間電圧値の平均値61を計算する(S21)。次にCPU23は、計算した平均値61を各電池セル11の端子間電圧値と比較することにより、端子間電圧値が平均値61と許容範囲内で一致しない電池セル11(図7中「平均以上・以下のセル」と表記)を抽出する。その比較時には、抽出の対象となる電池セル11毎に、端子間電圧値と平均値61の差(電位差)を計算する(以上S22)。 First, the CPU 23 calculates an average value 61 of the inter-terminal voltage value using the inter-terminal voltage value of each battery cell 11 input from the voltage monitoring unit 3 in S1 of FIG. 3 (S21). Next, the CPU 23 compares the calculated average value 61 with the inter-terminal voltage value of each battery cell 11, so that the battery cell 11 whose terminal voltage value does not coincide with the average value 61 within the allowable range (“average” in FIG. 7). Extract the above and below cells). At the time of the comparison, the difference (potential difference) between the inter-terminal voltage value and the average value 61 is calculated for each battery cell 11 to be extracted (S22).
 電池セル11の抽出を行った後、CPU23は、電池1の全電池セル11を対象に、連続して直列に接続された数電池セル11(図7中「隣接した数セル」と表記)で計算した電位差の累計値が0になるように分けることでグループ化する(S23)。グループ化を行った後、CPU23は、各グループを均等化の制御単位として、グループ毎に、エネルギーの移動を行うべき電池セル11の範囲を決定する(S24)。 After extracting the battery cells 11, the CPU 23 uses several battery cells 11 (indicated as “adjacent several cells” in FIG. 7) that are continuously connected in series for all the battery cells 11 of the battery 1. Grouping is performed by dividing the cumulative value of the calculated potential difference so that it becomes 0 (S23). After grouping, CPU23 determines the range of the battery cell 11 which should perform energy transfer for every group by making each group into a control unit of equalization (S24).
 連続して直列に接続された数電池セル11の電位差の累計値が0、或いは0に近い値になるとは限らない。グループ62に属する電池セル11の上限数を大きくすれば、その電位差の累計値は0に近い値になる可能性が高くなる。しかし、均等化に要する時間は、グループ62に属する電池セル11の数が多くなるほど、より長くなる傾向にある。このことから、本実施形態では、上限数は比較的に小さい数に設定し、累計値をグループ62に属する電池セル11の数で割った値がより小さくなるように、言い換えればグループ平均値が平均値61とより近くなるようにグループ化を行うようにしている。それにより、グループ62で均等化を行う基準は、実際にはグループ平均値となる。平均値61を実際に基準として用いるのは、平均値61とグループ平均値が許容範囲内で一致するように理想的にグループ化を行えた場合となる。 The cumulative value of the potential difference of several battery cells 11 connected in series continuously is not necessarily 0 or a value close to 0. If the upper limit number of the battery cells 11 belonging to the group 62 is increased, the cumulative value of the potential difference is likely to be close to zero. However, the time required for equalization tends to become longer as the number of battery cells 11 belonging to the group 62 increases. Therefore, in the present embodiment, the upper limit number is set to a relatively small number so that the value obtained by dividing the cumulative value by the number of battery cells 11 belonging to the group 62 becomes smaller. Grouping is performed so as to be closer to the average value 61. Thereby, the standard for equalization in the group 62 is actually the group average value. The average value 61 is actually used as a reference when the grouping can be performed ideally so that the average value 61 and the group average value match within an allowable range.
 グループ62に属する電池セル11のなかで何れかの端に位置する電池セル11の端子間電圧値がグループ平均値に許容範囲内で一致する場合、その端に位置する電池セル11はエネルギーの移動を行う対象から除外される。その端に位置する電池セル11と隣接する電池セル11の端子間電圧値がグループ平均値と許容範囲内で一致する場合には、その隣接する電池セル11もエネルギーの移動を行う対象から除外される(図6(a))。エネルギーの移動を行うべき電池セル11の範囲は、そのようにエネルギーの移動を行う対象から除外すべき電池セル11を除外する形で設定される。 When the inter-terminal voltage value of the battery cell 11 located at either end among the battery cells 11 belonging to the group 62 matches the group average value within an allowable range, the battery cell 11 located at that end moves the energy. Are excluded from the target. When the voltage value between the terminals of the battery cell 11 located at the end and the adjacent battery cell 11 matches the group average value within the allowable range, the adjacent battery cell 11 is also excluded from the energy transfer target. (FIG. 6A). The range of the battery cell 11 that should perform the energy transfer is set in such a manner that the battery cell 11 that should be excluded from the target for the energy transfer is excluded.
 グループ62毎に、エネルギーの移動を行うべき電池セル11の範囲を決定すると、次にCPU23は、グループ62毎に、エネルギーを移動させる2つの電池セル11(図7中「隣接セル対」と表記)の電位差から、対応するスイッチング素子25のスイッチング制御を行ううえでのパルス周波数、及びその1周期におけるデューティ比を計算し設定する(S25)。その後、CPU23は、グループ62毎に、エネルギーの移動を行うべき電池セル11の範囲を対象にしたスイッチング制御を実行し、複数のスイッチング素子25を順次オン/オフさせることによるエネルギーの移動を行う(S26)。全てのグループ62のスイッチング制御を終了した後、このバランス制御処理が終了する。 When the range of the battery cells 11 to which the energy transfer is to be performed is determined for each group 62, the CPU 23 then describes two battery cells 11 to which the energy is transferred for each group 62 (in FIG. 7, "adjacent cell pair"). ) Is used to calculate and set the pulse frequency and the duty ratio in one cycle for switching control of the corresponding switching element 25 (S25). Thereafter, the CPU 23 performs switching control for the range of the battery cell 11 to which energy transfer is to be performed for each group 62, and moves energy by sequentially turning on / off the plurality of switching elements 25 ( S26). After the switching control of all the groups 62 is finished, this balance control process is finished.
 グループ62単位の均等化により、異なる2つの電池セル11間のエネルギーの移動が順次、行われることから、2つの電池セル11間の電位差はそれまでに行われたエネルギーの移動結果、及びその後に行うべきエネルギーの移動を考慮したものとなる。例えば図6(b)に表すグループ62では、電池セル11c、及び11bの各端子間電圧値はほぼ等しいが、電池セル11c、及び11bを介して、電池セル11dのエネルギーを電池セル11aまで移動させなければならない。このことから、電池セル11d及び11c間のエネルギーの移動を最初に行う場合、電池セル11d及び11c間の電位差は、それらの間の電位差の他に、電池セル11dから移動させるべきエネルギー量を考慮したものとなる。電池セル11c及び11b間の電位差は、エネルギーの移動後の電池セル11cの端子間電圧値と、エネルギーの移動を行う前の電池セル11bの端子間電圧値との差の他に、電池セル11cから移動させるべきエネルギー量を考慮したものとなる。そのような電位差を想定して、2つの電池セル11間のエネルギーの移動を行うことにより、各グループ62に属する電池セル11は、端子間電圧値が平均値61、或いはグループ平均値と一致するように均等化される。 Since the energy transfer between two different battery cells 11 is performed sequentially by equalization of 62 group units, the potential difference between the two battery cells 11 is the result of the energy transfer performed so far, and thereafter It takes into account the energy transfer to be performed. For example, in the group 62 shown in FIG. 6B, the voltage values between the terminals of the battery cells 11c and 11b are substantially equal, but the energy of the battery cell 11d is moved to the battery cell 11a via the battery cells 11c and 11b. I have to let it. From this, when the energy transfer between the battery cells 11d and 11c is performed first, the potential difference between the battery cells 11d and 11c takes into account the amount of energy to be transferred from the battery cell 11d in addition to the potential difference between them. Will be. The potential difference between the battery cells 11c and 11b is not limited to the difference between the voltage value between the terminals of the battery cell 11c after the energy transfer and the voltage value between the terminals of the battery cell 11b before the energy transfer. It takes into account the amount of energy to be transferred from. Assuming such a potential difference, by performing energy transfer between the two battery cells 11, the battery cells 11 belonging to each group 62 have an inter-terminal voltage value that matches the average value 61 or the group average value. So that it is equalized.
 なお、本実施形態では、各電池セル11の端子間電圧値を平均値61に近づけるように均等化を行っていることから、均等化を行う指標として電池セル11の端子間電圧を採用している。しかし、指標は、電圧以外の状態量であっても良い。つまり指標はSOCであっても良く、充電残容量、放電容量、或いは電荷量であっても良い。電池セル11の充電残容量、放電容量、及び電荷量は、電池セル11からの電荷の流れ、及び電池セル11への電荷の流れを監視することで特定できることから、それら電荷の流れの監視結果、或いはその監視結果を用いて得られる積算結果を状態情報として採用しても良い。 In this embodiment, since the equalization is performed so that the inter-terminal voltage value of each battery cell 11 approaches the average value 61, the inter-terminal voltage of the battery cell 11 is adopted as an index for equalization. Yes. However, the index may be a state quantity other than voltage. That is, the index may be SOC, remaining charge capacity, discharge capacity, or charge amount. Since the remaining charge capacity, the discharge capacity, and the charge amount of the battery cell 11 can be specified by monitoring the flow of charge from the battery cell 11 and the flow of charge to the battery cell 11, the charge flow monitoring results Alternatively, an integration result obtained using the monitoring result may be adopted as the status information.
 また、本実施形態では、グループ平均値が平均値61と一致させるようにグループ化を行っているが、グループ化は予め定めた規則に沿って行うようにしても良い。つまりグループ化は、グループ平均値を平均値61に近づけることを重視せずに行っても良い。 In this embodiment, grouping is performed so that the group average value matches the average value 61, but the grouping may be performed according to a predetermined rule. That is, the grouping may be performed without placing importance on bringing the group average value close to the average value 61.
 ここで、図8及び図9を参照し、予め定めた規則に沿ったグループ化の変形例について具体的に説明する。図8は、グループ化方法の変形例とグループで行われる均等化を説明する図である。図9は、グループ化方法の変形例が適用された場合のバランス制御処理のフローチャートである。 Here, with reference to FIG. 8 and FIG. 9, a modification of grouping according to a predetermined rule will be described in detail. FIG. 8 is a diagram for explaining a modification of the grouping method and equalization performed in the group. FIG. 9 is a flowchart of balance control processing when a modification of the grouping method is applied.
 図8に表すグループ化方法の変形例は、電池1全体の電池セル11を2つのグループ62に分ける場合のものである。グループ62で行われる均等化の手順を説明するために、図8では、時刻t0~t3での電池1の状態を各電池セル11の端子間電圧値により表している。時刻t0の状態は均等化を開始する前の状態(初期状態)、時刻t1の状態は均等化を開始した後の状態、時刻t2の状態は時刻t1より後の状態、時刻t3の状態は均等化終了時の状態、をそれぞれ表している。その図8に表すように、変形例では、エネルギーの移動は電池1の両端に位置する電池セル11からそれぞれ内側に向かって順次、行うことを想定している。 8 is a case where the battery cells 11 of the entire battery 1 are divided into two groups 62. The modification of the grouping method shown in FIG. In order to explain the equalization procedure performed in the group 62, in FIG. 8, the state of the battery 1 at times t0 to t3 is represented by the inter-terminal voltage value of each battery cell 11. The state at time t0 is the state before starting equalization (initial state), the state at time t1 is the state after starting equalization, the state at time t2 is the state after time t1, and the state at time t3 is equal. Represents the state at the end of conversion. As shown in FIG. 8, in the modification, it is assumed that the energy transfer is sequentially performed inward from the battery cells 11 located at both ends of the battery 1.
 電池1全体の電池セル11は、その数に応じて、同じ数、或いはほぼ同じ数で2つのグループ62に分けられる。時刻t0の状態で描いた破線は、2つのグループ62の境界を表している。 The battery cells 11 of the entire battery 1 are divided into two groups 62 with the same number or almost the same number according to the number. The broken line drawn in the state at time t0 represents the boundary between the two groups 62.
 そのように2つのグループに分ける場合、各グループ62に属する電池セル11の実際の数は比較的に大きくなる。そのため、各グループ62のグループ平均値は平均値61と高い精度で一致していると見なすことができる。それにより、電池1の電池セル11の端子間電圧値は、時刻t1及びt2の状態で表すように、電池1の両端から順次、平均値61と一致するように均等化される。均等化終了時には、全ての電池セル11の端子間電圧値は平均値61と高い精度で一致している状態となる。時刻t2の状態は、各グループ62で2つの電池セル11間の最後のエネルギーの移動を行う前の状態である。 In such a case of dividing into two groups, the actual number of battery cells 11 belonging to each group 62 becomes relatively large. Therefore, it can be considered that the group average value of each group 62 matches the average value 61 with high accuracy. Thereby, the voltage values between the terminals of the battery cells 11 of the battery 1 are equalized so as to coincide with the average value 61 sequentially from both ends of the battery 1 as represented by the states at the times t1 and t2. At the end of equalization, the voltage values between the terminals of all the battery cells 11 are in a state where the average value 61 coincides with high accuracy. The state at time t <b> 2 is a state before the last energy transfer between the two battery cells 11 in each group 62.
 図8に表すようにグループ化を行い、エネルギーの移動を行うようにした場合、図3のS4として、例えば以下のようなバランス制御処理を実行すれば良い。そのバランス制御処理について、図9を参照して詳細に説明する。 When grouping is performed as shown in FIG. 8 and energy is transferred, for example, the following balance control process may be executed as S4 of FIG. The balance control process will be described in detail with reference to FIG.
 先ず、CPU23は、図3のS1で電圧監視部3から入力した各電池セル11の端子間電圧値を用いて、端子間電圧値の平均値61を計算する(S31)。次にCPU23は、エネルギーを移動させる2つの電池セル11間を決定し、その2つの電池セル11間の電位差から、対応するスイッチング素子25のスイッチング制御を行ううえでのパルス周波数、及びその1周期におけるデューティ比を計算し設定する(S32)。その後、CPU23は、設定したパルス周波数、及びデューティ比を用いて、決定した2つの電池セル11間でエネルギーを移動させるためのスイッチング制御を実行する(S33)。2つの電池セル11間の電位差は、上記のように、それまでに行われたエネルギーの移動結果、及びその後に行うべきエネルギーの移動を考慮したものである。 First, the CPU 23 calculates an average value 61 of the inter-terminal voltage values using the inter-terminal voltage value of each battery cell 11 input from the voltage monitoring unit 3 in S1 of FIG. 3 (S31). Next, the CPU 23 determines the distance between the two battery cells 11 to which the energy is transferred, the pulse frequency for performing the switching control of the corresponding switching element 25 from the potential difference between the two battery cells 11, and one cycle thereof. The duty ratio is calculated and set (S32). Then, CPU23 performs switching control for moving energy between the determined two battery cells 11 using the set pulse frequency and duty ratio (S33). As described above, the potential difference between the two battery cells 11 considers the result of energy transfer performed so far and the energy transfer to be performed thereafter.
 スイッチング制御を実行したCPU23は、次に、全ての2つの電池セル11間(図9中「全てのセル対」と表記)がバランスしたか否か判定する(S34)。エネルギーの移動は、電池1の両端に位置する電池セル11をそれぞれ起点とし、グループ62の境界に接する電池セル11をそれぞれ終点とする。それにより、各グループ62の均等化は、終点となる電池セル11を含む2つの電池セル11間のエネルギーの移動を行うことで終了する。このことから、S34の判定は、直前にS33で実行したスイッチング制御により2つのグループ62で終点となる電池セル11を含む2つの電池セル11間のエネルギーの移動が終了していない場合、NOとなる。その場合、上記S32に戻り、エネルギーを移動させる2つの電池セル11間の決定が行われる。 CPU23 which performed switching control next determines whether between all the two battery cells 11 (it describes with "all the cell pairs" in FIG. 9) was balanced (S34). The movement of energy starts from the battery cells 11 positioned at both ends of the battery 1 and ends at each battery cell 11 in contact with the boundary of the group 62. Thereby, equalization of each group 62 is complete | finished by performing the movement of the energy between the two battery cells 11 including the battery cell 11 used as an end point. From this, the determination in S34 is NO when the transfer of energy between the two battery cells 11 including the battery cells 11 that are the end points in the two groups 62 is not completed by the switching control executed in S33 immediately before. Become. In that case, it returns to said S32 and the determination between the two battery cells 11 which transfers energy is performed.
 一方、直前にS33で実行したスイッチング制御により2つのグループ62で終点となる電池セル11を含む2つの電池セル11間のエネルギーの移動が終了した場合、S34の判定はYESとなる。その場合、電池1の全ての電池セル11を対象にした均等化が完了したとして、ここでバランス制御処理が終了する。 On the other hand, when the transfer of energy between the two battery cells 11 including the battery cells 11 that are the end points in the two groups 62 is completed by the switching control executed immediately before in S33, the determination in S34 is YES. In that case, the balance control process ends here, assuming that equalization for all the battery cells 11 of the battery 1 is completed.
 上記のように、図3に表す電池セル監視処理では、バランス制御処理の実行後、S1に戻ることから、各電池セル11の端子間電圧値の測定結果を用いた均等化の結果の確認が行われることとなる。それにより、1回のバランス制御処理の実行により均等化が適切に行えなかった場合、再度、バランス制御処理が実行されることとなる。しかし、均等化は、図8に表すように高精度に行えることから、再度のバランス制御処理の実行は非常に高い確率で回避される。 As described above, in the battery cell monitoring process shown in FIG. 3, after the balance control process is executed, the process returns to S <b> 1, so that the confirmation of the equalization result using the measurement result of the voltage value between the terminals of each battery cell 11 is confirmed. Will be done. Thereby, when equalization cannot be appropriately performed by executing the balance control process once, the balance control process is executed again. However, since equalization can be performed with high accuracy as shown in FIG. 8, execution of the balance control process again is avoided with a very high probability.
 上記変形例では、グループ62の境界に接する電池セル11を終点とするエネルギーの移動を行うようにしているが、その境界に接する電池セル11を終点としなくとも良い。その境界に接する電池セル11の端子間電圧値が平均値61と許容範囲内で一致するような場合、その電池セル11と直接、接続された電池セル11を終点としても良い(図6(a))。境界に接する電池セル11、及びそれに連なる1つ以上の電池セル11の端子間電圧値が平均値61と許容範囲内で一致するような場合、それらの電池セル11を全てエネルギーの移動を行う対象から除外しても良い。 In the above modification, energy is transferred with the battery cell 11 in contact with the boundary of the group 62 as the end point, but the battery cell 11 in contact with the boundary may not be set as the end point. When the inter-terminal voltage value of the battery cell 11 in contact with the boundary coincides with the average value 61 within an allowable range, the battery cell 11 directly connected to the battery cell 11 may be the end point (FIG. 6A )). When the voltage value between terminals of the battery cell 11 in contact with the boundary and the one or more battery cells 11 connected to the battery cell coincides with the average value 61 within an allowable range, all of the battery cells 11 are subjected to energy transfer. May be excluded.
 上記変形例を含む本実施形態では、各グループ62内でエネルギーの移動を行っているが、グループ62間でエネルギーの移動を必要に応じて行うようにしても良い。そのようなグループ62間のエネルギーの移動を必要に応じて行うようにした場合、グループ62間のグループ平均値のばらつきにも対応することができる。このため、平均値61を考慮したグループ化を行うか否かに係わらず、各グループ62の均等化を高精度に行えるようになる。 In this embodiment including the above-described modification, energy is transferred within each group 62, but energy may be transferred between groups 62 as necessary. When such energy transfer between the groups 62 is performed as necessary, it is possible to cope with variations in group average values between the groups 62. For this reason, the equalization of each group 62 can be performed with high accuracy regardless of whether or not the grouping considering the average value 61 is performed.

Claims (4)

  1.  直列に接続されている複数の電池セルを備えた電池を対象に、各電池セル間の充電状態の差を低減する均等化を行う均等化装置において、
     複数のスイッチング素子を有し、スイッチング素子のオン/オフにより、隣接する2つの電池セル間別に、該2つの電池セル間でエネルギーを移動できる移動手段と、
     前記移動手段に設けられたスイッチング素子を個別にオン/オフできる駆動手段と、
     各電池セルの充電状態を表す状態情報を取得する情報取得手段と、
     前記情報取得手段が電池セル毎に取得した状態情報を基に、前記移動手段を用いた前記エネルギーの移動を行うべきか否か判定する判定手段と、
     前記エネルギーの移動を行うべきと前記判定手段が判定した場合に、前記複数の電池セルを2つ以上のグループに分け、該グループ毎に、前記駆動手段を制御して、前記移動手段を用いた前記均等化を行う制御手段と、
     を具備することを特徴とする均等化装置。
    In an equalization apparatus that performs equalization to reduce the difference in the state of charge between each battery cell, targeting a battery including a plurality of battery cells connected in series,
    A moving means having a plurality of switching elements and capable of transferring energy between the two battery cells separately between two adjacent battery cells by turning on / off the switching elements;
    Driving means capable of individually turning on / off switching elements provided in the moving means;
    Information acquisition means for acquiring state information representing the state of charge of each battery cell;
    A determination unit that determines whether or not to move the energy using the moving unit, based on the state information acquired for each battery cell by the information acquiring unit;
    When the determination unit determines that the energy transfer should be performed, the plurality of battery cells are divided into two or more groups, and the driving unit is controlled for each group to use the movement unit. Control means for performing the equalization;
    An equalizing device comprising:
  2.  前記制御手段は、前記情報取得手段が電池セル毎に取得した状態情報から、前記複数の電池セル全体の平均の充電状態を求め、該平均の充電状態を基に、前記グループ毎の前記平均化を行う、
     ことを特徴とする請求項1記載の均等化装置。
    The control means obtains an average state of charge of the entire plurality of battery cells from the state information acquired for each battery cell by the information acquisition means, and based on the average state of charge, the averaging for each group I do,
    The equalizing apparatus according to claim 1, wherein:
  3.  前記制御手段は、前記情報取得手段が電池セル毎に取得した状態情報から、前記複数の電池セル全体の平均の充電状態を求め、該平均の充電状態を基に、該複数の電池セルを2つ以上のグループに分ける、
     ことを特徴とする請求項1、または2記載の均等化装置。
    The control means obtains an average charge state of the plurality of battery cells from the state information acquired for each battery cell by the information acquisition means, and determines the plurality of battery cells based on the average charge state. Divided into two or more groups,
    The equalizing apparatus according to claim 1 or 2, characterized in that
  4.  直列に接続されている複数の電池セルを備えた電池を対象に、各電池セル間の充電状態の差を低減する均等化を行う均等化装置において、
     複数のスイッチング素子を有し、スイッチング素子のオン/オフにより、隣接する2つの電池セル間別に、該2つの電池セル間でエネルギーを移動できる移動手段と、
     前記移動手段に設けられたスイッチング素子を個別にオン/オフできる駆動手段と、
     各電池セルの充電状態を表す状態情報を取得する情報取得手段と、
     前記情報取得手段が電池セル毎に取得した状態情報を基に、前記移動手段を用いた前記エネルギーの移動を行うべきか否か判定する判定手段と、
     前記エネルギーの移動を行うべきと前記判定手段が判定した場合に、前記情報取得手段が電池セル毎に取得した状態情報から、前記複数の電池セル全体の平均の充電状態を求め、該平均の充電状態を基に、前記駆動手段を制御して、前記移動手段を用いた前記均等化を行う制御手段と、
     を具備することを特徴とする均等化装置。
    In an equalization apparatus that performs equalization to reduce the difference in the state of charge between each battery cell, targeting a battery including a plurality of battery cells connected in series,
    A moving means having a plurality of switching elements and capable of transferring energy between the two battery cells separately between two adjacent battery cells by turning on / off the switching elements;
    Driving means capable of individually turning on / off switching elements provided in the moving means;
    Information acquisition means for acquiring state information representing the state of charge of each battery cell;
    A determination unit that determines whether or not to move the energy using the moving unit, based on the state information acquired for each battery cell by the information acquiring unit;
    When the determination unit determines that the energy transfer should be performed, an average charging state of the plurality of battery cells is obtained from the state information acquired for each battery cell by the information acquisition unit, and the average charging is performed. Control means for controlling the driving means based on the state and performing the equalization using the moving means;
    An equalizing device comprising:
PCT/JP2012/078921 2012-01-31 2012-11-08 Balancing device WO2013114696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012018382A JP5482809B2 (en) 2012-01-31 2012-01-31 Equalization equipment
JP2012-018382 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013114696A1 true WO2013114696A1 (en) 2013-08-08

Family

ID=48904761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078921 WO2013114696A1 (en) 2012-01-31 2012-11-08 Balancing device

Country Status (2)

Country Link
JP (1) JP5482809B2 (en)
WO (1) WO2013114696A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030569A1 (en) * 2012-08-20 2014-02-27 株式会社豊田自動織機 Cell balancing device and cell balancing method
EP3073603A4 (en) * 2013-11-18 2017-08-30 FDK Corporation Balance correction device and electricity storage device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745633B1 (en) * 2014-10-20 2017-06-20 주식회사 엘지화학 Apparatus for Cell Balancing by Connecting Reference Battery in Consecutive Order and Method thereof
JP6716279B2 (en) * 2016-02-15 2020-07-01 キヤノン株式会社 Electronic device and power control program for electronic device
KR102176567B1 (en) * 2018-06-22 2020-11-09 두산중공업 주식회사 Cell balancing method of energy storage system
EP4274052A1 (en) * 2020-12-29 2023-11-08 HBL Corporation Series-type charging and discharging apparatus and method without current interruption
KR102583291B1 (en) * 2020-12-31 2023-09-26 한화솔루션 주식회사 battery auto balancing device and method for energy storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
JP2003513605A (en) * 1999-11-05 2003-04-08 パワー デザイナーズ リミテッド ライアビリティ カンパニー Modular battery charge equalizer and control method
JP2008042970A (en) * 2006-08-01 2008-02-21 Fdk Corp Multiple serial storage cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
JP2003513605A (en) * 1999-11-05 2003-04-08 パワー デザイナーズ リミテッド ライアビリティ カンパニー Modular battery charge equalizer and control method
JP2008042970A (en) * 2006-08-01 2008-02-21 Fdk Corp Multiple serial storage cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030569A1 (en) * 2012-08-20 2014-02-27 株式会社豊田自動織機 Cell balancing device and cell balancing method
EP3073603A4 (en) * 2013-11-18 2017-08-30 FDK Corporation Balance correction device and electricity storage device

Also Published As

Publication number Publication date
JP5482809B2 (en) 2014-05-07
JP2013158190A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5482809B2 (en) Equalization equipment
US10270262B2 (en) Battery control method and apparatus, and battery pack
JP5975169B2 (en) Charge / discharge device, charge / discharge control method, and program
JP5919560B2 (en) Equalizing circuit, power supply system, and vehicle
CN105518924B (en) Battery apparatus and electric vehicle
JP5953349B2 (en) Charger and electrical system
JP2013169055A (en) Voltage balance control device
WO2012157747A1 (en) Method for controlling battery assembly and control device
JP6102746B2 (en) Storage battery device and charge control method
WO2015178075A1 (en) Battery control device
JP6439866B2 (en) Power storage device and connection control method
JP5861063B2 (en) Power storage device and power supply system
JP2013121302A (en) Battery charging amount control device and related method
JP2014171323A (en) Cell balance device
JP2013116006A (en) Battery equalization device and method
JP2016025782A (en) Capacity equalization device
WO2013114757A1 (en) Battery equalization device and method
JP2014147167A (en) Cell balance control device and cell balance control method
KR101583946B1 (en) Battery charging method
WO2015133401A1 (en) Control unit, storage battery system, battery cell balancing method, and program
JP2019161730A (en) Cell balance control device and cell balance control system
JP2016154423A (en) Voltage balance device
Arasaratnam et al. Switched-capacitor cell balancing: A fresh perspective
JP2015180131A (en) Equalization device
JP7076191B2 (en) Battery charging method and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867685

Country of ref document: EP

Kind code of ref document: A1