WO2013114757A1 - Battery equalization device and method - Google Patents

Battery equalization device and method Download PDF

Info

Publication number
WO2013114757A1
WO2013114757A1 PCT/JP2012/083036 JP2012083036W WO2013114757A1 WO 2013114757 A1 WO2013114757 A1 WO 2013114757A1 JP 2012083036 W JP2012083036 W JP 2012083036W WO 2013114757 A1 WO2013114757 A1 WO 2013114757A1
Authority
WO
WIPO (PCT)
Prior art keywords
stack
voltage
battery
switching element
equalization
Prior art date
Application number
PCT/JP2012/083036
Other languages
French (fr)
Japanese (ja)
Inventor
慎司 広瀬
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013114757A1 publication Critical patent/WO2013114757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery equalization apparatus and method for controlling voltage equalization of an assembled battery configured by connecting a plurality of battery cells.
  • a so-called hybrid car, plug-in hybrid car, hybrid vehicle, hybrid electric vehicle or the like, which is equipped with a motor (electric motor) as a power source in addition to an engine or a transport machine (hereinafter referred to as “vehicle etc.”) is practical It has become. Furthermore, an electric vehicle that does not include an engine and drives the vehicle only by a motor is being put into practical use.
  • a power source for driving these motors a lithium ion battery having a small size and a large capacity has been frequently used. And in such a use, a some battery cell is connected in series, for example, a battery block is comprised, and also it may be supplied as an assembled battery connected combining this battery block.
  • a high voltage necessary for driving the motor of the vehicle is obtained by the series connection of the battery cells, and a necessary current capacity and a further high voltage can be obtained by connecting the battery blocks in combination in series and parallel.
  • the characteristics of the lithium ion battery or the like greatly change depending on the temperature, and the remaining capacity and charging efficiency of the battery change greatly depending on the temperature of the environment where the battery is used. This is especially true in environments where automobiles are used.
  • an inductor (converter) coupling method is known as a specific first conventional technique of the active method.
  • the first connection terminal of the inductor is connected to each first connection terminal to which the adjacent first and second battery cells are connected in common.
  • the first switching element is connected between the second connection terminal of the first cell and the second connection terminal of the inductor.
  • the second switching element is connected between the second connection terminal of the second cell and the second connection terminal of the inductor.
  • the first switching element is turned on to discharge energy from the first battery cell and charge the inductor
  • the operation of repeatedly turning off the first switching element and turning on the second switching element to charge the energy of the inductor to the second battery cell is repeatedly executed.
  • the voltage of the second battery cell is higher than the voltage of the first battery cell
  • first the second switching element is turned on to discharge energy from the second battery cell and charge the inductor
  • the operation of turning off the second switching element and turning on the first switching element to charge the energy of the inductor to the first battery cell is repeatedly executed.
  • both the first and second switching elements are turned off, and the equalization operation for the adjacent first and second battery cells is completed. .
  • the inductor coupling method moves energy through the inductor based on the potential difference between two adjacent battery cells, energy exchange efficiency and accuracy are good, and if the voltage of each battery cell can be monitored with a predetermined accuracy, the accuracy It is possible to equalize voltages between adjacent battery cells with an accuracy according to the above.
  • this inductor coupling method has a problem that it takes a long balance time when the number of battery cells connected in series is large because energy is exchanged between adjacent cells. For example, when battery cells 1, 2, 3, and 4 are connected in series in that order, when the voltage of battery cell 1 is low, the energy of battery cell 2 is transferred to battery cell 1, and the voltage of battery cell 2 is Since it decreases, the energy of the battery cell 3 is transferred to the battery cell 2 and the energy is transferred in order, which takes time.
  • An inductor + transformer system is known as the second conventional technique of the active system (for example, the technique described in Patent Document 1).
  • this system in addition to the circuit configuration of the inductor coupling system, several consecutive battery cells in the series of battery cells are combined as a stack, and each winding of the transformer is connected to both terminals of each stack.
  • the voltage across each stack is equalized in units of a stack consisting of several battery cells, and the voltage between the battery cells in each stack is It is equalized by the inductor coupling method.
  • the equalization time can be shortened compared to the inductor coupling method.
  • the second prior art since the number of windings of the transformer usually varies by several percent, in the second prior art, power is not supplied equally between the stacks due to the variation between the windings, resulting in variations in the voltage between the stacks. End up. For this reason, the second prior art has a problem in that it is not possible to achieve equalization accuracy of battery cells of about several tens of millivolts due to variations between transformer windings.
  • the present invention aims to improve the accuracy of equalization while taking advantage of the feature of shortening the equalization time by the transformer coupling method.
  • An example of an aspect is configured as a battery equalizing device that equalizes voltages of a plurality of battery cells in an assembled battery configured by connecting a plurality of battery cells in series, and a predetermined number of batteries among the plurality of battery cells
  • a transformer balance circuit for performing individual equalization operations a voltage monitoring unit for monitoring and detecting the voltage of each battery cell, and a stack based on the voltage of each battery cell detected by the voltage monitoring unit Voltage is determined, a stack on which the equalization operation is to be executed is determined based on the calculated voltage, and the switch corresponding to the determined stack is determined.
  • a balance control unit for executing the operation of the equalization instructs the switching operation corresponding to the operation of the equalization relative quenching element.
  • FIG. 1 is a system configuration diagram of the present embodiment.
  • a plurality of battery cells 102 are connected in series to form an assembled battery 101.
  • the assembled battery 101 is configured as a set of stacks 103 including a predetermined number of battery cells 102 continuously connected in series.
  • the transbalance circuit 105 is a circuit that equalizes the voltage between the stacks 103 by causing the stacks 103 to discharge or charge energy. More specifically, the transformer balance circuit 105 performs an individual equalization operation via the switching element 110, the transformer 109, and the diode 111, which is a rectifier circuit, for each stack 103.
  • both terminals of the assembled battery 101 are connected to the primary winding of each transformer 109 via a switching element 110 connected to the transformer 109. Further, both terminals of the stack 103 are connected to the secondary winding of the transformer 109 via a diode 111 which is a rectifier circuit.
  • the switch control unit 108 in the transformer balance circuit 105 is an oscillation circuit that oscillates a pulse signal having a predetermined frequency and duty ratio designated by the DSP 107 described later.
  • Each switching element 110 is, for example, an FET (field effect transistor), and performs a switching operation by a pulse signal from the switch control unit 108. With this switching operation, for example, if the average voltage for each stack 103 calculated from the total voltage of the assembled battery 101 is higher than the voltage across the stack 103 connected to each switching element 110, the voltage between the two becomes equal. Until that time, the stack 103 is charged via the secondary winding of the transformer 109 and the diode 111. Based on this charging operation, the equalizing operation of the stack 103 is executed.
  • the converter balance circuit 104 transmits energy discharged from one or more of the battery cells 102 in the stack 103 to the battery cells 102 in the stack 103.
  • the voltage of the battery cells 102 in the stack 103 is equalized by charging one or more other battery cells.
  • the converter balance circuit 104 charges power discharged from each battery cell 102 in the stack 103 to adjacent battery cells in the stack 103 via a circuit including a switching element and an inductor.
  • the voltage monitoring unit 106 monitors the voltage of each battery cell 102 and detects it as a digital signal value.
  • a digital signal processor (DSP: Digital Signal Processor: hereinafter referred to as “DSP”) 107 functions as a balance control unit, and a digital signal based on the voltage digital signal value of each battery cell 102 detected by the voltage monitoring unit 106. Depending on the processing, either converter balance circuit 104 or transformer balance circuit 105 is selected and operated.
  • the DSP 107 calculates the voltage of the stack 103 based on the voltage of each battery cell 102 detected by the voltage monitoring unit 106. Then, the DSP 107 determines the stack 103 on which the equalization operation is to be performed based on the calculated voltage. The DSP 107 instructs the switching element 110 corresponding to the determined stack 103 to perform the equalization operation by instructing the switching operation corresponding to the equalization operation. For example, the DSP 107 supplies a pulse signal designating a frequency and a duty ratio to the switching element 110 in order to perform charging by applying a predetermined voltage to both ends of the determined stack 103 via the transformer 109.
  • the DSP 107 calculates the voltage of the entire assembled battery 101 based on the voltage of each battery cell 103 detected by the voltage monitoring unit 106, and divides the voltage by the number of stacks 103 in the assembled battery 101. To calculate the stack average voltage. If the DSP 107 determines that the voltage calculated for the stack 103 is lower than the stack average voltage for each stack 103, the DSP 107 instructs the switching control unit 108 in the transbalance circuit 105 to switch the switching element corresponding to the stack 103. The switching operation by 110 is instructed. Specifically, the DSP 107 gives identification information of the switching element 110 that should output a pulse signal to the switch control unit 108 and specifies the frequency and duty ratio of the pulse signal.
  • the switch control unit 108 in the transformer balance circuit 105 outputs a pulse signal having a specified frequency and duty ratio to the specified switching element 110.
  • the designated switching element 110 starts a switching operation, and each transformer in the stack 103 to which the secondary winding of the transformer 109 is connected via the transformer 109 and the diode 111 to which the switching element 110 is connected. Charging to the battery cell 102 is started.
  • the DSP 107 determines that the voltage calculated for the stack 103 is higher than the stack average voltage for each stack 103, the DSP 107 performs switching by the switching element 110 corresponding to the stack 103 to the transbalance circuit 105. Do not instruct the operation.
  • the DSP 107 ends the equalization operation for the stack 103, and other remaining unprocessed stacks 103 are left. On the other hand, the same equalization operation is executed.
  • the transformer balance circuit 105 a circuit including the switching element 110, the transformer 109, and the diode 111 is individually provided for each stack 103.
  • the DSP 107 performs equalization control so that the voltage of the stack 103 is equal to the stack average voltage for each stack 103, the frequency and duty of the pulse signal applied to the switching element 110 corresponding to the stack 103 are determined. Determine the ratio precisely. As a result, the voltage charged in each stack 103 can be controlled with high accuracy.
  • the stack 103 and the voltage monitoring unit 106 are the same as the parts having the same numbers in FIG. 1.
  • the converter balance circuit 104 includes a balance circuit 201, a DSP (digital signal processor) 202, and a switch control unit 203.
  • the balance circuit 201 includes a plurality of inductors L and a plurality of switching elements SW for, for example, four battery cells 102 # 1 to # 4 constituting the stack 103. Specifically, the first terminal of the # 1 inductor L is connected to the common connection terminal of the # 1 and # 2 battery cells 102, and the # 2 inductor is connected to the common connection terminal of the # 2 and # 3 battery cells 102. The first terminal of L is connected to the common connection terminal of the battery cells 102 of # 3 and # 4, and the first terminal of the inductor L of # 3 is connected thereto.
  • the second terminal of the # 1 inductor L is the common connection terminal for the # 1 and # 2 switching elements SW, and the second terminal of the # 2 inductor L is the common for the # 3 and # 4 switching elements SW.
  • the second terminal of the # 3 inductor L is connected to the common connection terminal of the # 5 and # 6 switching elements SW.
  • the output terminal side of the # 1 battery cell 102 is connected to the single connection terminal of the # 1 switching element SW.
  • the common connection terminal of the battery cells 102 of # 1 and # 2 is connected to the switching element SW of # 2.
  • the common connection terminals of the # 2 and # 3 battery cells 102 are connected to the common connection terminals of the switching elements SW of # 2 and # 5.
  • the output terminal side of the # 4 battery cell 102 is connected to the single connection terminal of the # 6 switching element SW.
  • the switch control unit 203 is an oscillation circuit that oscillates a pulse signal having a predetermined frequency and duty ratio specified by the DSP 202.
  • Each switching element SW of # 1 to # 6 is, for example, an FET (field effect transistor), and performs a switching operation by a pulse signal from the switch control unit 203.
  • the voltage monitoring unit 106 detects the voltages at both ends of the battery cells 102 of # 1 to # 4 constituting the stack 103, and outputs the detected voltage to the DSP 107 of FIG. 1 and the DSP 202 of FIG. 2 as digital values.
  • the DSP 202 determines to perform balance control between the battery cells 102 of # 1 and # 2, for example, the DSP 202 designates a predetermined frequency and duty ratio to the switch control unit 203. Then, the switching elements SW of # 1 and # 2 are instructed to operate. For example, the DSP 202 determines that the voltage of the # 1 battery cell 102 is higher than the voltage of the # 2 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 1 battery cell 102 is accumulated in the # 1 inductor L by the on / off operation of the # 1 switching element SW.
  • the energy stored in the # 1 inductor L is charged in the # 2 battery cell 102 by the on / off operation of the # 2 switching element SW delayed by the duty ratio.
  • the DSP 202 determines that the voltage of the # 2 battery cell 102 is higher than the voltage of the # 1 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 2 battery cell 102 is accumulated in the # 1 inductor L by the on / off operation of the # 2 switching element SW. Subsequently, the energy stored in the # 1 inductor L is charged in the # 1 battery cell 102 by the on / off operation of the # 1 switching element SW delayed by the duty ratio.
  • the DSP 202 determines that the balance control between the battery cells 102 of # 2 and # 3 is to be performed, the DSP 202 designates a predetermined frequency and duty ratio to the switch control unit 203, and # 3 and # 4. Instructing the switching element SW to operate. For example, the DSP 202 determines that the voltage of the # 2 battery cell 102 is higher than the voltage of the # 3 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 2 battery cell 102 is accumulated in the # 2 inductor L by the on / off operation of the # 3 switching element SW.
  • the energy stored in the # 2 inductor L is charged in the # 3 battery cell 102 by the on / off operation of the # 4 switching element SW delayed by the duty ratio.
  • the DSP 202 determines that the voltage of the # 3 battery cell 102 is higher than the voltage of the # 2 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 3 battery cell 102 is accumulated in the # 2 inductor L by the on / off operation of the # 4 switching element SW. Subsequently, the energy stored in the # 2 inductor L is charged in the # 2 battery cell 102 by the on / off operation of the # 3 switching element SW delayed by the duty ratio.
  • the DSP 202 determines that the balance control between the battery cells 102 of # 3 and # 4 is to be performed, the DSP 202 designates a predetermined frequency and duty ratio to the switch control unit 203, and # 5 and # 6. Instructing the switching element SW to operate. For example, the DSP 202 determines that the voltage of the # 3 battery cell 102 is higher than the voltage of the # 4 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, energy discharged from the # 3 battery cell 102 is first stored in the # 3 inductor L by the on / off operation of the # 5 switching element SW.
  • the energy stored in the # 3 inductor L is charged in the # 4 battery cell 102 by the on / off operation of the # 6 switching element SW delayed by the duty ratio.
  • the DSP 202 determines that the voltage of the # 4 battery cell 102 is higher than the voltage of the # 3 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 4 battery cell 102 is accumulated in the # 3 inductor L by the on / off operation of the # 6 switching element SW. Subsequently, the energy stored in the # 3 inductor L is charged in the # 3 battery cell 102 by the on / off operation of the # 5 switching element SW delayed by the duty ratio.
  • the converter balance circuit 104 when it is determined that the balance control in the stack 103 is necessary as a result of the voltage monitoring of the battery cells 102 in the stack 103 by the voltage monitoring unit 106, # The inductors 1 to # 3 and the switching elements SW of # 1 to # 6 are sequentially selectively operated. As a result, balance control is sequentially performed between the battery cells 102 adjacent to each of the battery cells 102 of # 1 to # 4, and the operation is repeated, so that the operations of # 1 to # 4 in the stack 103 are finally performed. The voltage of the battery cell 102 becomes uniform.
  • the DSP 202 in FIG. 2 may be realized by the same DPS as the DSP 107 in FIG.
  • FIG. 3 is a diagram in which the circuit configuration corresponding to two stacks 103 is extracted from the transformer balance circuit 105 of FIG.
  • the voltage at both ends is measured by the voltage monitoring unit 104 in FIG. 1 for each of the stacks 103 of # 1 and # 2. Then, the DSP 107 in FIG. 1 compares each terminal voltage with a stack average voltage calculated in advance from the voltage of the entire assembled battery 101. As a result, when the DSP 107 determines that the voltages at both ends are lower than the stack average voltage in both the stacks 103 of # 1 and # 2, for example, both the # 1 and # 2 are given to the switch control unit 108. A switching operation in the switching element 110 is designated. Specifically, the DSP 107 instructs the switch control unit 108 to operate the switching elements 110 of # 1 and # 2, and each pulse signal supplied from the switch control unit 108 to each switching element 110.
  • the voltage states in the stacks 103 of # 1 and # 2 have different internal resistance values, temperature characteristics, and the like, so it is ideal to control them with individual voltage and current characteristics.
  • the voltage and current values supplied to each stack 103 are accurately determined by the frequency and duty ratio of the pulse signal supplied from the switch control unit 108 to each switching element 110 as shown below. Can do.
  • the number of turns of the primary winding of the transformer 109 is N1
  • the number of turns of the secondary winding 202 is N2.
  • the frequency of the pulse signal given from the switch control unit 108 to the switching element 110 is freq
  • the period is T
  • the pulse on time is t on
  • the duty ratio is D
  • the voltage on the primary winding side is Vin
  • the voltage on the secondary winding side is If the voltage is Vo, the following equation holds.
  • the charge / discharge output voltage Vo to the stack 103 can be changed. Further, since the output power is output based on the following equation, the output power can be changed by controlling the duty ratio.
  • Lp is the inductance of the primary winding and P is the output power.
  • switch control is performed from the supply voltage value, current allowable value, power to be output, and pulse frequency freq set corresponding to the voltage value of the stack 103 and the separately calculated internal resistance value.
  • the duty ratio of the pulse signal given to the switching element 110 from the unit 108 can be calculated. Or, conversely, the duty ratio may be arbitrarily determined and the pulse frequency freq may be determined.
  • the DSP 107 designates a set of values of the pulse frequency freq and the duty ratio D determined for each of the stacks # 1 and # 2 to the switch control unit 108 in FIG.
  • pulse signals having individual frequencies and duty ratios are output from the switch control unit 108 to the switching elements 110 of # 1 and # 2, respectively, and individual switching operations are executed.
  • the DSP 107 determines that the voltage across the stack 103 is higher than the stack average voltage in a certain stack 103, for example, the # 103 stack 103, the DSP 107 instructs the switch control unit 108 in the # 2 switching element 110. Switching operation is not specified. In this case, energy is supplied from the entire assembled battery 101 to, for example, the # 1 transformer 109 corresponding to the # 1 stack 103 during the equalization operation, whereby each battery cell 102 constituting the # 2 stack 103 is supplied. The discharge starts gradually. As a result, finally, the voltages of the stacks 103 constituting the assembled battery 101 are aligned.
  • FIG. 4 is a flowchart showing a control operation executed by the DSP 107 of FIG.
  • This control operation is realized as an operation in which a processor (not shown) in the DSP 107 executes a control program stored in a memory (not shown).
  • This control program is executed once or at a predetermined time interval, for example, when the vehicle equipped with the system of the present embodiment is turned off or when idling is started.
  • the DSP 107 in FIG. 1 calculates the voltage of the entire assembled battery 101 based on the voltage of each battery cell 103 detected by the voltage monitoring unit 106, and divides the voltage by the number of stacks 103 in the assembled battery 101. An average stack voltage is calculated (step S401).
  • the DSP 107 compares the voltage calculated by the voltage monitoring unit 106 for the stack 103 with the stack average voltage calculated in step S401 (step S402).
  • the DSP 107 determines, for the stack 103 that has been determined to have a voltage lower than the stack average voltage in the comparison process in step S ⁇ b> 402, the switching control unit 108 in the transbalance circuit 105, and the switching element 110 corresponding to the stack 103. Give identification information. Further, the DSP 107 designates the frequency and duty ratio of the pulse signal output from the switch control unit 108 to the switching element 110 (step S403). As a result, the switch control unit 108 in the transformer balance circuit 105 outputs a pulse signal having a specified frequency and duty ratio to the specified switching element 110.
  • the designated switching element 110 starts a switching operation, and each transformer in the stack 103 to which the secondary winding of the transformer 109 is connected via the transformer 109 and the diode 111 to which the switching element 110 is connected. Charging to the battery cell 102 is started.
  • the switching operation is stopped after a certain period of time (step S404).
  • the DSP 107 performs the switching operation by the switching element 110 corresponding to the stack 103 for the stack 103 that is determined to have a voltage higher than the stack average voltage in the comparison processing in step S402. No instruction is given (step S405). As a result, the stack 103 is discharged as described above.
  • the DSP 107 again compares the voltage calculated by the voltage monitoring unit 106 for the stack 103 with the stack average voltage calculated in step S401 for each stack 103 ( Step S406).
  • the DSP 107 For the stack 103 that is determined to have a voltage lower than the stack average voltage in the comparison process in step S ⁇ b> 406, the DSP 107 notifies the switching control unit 108 in the transbalance circuit 105 to the switching element 110 corresponding to the stack 103. Switching control is designated (steps S406 ⁇ S403).
  • the DSP 107 performs the switching operation by the switching element 110 corresponding to the stack 103 for the stack 103 that is determined to have a voltage higher than the stack average voltage in the comparison processing in step S406. Do not instruct. If the stack 103 has been switching until now, the DSP 107 stops the switching operation of the switching element 110 corresponding to the stack 103 (step S405).
  • the DSP 107 ends the equalization operation for the stack 103 that has been determined to have a voltage equivalent to the stack average voltage in the comparison processing in step S406.
  • the circuit configuration shown in FIG. 2 is adopted as the specific configuration of the converter balance circuit 104 in FIG. 1, but the configuration of the converter balance circuit 104 is not limited to this.
  • energy discharged from one or more battery cells 102 in the stack 103 is charged to one or more other battery cells 102 in the stack 103.
  • Any configuration of the converter balance circuit 104 may be employed as long as the voltage of the battery cells 102 in the stack 103 is equalized.

Abstract

The present invention improves equalization accuracy while making use of a characteristic of transformer coupling in which equalization time is reduced in control for equalizing the voltage of a battery pack composed of a plurality of connected battery cells. A transformer balance circuit (105) executes a separate equalization operation for each stack (103) via separately connected switching elements (110), transformer (109), and rectifier circuit (111). A DSP (107) calculates the voltage of the stack (103) on the basis of the voltage the battery cells (102) as detected by a voltage monitoring unit (106), determines the stack (103) to undergo the equalization operation on the basis of the calculated voltage, and instructs the switching element (110) that corresponds to the stack (103) thus determined to perform a switch operation that corresponds to the equalization operation to cause the equalization operation to be executed.

Description

電池均等化装置および方法Battery equalization apparatus and method
 本発明は、複数の電池セルを接続して構成される組電池の電圧の均等化を制御する電池均等化装置および方法に関する。 The present invention relates to a battery equalization apparatus and method for controlling voltage equalization of an assembled battery configured by connecting a plurality of battery cells.
 いわゆるハイブリッドカー、プラグインハイブリッドカー、あるいはハイブリッドビークル、ハイブリッドエレクトリックビークルなどと呼ばれる、エンジンに加えてモータ(電動機)を動力源として備えた車両または輸送機械(以下、「車両等」と称する)が実用化されている。さらには、エンジンを備えずモータのみで車両を駆動する電気自動車も実用化されつつある。それらのモータを駆動する電源として、小型、大容量の特徴を有するリチウムイオン電池などが多く使用されるようになってきている。そして、このような用途においては、複数の電池セルが例えば直列に接続されて電池ブロックが構成され、さらにこの電池ブロックを組み合わして接続される組電池として供給される場合がある。電池セルの直列接続により車両のモータを駆動するのに必要な高電圧が得られ、電池ブロックをさらに直列や並列に組み合わして接続することにより必要な電流容量やさらなる高電圧が得られる。 A so-called hybrid car, plug-in hybrid car, hybrid vehicle, hybrid electric vehicle or the like, which is equipped with a motor (electric motor) as a power source in addition to an engine or a transport machine (hereinafter referred to as “vehicle etc.”) is practical It has become. Furthermore, an electric vehicle that does not include an engine and drives the vehicle only by a motor is being put into practical use. As a power source for driving these motors, a lithium ion battery having a small size and a large capacity has been frequently used. And in such a use, a some battery cell is connected in series, for example, a battery block is comprised, and also it may be supplied as an assembled battery connected combining this battery block. A high voltage necessary for driving the motor of the vehicle is obtained by the series connection of the battery cells, and a necessary current capacity and a further high voltage can be obtained by connecting the battery blocks in combination in series and parallel.
 この場合、リチウムイオン電池などは温度による特性の変化が大きく、電池が使用される環境の温度によって電池の残存容量や充電効率も大きく変化する。自動車のような使用環境ではなおさらである。 In this case, the characteristics of the lithium ion battery or the like greatly change depending on the temperature, and the remaining capacity and charging efficiency of the battery change greatly depending on the temperature of the environment where the battery is used. This is especially true in environments where automobiles are used.
 この結果、電池ブロックを構成する電池セル等において、各セル等の残存容量および出力電圧にばらつきが生じる。各セル等が発生する電圧にばらつきが発生すると、1つのセルの電圧が駆動可能な閾値を下回ったような場合に、全体の電源供給を止めたり抑制したりする必要が生じ、電力効率が低下してしまう。このため、各セルの電圧の均等化を行う電池均等化制御が必要となる。さらには、電池ブロック間でも電圧の均等化を行う必要も生じる。 As a result, in the battery cells constituting the battery block, the remaining capacity and output voltage of each cell vary. When the voltage generated by each cell varies, it becomes necessary to stop or suppress the entire power supply when the voltage of one cell falls below the driveable threshold, resulting in reduced power efficiency. Resulting in. For this reason, the battery equalization control which equalizes the voltage of each cell is required. Furthermore, it is necessary to equalize the voltage between the battery blocks.
 電池均等化制御の従来技術としては、放電が必要な電池セルからの放電電力を充電が必要な電池セルに充電させる、いわゆるアクティブ方式の電池均等化制御技術が知られている。 As a conventional technique for battery equalization control, a so-called active battery equalization control technique is known in which discharge power from a battery cell that needs to be discharged is charged into a battery cell that needs to be charged.
 さらにこのアクティブ方式の具体的な第1の従来技術として、インダクタ(コンバータ)結合方式が知られている。この方式では、隣接する第1および第2の電池セルが共通に接続される各第1の接続端子に、インダクタの第1の接続端子が接続される。また、第1のセルの第2の接続端子とインダクタの第2の接続端子間に、第1のスイッチング素子が接続される。さらに、第2のセルの第2の接続端子とインダクタの第2の接続端子間に、第2のスイッチング素子が接続される。そして、第1の電池セルの電圧が第2の電池セルの電圧よりも高ければ、まず第1のスイッチング素子をオンさせて第1の電池セルからエネルギーを放電させてインダクタに充電し、続いて、第1のスイッチング素子をオフさせるとともに第2のスイッチング素子をオンさせてインダクタのエネルギーを第2の電池セルに充電する動作を繰り返し実行する。逆に、第2の電池セルの電圧が第1の電池セルの電圧よりも高ければ、まず第2のスイッチング素子をオンさせて第2の電池セルからエネルギーを放電させてインダクタに充電し、続いて、第2のスイッチング素子をオフさせるとともに第1のスイッチング素子をオンさせてインダクタのエネルギーを第1の電池セルに充電する動作を繰り返し実行する。そして、第1および第2の電池セルの電圧が同等になった時点で、第1および第2のスイッチング素子をともにオフさせて隣接する第1および第2の電池セルに対する均等化動作を終了する。 Furthermore, an inductor (converter) coupling method is known as a specific first conventional technique of the active method. In this method, the first connection terminal of the inductor is connected to each first connection terminal to which the adjacent first and second battery cells are connected in common. In addition, the first switching element is connected between the second connection terminal of the first cell and the second connection terminal of the inductor. Further, the second switching element is connected between the second connection terminal of the second cell and the second connection terminal of the inductor. If the voltage of the first battery cell is higher than the voltage of the second battery cell, first, the first switching element is turned on to discharge energy from the first battery cell and charge the inductor, The operation of repeatedly turning off the first switching element and turning on the second switching element to charge the energy of the inductor to the second battery cell is repeatedly executed. Conversely, if the voltage of the second battery cell is higher than the voltage of the first battery cell, first the second switching element is turned on to discharge energy from the second battery cell and charge the inductor, then Then, the operation of turning off the second switching element and turning on the first switching element to charge the energy of the inductor to the first battery cell is repeatedly executed. When the voltages of the first and second battery cells become equal, both the first and second switching elements are turned off, and the equalization operation for the adjacent first and second battery cells is completed. .
 インダクタ結合方式は、隣接する2つの電池セルの電位差に基づいてインダクタを介してエネルギーを移動させるため、エネルギーの交換効率および精度がよく、各電池セルの電圧を所定の精度で監視できれば、その精度に応じた精度で隣接する電池セル間の電圧の均等化を行うことが可能である。 Since the inductor coupling method moves energy through the inductor based on the potential difference between two adjacent battery cells, energy exchange efficiency and accuracy are good, and if the voltage of each battery cell can be monitored with a predetermined accuracy, the accuracy It is possible to equalize voltages between adjacent battery cells with an accuracy according to the above.
 しかし、このインダクタ結合方式では、隣接セル同士でエネルギーをやり取りするため、電池セルの直列接続数が多い場合にバランス時間が長くかかってしまうという問題点を有していた。例えば、電池セル1,2,3,4がその順で直列に接続されている場合、電池セル1の電圧が低いとき、電池セル2のエネルギーを電池セル1に移し、電池セル2の電圧が低下するため、電池セル3のエネルギーを電池セル2に移し、というように順番にエネルギーを移動させるため、時間がかかってしまう。 However, this inductor coupling method has a problem that it takes a long balance time when the number of battery cells connected in series is large because energy is exchanged between adjacent cells. For example, when battery cells 1, 2, 3, and 4 are connected in series in that order, when the voltage of battery cell 1 is low, the energy of battery cell 2 is transferred to battery cell 1, and the voltage of battery cell 2 is Since it decreases, the energy of the battery cell 3 is transferred to the battery cell 2 and the energy is transferred in order, which takes time.
 アクティブ方式の第2の従来技術として、インダクタ+トランス方式が知られている(例えば特許文献1に記載の技術)。この方式は、インダクタ結合方式の回路構成に加えて、直列する電池セル内の連続する数セルずつの電池セルをスタックとしてまとめ、各スタックの両端子にトランスの各巻線を接続した方式である。この方式では、トランスの各巻線の巻数を同一にすることにより、数セルずつの電池セルからなるスタックを単位として各スタック間の両端電圧が均等化され、各スタック内の電池セル間の電圧はインダクタ結合方式により均等化される。この方式では、インダクタ結合方式よりも均等化時間を短縮することができる。 An inductor + transformer system is known as the second conventional technique of the active system (for example, the technique described in Patent Document 1). In this system, in addition to the circuit configuration of the inductor coupling system, several consecutive battery cells in the series of battery cells are combined as a stack, and each winding of the transformer is connected to both terminals of each stack. In this method, by making the number of turns of each winding of the transformer the same, the voltage across each stack is equalized in units of a stack consisting of several battery cells, and the voltage between the battery cells in each stack is It is equalized by the inductor coupling method. In this method, the equalization time can be shortened compared to the inductor coupling method.
 しかし通常、トランスの各巻線数には数パーセントのバラツキがあるため、第2の従来技術では、巻き線間のバラツキによりスタック間に等しく電力が供給されないため、スタック間電圧にバラツキが発生してしまう。このため、第2の従来技術では、トランスの巻線間のバラツキにより、数十ミリボルト程度の電池セルの均等化精度を出すことができないという問題点を有していた。 However, since the number of windings of the transformer usually varies by several percent, in the second prior art, power is not supplied equally between the stacks due to the variation between the windings, resulting in variations in the voltage between the stacks. End up. For this reason, the second prior art has a problem in that it is not possible to achieve equalization accuracy of battery cells of about several tens of millivolts due to variations between transformer windings.
特開2008-35680号公報JP 2008-35680 A
 本発明は、トランス結合方式による均等化時間短縮の特徴を生かしながら、均等化の精度を向上させることを目的とする。 The present invention aims to improve the accuracy of equalization while taking advantage of the feature of shortening the equalization time by the transformer coupling method.
 態様の一例は、複数の電池セルが直列接続されて構成される組電池におけるその複数の電池セルの電圧を均等化させる電池均等化装置として構成され、複数の電池セルのうち、所定数の電池セルからなる複数のスタックのスタックごとにエネルギーの放電または充電を行わせることによってスタック間の電圧を均等化させる回路であって、スタックごとに、個別に接続されるスイッチング素子、トランス、および整流回路を介して、個別の均等化の動作を実行するトランスバランス回路と、各電池セルの電圧を監視して検出する電圧監視部と、電圧監視部が検出した各電池セルの電圧に基づいて、スタックの電圧を算出し、その算出された電圧に基づいて均等化の動作を実行すべきスタックを決定し、その決定したスタックに対応するスイッチング素子に対して均等化の動作に対応するスイッチング動作を指示して均等化の動作を実行させるバランス制御部と、を備える。 An example of an aspect is configured as a battery equalizing device that equalizes voltages of a plurality of battery cells in an assembled battery configured by connecting a plurality of battery cells in series, and a predetermined number of batteries among the plurality of battery cells A circuit for equalizing a voltage between stacks by discharging or charging energy for each stack of a plurality of stacks of cells, and a switching element, a transformer, and a rectifier circuit connected individually for each stack Through the transformer balance circuit for performing individual equalization operations, a voltage monitoring unit for monitoring and detecting the voltage of each battery cell, and a stack based on the voltage of each battery cell detected by the voltage monitoring unit Voltage is determined, a stack on which the equalization operation is to be executed is determined based on the calculated voltage, and the switch corresponding to the determined stack is determined. And a balance control unit for executing the operation of the equalization instructs the switching operation corresponding to the operation of the equalization relative quenching element.
 本発明によれば、トランス結合方式による均等化時間短縮の特徴を生かしながら、均等化の精度を向上させることが可能となる。 According to the present invention, it is possible to improve the equalization accuracy while taking advantage of the feature of shortening the equalization time by the transformer coupling method.
本実施形態のシステム構成図である。It is a system configuration figure of this embodiment. 本実施形態におけるコンバータバランス回路の構成図である。It is a block diagram of the converter balance circuit in this embodiment. 本実施形態におけるトランスタバランス回路の構成図である。It is a block diagram of the translator balance circuit in this embodiment. 本実施形態の制御動作を示すフローチャートである。It is a flowchart which shows the control operation of this embodiment.
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1は、本実施形態のシステム構成図である。 FIG. 1 is a system configuration diagram of the present embodiment.
 複数の電池セル102が直列に接続されて組電池101が構成される。本実施形態では、組電池101は、連続的に直列接続された所定数の電池セル102からなるスタック103の集合として構成される。 A plurality of battery cells 102 are connected in series to form an assembled battery 101. In this embodiment, the assembled battery 101 is configured as a set of stacks 103 including a predetermined number of battery cells 102 continuously connected in series.
 トランスバランス回路105は、スタック103に対してエネルギーの放電または充電を行わせることによってスタック103間の電圧を均等化させる回路である。より具体的には、トランスバランス回路105は、スタック103ごとに、個別に接続されるスイッチング素子110、トランス109、および整流回路であるダイオード111を介して、個別の均等化の動作を実行する。 The transbalance circuit 105 is a circuit that equalizes the voltage between the stacks 103 by causing the stacks 103 to discharge or charge energy. More specifically, the transformer balance circuit 105 performs an individual equalization operation via the switching element 110, the transformer 109, and the diode 111, which is a rectifier circuit, for each stack 103.
 図1の実施形態では、トランスバランス回路105において、各トランス109の一次巻線には、そのトランス109に接続されるスイッチング素子110を介して、組電池101の両端子が接続される。また、そのトランス109の二次巻線には、スタック103の両端子が整流回路であるダイオード111を介して接続される。 In the embodiment of FIG. 1, in the transformer balance circuit 105, both terminals of the assembled battery 101 are connected to the primary winding of each transformer 109 via a switching element 110 connected to the transformer 109. Further, both terminals of the stack 103 are connected to the secondary winding of the transformer 109 via a diode 111 which is a rectifier circuit.
 また、トランスバランス回路105内のスイッチ制御部108は、後述するDSP107から指定される所定の周波数およびデューティー比を有するパルス信号を発振する発振回路である。各スイッチング素子110は、例えばFET(電界効果トランジスタ)であり、スイッチ制御部108からのパルス信号によりスイッチング動作を行う。このスイッチング動作により、例えば組電池101の全体電圧から算出されたスタック103ごとの平均電圧が、各スイッチング素子110に接続されているスタック103の両端電圧よりも高ければ、両者間の電圧が等しくなるまで、トランス109の二次巻線およびダイオード111を介してそのスタック103に充電が行われる。この充電動作に基づいて、スタック103の均等化の動作が実行される。 The switch control unit 108 in the transformer balance circuit 105 is an oscillation circuit that oscillates a pulse signal having a predetermined frequency and duty ratio designated by the DSP 107 described later. Each switching element 110 is, for example, an FET (field effect transistor), and performs a switching operation by a pulse signal from the switch control unit 108. With this switching operation, for example, if the average voltage for each stack 103 calculated from the total voltage of the assembled battery 101 is higher than the voltage across the stack 103 connected to each switching element 110, the voltage between the two becomes equal. Until that time, the stack 103 is charged via the secondary winding of the transformer 109 and the diode 111. Based on this charging operation, the equalizing operation of the stack 103 is executed.
 コンバータバランス回路104は、組電池101を構成する各スタック103について、スタック103内の電池セル102のうちの1つ以上の電池セル102から放電されるエネルギーをそのスタック103内の電池セル102のうちの1つ以上の他の電池セルに充電させることによってそのスタック103内の電池セル102の電圧を均等化させる。このコンバータバランス回路104は例えば、スタック103内の各電池セル102から放電される電力を、スイッチング素子およびインダクタを含む回路を介して、そのスタック103内の隣接する電池セルに充電させる。 For each stack 103 constituting the assembled battery 101, the converter balance circuit 104 transmits energy discharged from one or more of the battery cells 102 in the stack 103 to the battery cells 102 in the stack 103. The voltage of the battery cells 102 in the stack 103 is equalized by charging one or more other battery cells. For example, the converter balance circuit 104 charges power discharged from each battery cell 102 in the stack 103 to adjacent battery cells in the stack 103 via a circuit including a switching element and an inductor.
 電圧監視部106は、各電池セル102の電圧を監視しデジタル信号値として検出する。 The voltage monitoring unit 106 monitors the voltage of each battery cell 102 and detects it as a digital signal value.
 デジタルシグナルプロセッサ(DSP:Digital Signal Processor:以下「DSP」と呼ぶ)107は、バランス制御部として機能し、電圧監視部106が検出した各電池セル102の電圧のデジタル信号値に基づいて、デジタル信号処理によって、コンバータバランス回路104またはトランスバランス回路105のいずれかを選択して動作させる。 A digital signal processor (DSP: Digital Signal Processor: hereinafter referred to as “DSP”) 107 functions as a balance control unit, and a digital signal based on the voltage digital signal value of each battery cell 102 detected by the voltage monitoring unit 106. Depending on the processing, either converter balance circuit 104 or transformer balance circuit 105 is selected and operated.
 具体的には、DSP107は、電圧監視部106が検出した各電池セル102の電圧に基づいて、スタック103の電圧を算出する。そして、DSP107は、その算出した電圧に基づいて均等化の動作を実行すべきスタック103を決定する。そして、DSP107は、その決定したスタック103に対応するスイッチング素子110に対して、均等化の動作に対応するスイッチング動作を指示して均等化の動作を実行させる。例えば、DSP107は、決定したスタック103の両端にトランス109を介して所定の電圧を与えて充電を行うために、周波数およびデューティー比を指定したパルス信号をスイッチング素子110に与える。 Specifically, the DSP 107 calculates the voltage of the stack 103 based on the voltage of each battery cell 102 detected by the voltage monitoring unit 106. Then, the DSP 107 determines the stack 103 on which the equalization operation is to be performed based on the calculated voltage. The DSP 107 instructs the switching element 110 corresponding to the determined stack 103 to perform the equalization operation by instructing the switching operation corresponding to the equalization operation. For example, the DSP 107 supplies a pulse signal designating a frequency and a duty ratio to the switching element 110 in order to perform charging by applying a predetermined voltage to both ends of the determined stack 103 via the transformer 109.
 さらに具体的には、DSP107は、電圧監視部106が検出した各電池セル103の電圧に基づいて組電池101全体の電圧を算出し、その電圧を組電池101におけるスタック103の数で除算することでスタック平均電圧を算出する。DSP107は、スタック103ごとに、そのスタック103について算出した電圧がスタック平均電圧よりも低いと判定したならば、トランスバランス回路105内のスイッチ制御部108に対して、そのスタック103に対応するスイッチング素子110によるスイッチング動作を指示する。具体的には、DSP107は、スイッチ制御部108に対して、パルス信号を出力すべきスイッチング素子110の識別情報を与え、また、そのパルス信号の周波数およびデューティー比を指定する。これにより、トランスバランス回路105内のスイッチ制御部108は、指定されたスイッチング素子110に対して、指定された周波数およびデューティー比を有するパルス信号を出力する。この結果、指定されたスイッチング素子110がスイッチング動作を開始し、そのスイッチング素子110が接続されるトランス109およびダイオード111を介して、そのトランス109の二次巻線が接続されるスタック103内の各電池セル102への充電が開始される。逆に、DSP107は、スタック103ごとに、そのスタック103について算出した電圧がスタック平均電圧よりも高いと判定したならば、トランスバランス回路105に対して、そのスタック103に対応するスイッチング素子110によるスイッチング動作を指示しない。この場合には、均等化の動作時に組電池101全体から他のスタック103に対応するトランス109にエネルギーが供給されることにより、電圧が高いと判定されたスタック103を構成する各電池セル102から徐々に放電が行われる。この結果、最終的には、組電池101内の各電池セル102の電圧が揃ってゆくことになる。 More specifically, the DSP 107 calculates the voltage of the entire assembled battery 101 based on the voltage of each battery cell 103 detected by the voltage monitoring unit 106, and divides the voltage by the number of stacks 103 in the assembled battery 101. To calculate the stack average voltage. If the DSP 107 determines that the voltage calculated for the stack 103 is lower than the stack average voltage for each stack 103, the DSP 107 instructs the switching control unit 108 in the transbalance circuit 105 to switch the switching element corresponding to the stack 103. The switching operation by 110 is instructed. Specifically, the DSP 107 gives identification information of the switching element 110 that should output a pulse signal to the switch control unit 108 and specifies the frequency and duty ratio of the pulse signal. As a result, the switch control unit 108 in the transformer balance circuit 105 outputs a pulse signal having a specified frequency and duty ratio to the specified switching element 110. As a result, the designated switching element 110 starts a switching operation, and each transformer in the stack 103 to which the secondary winding of the transformer 109 is connected via the transformer 109 and the diode 111 to which the switching element 110 is connected. Charging to the battery cell 102 is started. Conversely, if the DSP 107 determines that the voltage calculated for the stack 103 is higher than the stack average voltage for each stack 103, the DSP 107 performs switching by the switching element 110 corresponding to the stack 103 to the transbalance circuit 105. Do not instruct the operation. In this case, energy is supplied from the entire assembled battery 101 to the transformer 109 corresponding to the other stack 103 during the equalization operation, whereby each battery cell 102 configuring the stack 103 determined to have a high voltage. Discharge occurs gradually. As a result, finally, the voltage of each battery cell 102 in the assembled battery 101 becomes uniform.
 最後に、DSP107は、スタック103ごとに、そのスタック103について算出した電圧がスタック平均電圧と同等になったら、そのスタック103に対する均等化の動作を終了し、他の残っている未処理のスタック103に対して、同様の均等化の動作を実行する。 Finally, for each stack 103, when the voltage calculated for the stack 103 becomes equal to the stack average voltage, the DSP 107 ends the equalization operation for the stack 103, and other remaining unprocessed stacks 103 are left. On the other hand, the same equalization operation is executed.
 以上のように、本実施形態では、トランスバランス回路105において、スタック103ごとに、スイッチング素子110、トランス109、およびダイオード111を含む回路が個別に備えられる。そして、DSP107は、スタック103ごとに、そのスタック103の電圧がスタック平均電圧に揃うように均等化制御を実施するときに、そのスタック103に対応するスイッチング素子110に印加するパルス信号の周波数およびデューティー比を精密に決定する。この結果、各スタック103に充電される電圧を高い精度で制御することが可能となる。 As described above, in the present embodiment, in the transformer balance circuit 105, a circuit including the switching element 110, the transformer 109, and the diode 111 is individually provided for each stack 103. When the DSP 107 performs equalization control so that the voltage of the stack 103 is equal to the stack average voltage for each stack 103, the frequency and duty of the pulse signal applied to the switching element 110 corresponding to the stack 103 are determined. Determine the ratio precisely. As a result, the voltage charged in each stack 103 can be controlled with high accuracy.
 図1のコンバータバランス回路104の詳細は、図2に示される。 Details of the converter balance circuit 104 of FIG. 1 are shown in FIG.
 図2において、スタック103および電圧監視部106は、図1の同じ番号の部分と同じである。 2, the stack 103 and the voltage monitoring unit 106 are the same as the parts having the same numbers in FIG. 1.
 コンバータバランス回路104は、バランス回路201、DSP(デジタルシグナルプロセッサ)202、およびスイッチ制御部203を備える。バランス回路201は、スタック103を構成する例えば#1から#4の4つの電池セル102に対して、複数のインダクタLと複数のスイッチング素子SWとを備える。具体的には、#1と#2の電池セル102の共通の接続端子に#1のインダクタLの第1の端子が、#2と#3の電池セル102の共通接続端子に#2のインダクタLの第1の端子が、#3と#4の電池セル102の共通接続端子に#3のインダクタLの第1の端子がそれぞれ接続される。また、#1のインダクタLの第2の端子は#1と#2のスイッチング素子SWの共通接続端子に、#2のインダクタLの第2の端子は#3と#4のスイッチング素子SWの共通接続端子に、#3のインダクタLの第2の端子は#5と#6のスイッチング素子SWの共通接続端子にそれぞれ接続される。さらに、#1の電池セル102の出力端子側は、#1のスイッチング素子SWの単独接続端子に接続される。#1と#2の電池セル102の共通接続端子は、#2のスイッチング素子SWに接続される。#2と#3の電池セル102の共通接続端子は、#2および#5のスイッチング素子SWの共通接続端子に接続される。#4の電池セル102の出力端子側は、#6のスイッチング素子SWの単独接続端子に接続される。 The converter balance circuit 104 includes a balance circuit 201, a DSP (digital signal processor) 202, and a switch control unit 203. The balance circuit 201 includes a plurality of inductors L and a plurality of switching elements SW for, for example, four battery cells 102 # 1 to # 4 constituting the stack 103. Specifically, the first terminal of the # 1 inductor L is connected to the common connection terminal of the # 1 and # 2 battery cells 102, and the # 2 inductor is connected to the common connection terminal of the # 2 and # 3 battery cells 102. The first terminal of L is connected to the common connection terminal of the battery cells 102 of # 3 and # 4, and the first terminal of the inductor L of # 3 is connected thereto. The second terminal of the # 1 inductor L is the common connection terminal for the # 1 and # 2 switching elements SW, and the second terminal of the # 2 inductor L is the common for the # 3 and # 4 switching elements SW. The second terminal of the # 3 inductor L is connected to the common connection terminal of the # 5 and # 6 switching elements SW. Further, the output terminal side of the # 1 battery cell 102 is connected to the single connection terminal of the # 1 switching element SW. The common connection terminal of the battery cells 102 of # 1 and # 2 is connected to the switching element SW of # 2. The common connection terminals of the # 2 and # 3 battery cells 102 are connected to the common connection terminals of the switching elements SW of # 2 and # 5. The output terminal side of the # 4 battery cell 102 is connected to the single connection terminal of the # 6 switching element SW.
 スイッチ制御部203は、DSP202から指定される所定の周波数およびデューティー比を有するパルス信号を発振する発振回路である。#1から#6の各スイッチング素子SWは、例えばFET(電界効果トランジスタ)であり、スイッチ制御部203からのパルス信号によりスイッチング動作を行う。 The switch control unit 203 is an oscillation circuit that oscillates a pulse signal having a predetermined frequency and duty ratio specified by the DSP 202. Each switching element SW of # 1 to # 6 is, for example, an FET (field effect transistor), and performs a switching operation by a pulse signal from the switch control unit 203.
 電圧監視部106は、スタック103を構成する#1から#4の各電池セル102の各両端電圧を検出し、その検出した電圧をデジタル値として図1のDSP107および図2のDSP202に出力する。 The voltage monitoring unit 106 detects the voltages at both ends of the battery cells 102 of # 1 to # 4 constituting the stack 103, and outputs the detected voltage to the DSP 107 of FIG. 1 and the DSP 202 of FIG. 2 as digital values.
 上述のコンバータバランス回路104の構成において、DSP202は、例えば#1と#2の電池セル102間のバランス制御を実施すると判定したときには、スイッチ制御部203に対して、所定の周波数とデューティー比を指定して、#1と#2のスイッチング素子SWを動作させるように指示する。そして例えば、DSP202が、電圧監視部106の電圧監視結果に基づいて、#1の電池セル102の電圧が#2の電池セル102の電圧よりも高いと判定する。この場合はまず、#1のスイッチング素子SWのオンオフ動作により、#1の電池セル102から放電されたエネルギーが#1のインダクタLに蓄積される。続いて、デューティー比分だけ遅れた#2のスイッチング素子SWのオンオフ動作により、#1のインダクタLに蓄積されたエネルギーが#2の電池セル102に充電される。逆に例えば、DSP202が、電圧監視部106の電圧監視結果に基づいて、#2の電池セル102の電圧が#1の電池セル102の電圧よりも高いと判定する。この場合はまず、#2のスイッチング素子SWのオンオフ動作により、#2の電池セル102から放電されたエネルギーが#1のインダクタLに蓄積される。続いて、デューティー比分だけ遅れた#1のスイッチング素子SWのオンオフ動作により、#1のインダクタLに蓄積されたエネルギーが#1の電池セル102に充電される。 In the configuration of the converter balance circuit 104 described above, when the DSP 202 determines to perform balance control between the battery cells 102 of # 1 and # 2, for example, the DSP 202 designates a predetermined frequency and duty ratio to the switch control unit 203. Then, the switching elements SW of # 1 and # 2 are instructed to operate. For example, the DSP 202 determines that the voltage of the # 1 battery cell 102 is higher than the voltage of the # 2 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 1 battery cell 102 is accumulated in the # 1 inductor L by the on / off operation of the # 1 switching element SW. Subsequently, the energy stored in the # 1 inductor L is charged in the # 2 battery cell 102 by the on / off operation of the # 2 switching element SW delayed by the duty ratio. Conversely, for example, the DSP 202 determines that the voltage of the # 2 battery cell 102 is higher than the voltage of the # 1 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 2 battery cell 102 is accumulated in the # 1 inductor L by the on / off operation of the # 2 switching element SW. Subsequently, the energy stored in the # 1 inductor L is charged in the # 1 battery cell 102 by the on / off operation of the # 1 switching element SW delayed by the duty ratio.
 また、DSP202は、#2と#3の電池セル102間のバランス制御を実施すると判定したときには、スイッチ制御部203に対して、所定の周波数とデューティー比を指定して、#3と#4のスイッチング素子SWを動作させるように指示する。そして例えば、DSP202が、電圧監視部106の電圧監視結果に基づいて、#2の電池セル102の電圧が#3の電池セル102の電圧よりも高いと判定する。この場合はまず、#3のスイッチング素子SWのオンオフ動作により、#2の電池セル102から放電されたエネルギーが#2のインダクタLに蓄積される。続いて、デューティー比分だけ遅れた#4のスイッチング素子SWのオンオフ動作により、#2のインダクタLに蓄積されたエネルギーが#3の電池セル102に充電される。逆に例えば、DSP202が、電圧監視部106の電圧監視結果に基づいて、#3の電池セル102の電圧が#2の電池セル102の電圧よりも高いと判定する。この場合はまず、#4のスイッチング素子SWのオンオフ動作により、#3の電池セル102から放電されたエネルギーが#2のインダクタLに蓄積される。続いて、デューティー比分だけ遅れた#3のスイッチング素子SWのオンオフ動作により、#2のインダクタLに蓄積されたエネルギーが#2の電池セル102に充電される。 Further, when the DSP 202 determines that the balance control between the battery cells 102 of # 2 and # 3 is to be performed, the DSP 202 designates a predetermined frequency and duty ratio to the switch control unit 203, and # 3 and # 4. Instructing the switching element SW to operate. For example, the DSP 202 determines that the voltage of the # 2 battery cell 102 is higher than the voltage of the # 3 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 2 battery cell 102 is accumulated in the # 2 inductor L by the on / off operation of the # 3 switching element SW. Subsequently, the energy stored in the # 2 inductor L is charged in the # 3 battery cell 102 by the on / off operation of the # 4 switching element SW delayed by the duty ratio. Conversely, for example, the DSP 202 determines that the voltage of the # 3 battery cell 102 is higher than the voltage of the # 2 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 3 battery cell 102 is accumulated in the # 2 inductor L by the on / off operation of the # 4 switching element SW. Subsequently, the energy stored in the # 2 inductor L is charged in the # 2 battery cell 102 by the on / off operation of the # 3 switching element SW delayed by the duty ratio.
 さらに、DSP202は、#3と#4の電池セル102間のバランス制御を実施すると判定したときには、スイッチ制御部203に対して、所定の周波数とデューティー比を指定して、#5と#6のスイッチング素子SWを動作させるように指示する。そして例えば、DSP202が、電圧監視部106の電圧監視結果に基づいて、#3の電池セル102の電圧が#4の電池セル102の電圧よりも高いと判定する。この場合はまず、#5のスイッチング素子SWのオンオフ動作により、#3の電池セル102から放電されたエネルギーが#3のインダクタLに蓄積される。続いて、デューティー比分だけ遅れた#6のスイッチング素子SWのオンオフ動作により、#3のインダクタLに蓄積されたエネルギーが#4の電池セル102に充電される。逆に例えば、DSP202が、電圧監視部106の電圧監視結果に基づいて、#4の電池セル102の電圧が#3の電池セル102の電圧よりも高いと判定する。この場合はまず、#6のスイッチング素子SWのオンオフ動作により、#4の電池セル102から放電されたエネルギーが#3のインダクタLに蓄積される。続いて、デューティー比分だけ遅れた#5のスイッチング素子SWのオンオフ動作により、#3のインダクタLに蓄積されたエネルギーが#3の電池セル102に充電される。 Furthermore, when the DSP 202 determines that the balance control between the battery cells 102 of # 3 and # 4 is to be performed, the DSP 202 designates a predetermined frequency and duty ratio to the switch control unit 203, and # 5 and # 6. Instructing the switching element SW to operate. For example, the DSP 202 determines that the voltage of the # 3 battery cell 102 is higher than the voltage of the # 4 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, energy discharged from the # 3 battery cell 102 is first stored in the # 3 inductor L by the on / off operation of the # 5 switching element SW. Subsequently, the energy stored in the # 3 inductor L is charged in the # 4 battery cell 102 by the on / off operation of the # 6 switching element SW delayed by the duty ratio. Conversely, for example, the DSP 202 determines that the voltage of the # 4 battery cell 102 is higher than the voltage of the # 3 battery cell 102 based on the voltage monitoring result of the voltage monitoring unit 106. In this case, first, the energy discharged from the # 4 battery cell 102 is accumulated in the # 3 inductor L by the on / off operation of the # 6 switching element SW. Subsequently, the energy stored in the # 3 inductor L is charged in the # 3 battery cell 102 by the on / off operation of the # 5 switching element SW delayed by the duty ratio.
 以上のようにして、コンバータバランス回路104では、電圧監視部106でのスタック103内の各電池セル102の電圧監視の結果、スタック103内でのバランス制御が必要であると判定されたときには、#1から#3のインダクタLおよび#1から#6のスイッチング素子SWが順次選択的に動作させられる。この結果、#1から#4の各電池セル102のそれぞれ隣接する電池セル102間でバランス制御が順次実施され、その動作が繰り返されることにより、最終的にスタック103内の#1から#4の電池セル102の電圧が均一になる。 As described above, in the converter balance circuit 104, when it is determined that the balance control in the stack 103 is necessary as a result of the voltage monitoring of the battery cells 102 in the stack 103 by the voltage monitoring unit 106, # The inductors 1 to # 3 and the switching elements SW of # 1 to # 6 are sequentially selectively operated. As a result, balance control is sequentially performed between the battery cells 102 adjacent to each of the battery cells 102 of # 1 to # 4, and the operation is repeated, so that the operations of # 1 to # 4 in the stack 103 are finally performed. The voltage of the battery cell 102 becomes uniform.
 上述の構成において、図2のDSP202は、図1のDSP107と同一のDPSによって実現されてもよい。 In the above configuration, the DSP 202 in FIG. 2 may be realized by the same DPS as the DSP 107 in FIG.
 図1の実施形態におけるトランスバランス回路105の動作について、更に詳細に説明する。図3は、図1のトランスバランス回路105において、2つのスタック103の分の回路構成を抜き出した図である。 The operation of the transformer balance circuit 105 in the embodiment of FIG. 1 will be described in more detail. FIG. 3 is a diagram in which the circuit configuration corresponding to two stacks 103 is extracted from the transformer balance circuit 105 of FIG.
 図3において、例えば#1および#2の各スタック103ごとに図1の電圧監視部104によって各両端電圧が測定される。そして、図1のDSP107は、各両端電圧を、あらかじめ組電池101全体の電圧から計算したスタック平均電圧と比較する。この結果、DSP107は、例えば#1および#2のスタック103ともに、各両端電圧がスタック平均電圧よりも低いと判定した場合には、スイッチ制御部108に対して、#1および#2の両方のスイッチング素子110でのスイッチング動作を指定する。具体的には、DSP107は、スイッチ制御部108に対して、#1および#2のスイッチング素子110を動作させることの指示と、スイッチ制御部108から各スイッチング素子110へ供給される各パルス信号の周波数とデューティー比の値の組を指示する。これにより、スイッチ制御部108から#1および#2のスイッチング素子110にそれぞれパルス信号が供給され、各スイッチング素子110が動作を開始する。この結果、組電池101の両端子からのエネルギーが#1および#2のトランス109の一次巻線側に供給され、各トランス109の二次巻線側にエネルギーが伝達され、各スタック103にエネルギーが充電されてゆく。 In FIG. 3, for example, the voltage at both ends is measured by the voltage monitoring unit 104 in FIG. 1 for each of the stacks 103 of # 1 and # 2. Then, the DSP 107 in FIG. 1 compares each terminal voltage with a stack average voltage calculated in advance from the voltage of the entire assembled battery 101. As a result, when the DSP 107 determines that the voltages at both ends are lower than the stack average voltage in both the stacks 103 of # 1 and # 2, for example, both the # 1 and # 2 are given to the switch control unit 108. A switching operation in the switching element 110 is designated. Specifically, the DSP 107 instructs the switch control unit 108 to operate the switching elements 110 of # 1 and # 2, and each pulse signal supplied from the switch control unit 108 to each switching element 110. Indicates a set of frequency and duty ratio values. Thereby, a pulse signal is supplied from the switch control unit 108 to the switching elements 110 of # 1 and # 2, and each switching element 110 starts to operate. As a result, the energy from both terminals of the assembled battery 101 is supplied to the primary winding side of the # 1 and # 2 transformers 109, the energy is transmitted to the secondary winding side of each transformer 109, and the energy is transmitted to each stack 103. Will be charged.
 ここで、#1および#2の各スタック103における電圧状態は、それぞれ内部抵抗値や温度特性等が異なるため、それぞれ個別の電圧、電流特性で制御することが理想的である。 Here, the voltage states in the stacks 103 of # 1 and # 2 have different internal resistance values, temperature characteristics, and the like, so it is ideal to control them with individual voltage and current characteristics.
 本実施形態では、各スタック103に供給する電圧、電流値は、以下に示すようにして、スイッチ制御部108から各スイッチング素子110に供給するパルス信号の周波数とデューティー比によって、精密に決定することができる。いま、トランス109の一次巻線の巻数をN1、二次巻線202の巻数をN2とする。また、スイッチ制御部108からスイッチング素子110に与えられるパルス信号の周波数をfreq、周期をT、パルスオン時間をton、デューティー比をD、一次巻線側の電圧をVin、二次巻線側の電圧をVo とすれば、次式が成り立つ。 In the present embodiment, the voltage and current values supplied to each stack 103 are accurately determined by the frequency and duty ratio of the pulse signal supplied from the switch control unit 108 to each switching element 110 as shown below. Can do. Now, the number of turns of the primary winding of the transformer 109 is N1, and the number of turns of the secondary winding 202 is N2. The frequency of the pulse signal given from the switch control unit 108 to the switching element 110 is freq, the period is T, the pulse on time is t on , the duty ratio is D, the voltage on the primary winding side is Vin, and the voltage on the secondary winding side is If the voltage is Vo, the following equation holds.
Figure JPOXMLDOC01-appb-M000001
この式に基づいて図1のスイッチ制御部108からスイッチング素子110に与えるパルス信号の周波数freqとデューティー比Dを制御することにより、スタック103に対する充放電の出力電圧Vo を変化させることができる。また、出力電力は次式に基づいて出力されることから、デューティー比の制御によって出力電力を変化させることができる。ただし、Lp は一次巻線のインダクタンス、Pは出力電力である。
Figure JPOXMLDOC01-appb-M000001
By controlling the frequency freq and the duty ratio D of the pulse signal applied to the switching element 110 from the switch control unit 108 in FIG. 1 based on this equation, the charge / discharge output voltage Vo to the stack 103 can be changed. Further, since the output power is output based on the following equation, the output power can be changed by controlling the duty ratio. Where Lp is the inductance of the primary winding and P is the output power.
Figure JPOXMLDOC01-appb-M000002
上記数1式および数2式に基づいて、スタック103の電圧値や別途算出された内部抵抗値に対応して設定した供給電圧値、電流許容値、出力したい電力、パルス周波数freqから、スイッチ制御部108よりスイッチング素子110に与えるパルス信号のデューティー比を計算することができる。または、逆にデューティー比を任意で決定しておき、パルス周波数freqを決定してもよい。DSP107は、#1および#2のスタック103ごとに決定したパルス周波数freqおよびデューティー比Dの各値の組を、図1のスイッチ制御部108に指定する。この結果、スイッチ制御部108から#1および#2のスイッチング素子110に、それぞれ個別の周波数およびデューティー比を有するパルス信号が出力され、個別のスイッチング動作が実行される。以上のようにして、本実施形態では、スタック103ごとに、精度の高い均等化動作を実施することが可能となる。
Figure JPOXMLDOC01-appb-M000002
Based on the above formulas (1) and (2), switch control is performed from the supply voltage value, current allowable value, power to be output, and pulse frequency freq set corresponding to the voltage value of the stack 103 and the separately calculated internal resistance value. The duty ratio of the pulse signal given to the switching element 110 from the unit 108 can be calculated. Or, conversely, the duty ratio may be arbitrarily determined and the pulse frequency freq may be determined. The DSP 107 designates a set of values of the pulse frequency freq and the duty ratio D determined for each of the stacks # 1 and # 2 to the switch control unit 108 in FIG. As a result, pulse signals having individual frequencies and duty ratios are output from the switch control unit 108 to the switching elements 110 of # 1 and # 2, respectively, and individual switching operations are executed. As described above, in this embodiment, it is possible to perform a highly accurate equalization operation for each stack 103.
 ここで、DSP107は、あるスタック103、例えば#2のスタック103において、両端電圧がスタック平均電圧よりも高いと判定した場合には、スイッチ制御部108に対して、#2のスイッチング素子110でのスイッチング動作は指定しない。この場合には、均等化の動作時に組電池101全体から例えば#1のスタック103に対応する#1のトランス109にエネルギーが供給されることにより、#2のスタック103を構成する各電池セル102から徐々に放電が行われる。この結果、最終的には、組電池101を構成する各スタック103の電圧が揃ってゆくことになる。 Here, if the DSP 107 determines that the voltage across the stack 103 is higher than the stack average voltage in a certain stack 103, for example, the # 103 stack 103, the DSP 107 instructs the switch control unit 108 in the # 2 switching element 110. Switching operation is not specified. In this case, energy is supplied from the entire assembled battery 101 to, for example, the # 1 transformer 109 corresponding to the # 1 stack 103 during the equalization operation, whereby each battery cell 102 constituting the # 2 stack 103 is supplied. The discharge starts gradually. As a result, finally, the voltages of the stacks 103 constituting the assembled battery 101 are aligned.
 図4は、図1のDSP107が実行する制御動作を示すフローチャートである。この制御動作は、DSP107内の特には図示しないプロセッサが、特には図示しないメモリに記憶された制御プログラムを実行する動作として実現される。この制御プログラムは、例えば本実施形態のシステムを搭載した車両のイグニッションオフ時またはアイドリング開始時に、1回、もしくは所定の時間間隔で繰返し、実行される。 FIG. 4 is a flowchart showing a control operation executed by the DSP 107 of FIG. This control operation is realized as an operation in which a processor (not shown) in the DSP 107 executes a control program stored in a memory (not shown). This control program is executed once or at a predetermined time interval, for example, when the vehicle equipped with the system of the present embodiment is turned off or when idling is started.
 まず、図1のDSP107は、電圧監視部106が検出した各電池セル103の電圧に基づいて組電池101全体の電圧を算出し、その電圧を組電池101におけるスタック103の数で除算することでスタック平均電圧を算出する(ステップS401)。 First, the DSP 107 in FIG. 1 calculates the voltage of the entire assembled battery 101 based on the voltage of each battery cell 103 detected by the voltage monitoring unit 106, and divides the voltage by the number of stacks 103 in the assembled battery 101. An average stack voltage is calculated (step S401).
 次に、DSP107は、スタック103ごとに、そのスタック103について電圧監視部106が算出した電圧をステップS401で算出したスタック平均電圧と比較する(ステップS402)。 Next, for each stack 103, the DSP 107 compares the voltage calculated by the voltage monitoring unit 106 for the stack 103 with the stack average voltage calculated in step S401 (step S402).
 DSP107は、ステップS402の比較処理で、スタック平均電圧よりも低い電圧を有すると判定したスタック103について、トランスバランス回路105内のスイッチ制御部108に対して、そのスタック103に対応するスイッチング素子110の識別情報を与える。また、DSP107は、スイッチ制御部108からそのスイッチング素子110に出力されるパルス信号の周波数およびデューティー比を指定する(ステップS403)。これにより、トランスバランス回路105内のスイッチ制御部108は、指定されたスイッチング素子110に対して、指定された周波数およびデューティー比を有するパルス信号を出力する。この結果、指定されたスイッチング素子110がスイッチング動作を開始し、そのスイッチング素子110が接続されるトランス109およびダイオード111を介して、そのトランス109の二次巻線が接続されるスタック103内の各電池セル102への充電が開始される。 The DSP 107 determines, for the stack 103 that has been determined to have a voltage lower than the stack average voltage in the comparison process in step S <b> 402, the switching control unit 108 in the transbalance circuit 105, and the switching element 110 corresponding to the stack 103. Give identification information. Further, the DSP 107 designates the frequency and duty ratio of the pulse signal output from the switch control unit 108 to the switching element 110 (step S403). As a result, the switch control unit 108 in the transformer balance circuit 105 outputs a pulse signal having a specified frequency and duty ratio to the specified switching element 110. As a result, the designated switching element 110 starts a switching operation, and each transformer in the stack 103 to which the secondary winding of the transformer 109 is connected via the transformer 109 and the diode 111 to which the switching element 110 is connected. Charging to the battery cell 102 is started.
 一定時間経過後に、スイッチング動作が停止される(ステップS404)。 The switching operation is stopped after a certain period of time (step S404).
 一方、DSP107は、ステップS402の比較処理で、スタック平均電圧よりも高い電圧を有すると判定したスタック103については、トランスバランス回路105に対して、そのスタック103に対応するスイッチング素子110によるスイッチング動作を指示しない(ステップS405)。この結果、そのスタック103については、前述したように、放電が行われる。 On the other hand, the DSP 107 performs the switching operation by the switching element 110 corresponding to the stack 103 for the stack 103 that is determined to have a voltage higher than the stack average voltage in the comparison processing in step S402. No instruction is given (step S405). As a result, the stack 103 is discharged as described above.
 ステップS404またはS405の処理の後一定時間が経過してから、DSP107は再び、スタック103ごとに、そのスタック103について電圧監視部106が算出した電圧をステップS401で算出したスタック平均電圧と比較する(ステップS406)。 After a certain time has elapsed after the processing in step S404 or S405, the DSP 107 again compares the voltage calculated by the voltage monitoring unit 106 for the stack 103 with the stack average voltage calculated in step S401 for each stack 103 ( Step S406).
 DSP107は、ステップS406の比較処理で、スタック平均電圧よりも低い電圧を有すると判定したスタック103については、トランスバランス回路105内のスイッチ制御部108に対して、そのスタック103に対応するスイッチング素子110のスイッチング制御を指定する(ステップS406→S403)。 For the stack 103 that is determined to have a voltage lower than the stack average voltage in the comparison process in step S <b> 406, the DSP 107 notifies the switching control unit 108 in the transbalance circuit 105 to the switching element 110 corresponding to the stack 103. Switching control is designated (steps S406 → S403).
 また、DSP107は、ステップS406の比較処理で、スタック平均電圧よりも高い電圧を有すると判定したスタック103については、トランスバランス回路105に対して、そのスタック103に対応するスイッチング素子110によるスイッチング動作を指示しない。DSP107は、そのスタック103がいままでスイッチング動作をしていた場合には、そのスタック103に対応するスイッチング素子110のスイッチング動作を停止させる(以上、ステップS405)。 Further, the DSP 107 performs the switching operation by the switching element 110 corresponding to the stack 103 for the stack 103 that is determined to have a voltage higher than the stack average voltage in the comparison processing in step S406. Do not instruct. If the stack 103 has been switching until now, the DSP 107 stops the switching operation of the switching element 110 corresponding to the stack 103 (step S405).
 DSP107は、ステップS406の比較処理で、スタック平均電圧と同等の電圧を有すると判定したスタック103については、そのスタック103に対する均等化の動作を終了する。 The DSP 107 ends the equalization operation for the stack 103 that has been determined to have a voltage equivalent to the stack average voltage in the comparison processing in step S406.
 上述の実施形態において、図1のコンバータバランス回路104の具体的な構成としては、図2に示される回路構成が採用されたが、コンバータバランス回路104の構成はこれに限られるものではない。スタック103ごとに、そのスタック103内の電池セル102のうちの1つ以上の電池セルから放電されるエネルギーをそのスタック103内の電池セル102のうちの1つ以上の他の電池セル102に充電させることによってそのスタック103内の電池セル102の電圧を均等化させる構成であれば、どのようなコンバータバランス回路104の構成が採用されてもよい。 In the above-described embodiment, the circuit configuration shown in FIG. 2 is adopted as the specific configuration of the converter balance circuit 104 in FIG. 1, but the configuration of the converter balance circuit 104 is not limited to this. For each stack 103, energy discharged from one or more battery cells 102 in the stack 103 is charged to one or more other battery cells 102 in the stack 103. Any configuration of the converter balance circuit 104 may be employed as long as the voltage of the battery cells 102 in the stack 103 is equalized.

Claims (8)

  1.  複数の電池セルが直列接続されて構成される組電池における該複数の電池セルの電圧を均等化させる電池均等化装置であって、
     前記複数の電池セルのうち、所定数の電池セルからなる複数のスタックのスタックごとにエネルギーの放電または充電を行わせることによって前記スタック間の電圧を均等化させる回路であって、前記スタックごとに、個別に接続されるスイッチング素子、トランス、および整流回路を介して、個別の均等化の動作を実行するトランスバランス回路と、
     前記各電池セルの電圧を監視して検出する電圧監視部と、
     前記電圧監視部が検出した前記各電池セルの電圧に基づいて、前記スタックの電圧を算出し、該算出された電圧に基づいて前記均等化の動作を実行すべきスタックを決定し、該決定したスタックに対応するスイッチング素子に対して前記均等化の動作に対応するスイッチング動作を指示して前記均等化の動作を実行させるバランス制御部と、
     を備えることを特徴とする電池均等化装置。
    A battery equalizing device for equalizing voltages of a plurality of battery cells in a battery pack configured by connecting a plurality of battery cells in series,
    Among the plurality of battery cells, a circuit that equalizes the voltage between the stacks by discharging or charging energy for each stack of a plurality of stacks composed of a predetermined number of battery cells, and for each stack A transformer balance circuit that performs individual equalization operations via individually connected switching elements, transformers, and rectifier circuits;
    A voltage monitoring unit for monitoring and detecting the voltage of each battery cell;
    The voltage of the stack is calculated based on the voltage of each battery cell detected by the voltage monitoring unit, and the stack on which the equalization operation is to be performed is determined based on the calculated voltage. A balance control unit that instructs the switching operation corresponding to the equalization operation to the switching element corresponding to the stack to execute the equalization operation;
    A battery equalizing apparatus comprising:
  2.  前記トランスの一次巻線には該トランスに接続される前記スイッチング素子を介して前記組電池の両端子が接続され、該トランスの二次巻線には前記スタックの両端子が前記整流回路を介して接続される、
     ことを特徴とする請求項1に記載の電池均等化装置。
    Both terminals of the assembled battery are connected to the primary winding of the transformer via the switching element connected to the transformer, and both terminals of the stack are connected to the secondary winding of the transformer via the rectifier circuit. Connected,
    The battery equalizing apparatus according to claim 1.
  3.  前記バランス制御部は、
     前記電圧監視部が検出した前記各電池セルの電圧に基づいて前記組電池全体の電圧を算出し、該電圧を前記組電池における前記スタックの数で除算することでスタック平均電圧を算出し、
     前記スタックごとに、該スタックについて算出した電圧が前記スタック平均電圧よりも低いと判定したならば、該スタックに対応する前記トランスバランス回路内の前記スイッチング素子にスイッチング動作を行わせ、
     前記スタックごとに、該スタックについて算出した電圧が前記スタック平均電圧よりも高いと判定したならば、該スタックに対応する前記トランスバランス回路内の前記スイッチング素子にスイッチング動作を行わせず、
     前記スタックごとに、該スタックについて算出した電圧が前記スタック平均電圧と同等になったと判定したならば、該スタックに対する均等化の動作を終了する、
     ことを特徴とする請求項2に記載の電池均等化装置。
    The balance control unit
    Calculate the voltage of the entire assembled battery based on the voltage of each battery cell detected by the voltage monitoring unit, calculate the stack average voltage by dividing the voltage by the number of stacks in the assembled battery,
    For each stack, if it is determined that the voltage calculated for the stack is lower than the stack average voltage, the switching element in the transbalance circuit corresponding to the stack is caused to perform a switching operation,
    For each stack, if it is determined that the voltage calculated for the stack is higher than the stack average voltage, the switching element in the transbalance circuit corresponding to the stack is not switched,
    For each stack, if it is determined that the voltage calculated for the stack is equal to the stack average voltage, the equalization operation for the stack is terminated.
    The battery equalizing apparatus according to claim 2.
  4.  前記スタックごとに、該スタック内の電池セルのうちの1つ以上の電池セルから放電されるエネルギーを該スタック内の電池セルのうちの1つ以上の他の電池セルに充電させることによって該スタック内の電池セルの電圧を均等化させるコンバータバランス回路をさらに備える、
     ことを特徴とする請求項1ないし3のいずれかに記載の電池均等化装置。
    For each stack, the stack is charged by charging energy discharged from one or more of the battery cells in the stack to one or more other battery cells in the stack. A converter balance circuit for equalizing the voltage of the battery cells inside
    The battery equalizing apparatus according to claim 1, wherein the battery equalizing apparatus is a battery equalizing apparatus.
  5.  前記コンバータバランス回路は、前記スタック内の電池セルのうちの1つ以上の電池セルから放電される電力を、スイッチング素子およびインダクタを含む回路を介して、前記スタック内の電池セルのうちの1つ以上の他の電池セルに充電させる、
     ことを特徴とする請求項4に記載の電池均等化装置。
    The converter balance circuit supplies power discharged from one or more of the battery cells in the stack to one of the battery cells in the stack via a circuit including a switching element and an inductor. Let the other battery cells charge,
    The battery equalizing apparatus according to claim 4.
  6.  複数の電池セルが直列接続されて構成される組電池における該複数の電池セルの電圧を均等化させる電池均等化方法であって、
     前記複数の電池セルのうち、所定数の電池セルからなる複数のスタックのスタックごとにエネルギーの放電または充電を行わせることによって前記スタック間の電圧を均等化させる動作として、前記スタックごとに、個別に接続されるスイッチング素子、トランス、および整流回路を介して、個別の均等化の動作を実行し、
     前記各電池セルの電圧を監視して検出し、
     前記検出した前記各電池セルの電圧に基づいて、前記スタックの電圧を算出し、該算出された電圧に基づいて前記均等化の動作を実行すべきスタックを決定し、該決定したスタックに対応するスイッチング素子に対して前記均等化の動作に対応するスイッチング動作を指示して前記均等化の動作を実行させる、
     ことを特徴とする電池均等化方法。
    A battery equalization method for equalizing voltages of a plurality of battery cells in an assembled battery configured by connecting a plurality of battery cells in series,
    Among the plurality of battery cells, as an operation of equalizing the voltage between the stacks by discharging or charging energy for each stack of a plurality of stacks composed of a predetermined number of battery cells, individually for each stack. Perform individual equalization operations via switching elements, transformers, and rectifier circuits connected to
    Monitoring and detecting the voltage of each battery cell;
    Based on the detected voltage of each battery cell, the voltage of the stack is calculated, the stack on which the equalization operation is to be performed is determined based on the calculated voltage, and the stack corresponds to the determined stack Instructing a switching operation corresponding to the equalization operation to the switching element to execute the equalization operation;
    The battery equalization method characterized by the above-mentioned.
  7.  前記トランスの一次巻線には該トランスに対応する前記スイッチング素子を介して前記組電池の両端子を接続し、
     該トランスの二次巻線には前記スタックの両端子を、前記整流回路を介して接続する、
     ことを特徴とする請求項6に記載の電池均等化方法。
    Both terminals of the assembled battery are connected to the primary winding of the transformer via the switching element corresponding to the transformer,
    Both terminals of the stack are connected to the secondary winding of the transformer via the rectifier circuit.
    The battery equalization method according to claim 6.
  8.  前記電圧監視部が検出した前記各電池セルの電圧に基づいて前記組電池全体の電圧を算出し、該電圧を前記組電池における前記スタックの数で除算することでスタック平均電圧を算出し、
     前記スタックごとに、該スタックについて算出した電圧が前記スタック平均電圧よりも低いと判定したならば、該スタックに対応する前記トランスバランス回路内の前記スイッチング素子にスイッチング動作を行わせ、
     前記スタックごとに、該スタックについて算出した電圧が前記スタック平均電圧よりも高いと判定したならば、該スタックに対応する前記トランスバランス回路内の前記スイッチング素子にスイッチング動作を行わせず、
     前記スタックごとに、該スタックについて算出した電圧が前記スタック平均電圧と同等になったと判定したならば、該スタックに対する均等化の動作を終了する、
     ことを特徴とする請求項7に記載の電池均等化方法。
     
    Calculate the voltage of the entire assembled battery based on the voltage of each battery cell detected by the voltage monitoring unit, calculate the stack average voltage by dividing the voltage by the number of stacks in the assembled battery,
    For each stack, if it is determined that the voltage calculated for the stack is lower than the stack average voltage, the switching element in the transbalance circuit corresponding to the stack is caused to perform a switching operation,
    For each stack, if it is determined that the voltage calculated for the stack is higher than the stack average voltage, the switching element in the transbalance circuit corresponding to the stack is not switched,
    For each stack, if it is determined that the voltage calculated for the stack is equal to the stack average voltage, the equalization operation for the stack is terminated.
    The battery equalization method according to claim 7.
PCT/JP2012/083036 2012-02-01 2012-12-20 Battery equalization device and method WO2013114757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-019786 2012-02-01
JP2012019786A JP2013162540A (en) 2012-02-01 2012-02-01 Battery equalization device and method

Publications (1)

Publication Number Publication Date
WO2013114757A1 true WO2013114757A1 (en) 2013-08-08

Family

ID=48904815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083036 WO2013114757A1 (en) 2012-02-01 2012-12-20 Battery equalization device and method

Country Status (2)

Country Link
JP (1) JP2013162540A (en)
WO (1) WO2013114757A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072384A1 (en) * 2016-10-20 2018-04-26 中山大学 Two-stage equalization charge system and equalization charge method for managing power battery set
CN113954693A (en) * 2021-10-11 2022-01-21 暨南大学 Lithium battery balance control method, system and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748785B2 (en) * 2014-03-04 2017-08-29 Ricoh Company, Ltd. Storage status adjusting circuit, storage status adjusting device, storage battery pack and switch circuit controlling method
KR101927122B1 (en) * 2016-11-09 2018-12-10 현대오트론 주식회사 Apparatus for autonomous battery balancing
KR102618739B1 (en) * 2018-01-22 2023-12-29 엘지이노텍 주식회사 Battery management system, and method of balancing of battery module thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
JP2010529818A (en) * 2007-02-09 2010-08-26 エスケー エナジー 株式会社 Charge equalization device
JP2011087377A (en) * 2009-10-14 2011-04-28 Fdk Corp Circuit for correcting charge balance in multiserial accumulating cell
JP2011217597A (en) * 2010-03-31 2011-10-27 O2 Micro Inc Balancing system for battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
JP2010529818A (en) * 2007-02-09 2010-08-26 エスケー エナジー 株式会社 Charge equalization device
JP2011087377A (en) * 2009-10-14 2011-04-28 Fdk Corp Circuit for correcting charge balance in multiserial accumulating cell
JP2011217597A (en) * 2010-03-31 2011-10-27 O2 Micro Inc Balancing system for battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072384A1 (en) * 2016-10-20 2018-04-26 中山大学 Two-stage equalization charge system and equalization charge method for managing power battery set
CN113954693A (en) * 2021-10-11 2022-01-21 暨南大学 Lithium battery balance control method, system and storage medium

Also Published As

Publication number Publication date
JP2013162540A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
CN106374559B (en) Method for rapid charging of series-connected battery packs and related device
JP5394919B2 (en) Charge equalization device in which secondary windings of multiple transformers are connected in parallel
US9209630B2 (en) Active battery cell balancing methods with variable duration discharge
Phung et al. Optimized structure for next-to-next balancing of series-connected lithium-ion cells
KR101294378B1 (en) BATTERY BALANCING CONTROL APPARATUS and METHOD THEREOF
WO2013154156A1 (en) Cell equalization device and method
JP2013530665A (en) Balance system for power battery and corresponding charge balance method
US8269455B2 (en) Charge balancing system
WO2013146905A1 (en) Battery equalization apparatus and method
TWI804503B (en) Power storage system and electric equipment
JP2009540792A (en) Charge equalization device in which primary windings of multiple transformers are connected in parallel
WO2013114757A1 (en) Battery equalization device and method
JP5744598B2 (en) Balance correction device and power storage system
JP5477366B2 (en) Battery charge amount control apparatus and method
WO2013157576A1 (en) Battery balancing system and method
WO2013114696A1 (en) Balancing device
JP2013116006A (en) Battery equalization device and method
KR20120112072A (en) Auxiliary battery charging apparatus
JP5670261B2 (en) Battery pack capacity adjustment device
TWI390822B (en) Circuits and methods for balancing battery cells
CN110249498B (en) Battery device and battery cell equalization circuit
JP5285322B2 (en) Voltage equalizing device, charging device, battery assembly, and charging system
CN111492557A (en) Management device and power supply system
JPH10257682A (en) Method of operating combined batteries and charging-discharging circuit for combined batteries
US20150140374A1 (en) Battery state control circuit, battery state control apparatus, and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867570

Country of ref document: EP

Kind code of ref document: A1