WO2013113205A1 - 一种基站的射频测试系统、方法及多工器 - Google Patents

一种基站的射频测试系统、方法及多工器 Download PDF

Info

Publication number
WO2013113205A1
WO2013113205A1 PCT/CN2012/077771 CN2012077771W WO2013113205A1 WO 2013113205 A1 WO2013113205 A1 WO 2013113205A1 CN 2012077771 W CN2012077771 W CN 2012077771W WO 2013113205 A1 WO2013113205 A1 WO 2013113205A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
band
radio frequency
base station
multiplexer
Prior art date
Application number
PCT/CN2012/077771
Other languages
English (en)
French (fr)
Inventor
成军平
�田宏
余飞
张天鹏
刘彬
张志锋
邵立群
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013113205A1 publication Critical patent/WO2013113205A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present invention relates to a wireless communication device testing technology, and in particular, to a Frequency Division Duplex (FDD) Long Term Evolution (Long-Term Evolution, referred to as short-term evolution).
  • FDD Frequency Division Duplex
  • Long-Term Evolution Long-Term Evolution
  • RF test system, method and multiplexer for LTE base stations.
  • Evolved; Radio Remote Unit (RRU) (eRRU) is an indispensable part of wireless communication systems. Its performance affects the whole system and needs to be verified by testing. Whether the RF performance has reached the design goal.
  • the actual deployment scenario of the eRRU is shown in Figure 1.
  • the ANT is the antenna
  • the UE is the user equipment
  • the EPC is the evolved packet core network
  • the OMC is the operation and maintenance center.
  • the eRRU directly connects the antenna through the feeder. Since the passive intermodulation of the antenna and the RF feeder is usually below -150dBc, the performance of the antenna and the RF feeder have little effect on the performance of the eRRU.
  • the laboratory test environment is shown in Figure 2.
  • each eFRU's feed port ie, RF port
  • many test accessories are often used, such as: attenuator, Circulators, isolators, traps, etc., but ferrite devices such as circulators and isolators have poor passive intermodulation, and the products of intermodulation are very large at high power, which has a great impact on eRRU testing.
  • the environment has not been able to truly reflect the actual performance of eRRU.
  • the uplink RF indicator (receiver RF indicator) and the downlink RF indicator (transmitter RF indicator) are time-sharing tests, and the efficiency is relatively low.
  • the technical problem to be solved by the present invention is to provide a radio frequency test system, method and multiplexer for a base station to improve test efficiency and accuracy of test results, and to reduce test costs.
  • a multiplexer for base station radio frequency testing comprising: a first port connected to a radio port to be tested of the base station; a first combiner connected to the first port; at least one second port, and a spectrum analyzer connected; at least one third port connected to the signal generator; a band pass filter connected between the first combiner and the second port, the passband being a downlink RF of the base station a signal band; a band rejection filter connected between the first combiner and the third port, wherein the stop band is a downlink radio frequency signal band of the base station.
  • the multiplexer wherein: the number of the second port is 1; the number of the third port is 2, and is respectively configured to receive an uplink radio frequency signal sent by the signal generator and perform the uplink radio frequency signal Interference signals that interfere.
  • a radio frequency test system for a base station includes a spectrum analyzer, a signal generator, and the multiplexer described above.
  • An RF test method based on the above RF test system, comprising: a multiplexer receiving a downlink RF signal sent by a base station and an uplink RF signal sent by a signal generator; and the multiplexer bandpassing the downlink RF signal After filtering, sending to a spectrum analyzer for the spectrum analyzer to test the transmitter radio frequency indicator; After the multiplexer performs band rejection filtering on the uplink radio frequency signal, it sends the signal to the base station for testing the receiver radio frequency indicator.
  • the radio frequency test method wherein: the transmitter radio frequency indicator includes at least one of a transmit power, an error vector magnitude, a downlink spur, and an occupied channel bandwidth; and the receiver radio frequency indicator includes a sensitivity, a blocking, and an uplink spur at least one.
  • the present invention provides a structure of a multiplexer, which can simultaneously perform uplink RF indicators and downlinks of the RRUs when performing LTE base station RF testing.
  • the radio frequency index is tested to improve the test efficiency and reduce the test cost.
  • the invention overcomes the problem that the test environment has too much passive intermodulation in the prior art, and the test result is more accurate, and can be tested in the laboratory.
  • the actual performance of the RRU is fully reflected; the multiplexer of the present invention supports simultaneous testing of the inter-frequency RRU, and the multiplexer can also simplify the testing environment, improve the stability of the testing process, and the reliability of the test results.
  • FIG. 1 is a schematic diagram of an RRU external field deployment scenario
  • FIG. 2 is a schematic diagram of a RRU laboratory test environment
  • FIG. 3 is a schematic structural view of a multiplexer according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing another structure of a triplexer according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a duplexer according to an embodiment of the present invention.
  • the present invention is directed to the current FDD LTE RRU uplink radio frequency indicator and downlink radio frequency indicator time-sharing, the impact of the test environment on the RRU performance, and the high cost of the accessory cost of the RRU radio test environment, and designing a multiplex for RF testing.
  • the multiplexer is used to perform the RF performance test of the RRU, which can ensure the performance of the RRU in the test environment and can simultaneously test the uplink RF indicator and the downlink RF indicator.
  • FIG. 3 is a multiplex according to an embodiment of the present invention. Schematic diagram of the structure of the device. Referring to FIG.
  • the multiplexer may include: multiple ports: port 0, port 1, port 2, ..., port 3n; multiple filters: filter 1, filter 2, ..., filtering
  • the combiner has one end connected to the port 0, and the other end is connected in parallel to the plurality of filters, and is configured to realize the combination and separation of the multiple RF signals, and the combiner can be a ⁇ type
  • each filter i is also connected to the corresponding port i, l ⁇ i ⁇ 3n.
  • Each of the plurality of filters is a group, and each group of filters implements measurement of one transmission band of the RRU, and the multiplexer can measure n different transmission bands.
  • each set of filters includes a band pass filter and two band stop filters
  • the pass band of the band pass filter is a transmit band of the RRU
  • the stop band of the band stop filter is also the transmit band .
  • filter 1 is a band-pass filter whose passband is a transmit band of the RRU-TX1 band
  • filter 2 and filter 3 are band-group filters
  • the stop band is TX1.
  • the first set of filters can measure the RF index of the TX1 band of the RRU; for the second set of filters, the filter 4 is a band pass filter, and the pass band is another transmit band of the RRU - the TX2 band, filtering
  • the filter 5 and the filter 6 are band-group filters, and the stop band is the TX2 band.
  • the second group of filters can measure the RF index of the TX2 band of the RRU.
  • the multiplexer is made of aluminum, does not contain iron base, etc., and the passive intermodulation can reach or exceed -150 dBc, and the electromagnetic radiation generated by the device is less than -104 dBm at a power of 46 dBm, which is not true.
  • port 0 is connected to the RF port to be tested of the base station RRU, the port of the bandpass filter is connected to the spectrum analyzer, and the port of the band rejection filter is connected to the signal analyzer.
  • the radio frequency test principle of the embodiment of the present invention will be described below with the most typical three-worker in the multiplexer.
  • 4 is a schematic structural diagram of a triplexer according to an embodiment of the present invention. Referring to FIG.
  • the triplexer may include: port 0, connected to an RF port to be tested of the RRU; port 1, connected to a spectrum analyzer; 2 and port 3, connected to the signal generator; combiner, one end of which is connected to port 0; filter 1 connected between combiner and port 1, filter 1 is a bandpass filter, the passband is A transmitting band of the RRU-TX band; a filter 2 connected between the combiner and the port 2, the filter 2 is a band-stop filter, and the stop band is the TX band; connected to the combiner and the port 3 Between the filter 3, the filter 3 is a band-stop filter whose stop band is the TX band.
  • the above-mentioned three-worker can realize the separation of the RRU uplink signal and the downlink signal, and support simultaneous testing of the uplink and downlink radio frequency indicators.
  • port 0 to port 1 are bandpass filters of the RRU TX band
  • the TX signal can pass without attenuation.
  • the transmit power and error vector magnitude (EVM) can be tested.
  • EVM error vector magnitude
  • Downstream indicators such as occupied channel bandwidth (OBW).
  • OBW occupied channel bandwidth
  • the RRU receive band (RX) signal from the signal generator can enter the RRU receive channel from port 2 to port 01, and the RRU performs the above-mentioned indicators such as sensitivity.
  • port 0 to port 3 are band rejection filters of the RRU TX band, which enable the interference signal of the RX path from the signal generator to pass. Since the passband band of the band rejection filter can reach the DC-4G range, a test scheme is provided for the block indicator in the 3GPP TS36.141 protocol. At the same time, the filter 2 and the filter 3 in the triplexer can also suppress the passage of the TX signal, preventing the TX signal from entering the signal generator to cause damage to the meter.
  • the specific test process for the uplink blocking indicator is:
  • the rated power TX signal sent by the RRU arrives at port 1 from port 0 without attenuation, and the TX signal cannot reach port 2 and port 3, thereby protecting the signal generator;
  • the RX signal of the RRU sent by the signal generator enters the RRU after reaching the port 0 without attenuation from the port 2;
  • the interference signal sent by the signal generator to interfere with the RX signal arrives at the port R after no attenuation from the port 3, and enters the RRU.
  • the signals of port 2 and port 3 have 30dB isolation, ensuring that the RX signal is not attenuated to reach port 0; since the passband of port 0 to port 2 and port 3 is DC-4G (minus the TX band), the uplink blocking test
  • the required interference signal can reach the RRU port of the RRU without attenuation through the signal generator, and the RRU can perform the blocking test according to the received signal.
  • the above triplexer can also support downlink spur and uplink spur test, specifically: the passband of port 0 to port 2 and port 3 is DC-4G (minus the TX band), so the spurs outside the 10M band of the TX band can No attenuation from port 0 to port 2 and port 3, port 2 and port 3 can test the spur of the downstream band; in addition, the spurs of the RX band emitted by the signal generator can also be attenuated from port 2 and port 3 When port 0 is reached, slave port 0 can test the spur of the upstream band.
  • FIG. 5 is another schematic structural view of a triplexer according to an embodiment of the invention. Referring to FIG.
  • the triplexer may include: port 0, connected to the RF port to be tested of the RRU; port 1, connected to the spectrum analyzer; port 2 and port 3, connected to the signal generator; the first combiner One end is connected to port 0; the second combiner has one end connected to port 2 and port 3; a filter 1 connected between the first combiner and port 1, filter 1 is a band pass filter, Passband
  • FIG. 6 is a schematic structural diagram of a four-worker capable of supporting simultaneous testing of an inter-frequency RRU according to an embodiment of the present invention. Referring to FIG.
  • the duplexer may include: port 0, connected to the RF port to be tested of the RRU; port 1 and port 4, connected to the spectrum analyzer; port 2 and port 3, connected to the signal generator; , one end is connected to port 0; the filter 1 is connected between the combiner and port 1, the filter 1 is a band pass filter, and the pass band is a transmission band of the RRU - the TX1 band; Filter 4 between the device and port 4, filter 41 is a band pass filter, the pass band is another transmit band of the RRU - TX2 band; filter 2 is connected between the combiner and port 2, filtering 2 is a band rejection filter, the stop band is the TX1 frequency band and the TX2 frequency band; the filter 3 is connected between the combiner and the port 3, and the filter 3 is a band rejection filter, and the stop band is the TX1 band and TX2 band.
  • Port 0 to port 1 are bandpass filters of TX1, and port 1 can test the downlink inband indicators of TX1 (for example, power, EVM, etc.); port 0 to port 4 are bandpass filtering of TX2. From port 4, you can test the downstream inband indicators of TX2 (for example, power, EVM, etc.); port 2 and port 3 to port 0 are band rejection filters for TX1 and TX2, and send uplink signals through port 3 and port 4.
  • RX1 and RX2 can perform RX1 and RX2 upstream indicator tests.
  • the present invention realizes the simultaneous testing of the uplink RF indicator and the downlink indicator by designing a multiplexer structure, so that the test efficiency is greatly improved, and the test environment can truly reflect the performance of the RRU.
  • the multiplexer is a combination of a bandpass filter, a bandstop filter, and a combiner. In order to adapt to different application scenarios, the multiplexer can be arbitrarily combined to improve the flexibility of RF measurement. It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and are not intended to be limiting, and those skilled in the art should understand that the technical solutions of the present invention may be modified or equivalently substituted without departing from the technical solutions of the present invention. The spirit of the scope should be covered by the scope of the claims of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基站的射频测试系统、方法及多工器,其中,上述多工器包括:第一端口,与基站的待测试射频端口连接;第一合路器,与第一端口连接;至少一个第二端口,与频谱分析仪连接;至少一个第三端口,与信号发生仪连接;连接在第一合路器和第二端口之间的带通滤波器,其通带为基站的下行射频信号频段;连接在第一合路器和所述第三端口之间的带阻滤波器,其阻带为所述基站的下行射频信号频段采用本发明提供的上述技术方案,可以提高LTE基站的射频测试的测试效率,降低测试成本;测试结果更准确;支持异频RRU的同时测试,并且,多工器还可以实现测试环境简单化,提高测试过程的稳定性和测试结果的可靠性。

Description

一种基站的射频测试系统、 方法及多工器 技术领域 本发明涉及无线通信设备测试技术, 特别涉及一种频分双工 (Frequency Division Duplex, 简称为 FDD)长期演进 (Long-Term Evolution, 简称为 LTE)基站的射频测试 系统、 方法及多工器。 背景技术
LTE基站中的演进 (Evolved;)射频拉远单元 (Radio Remote Unit, 简称为 RRU) (eRRU)是无线通信系统中不可或缺的部分, 其性能优劣影响着整个系统, 需要通过 测试验证其射频性能是否达到了设计的目标。 eRRU实际部署场景如图 1所示, 图 1 中, ANT为天线, UE为用户设备, EPC 为演进的分组核心网, OMC为操作维护中心。外场实际部署的时候 eRRU直接通过馈 线连接天线, 由于天线和射频馈线的无源互调通常都在 -150dBc 以下, 所以天线和射 频馈线对 eRRU的性能影响很小。 实验室测试环境如图 2所示, 在实验室测试中, 由于 eRRU的每个天馈口 (即射 频端口)的输出功率都大于 20W, 经常要用到许多的测试附件, 如: 衰减器、环形器、 隔离器和陷波器等, 但环形器和隔离器这类铁氧体器件无源互调都很差, 在大功率下 互调产物很大, 对 eRRU的测试影响非常大, 测试环境已经不能真实的反映 eRRU实 际性能。 另外, 在上述测试环境中, 上行射频指标(接收机射频指标)和下行射频指标(发 射机射频指标) 是分时测试, 效率比较低。 而且, 目前 FDD LTE的射频测试环境都是采用分立式器件, 连接复杂, 搭建测试 环境成本高, 且连接处很容易产生互调以及电磁杂散, 对测试结果存在很大影响。 发明内容 本发明所要解决的技术问题是提供一种基站的射频测试系统、 方法及多工器, 以 提高测试效率和测试结果的准确性, 并降低测试成本。 为解决上述技术问题, 本发明实施例提供的技术方案如下: 一种用于基站射频测试的多工器, 包括: 第一端口, 与所述基站的待测试射频端口连接; 第一合路器, 与所述第一端口连接; 至少一个第二端口, 与频谱分析仪连接; 至少一个第三端口, 与信号发生仪连接; 连接在所述第一合路器和所述第二端口之间的带通滤波器, 其通带为所述基站的 下行射频信号频段; 连接在所述第一合路器和所述第三端口之间的带阻滤波器, 其阻带为所述基站的 下行射频信号频段。 上述的多工器, 其中: 所述第二端口的数目为 1 ; 所述第三端口的数目为 2, 分别设置为接收所述信号发生仪发送的上行射频信号 和对所述上行射频信号进行干扰的干扰信号。 上述的多工器, 其中: 所述带阻滤波器的数目为 1 ; 所述多工器还包括, 连接在所述带阻滤波器和所述第三端口之间的第二合路器。 上述的多工器, 其中: 所述带阻滤波器的阻带包括所述基站的两个不同的下行射频信号频段。 一种基站的射频测试系统, 包括, 频谱分析仪、 信号发生仪和上述的多工器。 一种基于上述的射频测试系统实现的射频测试方法, 包括: 多工器接收基站发送的下行射频信号和信号发生仪发送的上行射频信号; 所述多工器对所述下行射频信号进行带通滤波后, 发送到频谱分析仪, 供所述频 谱分析仪进行发射机射频指标的测试; 所述多工器对所述上行射频信号进行带阻滤波后, 发送到所述基站, 供所述基站 进行接收机射频指标的测试。 上述的射频测试方法, 其中: 所述发射机射频指标包括发射功率、 误差矢量幅度、 下行杂散和占用信道带宽中 的至少一个; 所述接收机射频指标包括灵敏度、 阻塞、 上行杂散中的至少一个。 与现有技术相比, 本发明的有益效果是: 本发明给出了一种多工器的结构, 采用该多工器进行 LTE基站的射频测试时, 能 够同时对 RRU的上行射频指标和下行射频指标进行测试,提高了测试效率, 降低了测 试成本; 本发明克服了现有技术中测试环境无源互调过大对测试结果的影响问题, 使测试 结果更准确, 能在实验室测试中充分反映 RRU的实际性能; 本发明的多工器支持异频 RRU的同时测试,并且,所述多工器还可以实现测试环 境简单化, 提高测试过程的稳定性和测试结果的可靠性。 附图说明 图 1为 RRU外场部署场景示意图; 图 2 为 RRU实验室测试环境示意图; 图 3为根据本发明实施例的多工器的结构示意图; 图 4为根据本发明实施例的三工器的结构示意图; 图 5为根据本发明实施例的三工器的另一种结构示意图; 图 6为根据本发明实施例的四工器的结构示意图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及具体实施例对 本发明进行详细描述。 本发明针对目前 FDD LTE RRU上行射频指标和下行射频指标分时进行、 测试环 境对 RRU性能的影响大, 以及 RRU射频测试环境的附件费用投入高等问题, 设计了 一种用于射频测试的多工器结构,采用该多工器进行 RRU的射频性能测试,能够保证 测试环境真实的反应 RRU的性能,并能够实现上行射频指标和下行射频指标的同时测 试 图 3为根据本发明实施例的多工器的结构示意图。 参照图 3, 所述多工器可以包 括: 多个端口: 端口 0、 端口 1、 端口 2、 ...、 端口 3η; 多个滤波器: 滤波器 1、 滤波器 2、 ...、 滤波器 3η; 合路器, 所述合路器的一端连接端口 0, 另一端并行连接所述多个滤波器, 设置 为实现多路射频信号的合并和分离, 所述合路器可以为 τ型结; 另外, 每个滤波器 i 还与相应的端口 i连接, l≤i≤3n。 所述多个滤波器中,每 3个滤波器为一组,每组滤波器实现对 RRU的一个发射频 段的测量, 则所述多工器可以实现对 n个不同的发射频段的测量。 其中, 每组滤波器 包括一个带通滤波器和两个带阻滤波器,所述带通滤波器的通带为 RRU的一个发射频 段, 所述带阻滤波器的阻带也为该发射频段。 例如, 对于第一组滤波器, 滤波器 1为带通滤波器, 其通带为 RRU的一个发射频 段 -TX1频段, 滤波器 2和滤波器 3为带组滤波器, 其阻带均为 TX1频段, 第一组滤 波器可以实现对 RRU的 TX1频段的射频指标测量; 对于第二组滤波器, 滤波器 4为 带通滤波器, 其通带为 RRU的另一个发射频段 -TX2频段, 滤波器 5和滤波器 6为带 组滤波器, 其阻带均为 TX2频段, 第二组滤波器可以实现对 RRU的 TX2频段的射频 指标测量。 优选地, 所述多工器采用的铝基制作, 不含铁基等, 无源互调可以达到或优于 -150dBc, 在 46dBm大功率下该器件产生的电磁辐射小于 -104dBm, 不会对被测设备 的测试结果造成影响。 在进行测试时,是将端口 0连接至基站 RRU的待测试射频端口,将带通滤波器的 端口连接至频谱分析仪, 将带阻滤波器的端口连接至信号分析仪。 下面以多工器中最 为典型的三工器来对本发明实施例的射频测试原理进行说明。 图 4为根据本发明实施例的三工器的结构示意图, 参照图 4, 所述三工器可以包 括: 端口 0, 与 RRU的待测试射频端口连接; 端口 1, 与频谱分析仪连接; 端口 2和端口 3, 与信号发生仪连接; 合路器, 其一端连接至端口 0; 连接在合路器与端口 1之间的滤波器 1, 滤波器 1为带通滤波器, 其通带为 RRU 的一个发射频段 -TX频段; 连接在合路器与端口 2之间的滤波器 2, 滤波器 2为带阻滤波器, 其阻带为所述 TX频段; 连接在合路器与端口 3之间的滤波器 3, 滤波器 3为带阻滤波器, 其阻带为所述 TX频段。 上述三工器能够实现 RRU上行信号和下行信号的分离,支持上下行射频指标的同 时测试。 具体地, 由于端口 0到端口 1为 RRU TX频段的带通滤波器, TX信号可以 无衰减的通过, 利用频谱分析仪从端口 1接收 TX信号后, 可以测试发射功率、 误差 矢量幅度 (EVM)、 占用信道带宽 (OBW) 等下行指标。 由于端口 0到端口 2为 RRU TX频段的带阻滤波器, 信号发生仪发出的 RRU接 收频段 (RX) 信号可以从端口 2到端口 01, 进入 RRU的接收通道, 由 RRU进行上 述指标例如灵敏度的测量。 另外, 端口 0到端口 3为 RRU TX频段的带阻滤波器, 能够使得信号发生仪发出 的 RX路的干扰信号通过。 由于带阻滤波器的通带频段可以达到 DC-4G范围, 就为 3GPP TS36.141协议中的阻塞 (block) 指标提供了测试方案。 同时, 所述三工器中的 滤波器 2和滤波器 3还能够抑制 TX信号通过, 防止 TX信号进入信号发生仪对仪表 造成损伤。 上行阻塞指标的具体测试过程为:
RRU发送的额定功率的 TX信号从端口 0无衰减的到达端口 1, 同时, TX信号 无法到达端口 2和端口 3, 从而保护信号发生仪; 信号发生仪发送的 RRU的 RX信号从端口 2无衰减到达端口 0后, 进入 RRU; 信号发生仪发送的对所述 RX信号进行干扰的干扰信号从端口 3无衰减到达端口 0后, 进入 RRU, 其中, 端口 2和端口 3的信号具有 30dB的隔离度, 保证 RX信号 无衰减到达端口 0; 由于端口 0到端口 2和端口 3的通带为 DC-4G (减去 TX频段),上行阻塞测试要 求的干扰信号通过信号发生仪可以无衰减的到达 RRU的 RX端口, RRU便可以根据 接收到的信号进行阻塞测试。 上述三工器还可以支持下行杂散和上行杂散测试, 具体为: 端口 0到端口 2和端 口 3的通带为 DC-4G (减去 TX频段), 所以 TX频段 10M外的杂散可以无衰减的从 端口 0到达端口 2和端口 3, 从端口 2和端口 3可以测试下行频段的杂散; 另外, 信 号发生仪发出的 RX频段的杂散也可以无衰减的从端口 2和端口 3到达端口 0, 从端 口 0可以测试上行频段的杂散。 图 5为根据本发明实施例的三工器的另一种结构示意图。 参照图 5, 所述三工器 可以包括: 端口 0, 与 RRU的待测试射频端口连接; 端口 1, 与频谱分析仪连接; 端口 2和端口 3, 与信号发生仪连接; 第一合路器, 其一端连接至端口 0; 第二合路器, 其一端连接端口 2和端口 3 ; 连接在第一合路器与端口 1之间的滤波器 1, 滤波器 1为带通滤波器, 其通带为
RRU的一个发射频段 -TX频段; 连接在第一合路器与第二合路器之间的滤波器 2, 滤波器 2为带阻滤波器, 其阻 带为所述 TX频段。 可以看出, 图 5与图 4的区别在于, 只有一个带阻滤波器, 端口 2、 3通过第二合 路器与所述带阻滤波器连接。 利用该三工器进行射频指标测试的原理与图 4所示的三 工器类似, 这里不作赘述。 图 6为根据本发明实施例的四工器的结构示意图,该四工器能够支持异频 RRU的 同时测试。 参照图 6, 所述四工器可以包括: 端口 0, 与 RRU的待测试射频端口连接; 端口 1和端口 4, 与频谱分析仪连接; 端口 2和端口 3, 与信号发生仪连接; 合路器, 其一端连接至端口 0; 连接在合路器与端口 1之间的滤波器 1, 滤波器 1为带通滤波器, 其通带为 RRU 的一个发射频段 -TX1频段; 连接在合路器与端口 4之间的滤波器 4,滤波器 41为带通滤波器,其通带为 RRU 的另一个发射频段 -TX2频段; 连接在合路器与端口 2之间的滤波器 2, 滤波器 2为带阻滤波器, 其阻带为所述 TX1频段和 TX2频段; 连接在合路器与端口 3之间的滤波器 3, 滤波器 3为带阻滤波器, 其阻带为所述 TX1频段和 TX2频段。 其工作原理为: 端口 0到端口 1为 TX1的带通滤波器, 从端口 1可以测试 TX1的下行带内指标 (例如, 功率、 EVM等指标); 端口 0到端口 4为 TX2的带通滤波器, 从端口 4可以测试 TX2的下行带内指标 (例如, 功率、 EVM等指标); 端口 2和端口 3到端口 0为 TX1和 TX2的带阻滤波器, 通过端口 3和端口 4发 送上行信号 RX1和 RX2, 可以进行 RX1和 RX2上行指标测试。 综上所述, 本发明通过设计一种多工器的结构来实现上行射频指标和下行指标的 同时测试,使得测试效率大幅提高,并能够保证测试环境能够真实的反映 RRU的性能。 多工器由带通滤波器、 带阻滤波器以及合路器组合而成, 为了适应不同的应用场景, 还可以对多工器进行任意的组合, 提高了射频测量的灵活性。 最后应当说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 本领域 的普通技术人员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱 离本发明技术方案的精神范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1. 一种用于基站射频测试的多工器, 包括:
第一端口, 与所述基站的待测试射频端口连接;
第一合路器, 与所述第一端口连接;
至少一个第二端口, 与频谱分析仪连接;
至少一个第三端口, 与信号发生仪连接;
连接在所述第一合路器和所述第二端口之间的带通滤波器, 其通带为所述 基站的下行射频信号频段;
连接在所述第一合路器和所述第三端口之间的带阻滤波器, 其阻带为所述 基站的下行射频信号频段。
2. 如权利要求 1所述的多工器, 其中:
所述第二端口的数目为 1 ;
所述第三端口的数目为 2, 分别设置为接收所述信号发生仪发送的上行射 频信号和对所述上行射频信号进行干扰的干扰信号。
3. 如权利要求 2所述的多工器, 其中: 所述带阻滤波器的数目为 1 ;
所述多工器还包括: 连接在所述带阻滤波器和所述第三端口之间的第二合 路器。
4. 如权利要求 1所述的多工器, 其中:
所述带阻滤波器的阻带包括所述基站的两个不同的下行射频信号频段。
5. 一种基站的射频测试系统, 包括, 频谱分析仪、 信号发生仪和多工器, 所述多 工器包括:
第一端口, 与所述基站的待测试射频端口连接;
第一合路器, 与所述第一端口连接;
至少一个第二端口, 与频谱分析仪连接; 至少一个第三端口, 与信号发生仪连接;
连接在所述第一合路器和所述第二端口之间的带通滤波器, 其通带为所述 基站的下行射频信号频段;
连接在所述第一合路器和所述第三端口之间的带阻滤波器, 其阻带为所述 基站的下行射频信号频段。 如权利要求 5所述的射频测试系统, 其中: 所述第二端口的数目为 1 ;
所述第三端口的数目为 2, 分别设置为接收所述信号发生仪发送的上行射 频信号和对所述上行射频信号进行干扰的干扰信号。 如权利要求 6所述的射频测试系统, 其中: 所述带阻滤波器的数目为 1 ;
所述多工器还包括, 连接在所述带阻滤波器和所述第三端口之间的第二合 路器。 如权利要求 5所述的射频测试系统, 其中: 所述带阻滤波器的阻带包括所述基站的两个不同的下行射频信号频段。 一种基于权利要求 5至 8中任一项所述的射频测试系统实现的射频测试方法, 包括:
多工器接收基站发送的下行射频信号和信号发生仪发送的上行射频信号; 所述多工器对所述下行射频信号进行带通滤波后, 发送到频谱分析仪, 供 所述频谱分析仪进行发射机射频指标的测试;
所述多工器对所述上行射频信号进行带阻滤波后, 发送到所述基站, 供所 述基站进行接收机射频指标的测试。 如权利要求 9所述的射频测试方法, 其中: 所述发射机射频指标包括发射功率、 误差矢量幅度、 下行杂散和占用信道 带宽中的至少一个;
所述接收机射频指标包括灵敏度、 阻塞、 上行杂散中的至少一个。
PCT/CN2012/077771 2012-01-30 2012-06-28 一种基站的射频测试系统、方法及多工器 WO2013113205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100210547A CN102547803A (zh) 2012-01-30 2012-01-30 一种基站的射频测试系统、方法及多工器
CN201210021054.7 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013113205A1 true WO2013113205A1 (zh) 2013-08-08

Family

ID=46353504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077771 WO2013113205A1 (zh) 2012-01-30 2012-06-28 一种基站的射频测试系统、方法及多工器

Country Status (2)

Country Link
CN (1) CN102547803A (zh)
WO (1) WO2013113205A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413686A (zh) * 2018-10-19 2019-03-01 京信通信系统(中国)有限公司 基站自动化测试系统、方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254089B (zh) * 2013-06-25 2017-11-21 中国移动通信集团公司 一种阻塞指标测试方法、装置及系统
KR101494446B1 (ko) * 2013-11-11 2015-02-23 주식회사 이너트론 단일 포트 피딩 구조를 갖는 멀티플렉서
CN106488498A (zh) * 2015-09-01 2017-03-08 中兴通讯股份有限公司 一种基于射频拉远单元自发现的自动化测试方法和装置
CN107547144B (zh) * 2016-06-27 2021-09-28 中兴通讯股份有限公司 射频测试系统
CN111970727A (zh) * 2020-07-15 2020-11-20 国家无线电监测中心检测中心 一种NB-IoT基站的阻塞测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996802A (zh) * 2006-12-04 2007-07-11 信息产业部电信研究院 时分同步码分多址接入终端射频一致性测试系统
CN101106787A (zh) * 2006-07-12 2008-01-16 大唐移动通信设备有限公司 适用于td-scdma系统的基站射频指标测试系统与方法、射频箱
CN201063809Y (zh) * 2007-01-30 2008-05-21 大唐移动通信设备有限公司 一种基站测试的连接装置
CN201118870Y (zh) * 2007-09-11 2008-09-17 镇江新区澳华测控技术有限公司 多通道射频无源矩阵结构
CN101977393A (zh) * 2010-10-29 2011-02-16 中兴通讯股份有限公司 一种rsqi测试方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382625C (zh) * 2004-09-28 2008-04-16 中兴通讯股份有限公司 一种gsm主分集单载频基站自动测试装置
KR101238359B1 (ko) * 2006-02-06 2013-03-04 삼성전자주식회사 듀플렉서
EP1995897A1 (en) * 2007-05-21 2008-11-26 Research In Motion Limited Method for testing a radio frequency (RF) receiver and related methods
KR101571840B1 (ko) * 2008-12-16 2015-12-07 삼성전자주식회사 무선통신시스템의 원력 라디오 유닛 시험 장치 및 방법
CN101437261A (zh) * 2008-12-26 2009-05-20 北京五龙电信技术公司 移动通信终端射频测试系统
CN101478354A (zh) * 2009-01-20 2009-07-08 信息产业部通信计量中心 无线通信基站射频自动测试系统
CN101478353A (zh) * 2009-01-20 2009-07-08 信息产业部通信计量中心 可用于无线通信基站射频自动测试的射频单元

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106787A (zh) * 2006-07-12 2008-01-16 大唐移动通信设备有限公司 适用于td-scdma系统的基站射频指标测试系统与方法、射频箱
CN1996802A (zh) * 2006-12-04 2007-07-11 信息产业部电信研究院 时分同步码分多址接入终端射频一致性测试系统
CN201063809Y (zh) * 2007-01-30 2008-05-21 大唐移动通信设备有限公司 一种基站测试的连接装置
CN201118870Y (zh) * 2007-09-11 2008-09-17 镇江新区澳华测控技术有限公司 多通道射频无源矩阵结构
CN101977393A (zh) * 2010-10-29 2011-02-16 中兴通讯股份有限公司 一种rsqi测试方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413686A (zh) * 2018-10-19 2019-03-01 京信通信系统(中国)有限公司 基站自动化测试系统、方法和装置

Also Published As

Publication number Publication date
CN102547803A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2013113205A1 (zh) 一种基站的射频测试系统、方法及多工器
TWI237954B (en) Multi-mode radio with interference cancellation circuit
WO2013104174A1 (zh) 一种射频指标的测试系统
US9277508B2 (en) Method, control apparatus and communication system for dynamically adjusting transmit power
KR20160121595A (ko) 동시 음성 및 데이터 통신
RU2695102C2 (ru) Базовая станция
CN110380754B (zh) 一种双频时分信号收发放大器
EP3771118A1 (en) Systems and methods for remote radio frequency device monitoring
US20190028178A1 (en) Base station signal matching device, and base station interface unit and distributed antenna system including the same
KR101566415B1 (ko) 기지국 신호 정합 장치 및 이를 포함하는 중계 장치
US20150207576A1 (en) Method and Apparatus for Testing Frequency Division Duplexing Transceiver
US20150029904A1 (en) Enabling full-duplex communication in legacy lte systems
JP6374987B2 (ja) Tdd無線通信における装置および方法
CN106936463B (zh) 双工滤波装置、rru系统及无线射频系统
EP3556027B1 (en) Method and apparatus for operating co-located transceivers on the same frequency band
WO2021001800A1 (en) Cross antenna configuration in frequency division duplex (fdd) dual-band radio
WO2018196429A1 (zh) 分布式天线系统的接入装置
Punitha et al. Analysis of RF transceiver for 5G applications
CN103220051A (zh) 移动通信网络干扰综合测试仪
WO2024065713A1 (zh) 一种射频系统及装置
CN214591429U (zh) 一种基于四工器的射频收发设备
JP2010062896A (ja) 送受共用回路
WO2015156508A1 (ko) 이동통신 시스템의 중계 장치의 필터
CN116963150A (zh) 干扰装置和无线抗干扰测试系统
WO2018119793A1 (zh) 一种分路塔放及天馈系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867565

Country of ref document: EP

Kind code of ref document: A1